21
기후변화 모델링 연구 지원을 위한 배출프로세싱시스템의 개발 1) 우정헌*정부전*서지현*최기철* <> I. 서론 II. 배출목록 비교 및 선정 III. 배출 프로세싱 IV. 전 지구 배출목록 산정결과 . 배출량 산정 시스템의 유용성 . 결론 및 요약 . 사사(辭謝) I. 서론 IPCC 3차 및 4차 보고서에서는 대기 중 온실가스, 특히 CO2 농도의 증가로 인한 지구 온난화 현상과 기후변화 문제가 인류가 당면한 가장 시급한 문제 중의 하나로 강조 되었으며, 기후변화 문제에 대한 과학적 이해와 적응 및 완화 계획이 수립되었다(IPCC, 2001; IPCC, 2007). 이들 보 고서에서 발표된 중요한 결론 중 하나는 지구온난화가 현재 일어나고 있으며 그 주된 원인이 인 간의 활동이라는 것이다. 전 세계적으로 이용되고 있는 약 20여 개의 기후 시스템 모델들을 사 용한 기후변화 시나리오 실험 결과들에 따르면, 향후 100년 이내로 지구 평균 온도가 최소 1.1°C에서 최대 약 6.4°C 정도 상승할 것이며 해수면 상승, 태풍 강도 증가 등 극한 기상 이변의 증가가 가속화 될 것으로 예측된다. IPCC 배출 시나리오에 관한 특별 보고서(Special Report on Emission Scenarios, SRES, 2000)따르면 2000년에서 2030년까지 전 세계 온실 가스는 25~90%(CO2Eq.) 정도 증가할 것이며, 화석 연료는 2030년 이후에도 전 세계 에너지원에서 주요 위치를 차지할 것이라고 전망하였다(IPCC, 2000). 온실가스 배출량이 현재 수준 혹은 그 이상으로 지속된다면 21세기에는 온난화가 추가적 으로 진행될 것이며 지구 기후시스템에 다양한 변화를 초래할 것으로 예상된다. 또한 온실가스 * 건국대학교 신기술융합학과

s-space.snu.ac.kr · 2020. 6. 4. · [åg© ¢ Vh aeg®sÝ[Yt-j { kmi%uEsÚ M m½g¹s1`µei`í\ uE A Fuîv]o s½sî u1iå|E` `Ñgeuetñuît séj { u-YípÉZþo Zéuîteo a]gÑt vþt

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

DBPIA-NURIMEDIA
.
. ()
I.
IPCC 3 4 , CO2
,
(IPCC, 2001; IPCC, 2007).

. 20
, 100
1.1°C 6.4°C ,
.
IPCC (Special Report on Emission Scenarios, SRES, 2000)
2000 2030 25~90%(CO2Eq.) ,
2030 (IPCC,
2000). 21
.
*
158 49(2010)
< 1>

, (Bond et al., 2004).

, , ,
(Ohara et al., 2007). ,
/
.
2008~2010 (I), (II), (III)
.
“ NCAR CCSM3
- GEOS-Chem” -
(GEOS-Chem/CCSM3)
. CCSM-Chem/CCSM3 Off-line -
/
.

.
Emission Database for Global Atmospheric Research
(EDGAR), Global Emissions Inventory Activity(GEIA) ,
Transport and Chemical Evolution over the Pacific(TRACE-P)(Streets et al., 2003), Regional
----, l l l l l l l l l l l l l l l
159
Emission inventory in Asia(REAS)(Ohara et al., 2007), Intercontinental chemical Transport
EXperiment phase B(INTEX-B) (Zhang et al., 2006) .
, ,
, ,
.


.
- , 1)
, , 2) , ,
, 3) (hindcasting) (forecasting)
/ .
II.
,
. ,
, , , , .

