23
Samedi 3 avril 20 04 T. Widemann Obs. Paris/LESI A 1 L’atmosphère de Vénus : composition et physico- chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Embed Size (px)

Citation preview

Page 1: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 1

L’atmosphère de Vénus : composition et physico-chimie

par Thomas Widemann

Observatoire de Paris/LESIA

Page 2: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 2

Plan

Planète sœur de la Terre

Page 3: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 3

Rayon 6051,8 km = 0,949 RtMasse 0,815 fois la TerreDemi-grand axe 0,723 UAPeu inclinée sur plan orbite(2,6°)

Année sidérale, période 224,7 jours7 mois et demi terrestres

Rotation diurne rétrograde, période 243,02 jour8 mois terrestres -> 116 jours ou 4 mois terrestres entre le lever et le coucher du soleil sur Vénus

Période synodique jours - Période séparant deux conjonctions inférieures 5 x ≈ 8 années terrestres : une conjonction inférieure se reproduit environ à la même date du calendrier terrestre,tous les huit ans.

Page 4: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 4

Vénus Terre Mars

Demi-grand axe de l’orbite (106 km) 108,21 149,60 227,92Demi-grand axe de l’orbite (UA) 0,723 1,000 1,524Période sidérale orbitale (en années) 0,62 1,000 1,88Période sidérale orbitale (en jours) 224,701 365,256 686,980Distance maximale à la Terre (UA) 0,277 - 0,524Diamètre angulaire max/min (") 65,2/9,5 - 25,7/3,5Période de rotation (en jours) 243,0185 0,997269 1,025956Période de rotation (en heures) 5832,444 23,93446 24,62294Masse (1024 kg) 4,8685 5,9742 0,64185Masse (Terre = 1) 0,815 1,000 0,107Rayon équatorial moyen (km) 6051,84 6378,14 3397Rayon équatorial moyen (Terre =1) 0,949 1,000 0,533Aplatissement 0.000 0,00335 0,00648Nombre de satellites naturels 0 1 2Nom des satellites naturels - Lune Phobos, DeimosDensité moyenne (kg m-3) 5243 5515 3933Pesanteur à l'équateur (m s-2) 8,87 9,78 3,69Pesanteur à l’équateur (Terre = 1) 0,907 1,000 0,377Vitesse de libération (km s-1) 10,36 11,186 5,03

Page 5: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 5

QuickTime™ et un décompresseurAnimation JPEG A sont requis pour visualiser

cette image.

(Double-cliquer sur l’image pour démarrer l’animation)

L’inclinaison de l’orbite de Vénus et sa période synodique

Page 6: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 6

L’atmosphère de Vénus

Page 7: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 7

La plus massive des atmosphères telluriques

Atmosphères deVénus la Terre Mars

Pression moy. à la surface (bar) 92 1,013 0,006Température moy. à la surface (K) 733 288 215Température moy. à la surface (°C) 460 15 -58Masse de l’atmosphère (kg) 4,77 10205,30 10181016

Poids moléculaire moyen (unité de masse atomique) 43,44 28,98 43,49

Constituants principaux (> 1%)Vénus Terre MarsCO2 96,5 % N2 78,9 % CO2 95,3 %N2 3,5 % O2 20,9 % N2 2,7 %H2O < 4 % Ar 1,6 %

Principaux constituants minoritairesSO2 150 ppmAr 0,93 % H2O 0,03 %Ar 70 ppm CO2 350 ppmNe 2,5 ppmH2O 30 ppm Ne 18 ppm Kr 0,3 ppm

Page 8: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 8

Page 9: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 9

Température et effet de serre sur Vénus

Température effective Te 231 K 255 K 210 KTempérature de surface T 733 K 288 K 218 KSurcroît de température T - Te

dû à l'effet de serre + 502 K+ 33 K + 8 K

• L’épaisse couche nuageuse de Vénus réfléchit environ 75 % de l’énergie solaire incidente. La température de surface résulte de l’énergie transmise mais également de l’énergie rayonnée par le sol et des propriétés radiatives de l’atmosphère.

