6
SENSOR FOTOELÉCTRICO Un sensor fotoeléctrico o fotocélula es un dispositivo electrónico que responde al cambio en la intensidad de la luz. Estos sensores requieren de un componente emisor que genera la luz, y un componente receptor que percibe la luz generada por el emisor. Todos los diferentes modos de sensado se basan en este principio de funcionamiento. Están diseñados especialmente para la detección, clasificación y posicionado de objetos; la detección de formas, colores y diferencias de superficie, incluso bajo condiciones ambientales extremas. Los sensores de luz se usan para detectar el nivel de luz y producir una señal de salida representativa respecto a la cantidad de luz detectada. Un sensor de luz incluye un transductor fotoeléctrico para convertir la luz a una señal eléctrica y puede incluir electrónica para condicionamiento de la señal, compensación y formateo de la señal de salida.El sensor de luz más común es el LDR -Light Dependant Resistor o Resistor dependiente de la luz-.Un LDR es básicamente un resistor que cambia su resistencia cuando cambia la intensidad de la luz. Existen tres tipos de sensores fotoeléctricos, los sensores por barrera de luz, reflexión sobre espejo o reflexión sobre objetos. Conceptos teóricos Espectro electromagnético Atendiendo a su longitud de onda, la radiación electromagnética recibe diferentes nombres. Desde los energéticos rayos gamma (con una longitud de onda del orden de picometros) hasta las ondas de radio (longitudes de onda del orden de varios kilómetros) pasando por la luz visible cuya longitud de onda está en el rango de las décimas de micra. El rango completo de longitudes de onda forma el espectro electromagnético, del cual la luz visible no es más que un minúsculo intervalo que va desde la longitud de onda correspondiente al violeta (380 nm) hasta la longitud de onda del rojo (780 nm). Los colores del espectro se ordenan como en el arco iris, formando el llamado espectro visible.Si hablamos de luz en sentido estricto nos referimos a radiaciones electromagnéticas cuya longitud de onda es capaz de captar el ojo humano, pero técnicamente, el ultravioleta, las ondas de radio o las microondas también son luz, pues la única diferencia con la luz visible es que su longitud de onda queda fuera del rango que podemos detectar con nuestros ojos; simplemente son "colores" que nos resultan invisibles, pero podemos detectarlos mediante instrumentos específicos. Fuentes de luz Hoy en día la mayoría de los sensores fotoeléctricos utilizan ledes como fuentes de luz. Un led es un semiconductor, eléctricamente similar a un diodo, pero con la característica de que emite luz cuando una corriente circula por él en forma directa.Los ledes pueden ser construidos para que emitan en verde, azul, amarillo, rojo, infrarrojo, etc. Los colores más comúnmente usados en aplicaciones de detección son rojo e infrarrojo, pero en aplicaciones donde se necesite detectar contraste, la elección del color de emisión es fundamental, siendo el color más utilizado el verde. Los fototransistores son los componentes más ampliamente usados como receptores de luz, debido a que ofrecen la mejor relación entre la sensibilidad a la luz y la velocidad de respuesta, comparado con los componentes fotorresistivos, además responden bien ante luz visible e infrarroja. Las fotocélulas son usadas cuando no es necesaria una gran sensibilidad, y se utiliza una fuente de luz visible. Por otra parte los fotodiodos donde se requiere una extrema velocidad de respuesta. Fuentes de luz habituales Color Rango Características INFRARROJO 890…950 No visible, son relativamente inmunes a la luz ambiente

Sensor Fotoeléctrico

Embed Size (px)