.
1.
< 1> .
EDGAR 3.2 FT 2000(Olivier et al., 1996) GEIA (http://www.geiacenter.org/)

. POET(Precursors of Ozone
and their Effect on the Troposphere), GFED v2(Global Fire Emissions Database, Version 2)
(http://www.aero.jussieu.fr/projet/ACCENT/GFED.php) , POET
.
, EDGAR 3.2 FT 2000(Olivier et al., 1996) 10 30

.
160 49(2010)
Biogenic 1990 -2000
Butene and higher, Toluene, CH3OH, C2H5 OH,
CH2O, CH3CHO, CH3COCH3, CH3COCH2CH3,
(total 58 sectors)
2000 CO2, CH4, N2O, SF6, HFC, PFC, CO, NOx, NMVOC,
NH3, SO2
or 8-day
NOx, CH4, H2, N2O, OC, BC, TCPM2.5, TPM, NMHCFuel loads
Combustion completeness
Depends on the compound
CFC(cfc-11&cfc-12), Pb, Hg, Reactivechlorine, Pesticides,
VOC
Biomass burning
< 1>
, GFED v2
.
GFED v2 GEIA
,
.
Bond et al.(2004) , ,
BC, OC .

IEA(International Energy Agency) ,
UNFCCC , Global Fire Monitoring center
(Bond et al., 2004). (anthropogenic), (international
161
Inventory Inventory Domain
Latitude: -10~50
Longitude: 60~150
1°×1° annual 2000 Anthropogenic: SO2, NOx, CO, NMVOC, NH3, OC, BC, CO2, CH4
Biomass burning: SO2, NOx, CO, NMVOC, NH3, OC, BC, CO2, CH4
REAS** Latitude: -10~50
0.5°×0.5° annual Historical: 1980-2003 Base: 2000 Prediction: 2004-2009 Project: 2010, 2020
Anthropogenic: SO2, NOx, CO, NMVOC, NH3, OC, BC, CO2, CH4, N2O
INTEX 2006+ Latitude: -10~50
Longitude: 60~150
0.5°×0.5° annual 2006 Anthropogenic: SO2, NOx, CO, NMVOC, OC, BC, PM10, PM2.5
(Source: *Streets et al., 2003; **Ohara. et al., 2007; +Zhang et al., 2009)
< 2>
shipping) (biomass burning) 19
.
2.
< 2> .
TRACE-P inventory(Streets et al., 2003)
, 2000 . 64
, SO2, NOx, CO2, CO, CH4, NMVOC, BC, OC, NH3
9 , NMVOC 19 .
REAS(Ohara et al., 2007) 2000 (base year) 1980~2003
, 2010 2020 .
, SO2, NOx, CO2, CO, CH4, NMVOC, BC, OC, NH3, N2O 10
. , ,
. , , 24
TRACE-P inventory(Streets et al., 2003) .
INTEX 2006 (Zhang et al., 2009) TRACE-P inventory (Streets et al., 2003)
,
. SO2, NOx, CO, NMVOC, PM10, PM2.5, BC, OC
8, (power, industry, residential, transportation) .
162 49(2010)
TRACE-P inventory(Streets et al., 2003) PM10, PM2.5
, NH3 CO2, CH4 GHGs .
2006 , ,
.
,
EDGAR 3.2 FT 2000(Olivier et al.,1996) GEIA
POET .
EDGAR 3.2 FT 2000(Olivier et al.,1996) GEIA ,
Bond et al.(2004)
.
INTEX 2006(Zhang et al., 2009)
TRACE-P inventory(Streets et al., 2003) ,

. NH3 INTEX 2006(Zhang et al., 2009)
TRACE-P inventory(Streets et al., 2003) . N2O ,

,
.
1.
.
,
.

. .
(Emissions
processing) (Emissions projection), (Spatial allocation),
(Temporal allocation) (Chemical speciation) .
,
.
.
163

, , .
.
2.
2000 (NOx, SO2, NMVOC,
CO, BC, OC, NH3) (CO2, N2O, CH4) . BC, OC
EDGAR 3.2 FT 2000
Bond et al.(2004) .
EDGAR 3.2 FT 2000(Olivier et al.,1996) .
(INTEX 2006)
.
1980~2000 2000
RIVM IMAGE(Integrated Model to Assess the Global Environment) 2.2 Model(IMAGE-
team, 2001) 2001~2100
, 100 .
. A1
, ,
. A1 3 , (A1F),
(A1T), (A1B) . B1 A1
(convergent world)
, B2 A1 B1 , ,
, . A2

