125
Si consideri una macchina asincrona con il rotore avvolto o a gabbia. • Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate simmetriche e valore efficace costante. • All’albero viene applicata una coppia resistente costante. • Negli avvolgimenti di statore circola un sistema di correnti equilibrate (per le condizioni di simmetria costruttiva della macchina), limitate principalmente dalla fem indotta. • Le correnti assorbite danno origine ad un campo magnetico rotante la cui espressione si deriva partendo da alcune ipotesi semplificative (Ipotesi di Campo): 1) permeabilità magnetica del ferro infinita ( f = => H f =0); 2) distribuzione del campo magnetico identica in tutti i piani perpendicolari all’asse di macchina (si trascurano gli effetti di bordo nelle testate); Motore Asincrono: Regime Stazionario

Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Embed Size (px)

Citation preview

Page 1: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Si consideri una macchina asincrona con il rotore avvolto o a gabbia.• Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate simmetriche e valore efficace costante.• All’albero viene applicata una coppia resistente costante.• Negli avvolgimenti di statore circola un sistema di correnti equilibrate (per le condizioni di simmetria costruttiva della macchina), limitate principalmente dalla fem indotta.• Le correnti assorbite danno origine ad un campo magnetico rotante la cui espressione si deriva partendo da alcune ipotesi semplificative (Ipotesi di Campo):

1) permeabilità magnetica del ferro infinita (f= => Hf=0);

2) distribuzione del campo magnetico identica in tutti i piani perpendicolari all’asse di macchina (si trascurano gli effetti di bordo nelle testate);

Motore Asincrono: Regime StazionarioMotore Asincrono: Regime Stazionario

Page 2: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

3) andamento radiale delle linee di flusso al traferro (le componenti tangenziali del campo devono essere nulle. Si trascurano le perturbazioni di campo dovute alle cave).

Con riferimento alla fondamentale, il campo rotante viene descritto dall’espressione:

)]v

xt([cosH

2

3)t,x(H

ceM IqnK

221H caM

Il profilo dell’induzione al traferro viene descritto dalla relazione:

)]v

xt([cosB)]

v

xt([cosH

2

3)t,x(B

ce0

ceM0

Il flusso medio per polo si calcola tenendo conto della superficie del polo Sp=pl dove p è il passo polare ed l la lunghezza del pacco magnetico.

lBK p0f

Questo flusso, concatenandosi sia con lo statore che con il rotore, induce una f.e.m. il cui andamento è sinusoidale.

Page 3: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Se il rotore è fermo è possibile esplicitare l’espressione fasoriale delle f.e.m. indotte sullo statore e sul rotore:

)t(sinE)t(e eMs s esss NjKE

)t(sinE)t(e eMr r errr NjKE

Dove m è il rapporto di trasformazione.Ks e Kr differiscono per il diverso coefficiente di avvolgimento.

Se il rotore è di tipo avvolto, Er è misurabile ai morsetti aperti del rotore.

Se il rotore ha i terminali aperti, nello statore viene assorbita una corrente di magnetizzazione che genera il campo rotante (e sostiene le perdite nel ferro) che vale:

ss

sfs jXR

EVI 0

0

Is0 è circa i 20 - 30 % di In contro il 5% dei trasformatori, a causa della presenza di un largo traferro.

Possiamo immaginare che: III as0

ra

sa

r

s

NK

NK

E

Em

r

s

Page 4: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Allo spunto (avvolgimenti di rotore in corto), le f.e.m. di rotore fanno circolare una terna di correnti equilibrate Ir nelle fasi di rotore:

Le correnti di rotore generano, a loro volta, un campo rotante di rotore, sincrono con quello di statore. Il suo n°di poli è pari a quello di statore. Se il rotore è fermo, la velocità del campo rotante è identica alla velocità angolare del campo rotante di statore (induttore).

Siamo in condizione di sincronismo tra campi magnetici rotanti. L’insieme delle forze che si esercitano tra conduttori di statore e di rotore determina la coppia motrice che trascina il motore in rotazione nella direzione di rotazione del campo rotante.

Una volta che il rotore si è messo in movimento si ha una diversa velocità relativa tra campo rotante ed il rotore.

rsrrsrrs IXjIRE

pprs ee

c

Page 5: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Diminuisce la velocità con cui le linee di forza del campo tagliano le barre rotoriche e si modifica il regime elettrico indotto negli avvolgimenti di rotore.