• Environ 70 % de l'énergie solaire incidente est déposée à z > 60 km, seulement 15 % à la surface.

• Présence de CO2, mais également SO2 et H2O en quantités relativement importantes (de l'ordre de 50 et 200 ppm à z = 60 km) explique le surcroît de température dû à l'effet de serre (+505 K, contre +35 K pour la Terre et + 6 K pour Mars), le CO2 contribue mais présente des fenêtres assez larges entre ses bandes d'absorption.

.

Page 10: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 10

L’albédo de Vénus et la composition chimique de l’atmosphère

La couleur jaune pâle de Vénus résulte d'une absence relative de lumière solaire réfléchie dans la partie bleue-violette du spectre. Les mesures spectroscopiques de l'albédo de Vénus, c'est-à-dire de la lumière solaire réfléchie, font apparaître une absorption par l'atmosphère de Vénus dans toute la région s'étendant de 200 à 350 nm environ. Ces absorptions nous renseignent sur la nature des constituants présents dans la haute atmosphère, qui à ce jour ne sont pas tous identifiés.

Page 11: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 11

La super-rotation de l’atmosphère• La perturbation trouve son origine à 0 < < 30°,

transporte du moment cinétique. L'équilibre est obtenu par le mouvement moyen zonal.

• Au sommet des nuages (50 mb) la rotation est en moyenne de 4 jours. Le phénomène s'amorce vers 10 km d'altitude (vh ≈ 10 km h-1), s'amplifie régulièrement jusqu'à 65 km ( vh = 540 km h-1), pour décroître ensuite et s'annuler vers 95 km, dans la mésosphère (70-110 km).

• L'équilibre selon un méridien, des forces s'exerçant sur l'atmosphère est dit « cyclostrophique », Sur une parcelle d'air en mouvement zonal, la composante horizontale, dirigée vers l'équateur, de la force d'entraînement est équilibrée par le gradient de force de pression, dirigé vers le pôle, en l'absence d'accélération de Coriolis (f = 2sin ≈ 0).

Page 12: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 12

Y a-t-il eu un océan sur Vénus ?

Ces quelques points résument les différentes étapes possibles de la formation de l’atmosphère de Vénus :

• Dégazage de l’intérieur de la planète en formation, résultat de la fusion partielle des roches et de la constitution d’un noyau. • quantités comparables d’oxydes de carbone, celui-ci étant sur Terre principalement présent dans les roches et les sédiments (carbonates), tandis que sur Vénus ces gaz se sont accumulés dans l’atmosphère du fait de l’absence d’eau à l’état liquide. • Les quantités globales d’espèces azotées sont également voisines pour les deux planètes. • Vénus, située plus près du soleil, étant soumise à un chauffage radiatif plus intense que sur Terre, la température de surface résultant de l’atmosphère primitive a contraint l’eau à demeurer en phase gazeuse, amplifiant encore l’effet de serre. • L’eau aurait ensuite été perdue par photodissociation, puis par l’échappement gravitationnel de l’hydrogène comme en témoigne le fort enrichissement en deutérium de l’atmosphère. Il n’est pas établi si, lors des phases primitives de l’évolution de l’atmosphère de Vénus, l’eau aurait pu se maintenir à l’état liquide en surface.

Page 13: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 13

Page 14: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 14

Physico-chimie de la formation des nuages

Les réactions de formation des nuages sont d'origine photochimique, localisées dans la moyenne et la haute atmosphère.

La synthèse photochimique de H2SO4 a lieu dans une mince couche de 2 km environ centrée à 62 km La photodissociation du CO2 a lieu pour< 202 nm.

L'oxygène atomique transforme SO2 en anhydride sulfureux SO3 lequel, en absorbant activement la vapeur d'eau, forme l'acide sulfurique H2SO4.

Concentration de H2SO4 dans les gouttelettes de l'ordre de 80 à 85 %.