DESCRIPTION

Sensor FotoeléctricoSensor FotoeléctricoSensor FotoeléctricoSensor Fotoeléctrico

Citation preview

Page 1: Sensor Fotoeléctrico

SENSOR FOTOELÉCTRICO

Un sensor fotoeléctrico o fotocélula es un dispositivo electrónico que responde al cambio en la intensidad de la luz. Estos sensores requieren de un componente emisor que genera la luz, y un componente receptor que percibe la luz generada por el emisor. Todos los diferentes modos de sensado se basan en este principio de funcionamiento. Están diseñados especialmente para la detección, clasificación y posicionado de objetos; la detección de formas, colores y diferencias de superficie, incluso bajo condiciones ambientales extremas. Los sensores de luz se usan para detectar el nivel de luz y producir una señal de salida representativa respecto a la cantidad de luz detectada. Un sensor de luz incluye un transductor fotoeléctrico para convertir la luz a una señal eléctrica y puede incluir electrónica para condicionamiento de la señal, compensación y formateo de la señal de salida.El sensor de luz más común es el LDR -Light Dependant Resistor o Resistor dependiente de la luz-.Un LDR es básicamente un resistor que cambia su resistencia cuando cambia la intensidad de la luz. Existen tres tipos de sensores fotoeléctricos, los sensores por barrera de luz, reflexión sobre espejo o reflexión sobre objetos.

Conceptos teóricos

Espectro electromagnético Atendiendo a su longitud de onda, la radiación electromagnética recibe diferentes nombres. Desde los energéticos rayos gamma (con una longitud de onda del orden de picometros) hasta las ondas de radio (longitudes de onda del orden de varios kilómetros) pasando por la luz visible cuya longitud de onda está en el rango de las décimas de micra. El rango completo de longitudes de onda forma el espectro electromagnético, del cual la luz visible no es más que un minúsculo intervalo que va desde la longitud de onda correspondiente al violeta (380 nm) hasta la longitud de onda del rojo (780 nm). Los colores del espectro se ordenan como en el arco iris, formando el llamado espectro visible.Si hablamos de luz en sentido estricto nos referimos a radiaciones electromagnéticas cuya longitud de onda es capaz de captar el ojo humano, pero técnicamente, el ultravioleta, las ondas de radio o las microondas también son luz, pues la única diferencia con la luz visible es que su longitud de onda queda fuera del rango que podemos detectar con nuestros ojos; simplemente son "colores" que nos resultan invisibles, pero podemos detectarlos mediante instrumentos específicos.

Fuentes de luz

Hoy en día la mayoría de los sensores fotoeléctricos utilizan ledes como fuentes de luz. Un led es un semiconductor, eléctricamente similar a un diodo, pero con la característica de que emite luz cuando una corriente circula por él en forma directa.Los ledes pueden ser construidos para que emitan en verde, azul, amarillo, rojo, infrarrojo, etc. Los colores más comúnmente usados en aplicaciones de detección son rojo e infrarrojo, pero en aplicaciones donde se necesite detectar contraste, la elección del color de emisión es fundamental, siendo el color más utilizado el verde. Los fototransistores son los componentes más ampliamente usados como receptores de luz, debido a que ofrecen la mejor relación entre la sensibilidad a la luz y la velocidad de respuesta, comparado con los componentes fotorresistivos, además responden bien ante luz visible e infrarroja. Las fotocélulas son usadas cuando no es necesaria una gran sensibilidad, y se utiliza una fuente de luz visible. Por otra parte los fotodiodos donde se requiere una extrema velocidad de respuesta.

Fuentes de luz habituales

Color Rango Características

INFRARROJO890…950

nm

No visible, son relativamente inmunes a la luz ambiente artificial. Generalmente se utilizan para detección en distancias largas y ambientes con presencia de polvo.

ROJO660…700

nm

Al ser visible es más sencilla la alineación. Puede ser afectado por luz ambiente intensa, y es de uso general en aplicaciones industriales.

Page 2: Sensor Fotoeléctrico

VERDE560…565

nm

Al ser visible es más sencilla la alineación. Puede ser afectado por luz ambiente intensa, generalmente se utiliza esta fuente de luz para detección de marcas.