Per una generica pulsazione di rotore m = 2nm/60 e per l’assegnata pulsazione del campo rotante c = e / p (nc), i conduttori di rotore si concatenano con il campo rotante con una pulsazione c - m.

Nel rotore si instaura un regime elettrico che dipende dalla velocità relativa c - m.

Se ne tiene conto introducendo il concetto di scorrimento. Si definisce come scorrimento il rapporto tra la velocità relativa del campo rispetto al rotore:

c

mrc

c

mrc

c

mrc

c

mrc

n

nn

n602

n602

n602

R

RR

v

)vv(s

S esprime la frazione di giro che il rotore perde ogni giro completo del campo rotante.

Page 6: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Il periodo con cui un conduttore di rotore si concatena con il campo di di statore è:

c

p

rc

pcr sv

2

vv

2T

mac

pc v

2T

Ne segue che

s

TT c

cr

Con riferimento alla frequenza, cccc

sffsf

1

f

1r

r

Il concatenamento con velocità ridotta origina grandezze elettriche caratterizzate da una frequenza ridotta rispetto a quella di alimentazione e pari a: sffspfpf

rr ecc

)]'x

t[cos(B)t,'x(Bp

e0r r

)]'x

ts[cos(B)t,'x(Bp

e0r s

e l’induzione di rotore può essere espressa come:

Tenendo conto della relazione tra frequenze di rotore e statore:

Page 7: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

In condizioni di perfetto sincronismo tra campo rotante e rotore vr=vc => s=0 =>

B(x’,t) è costante nel tempo. Il rotore vede un campo rotante fermo perché si stanno muovendo con la stessa velocità e cessa il fenomeno dell’induzione elettromagnetica di rotore e con esso la coppia motrice.

La coppia resistente fa rallentare il motore, ma se la macchina rallenta

s0 e quindi er(t)0 ed il rotore ridiventa sede di correnti e di coppia motrice.

La macchina si porta in un punto di equilibrio in cui il ritardo del rotore sul campo rotante produce un regime di correnti tale da creare una coppia motrice che equilibra quella resistente.

)]*''x

[cos(B)t,'x(Bp

0

Page 8: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Il regime elettrico del rotore è determinato dalla velocità relativa tra campo rotante e rotore. La f.e.m. indotta sul rotore è legata alla frequenza del campo rotante visto dal rotore ed è pari a

sapendo che fer=sf =>

La f.e.m. di rotore Er=Er(s)=sEr(s=1) varia al variare dello scorrimento. Lo scorrimento dipende dal carico, precisamente dalla coppia resistente che esso è chiamato a vincere.

A vuoto Er(s=0)=0, non ci sono f.e.m. e quindi correnti nel rotore.

errrr NjKE esrrr sNjKE

)1s(Es)s(EsNjK)s(E rresrrr

Tenendo conto che il rotore è in corto, se applichiamo il II°p di Kirchoff ai circuiti elettrici di rotore possiamo scrivere che

)s(I)s(Xj)s(IR)s(E rrrrr )s(XjR

)s(E)s(I

rr

rr

Er(s) fa circolare correnti con una frequenza fer.

Page 9: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Le correnti di rotore generano a loro volta un campo magnetico rotante che ruota, rispetto al rotore con un numero di giri pari a

nel verso di rotazione del campo induttore, cioèp

f60n r

r

ec

rcce

c nnsnp

sf60

p

f60n r

r

Il campo rotante di rotore si muove sul rotore che ha un numero di giri pari ad nr. Un osservatore esterno, solidale con lo statore vede un campo rotante di rotore che ruota con un numero di giri pari a

nr+(nc-nr)=nc [giri/min]

sincrono, cioè con il campo rotante di statore.

Da questo si può desumere che il rotore ruota, rispetto allo statore con un numero di giri pari a nmr= nc- snc=(1-s) n c

Page 10: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

impedenza

reattanza

L2induttanza

R2resistenza

21222 22 LfsLfX

20

2222

022

XsRZ

XsjRZ

a rotore fermo (s = 1) 210 2 LfX

a rotore in movimento (s 1) 02 XsX

20

22

22

2020 ; )10025( ; )105( XRRXRX

Con riferimento alle condizioni di corto possiamo scrivere:

)s(I)1(Xjs)s(IR)1(Es rrrrr

)1(Xjs

R)1(E

)s(I

rr

rr

)s(I)1(Xj)s(Is

R)1(E rrr

rr

La Ir può essere vista come circolante in un rotore immobile (fr=fs) ma con un carico di tipo ohmico Rr/s:

Page 11: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Modello Elettrico di MacchinaModello Elettrico di Macchina

Equazioni elettriche relative ad una singola fase di macchina

ssssfEI)jXR(V

s

rrrr EI)jX

s

R(0

La relazione tra fem indotta e flusso è data dalla:

Le grandezze elettriche sono iso-frequenziali, quindi possono essere confrontate tra loro nel medesimo piano di Gauss.

