Click here to load reader
View
45
Download
4
Embed Size (px)
DESCRIPTION
半導體材料與特性 pn 接面 二極體電路:直流分析與模型 二極體電路 : 交流等效電路 其他形式二極體. Semiconductor Materials and Diodes. 半導體材料與特性 (1/25). 前言 最常見的半導體為 矽 ,用在半導體元件及積體電路 其他特殊用途的則有 砷化鎵 及相關的化合物,用在非常高速元件及光元件 半導體 原子:質子、中子、電子 電子能量隨殼層半徑增加而增加 價電子:最外層的電子,化學活性主要由其數目而定. 週期表依價電子數而排列 第四族之矽與鍺為元素半導體 砷化鎵為三五族的化合物半導體. - PowerPoint PPT Presentation
Semiconductor Materials and Diodespn:
(1/25)
Zill()
()
(2/25)
Zill()
T=0KEg () (3/25)
Zill()
Eg3-6 eV1 eV (=1.610-19)
(4/25)
Zill()
(a)EVECEg= EV - EC(b) (5/25)
Zill()
BEgkBoltzmann=8610-6 eV/K
(6/25)
Zill()
Example 1.1T=300 K
1.51010 cm-351022 cm-3 (7/25)
Zill()
()
(8/25)
Zill()
(9/25)
Zill()
()n
(10/25)
Zill()
(11/25)
Zill()
p
(12/25)
Zill()
n0 p0 ni()()()
(13/25)
Zill()
np
(14/25)
Zill()
Example 1.2 T=300 K Nd=1016cm-3 1.1ni=1.51010cm-3
Ndni
(15/25)
Zill()
()()---
(16/25)
Zill()
n 1350 (cm2/V-s)n(/cm3)e
(17/25)
Zill()
p 480 (cm2/V-s)p(/cm3)e (18/25)
Zill()
(-cm)-1 , (-cm)
(19/25)
Zill()
Example 1.3 T=300 K Nd=8*1015cm-3 100 V/cm
1.1 ni=1.51010cm-3 (1.9)
(20/25)
Zill()
(21/25)
Zill()
eDn X (22/25)
Zill()
eDp X (23/25)
Zill()
()() () ()
(24/25)
Zill()
(25/25)
Zill()
PN (1/22)pnpnPN--- (b)x = 0
Zill()
pnPN (2/22)
Zill()
()
p(n)()VTT=300 K0.026 VVbipnVbi0.1-0.2 VPN (3/22)
Zill()
Example 1.5 T=300 K pnpNa=1016 cm-3 nNd=1017 cm-3
1-1
PN (4/22)
Zill()
PN
NEAP(N)()PNPN (5/22)
Zill()
()Cj0pFPN
PN (6/22)
Zill()
Example 1-6 T=300 K Na=1016cm-3Na=1016cm-3pnNa=1016cm-3Cjo=0.5PFVR=1VVR=5V
VR=1VVR=5VPN (7/22)
Zill()
PN()np(pn)EPN (8/22)
Zill()
()N (P)P(N)P-N-
PN (9/22)
Zill()
ISPN10-1510-13 AVT0.026 Vn12(1)21
PN (10/22)
Zill()
Example 1.7 T=300 KPNIs=10-14An=1vD=+0.70VvD=-0.70V
vD=+0.70Vpn
vD=-0.70Vpn
PN (11/22)
Zill()
PNPN-0.1V-1PN (12/22)
Zill()
PN0.1 V-IS 10-14 A 10-9 A(1 nA)PN (13/22)
Zill()
VT2 mV/CISni5 CIS 10 C(VT)ni PN (14/22)
Zill()
()n (p)50-200 VPIV
PN (15/22)
Zill()
(1)(2)(3)(4)(5)PN (16/22)
Zill()
(Zener)(tunneling) PN5VPN (17/22)
Zill()
t < 0,PN (18/22)
Zill()
PN (19/22)
Zill()
RRIR 0+ < t < tS ts tf10%
PN (20/22)
Zill()
tf + tS
PN (21/22)
Zill()
offon
PN (22/22)
Zill()
DC (1/13)I-V()I-VI-ViD= 0, iD >0, vD~ 0,
Zill()
iDvD~ 0vO = vIiD =0vO =0 = 0 >0DC (2/13)
Zill()
DC (3/13)
Zill()
Kirchhoff
VDVDDC (4/13)
Zill()
Example 1.8VDIDIs=10-13A
VD=0.6V2.7V
VD=0.6V15.1V DC (5/13)
Zill()
VD0.60.65V
VD=0.619V4.99V(5V)
DC (6/13)
Zill()
I-VVPS RID VD ID = 0, VD = VPS VD = 0, ID = VPS / R(Q)DC (7/13)
Zill()
VD Vr , 1/ rf rf VrVrrfDC (8/13)
Zill()
VD < Vr ,VDrf =0, rf=0DC (9/13)
Zill()
Example 1.9Vr=0.6Vrf=10ID 01.27(a)
DC (10/13)
Zill()
rfRID Vr 0.7V ID2.15 mA ID Vr0.7 V
DC (11/13)
Zill()
Vr = 0.7 Vrf = 0VPS = +5 V QVPS()R()A VPS = 5 V R = 2 kB VPS = 5 V R = 4 kC VPS = 2.5 V R = 2 kD VPS = 2.5 V R = 4 kSlope=-1/RDC (12/13)
Zill()
()
ID=0VD=0VD=-5 VID=0
DC (13/13)
Zill()
AC (1/8)acdcvi()vIdc VPSac vidcacdcac
Zill()
Current-voltage relationshipsacdcacdc ac
acvd
()gdrd
dcIDQI-V()dcacAC (3/8)
Zill()
Example 1.9 Vps=5VR=5kVr=0.6Vvi=0.1sint(V)
vi=0
AC (4/8)
Zill()
VPS=0KVL
rd
AC (5/8)
Zill()
ac() VDQpn\VDQVDQ +V pn\VDQ+VVDQ -V pn\VDQ-VAC (6/8)
Zill()
+V-VPN +Q
AC (7/8)
Zill()
Small-signal equivalent circuitgdCdCj rd CdN-P- AC (8/8)
Zill()
(1/13)---PN R
Zill()
---
(2/13)
Zill()
--- (3/13)
Zill()
LEDIFLEDLEDLED
(4/13)
Zill()
Schottky barrier diode()n I-VPN
PN
(5/13)
Zill()
Schottky PN Schottky Vr
(6/13)
Zill()
Example 1.12 PnSchottkyIS=10-12A and 10-8A, 1 mA
(7/13)
Zill()
PN
Schottky
SchottkyIs PN
(8/13)
Zill()
----ICIC (9/13)
Zill()
IZ (10/13)
Zill()
rzVZIZ
(11/13)
Zill()
Example 1.13 1.41Vz=5.6Vrz=0`RI=3mA
R
(12/13)
Zill()
The power dissipated in the Zener diode is
The Zener diode must be able to dissipate 16.8mW of power without being damaged.
(13/13)
Zill()
:(1/4)0100(1.20)
T=300KIS =10-13A ISni2 I-V (-1)
Zill()
,
VD1VD2T1T2,
2 :(2/4)
Zill()
T1=300KVD1 :
VD1 = 0.5976 V ID =0.96mA
(1)T1=300K (T):
:(3/4)
Zill()
T = 300 KVD = 0.598V,T = 310.8 KVD =0.579V,,0100VD:VD0.1V, 67%,OPA
:(4/4)
Zill()