Modulación de la fuente de la luz

Con la excepción de los infrarrojos, los ledes producen menos luz que las fuentes incandescentes y fluorescentes que comúnmente iluminan el ambiente. La modulación de la fuente de luz provee el poder de sensado necesario para detectar confiablemente con esos bajos niveles de luz. Muchos de los sensores fotoeléctricos utilizan diodos emisores de luz modulada y receptores fototransistores.

Los ledes pueden estar “encendidos” y “apagados” (o modulados) con una frecuencia que normalmente ronda un kiloHertz. Esta modulación del led emisor hace que el amplificador del fototransistor receptor pueda ser “conmutado” a la frecuencia de la modulación, y que amplifique solamente la luz que se encuentre modulada como la que envía el emisor.

La operación de los sensores que no poseen luz modulada está limitada a zonas donde el receptor no reciba luz ambiente y sólo reciba la luz del emisor. Un receptor modulado ignora la presencia de luz ambiente y responde únicamente a la fuente de luz modulada.

Los ledes infrarrojos son los más efectivos y son, además, los que tiene el espectro que mejor trabajan con los fototransistores; es por tal motivo que son usados en muchas aplicaciones. Sin embargo, los sensores fotoeléctricos son también utilizados, para detectar contraste (detección de marcas) o color, y para esto se requiere que la luz sea visible.

Exceso de ganancia

La curva de exceso de ganancia se especifica en cada tipo de sensor fotoeléctrico, y la misma está en función de la distancia de sensado. Esta curva es usada al momento de seleccionar el sensor, para predecir la confiabilidad de la detección en un ambiente

conocido.

Tipos de sensores

Barrera de luz

Las barreras tipo emisor-receptor están compuestas de dos partes, un componente que emite el haz de luz, y otro componente que lo recibe. Se establece un área de detección donde el objeto a detectar es reconocido cuando el mismo interrumpe el haz de luz. Debido a que el modo de operación de esta clase de sensores se basa en la interrupción del haz de luz, la detección no se ve afectada por el color, la textura o el brillo del objeto a detectar. Estos sensores operan de una manera precisa cuando el emisor y el receptor se encuentran alineados. Esto se debe a que la luz emitida siempre tiende a alejarse del centro de la trayectoria.

Ventajas e Inconvenientes

La luz solo tiene que atravesar el espacio de trabajo una vez, por lo que se favorecen grandes distancias de funcionamiento, hasta 60 metros. Son apropiadas para condiciones ambientales poco favorables, como suciedad, humedad, o utilización a la intemperie, así como independientemente del color del objeto realiza una detección precisa del objeto. La instalación se ve dificultada por tener que colocar dos aparatos separados y con los ejes ópticos alineados de manera precisa y delicada, ya que el detector emite en infrarrojos. Además de la imposibilidad de que sean transparentes.

Precauciones de montaje

A la hora del montaje hay que tener en cuenta las superficies reflectantes cercanas a los dispositivos, provocando un mal funcionamiento de la fotocélula. También hay que tener en cuenta las posibles interferencias mutuas por la cercanía de varios de estos dispositivos,

Page 3: Sensor Fotoeléctrico

además de controlar los ambientes sucios, ya que la suciedad afecta negativamente en la lente emisora.

Reflexión sobre espejo

La luz infrarroja viaja en línea recta, en el momento en que un objeto se interpone el haz de luz rebota contra este y cambia de dirección permitiendo que la luz sea enviada al receptor y el elemento sea censado, un objeto de color negro no es detectado ya que este color absorbe la luz y el sensor no experimenta cambios.

Ventajas e Inconvenientes

En estas fotocélulas el haz de luz recorre dos veces la distancia de detección, con lo cual las distancias de trabajo que se consiguen son medias (de unos 15 metros). El espejo es fácil de instalar, y no se necesita cableado hasta el mismo, por lo que solo hay que cablear un detector. Además de ser válidos para detección de objetos opacos, también cubren eficientemente aplicaciones con detección de objetos con cierto grado de transparencia. El problema más llamativo es que el objeto a detectar tiene que ser mayor que el espejo y, a ser posible, no reflectante, además de que la alineación tiene que ser precisa.