Il carico resistivo Rr/s può essere scomposto nella componente resistiva di rotore, Rr, e dell’immagine elettrica del carico Rr(1-s)/s. Le equazioni elettriche diventano:

esss NjKE errr NjKE

ssssfEI)jXR(V

s

rrr

rrr EIs

R1I)jXR(0

Il che equivale a una macchina a rotore bloccato le cui fasi alimentano una resistenza aggiuntiva di Rr(1-s)/s per fase.

Page 12: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Analogia con il TrasformatoreAnalogia con il Trasformatore

Se si considerano le equazioni relative ad ogni fase di un motore asincrono trifase il cui rotore ha uno scorrimento s e riportiamo il circuito equivalente

ssssfEI)jXR(V

s

rrrrrr EIRs

s1I)jXR(0

Rs RrXs Xr

Es ErVfs

IsIrIs

Rr(1-s)/s

se s=0 (sincronismo) Rr/s => : la macchina funziona come un trasf. a vuoto (secondario aperto)

se s=1 (spunto) Rr/s => Rr : la macchina funziona come un trasf. in corto

Rr(1-s)/s=0

Si nota subito la somiglianza con il circuito equivalente del trasformatore (a meno della magnetizzazione).

Page 13: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Ip Im

RpXm

Iv V

Iv

Im

Ip

R1 R2

RRp

X1 X2

Xm

E1 E2V

I1tI1 I2

Iv: corrente a vuoto

Ip: corrente di perdita

Im: corrente di magnetizzazione

Ip<<Im

Corrente a vuoto

Page 14: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Perdite a vuotop

ppp R

VIRP

22

Perdite a vuoto sincrono(scorrimento nullo)

22,1)( BffCP npfe

• perdite nel ferro primario

Perdite a vuoto effettivo(coppia resa nulla)

• perdite nel ferro primario22,1)( BffCP npfe

• perdite meccaniche

nPP nm )8,07,0(

Cp = cifra di perdita a 1T e frequenza nominale [W]Pn = potenza nominale [W]n = velocità di rotazione [giri/min]

Page 15: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Il circuito equivalente diventa:

Rs Rr

Ra

Xs Xr

Xm

Es ErVfs

IsIrI’s

Rr(1-s)/s

Da cui si può ricavare il diagramma fasoriale al pari dei trasformatori

Si riporta la corrente di magnetizzazione ed il flusso da essa generato sull’asse reale.

Sfasati di 90° il ritardo si riportano le fem indotte di statore e di rotore.

Le cadute sull’impedenza caratteristica sul secondario chiudono il triangolo sulla fem di rotore.

Le cadute sull’impedenza caratteristica di statore chiudono i fasori di tensione di fase e di fem di statore ...

Page 16: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Il diagramma fasoriale

V

Io

Im

Ia

Er

Es

(Rr/s)Ir(s=1)

jXr(s=1)Ir(s=1)

I’s

Is

-Es

jXsIs

RsIs

Ir

Page 17: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

E’ possibile ottenere un modello semplificato riportando il modello di rotore allo statore e viceversa. Il circuito equivalente visto dallo statore si ricava facilmente. Si considera la equazione elettrica di rotore:

Rs R’r

Ra

Xs X’r

Xm

Vfs

IsI’rI’s

R’r(1-s)/s

Ricordando che

rrr

r I)jXs

R(E

Si moltiplicano ambo i membri per il rapporto di trasformazione m e moltiplico per m/m solo il II° membro

m

I)jX

s

R(mI

m

mm)jX

s

R(Em r

rr2

rrr

r

s

'X

s

Xm;

s

'R

s

Rm;'I

m

I;EEm rr2rr2

sr

sr

Si ha : 'I)'jXs

'R(E sr

rs

ssssfEI)jXR(V

s

'I)'XX(j

'I)s

'RR(V

sss

sr

sf s

Page 18: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Diagramma delle Correnti al Variare dello ScorrimentoDiagramma delle Correnti al Variare dello Scorrimento

00a00 cosII;sinII

0cufemecc0 PPPP

Con il circuito equivalente ridotto è possibile verificare come variano le correnti di statore al variare dello scorrimento s.