CO2 CO + OO + SO2 SO3

SO3 + H2O H2SO4

Les gouttelettes forment une pluie (≈ 1 mm s-1) et s’évaporent aux plus basses altitudes, avec transformation thermochimique inverse (z = 40 km)

H2SO4 H2O + SO3

SO3 + CO SO2 + CO2

Page 15: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 15

Historique : la mission Véga vers Vénus et la comète de Halley (1984-1986)

-survol de Vénus et de la comète de Halley- largage d’un module de descente dans l’atmosphère de Vénus (côté nuit)- deux sondes jumelles

Page 16: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 16

Page 17: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 17

Page 18: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 18

Géochimie et réaction des constituants atmosphériques avec le sol de Vénus

Page 19: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 19

Si l'on suppose le gaz carbonique en équilibre thermochimique avec le sol (calcite CaCO3) , on obtient par le calcul une pression de l'ordre de 100 bars à 460°C, comparable à la pression mesurée.

L'abondance de O2 semble réglée par l'équilibre pyrite (Fe-S2)-anhydrite (CaSO4).

Les gaz H2O et CO2, atmosphériques ou effusifs, réagissent avec la pyrite pour former COS et H2S, ainsi qu'un oxyde de fer : par réaction minérale

FeS2 + 2H2O FeO + 2H2S + 1/2O2

FeS2 + 2CO2 FeO + 2COS + 1/2O2

Ces gaz vont enrichir le cycle atmosphérique du SO2, qui réagit avec les constituants du sol, et notamment les carbonates :

4SO2 + 2O2 + 4CaCO3 4CaSO4 + 4CO2

FeS2 pouvant être reconstitué par la réaction

4CaSO4 + 2FeO + 4CO2 2FeS2 + 4CaCO3 + 7O2

Page 20: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 20

La récurrence des transits de Vénus

Nœud descendant1518 (4-5 juin) -1526 (2 juin)1761 (6 juin) -1769 (3-4 juin)2004 (8 juin) -2012 (5-6 juin)2247 (11 juin) -2255 (9 juin)2490 (12 juin) -2498 (10 juin)

Nœud ascendant1631(7 déc.) -1639 (4 déc.)1874 (9 déc.) -1882 (6 déc.)2117 (10 déc.) -2125 (8 déc.)2360 (12-13 déc.) -2368 10 déc.)

Page 21: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 21

• Pour un observateur terrestre, les conjonctions inférieures de Vénus se succèdent à raison de 5 en 8 ans (P. synodique 583.92 jours = 1.598 ans ≈ 1,6 ans et 5 x 1.6 = 8) - Les conjonctions «  sautent 2 branches successives du pentagone, dans le sens direct ».

• Ce pentagone se décale très lentement dans le sens direct (car 1.598 < 1.6) et il y aura le temps pour deux transits consécutifs, séparés de huit ans, lorsque l’une des branches se juxtaposera - pendant une décennie environ - avec l’un des cotés de la ligne des nœuds.

• La juxtaposition alterne entre la ligne coté nœud descendant de juin (2 passages séparés de huit ans, puis une période de 105 ans 1/2) puis la ligne coté nœud ascendant de décembre (2 passages séparés de 8 ans, puis une période de 121 ans 1/2).

• Sur la figure, on voit la branche inférieure du pentagone (1996) se rapprocher de la ligne des nœuds, coté juin (transits de 2004 et 2012). La suivante (notée 1998) se superposera à la ligne des nœuds côté décembre en 2117-2125, etc.

Page 22: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 22

QuickTime™ et un décompresseurAnimation JPEG A sont requis pour visualiser

cette image.

La Terre vue depuis Vénus au cours du passage du 8 juin 2004, premier contact au dernier contact)(Double-cliquer sur l’image pour démarrer l’animation)

Page 23: Samedi 3 avril 2004T. Widemann Obs. Paris/LESIA1 Latmosphère de Vénus : composition et physico-chimie par Thomas Widemann Observatoire de Paris/LESIA

Samedi 3 avril 2004 T. Widemann Obs. Paris/LESIA 23

QuickTime™ et un décompresseurAnimation JPEG A sont requis pour visualiser

cette image.

(Le passage de Vénus du 8 juin 2004 - Double-cliquer sur l’image pour démarrer l’animation)