(IPCC, 2000).
2001 2100
10 , 1° × 1°
.
() ,
.
IMAGE Model
, 4 (South Asia, Southeast Asia, East Asia, Japan)
, 2000
164 49(2010)
< 2> A1B REAS
< 3> (EDGAR: ) (Streets et al., 2003: )
, REAS
, , .
REAS
1980~2000 21 . < 2>
SRES A1B REAS NOx CO .
3.
EDGAR (temporal variation)
. C. Veldt
(EDGAR homepage, http://www.geiacenter.org). , ,
, , , ,
.
< 3>() .
EDGAR
< 3>() ,

‘ @ .• ‘· ‘ ‘ . ‘ ~ ;::::::: ”
< 4> ()
. NH3

(Streets et al., 2003).
(Power plants), (area source combustion), (small combustion
sources)
, 6
. , ,
. (area source combustion)
EDGAR (industrial combustion)
. (residential)
(area source combustion), (small combustion sources)
.

.
.

. EDGAR
SMOKE .
( ),
”‘…‘·“” - i f --_ ... _ .....
i f--- if
166 49(2010)

(, , ). < 4> ,
.
4.

. (reference)
(profile)
// (speciation cross-
reference) (speciation profile) .
SMOKE(Sparse Matrix Operator Kernel Emissions)
(speciation cross-reference)
(SCC, Source Classification Codes) .
(speciation profile)
. NMVOC
,
SMOKE
(source mapping) (< 3>). EDGAR 3.2 FT 2000
( )
, .
SMOKE CB-VI(Carbon Bond Mechanism), RADM2(Regional Acid Deposition Model,
version 2), SAPRC99 .
SAPRC99
NMVOC . GEOS-Chem
SAPRC99 SMOKE
, . < 5>
N.K. Moon et al.(2005) . GEOS-Chem
NMVOC PRPE(≥C3
alkenes), C3H8, ALK4(≥C4 alkanes), C2H6, ACET(acetone), MEK(methyl ethly ketone), ALD2
(acetaldehyde), CH2O , ISOP(isoprene), MONOT(monoterpenes),
ACET(acetone), ALK4(≥C4 alkanes) .

NMVOC .
167
SAPRC99 GEOS-Chem species SAPRC99 GEOS-Chem species
NO2 O3
PAN CO
CCHO RCHO MVK
ISOP HNO3 H2O2 ACET MEK
CCHO RCHO MVK
MACR PMN PPN
SO2 NH3
MP SO2 NH3 SO4 NH4 NO3
0.1×OCPI0.1×OCPO SOA1+SOA2SOA3
BCPIBCPO 0.18×DST20.29×DST30.29×DST4
0.621×SALA 0.29×DST10.11×DST2
< 3> SAPRC99 GEOS-Chem
IV.
CO, NOx, NMVOC, BC, OC NH3, SO2
(CO2, N2O, CH4) 2000 2100 10 ,
1° × 1° A2
B1 . 20 2000
IMAGE 2.2 model .
SO2, NOx, CO2
2000 ~ 2100 10 .
1.
< 4> , 2100
A2 SO2 63%, NOx 212%, CO2
320% , B1 SO2 83%, NOx
56%, CO2 22% .
168 49(2010)
Pollutant 2000(a) 2100(b) Diff.(%)(c) 2000(a) 2100(b) Diff. (%) (c)
SO2
NOx
CO2
(a) SO2
(b) NOx
(c) CO2
< 5> (2000-2100) (: A2 , : B1 )
< 5> ,
.
120,1XlO
l00,1XlO
Year
. I ndu~“
0'.‘ .;. ".
Y.~
120,000
o ~‘identi ... ".m
• Powerereratlon
Year
• Fuelprodκtion
• Residen ti.J1
• Power generation
. Indu r.t
169
SO2 < 5> (a) A2 2000~2060
2070 ,
. B1 ,
. IPCC SRES(2000) A2
2050 SO2
, B1 2000 2050
, 2040
.
< 5> (b) NOx A2
, 2100
. B1
, . A2
NOx
.
. A2

OECD, Eastern Europe
(Cofala et al., 2007).
CO2 A2 ,
. B1 2000~2040
2050 ,
. A2 ,
. B1
, A2 .
2.
< 6>
. , ,
, , 1
6 7 . 10

.
1~3, 10~12 ,
170 49(2010)
< 6> ( 10 , : A2 , : B1 )
6~8 .