I° ipotesi semplificativa

Le perdite meccaniche di rotore sono conglobate nelle perdite del ferro di statore (variazione effettiva dell’1% tra vuoto e carico). Ne segue che a vuoto s=0 ed I r=0.

Lo statore assorbe una corrente ed una potenza a vuoto pari a:

00f000f0 sinIE3Q;cosIE3P

mE)1(E s

r tcostcosftcosEtcosE sf

II° ipotesi semplificativa

Si trascurano le cadute di tensione sullo statore.

Page 19: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

r

r

r

rr

2r

2

r

r

r R

)1(Xs

sR

)1(X)s(tan;

)1(Xs

R

)1(E)s(I

m

)s(I'I r

s

Se applico all’asse una coppia resistente, il rotore rallenta ed in posizione di equilibrio scorre rispetto al campo rotante di s. Ciò determina una corrente rotorica pari a:

A cui corrisponde una oltre che alla I0

Vediamo cosa succede al vettore I2(s) al variare di s.

1) Se s=0 ( vuoto) =>

2) Se s=1 ( corto=spunto) =>

0)s(I r

r

rrcc

2r

2r

r

ccr

R

)1(X)1(tan

)1(XR

)1(E)1(I

Page 20: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

)1(X

)1(Ej)s(I;

)1(X

)1(E)s(I

r

rr

r

r

sr

S= significa far ruotare artificialmente il rotore in senso opposto al campo rotante con velocità infinita.

3) Se s= (ideale) =>

mc

mc nsesn

nns

2()=90° di ritardo su Er.

Ciò significa che coincide con l’asse reale negativo. Si può anche scrivere

2r

2

r

r

r

r

r

)1(Xs

R

)1(X

)1(X

)1(E)s(I

Page 21: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

ma

Con riferimento ai fasori, il triangolo O, P2, P2() è rettangolo in P2.

Variando s, P2 descrive la semicirconferenza che ha come diametro Ir() .

Un qualsiasi valore di coppia resistente determina

)s(sin)(I)s(I)s(sin

)1(Xs

R

)1(Xrrrr

2r

2

r

r

una corrente di rotore pari ad Ir il cui vertice, P2, si muove lungo una semicircoferenza di diametro Ir(), i cui punti caratteristici sono l’origine degli assi e P2() sull’asse reale negativo.

Il campo di variazione per Ir va da 0 a Ircc.

Page 22: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Corrispondentemente, allo statore viene richiamata una corrente I’s che si compone con la I0 per originare la Is.

E’ facile verificare che il vertice del fasore Is si muove in corrispondenza al perimetro della semi circonferenza P0 , P1 , P1() .

Il centro O1 della semi circonferenza si trova sull’orizzontale condotta per P0 ed il suo diametro è P0P1() rappresentato dal vettore I’s()=Ir()/m.

Page 23: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

I vettori condotti dall’origine O ai vari punti della semi circonferenza rappresentano le correnti assorbite dallo statore al variare di s

Per s=0 => Ir=0 => I’s=0 => Is=I0

Per s=1 =>

r

rrcc

2r

2r

r

ccr

R

)1(X)1(tan

)1(XR

)1(E)1(I

Page 24: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Iscc rappresenta la corrente di corto circuito primaria (a tensione piena) e l’angolo relativo è l’angolo di corto

Una volta dimostrate le caratteristiche, si fa riferimento al diagramma di statore per la possibilità di conoscere alcuni punti caratteristici tramite determinate misure.

O’

O

AI0

Iscc

Vf

C

Is’

Is

P

Page 25: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Diagramma Circolare o di HeylandDiagramma Circolare o di HeylandE’ un diagramma, a flusso costante, che consente di determinare lo stato della macchina in condizioni di stazionarietà a partire dal diagramma delle correnti di rotore e di statore. Per gli scopi pratici, è sufficiente fare riferimento alle sole correnti di statore.

I° ipotesi semplificativa

Le perdite meccaniche di rotore sono conglobate nelle perdite del ferro di statore.

II° ipotesi semplificativa

Si trascurano le cadute di tensione sullo statore.