Precauciones de montaje

Un objeto con superficie reflectante puede provocar errores de detección. esto se puede evitar haciendo que la reflexión del objeto a detectar no tenga la misma inclinación que el haz del detector.

Reflexión sobre objeto

Tienen el componente emisor y el componente receptor en un solo cuerpo, el haz de luz se establece mediante la utilización de un reflector catadióptico. El objeto es detectado cuando el haz formado entre el componente emisor, el reflector y el componente receptor es interrumpido. Debido a esto, la detección no es afectada por el color del mismo. La ventaja de las barreras réflex es que el cableado es en un solo lado, a diferencia de las barreras emisor-receptor que es en ambos lados. Hay dos tipos de fotocélulas de reflexión sobre objeto, las de reflexión difusa y las de reflexión definida.

Reflexión difusa

En las fotocélulas de reflexión difusa sobre el objeto el emisor lanza un haz de luz; los rayos del haz se pierden en el espacio si no hay objeto, pero cuando hay presencia de objeto, la superficie de éste produce una reflexión difusa de la luz, parte de la cual incide sobre el receptor y se cambia así la señal de salida de la fotocélula.

Reflexión definida

La reflexión en la superficie del objeto a detectar por las fotocélulas de reflexión definida normalmente es de carácter difuso, como en los sensores de reflexión difusa, o sea que los rayos reflejados salen sin una trayectoria determinada. Esto es muy importante, para no caer en la falsa idea de que la diferencia respecto a los sensores de reflexión difusa está en el tipo de reflexión; lo está en el tipo de óptica empleada. En las fotocélulas de reflexión definida la fuente de luz está a una distancia mayor que la distancia focal, por lo que el haz converge a un punto del eje óptico

Ventajas e Inconvenientes

Las fotocélulas de reflexión sobre objeto se componen únicamente de un emisor y un receptor montados bajo una misma carcasa, por lo que el montaje es sencillo y rápido. En estas fotocélulas el haz de luz recorre dos veces la distancia de detección y además el objeto puede ser de reflectividad baja, por lo que sólo se consiguen distancias de detección pequeñas (por lo general menos de un metro.

Tipos de sensores de luz

Fotorresistencia Fotodiodo Fototransistor Célula fotoeléctrica Sensor CCD Sensor CMOS

Page 4: Sensor Fotoeléctrico

FOTORRESISTENCIA

Características

Su funcionamiento se basa en el efecto fotoeléctrico. Un fotorresistor está hecho de un semiconductor de alta resistencia como el sulfuro de cadmio, CdS. Si la luz que incide en el dispositivo es de alta frecuencia, los fotones son absorbidos por las elasticidades del semiconductor dando a los electrones la suficiente energía para saltar la banda de conducción. El electrón libre que resulta, y su hueco asociado, conducen la electricidad, de tal modo que disminuye la resistencia. Los valores típicos varían entre 1 MΩ, o más, en la oscuridad y 100 Ω con luz brillante.

Las células de sulfuro del cadmio se basan en la capacidad del cadmio de variar su resistencia según la cantidad de luz que incide en la célula. Cuanta más luz incide, más baja es la resistencia. Las células son también capaces de reaccionar a una amplia gama de frecuencias, incluyendo infrarrojo (IR), luz visible, y ultravioleta (UV).

Fotocelda o fotorresistencia, cambia su valor resistivo (Ohms) conforme a la intensidad de luz. Mayor luz, menor resistencia y viceversa..

La variación del valor de la resistencia tiene cierto retardo, diferente si se pasa de oscuro a iluminado o de iluminado a oscuro. Esto limita a no usar los LDR en aplicaciones en las que la señal luminosa varía con rapidez. El tiempo de respuesta típico de un LDR está en el orden de una décima de segundo. Esta lentitud da ventaja en algunas aplicaciones, ya que se filtran variaciones rápidas de iluminación que podrían hacer inestable un sensor (ej. tubo fluorescente alimentado por corriente alterna). En otras aplicaciones (saber si es de día o es de noche) la lentitud de la detección no es importante.