< 9> . < 9>
, 70~80%
.
3.
< 7> 9 SO2, NOx, CO2 . A2
, , .
B1 .

.

171
< 7> SO2 ( : 2000, : 2100) (: A2 , : B1 )
< 8> CO2 ( : 2000, : 2100) (: A2 , : B1 )
... _.- :;
ιr ιr f'_. ~ <<:
172 49(2010)
< 9> NOx ( : 2000, : 2100) (: A2 , : B1 )
V.
1.
SRES
RIVM IMAGE 2.2 . 3.2
, RIVM
.

.
RIVM IMAGE 2.2 , , ,
. (Industrial
process,), (Energy use), (Natural), (Landuse) .
,
. IMAGE
. 2000 2100
2000 2050 2100 RIVM IMAGE 2.2
, < 5> .
-_.-
A2 B1
2.17 1.94 2.15 2.20 2.54
1.53 1.71 1.80 1.77 2.49
2.05 1.63 3.12 1.47 4.19
1.83 1.24 2.56 1.15 4.07
0.46 0.50 0.90 0.85 1.75
0.38 0.46 0.70 0.85 1.79
0.23 0.17 0.45 0.21 0.78
0.14 0.11 0.33 0.19 0.81
< 5> IMAGE 2000 2050, 2100
< 10> KU-EPS IMAGE (CO, 2000).
A2 B1 , /
30% ,

. 2000 CO
< 10> . IMAGE
86% , KU-EPS
48% 43% .
.
2.
(1)
, .. ’‘ ’”‘ ’”‘ , .. ‘ ... ‘ ’”‘ "“ , .. ‘ , .. ‘ , ... ”‘
174 49(2010)
Projection factor extraction
Emission projection 16 MB/sec - 10,800 sec (180 min)
180,224 MB (176 GB)
(78 h) 4,194,304 MB
Time Volume
24,000 sec 340 MB(100)
18 sec 301 MB(100)
< 7> (( ): )
FORTRAN
, . ,
. 2(A2, B1
), 10 (CO, BC, OC, SO2, NOx, NMVOC, NH3, CO2, N2O, CH4), 30
100 .
< 6> .
,
< 7> . Linux FORTRAN77
(KU-EPS) .
< 7> ‘ ’ , ‘ ’
. ‘ ’ ‘ ’
100
‘ ’ ‘ ’ 1,000 .
(2) (Quality Assurance)

,
QA
175
. .
GEOS-Chem
. GEOS-Chem 80
300 (Bey et al., 2001),
SO2, CO ,
NMVOC , PRPE(≥C3 alkenes), C3H8,
ALK4(≥C4 alkanes), C2H6, ACET(acetone), MEK(methyl ethly ketone), ALD2(acetaldehyde), CH2O
.
, .
VI.
,
/
GIS FORTRAN
(KU-EPS) .
CO, NOx, NMVOC, BC, OC NH3, SO2, CO2, N2O, CH4
1980 2100 1° × 1°
. EDGAR 3.2 FT 2000, Bond et al.
inventory , INTEX 2006 TRACE-P
.
,
, .
A2 , B1
.
.
, 1 6~7
.

,
, - -,
,
.
176 49(2010)
VII. ()
“ ” .