Tracciamento del diagramma circolare

Per tracciarlo basta conoscere 2 punti del perimetro ed il centro. In particolare, interessano i punti che si possono facilmente verificare con prove di tipo come quella a vuoto (s=0) ed in corto circuito (s=1).

La macchina è un carico simmetrico ed equilibrato. Bastano un voltmetro, un amperometro e due wattmetri in inserzione Aron.

Page 26: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Schema di misura

VA W13

W23M

La Prova a Vuoto

Se Tr=0, s0. Con V si controlla la tensione nominale di fase mentre con A si misura la I 0. Dai wattmetri si misura la potenza assorbita a vuoto (P0=W13+W23). Dalla lettura degli strumenti si determina il cos0.

Noti I0 e cos0, si riporta il primo punto P0 del diagramma circolare.

La Prova in Corto Circuito

Si blocca il rotore (s=1) e si alimenta il motore con tensione ridotta V fcc (Vfcc 1530 Vfn) in modo che circoli la corrente nominale di statore I s. Dai wattmetri si ricava la potenza assorbita P’ scc.

0f

00 IV3

Pcos

Page 27: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Si ricava il coscc

si riportano le condizioni di corto dalla tensione ridotta a tensione piena (I sn=>Iscc) considerando che alimento sempre la stessa impedenza caratteristica di macchina

a tensione ridotta e tensione piena, le potenze assorbite sono:

eguagliando rispetto all’angolo di corto

P’scc e P’scc forniscono le perdite Joule in condizioni nominali e di corto, rispettivamente.

snfcc

scccc IV3

'Pcos

snscc

snscc

scc

sn

sn

fcce I

V

VI

I

V

I

V'Z

ccsccsnsccccsnfccscc cosIV3P;cosIV3'P

sccsnfcc

sccsnscc

sccsn

scccc

snfcc

scc 'PIV

IVP

IV3

Pcos

IV3

'P

Page 28: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

O’

OP0I0

Icc

Vf Pcc

I’cc

cc

0

Si riportano sul grafico il modulo Iscc e l’angolo coscc e si ricava il secondo punto Pcc.

Per costruire il diagramma circolare si congiunge P0 e Pcc;

Dal punto di mezzo di P0Pcc si porta una perpendicolare;

All’incrocio con la direzione orizzontale passante per P0 si ricava il centro del cerchio O’;

Con centro O’ e raggio O’P0 si traccia un arco di cerchio che passerà per Pcc è il diagramma circolare

Un qualsiasi punto P tracciato sul diagramma fornisce:

la corrente assorbita (0P)

La corrente rotorica riferita al primario (P0P)

Page 29: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Fattore di Potenza e Diagramma CircolareFattore di Potenza e Diagramma Circolare

Dato un punto di lavoro P sul diagramma circolare posso determinare il cos su una apposita scala predisposta sul diagramma circolare.

Si tracci un quarto di circonferenza nel primo quadrante e si tari una scala unitaria sull’asse verticale.

Per ogni vettore di corrente, il relativo cos si determina proiettando sull’asse verticale la proiezione del punto di incontro della direzione del vettore di corrente con il cerchio di raggio unitario.

Page 30: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La lettura è diretta sulla scala predisposta.

Allo stesso modo posso leggere il cos0 ed coscc.

Il motore viene costruito in modo tale da realizzare il max cos a pieno carico.

Questa condizione si ha in corrispondenza alla direzione tangente al diagramma circolare, passante per l’origine.

Il modulo della corrente nominale è proporzionale al segmento OP

Page 31: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Potenze, Perdite e Diagramma CircolarePotenze, Perdite e Diagramma Circolare

Quando all’asse di un motore è applicata una coppia frenante Tr, lo statore assorbe dalla rete una potenza reale pari a: cosIV3P sfaLa corrente statorica, percorrendo gli avvolgimenti, determina le perdite per effetto Joule valutabili con la relazione:

Il campo rotante statorico, generato dalla corrente magnetizzante, concatenandosi in modo variabile con il circuito magnetico statorico, determina le perdite nel ferro per isteresi magnetica e correnti parassite

Tali perdite, essendo legate a fs ed a B2 (il flusso è costante), rimangono costanti da vuoto a carico.

Vanno anche considerate le perdite addizionale dovute alle armoniche di campo. Le Norme CEI 2-6/80 le stimano uno 0.5% della P a.