Se fabrican en diversos tipos y pueden encontrarse en muchos artículos de consumo, como por ejemplo en cámaras, medidores de luz, relojes con radio, alarmas de seguridad o sistemas de encendido y apagado del alumbrado de calles.

También se fabrican fotoconductores de Ge:Cu que funcionan dentro de la gama más baja "radiación infrarroja".

FOTODIODO

Un fotodiodo es un semiconductor construido con una unión PN, sensible a la incidencia de la luz visible o infrarroja. Para que su funcionamiento sea correcto se polariza inversamente, con lo que se producirá una cierta circulación de corriente cuando sea excitado por la luz. Debido a su construcción, los fotodiodos se comportan como células fotovoltaicas, es decir, en ausencia de luz exterior generan una tensión muy pequeña con el positivo en el ánodo y el negativo en el cátodo. Esta corriente presente en ausencia de luz recibe el nombre de corriente de oscuridad.

Principio de operación

Un fotodiodo es una unión PN o estructura P-I-N. Cuando un haz de luz de suficiente energía incide en el diodo, excita un electrón dándole movimiento y crea un hueco con carga positiva. Si la absorción ocurre en la zona de agotamiento de la unión, o a una distancia de difusión de él, estos portadores son retirados de la unión por el campo de la zona de agotamiento, produciendo una fotocorriente.

Los diodos tienen un sentido normal de circulación de corriente, que se llama polarización directa. En ese sentido el diodo deja pasar la corriente eléctrica y prácticamente no lo permite en el inverso. En el fotodiodo la corriente (que varía con los cambios de la luz) es la que circula en sentido inverso al permitido por la juntura del diodo. Es decir, para su funcionamiento el fotodiodo es polarizado de manera inversa. Se producirá un aumento de la circulación de corriente cuando el diodo es excitado por la luz.

Fotodiodos de avalancha Tienen una estructura similar, pero trabajan con voltajes inversos mayores. Esto permite a los portadores de carga fotogenerados ser multiplicados en la zona de avalancha del diodo, resultando en una ganancia interna, que incrementa la respuesta del dispositivo.

Composición

El material empleado en la composición de un fotodiodo es un factor crítico para definir sus propiedades. Suelen estar compuestos de silicio, sensible a la luz visible (longitud de onda

Page 5: Sensor Fotoeléctrico

de hasta 1µm); germanio para luz infrarroja (longitud de onda hasta aprox. 1,8 µm ); o de cualquier otro material semiconductor.

También es posible la fabricación de fotodiodos para su uso en el campo de los infrarrojos medios (longitud de onda entre 5 y 20 µm), pero estos requieren refrigeración por nitrógeno líquido.

Antiguamente se fabricaban exposímetros con un fotodiodo de selenio de una superficie amplia.

Uso

A diferencia del LDR , el fotodiodo responde a los cambios de oscuridad a iluminación y viceversa con mucha más velocidad, y puede utilizarse en circuitos con tiempo de respuesta más pequeño.

Se usa en los lectores de CD, recuperando la información grabada en el surco del Cd transformando la luz del haz láser reflejada en el mismo en impulsos eléctricos para ser procesados por el sistema y obtener como resultado los datos grabados.

Usados en fibra óptica

Investigación

La investigación a nivel mundial en este campo se centra (en torno a 2005) especialmente en el desarrollo de células solares económicas, miniaturización y mejora de los sensores CCD y CMOS, así como de fotodiodos más rápidos y sensibles para su uso en telecomunicaciones con fibra óptica.

Desde 2005 existen también semiconductores orgánicos. La empresa NANOIDENT Technologies fue la primera en el mundo en desarrollar un fotodetector orgánico, basado en fotodiodos orgánicos.