, 2008, (I) - .
Bey I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. Field, A. M. Fiore, Q. Li, H. Liu, L. J.
Mickley, and M. Schultz, 2001, “Global modeling of tropospheric chemistry with assimilated
meteorology: Model description and evaluation,” J. Geophys. Res., 106(23): 073-23, 096.
Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J-H. Woo, and Z. Klimont, 2004, “A
Technology-based global inventory of black and organic carbon emissions from combustion,” J.
Geophys. Res., 109, D14203, doi:10.1029/2003JD003697.
Cofala, J., M. Amann, Z. Klimont, K. Kupiainen, L. Hoglund-Isaksson, 2007, “Scenarios of global
anthropogenic emissions of air pollutants and methane until 2030,” Atmos. Environ., 41:
8486-8499.
IMAGE-team, 2001, The IMAGE 2.2 implementation of the SRES scenarios. A comprehensive
analysis of emissions, climate change and impacts in the 21st century. Main disc. RIVM
CD-ROM publication 4815080818, National Institute for Public Health and the Environment,
Bilthoven, the Netherlands.
Intergovernmental Panel on Climate Change, 2000, IPCC Special Report on Emissions Scenarios,
Cambridge University Press, Cambridge.
Michel, C., C. Liousse, J.M. Gregoire, K. Tansey, G.R. Carmichael, and J. H. Woo, 2005, “Biomass
burning emission inventory from burnt area data given by the SPOT-VEGETATION system in
the frame of TRACE-P and ACE-Asia campaigns,” J. Geophys. Res., 110, D09304,
doi:10.1029/2004JD005461.
M. Nelson, N.Y. Tsai, M. Q. Wang, J.H. Woo, and K.F. Yarber, 2003, “An inventory of gaseous and
primary aerosol emissions in Asia in the year 2000,” J. Geophys. Res., 108(D21), 8809,
doi:10.1029/2002JD003093.
N. K. Moon, C.K. Song, R.J. Park, and D.W. Byun, 2005, Geos2Cmaq User Guide (Linking CMAQ
with GEOS-CHEM).
Olivier, J.G.J. and J. Bakker, 2000, Historical global emission trends of the Kyoto gases HFCs, PFCs
177
and SF6, Paper presented at the conference ‘SF6 and the Environment: Emission Reduction
Strategies’, San Diego, USA, 2-3 November 2000.
Olivier, J.G.J., Bouwman, A.F., Maas, C.W.M. van der, Berdowski, J.J.M., Veldt, C., Bloos, J.P.J.,
Visschedijk, A.J.H., Zandveld, P.Y.J., and Haverlag, J.L., 1996, Description of EDGAR Version
2.0. A set of global emission inventories of greenhouse gases and ozone-depleting substances for
all anthropogenic and most natural sources on a per country basis and on 1 degree x 1 degree
grid, RIVM, Bilthoven, the Netherlands, RIVM report nr. 771060 002. [TNO MEP report nr.
R96/119]
Pulles, T., van het Bolscher, M., Brand, R., Visschedijk, A., 2007, Assessment of global emissions
from fuel combustion in the final decades of the 20th century. Application of the emission
inventory model TEAM. Technical Report A-R0132B, Netherlands Organisation for Applied
Research (TNO), Apeldoorn, The Netherlands.Pulles et al., 2007
Schultz, M.G., Pulles, T., Brand, R., van het Bolscher, M., Dalsren, S.B., 2007, A global data set of
anthropogenic CO, NOx, and NMVOC emissions for 19602000. Manuscript in preparation.
Streets, D.G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson,
N.Y. Tsai, M.Q. Wang, J.H. Woo, and K.F. Yarber, 2003, “An inventory of gaseous and
primary aerosol emissions in Asia in the year 2000,” J. Geophys. Res., 180(D21), 8809,
doi:10.1029/2002JD003093.
Streets, D.G., T.C. Bond, T. Lee, and C. Jang, 2004, “On the future of carbonaceous aerosol
emissions,” J. Geophys. Res., 109, D24212, doi:10.1029/2004JD004902.
Streets, D.G. and S.T. Waldhoff, 2000, “Present and future emissions of air pollutants in China: SO2,
NOx, and CO,” Atmos. Environ., 34: 363-374.
T. Ohara., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka, 2007, “An
Asian emission inventory of anthropogenic emission sources for the period 1980-2020,” Atmos.
Chem. Phys., 7: 4419-4444.
Wang, X., D.L. Mauzerall, Y. Hu., A.G. Russell, E.D. Larson, J.H. Woo, D.G. Streets, and A.
Guenther, 2005, “A high-resolution emission inventory for eastern China in 2000 and three
scenario for 2020,” Atmos. Environ., 39: 5917-5933.
Zhang, Q., D.G. Streets, G.R. Carmichael, K.B. He, H. Huo, A. Klimont, I.S. Park, S. Reddy, J.S.
Fu, D. Chen, L. Duan, Y. Lei, L.T. Wang, and Z.L. Yao, 2009, “Asian emissions in 2006 for
the NASA INTEX-B mission,” Atmos. Chem, Phys., 9: 5131-5135.
EDGAR homepage, http://www.geiacenter.org.
.
.
.