La differenza tra Pa e Pfe+Pcus corrisponde alla potenza elettrica trasformata in meccanica dal campo magnetico PT (PT= Pa -Pfe-Pcus )

2sscus IR3P

Page 32: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Affinchè tale interazione avvenga, è necessario che il rotore “scorra” rispetto al campo rotante. In questo modo, il fenomeno dell’induzione elettromagnetica genera delle correnti di rotore che generano il relativo campo rotante rotorico.

La corrente rotorica determina a sua volta, delle perdite per effetto Joule pari a :

La potenza meccanica generata sarà quindi: Pmg= PT -Pcur

Si ricorda che nel rotore funzionante in condizioni normali, si possono trascurare le perdite nel ferro per la bassa frequenza delle grandezze elettriche.

La potenza trasmessa e la potenza meccanica generata possono essere espresse in funzione della coppia generata e del numero di giri.

In particolare, la potenza trasmessa dal campo magnetico rotante P T al rotore può essere vista come una coppia generata, Tg, per la pulsazione del campo rotante, c: PT = Tg c

2rrcur IR3P

Page 33: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Mentre la potenza meccanica generata sarà legata alla effettiva pulsazione di rotore m: Pm = Tg m

tenendo conto del bilancio delle potenze di rotore:

Tcgcur

mcgmgcgmTcur

sPsTP

)(TTTPPP

T

cur

P

Ps Lo scorrimento può essere visto come rapporto tra perdite

nel rame di rotore e potenza trasmessa del campo rotante.

Alla potenza meccanica generata andranno sottratte le perdite meccaniche per attrito e ventilazione (Pmecc) che dipendono dalla velocità di rotazione. Possono essere considerate praticamente costanti al variare dalle condizioni di vuoto a quelle di carico.

Si viene così a determinare la potenza utile che traina il carico.

Page 34: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

ass

r

P

Prendimento

potenza elettrica assorbita

perdite rame statore

perdite ferro statore

potenza trasmessa al rotore

perdite rame rotore

potenza meccanica prodotta

perdite meccaniche

potenza resa Pr

sssa cosIV3P

2ss IR32B

mgm n60

2TP

mcgmTcur nn

60

2TPPP

Schema del bilancio delle potenze

Page 35: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

O’

OP0I0

Icc

PPcc

I’ccs

Is

P

AA0 Acc

B. .. ..

.C

PaPcc

Po Bcc

La potenza assorbita dalla rete è:

Vf=cost. Per le diverse condizioni di carico si ha che Pa Is coss

cosIV3P sfa

Se P è il punto di lavoro nel diagramma delle correnti, la sua proiezione sull’asse verticale è Is coss .

Se si moltiplica la scala verticale per 3Vf , l’asse y viene tarato in una scala di potenze attive e tutto il diagramma circolare viene

tarato in potenza funzione dello scorrimento s.

Il segmento PA è a Pa . Analogamente, P0A0 è a P0 (P0 tiene conto di Padd , Pfe , Pcu0 se misurato con una prova a vuoto). Ora, il segmento BccAcc è a P0 per ipotesi, quindi il segmento PccAcc è a P0+Pcc ed il segmento PccBcc è a Pcc

Page 36: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

OP0

PPcc

P

A0

B. .. ..

.C

Bcc

Se si considera la direzione P0Pcc , si dimostra che, per un dato carico (punto P), le perdite nel rame sono proporzionali al segmento BC.

Dall’analisi della figura si rileva che i triangoli P0BC e P0BccPcc sono simili:

BccPcc : BC = P0Bcc : P0B

Anche i triangoli P0BccPcc e P0PccP sono simili perché rettangoli in Pcc e in Bcc ed

hanno l’angolo in P0 in comune => P0Bcc : P0Pcc = P0Pcc : P0P ne segue: P0Bcc = (P0Pcc )2 / P0P I triangoli P0BP e P0PP sono simili perché rettangoli in P e in B ed hanno l’angolo in P0 in comune => P0B : P0P = P0P : P0P => P0B = (P0P )2 / P0P

Sostituendo i segmenti P0B e P0Bcc nella prima espressione di similitudine si ha che BccPcc : BC = P0Bcc : P0Bcc diventa

.

P

Page 37: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

BccPcc : BC = (P0Pcc )2 / P0P : P0P / (P0P )2

BccPcc : BC = (P0Pcc )2 : (P0P )2

ora, BccPcc è un segmento proporzionale a Pcc;

P0Pcc e P0P sono segmenti proporzionali al modulo della corrente di corto e di carico, rispettivamente, ne viene che:

(P0Pcc )2 (I’scc)2 e (P0P )2 (I’s)2 allora

BccPcc : BC = (I’scc )2 : (I’s )2 e si conclude che

BC = Pcc*(I’s /I’scc )2

Il segmento BC rappresenta le perdite nel rame per effetto Joule Pcus in corrispondenza al punto di lavoro P.

Il segmento AC=AB+BC=P0+Pcus è proporzionale alle perdite totali di macchina quando questa lavora nel punto P.

Ora, dato che il segmento AP è proporzionale a Pa, ne viene che il segmento PC=AP-AC=Pa-(P0+Pcus)=Pr è proporzionale alla potenza meccanica generata (Pr), disponibile all’asse del motore.

Page 38: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La direzione P0->Pcc prende il nome di retta delle potenze rese e fornisce una indicazione immediata della potenza resa all’asse per un determinato valore di scorrimento s.

O

PoI0

Icc

Vf

Pcc

Is’IsPass

Pr

Pp

retta delle potenze assorbite

retta delle potenze rese

Pcu

Pfe

OI0

Icc

Vf

perdite rame rotore

perdite rame statore

perdite a vuoto

Pr

Pcurot

Pcustat

P0

S = 0

S = 1

Se si conosce la resistenza di statore, Ps, o le perdite di statore in condizioni di cc Pccs (Pccs=3RsIscc

2) allora è possibile determinare le perdite di statore e rotore a carico normale.

Page 39: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

OP0I0

Icc

PPcc

I’ccs

Is

P

AA0 Acc

B. .. ..

.C

PaPcc

Po Bcc

Si riporta il valore Pccs sul segmento BccPcc e trovo il punto Dcc.I segmenti

BccDcc Pccs

DccPcc Pccr

in condizioni di corto.

Per ottenere la separazione delle perdite nel rame di statore e di rotore per ogni altra

D.. Dcc

condizione di funzionamento si traccia la direzione P0Dcc.

Sia D l’intercetta con il segmento BC. Si ha così che i segmenti BD Pcus e DC Pcur

OI0

Icc

Vf

perdite rame rotore

perdite rame

statore

perdite a vuoto

Pr

Pcurot

Pcustat

P0

S = 0

S = 1

ne segue che PD PT infatti PD=PC+CD= Pm + Pr = PT

Page 40: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Coppia e Diagramma CircolareCoppia e Diagramma CircolareEssendo che

il segmento DP fornisce, in un’altra scala, anche la misura di coppia

(Se as es. 1mm => 1W allora 1mm => 60/2nc J)

La scala delle potenze viene ritarata in quella delle coppie.

La direzione P0Dcc viene detta “retta delle coppie” e partendo da questa retta si possono rappresentare tutte le coppie sul diagramma circolare.

Il rotore ruota con nm<nc

e la potenza generata è

la differenza viene dissipata in calore negli avvolgimenti

c

Tg n2

60PT

0I0

Icc

V1

perdite rame rotore

perdite rame statore

perdite a vuoto

Ptrasmessa

Tg

retta delle coppie

p

f60nc

mgm n60

2TP

Tcur sPP

Page 41: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Con riferimento al circuito equivalente delle m.a., la Pm impressa al rotore equivale alla potenza elettrica dissipata in una resistenza di carico fittizia tale che

2rrm )s(IR

s

s13P

rRs

s1

Sapendo che e Tcur sPP c

cur

c

Tg s

PPT

2r

2r

2rr

s

2rr

cg ))1(sX(R

))1(sE(

s

R3

f60

p

2

60

s

)s(IR3

n2

60T

2r

2r

r2f

s2

r2r

rr2s

sg

)1(sXs

R

R)

m

V(

p3

))1(sX(R

sR

s

R)

m

E(

f

p

2

3T

Che è l’espressione della coppia già ricavata.

Vi sono altri modi per ricavarla o definirla

Page 42: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

potenza elettrica trasmessa al rotore rrre cosIE3P

potenza meccanica trasmessa al rotore60

n2TTP c

gcgT

fem indotta a rotore fermo

Te PP

Page 43: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate
Page 44: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

2r

222

2c

2fg XsR

sRnKT

sR

ATRXs ; 05,0s

2r

2r

2r

2

s

1

X

ATRXs ; 2,0s

2r

2r

2r

2

22r

2r

g sXR

AsT

si suppone = cost. (in realtà diminuisce all’aumentare del carico per effetto della reazione d’indotto del rotore, e quindi varia con lo scorrimento)

0.00 0.20 0.40 0.60 0.80 1.00

TTmax

s

Page 45: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Il denominatore diventa minimo per

r

rM X

Rs

lo scorrimento che corrisponde alla coppia massima è dato dal rapporto fra la resistenza e la reattanza a rotore fermo dell’avvolgimento d’indotto.

r

c2

fM X2

nKT

Coppia massima

Page 46: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

r

c2

fmax X2

nKT

Tmax

Coppia in funzione del flusso

(motore a 4 poli – n0 = 1500 g/min)

1500142513501275 n (g/min)1200s

00,2

1,2 n

1,1 n

n

0,9 n

T

0,05

scorrimento di coppia massima sm = 5%

Page 47: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

T

ns0

01

n0

Tmax

Tavv

R2aR2b

R2c

R2d

R2a < R2b < R2c < R2d

R2c = X0

c

c

n

nns

cm n)s1(n

r

c2

fM X2

nKT

coppia massima

scorrimento per la coppia massima

sM = Rr/Xr

coppia di avviamento massima per

Rr = Xr (sm = 1)

Page 48: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Rs Rr

Ra

Xs Xr

Xm

Es ErVf

Is Is

IrccI0

Rs Rr

Ra

Xs Xr

Xm

Es ErVf

Is I’s

IrI0

1

s

1RR r

2rccrcur IRP

2rn

n

rn I

s

RT

2rccrs IRT

2

rn

r

II

sT

T ccn

n

s

Rapporto fra coppia di avviamento e coppia nominale

Funzionamento a carico nominale

Funzionamento allo spunto (corto circuito)

s

R1

s

1RRR r

rrrt

rt2rn

r

rtrnrrnrnrnrn RI

Z

RIZIcosIET

Page 49: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Coppia nominale, di spunto, massima e diagramma circolare

1500142513501275 n (g/min)1200

s00,2

T

0,05

Tg

Tm

Va precisato che

Tg = Tm + Tp

e che Tp sono proporzionali alle perdite joule di rotore

Il campo di funzionamento normale da TM a 0 (s=0).

In tale intervallo lo scostamento tra nc ed nm è limitato (s => 25%)

Come si può notare, i ragionamenti svolti su una curva possono essere estesi anche all’altra.

Si deve anche tener presente l’approssimazione EsEf.

Con il cambio di scala, il diagramma viene riferito alle coppie.

In particolare, i segmenti DP e PC diventano proporzionale alla Tg ed alla Tm , rispettivamente, per una assegnato punto di lavoro P.

Page 50: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Variando s da 0 a 1, misurando tutti i relativi segmenti DP e DC riportandoli poi su un grafico Tg e Tm in funzione di s, si ottengono per via grafica le due caratteristiche meccaniche prima indicate.

Se s=1 si valuta la coppia di spunto che corrisponde al segmento DccPcc. Tutta la PT viene dissipata sull’avvolgimento di rotore.

Per TM basta valutare il segmento PD di lunghezza massima. E’ facile dimostrare che portando la tangente alla retta delle coppie sul diagramma circolare si ottiene un punto PM. Se si porta una verticale

0I0

Pcc

Vf

perdite rame rotore

perdite rame statore

perdite a vuoto

TM

Ts

Tn

In

P

C

B

A

D

Icc

Dcc

Bcc

Acc

PM

su PM si ottiene il punto DM .

Il segmento PMDM è proporzionale alla TM.

Page 51: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Per migliorare l’avviamento si incrementa la resistenza di rotore con resistenze aggiuntive che verranno disinserite man mano che la macchina si avvia.

Sappiamo che la modifica di Rr non modifica la TM.

E’ possibile valutare sul d.c. il valore della Ragg per avere la coppia massima allo spunto. E’ sufficiente ruotare la retta delle coppie in modo che il punto Pcc coincida con il punto PM

0I0

Pcc

Vf

Retta delle coppie

PM

Se il rotore è senza reostato, allo spunto assorbe una corrente Icc sfasata di cc e la coppia di spunto è proporzionale a PccDcc.

Resistenza di avviamento e diagramma circolare

Retta delle potenze rese senza reost.

Retta delle potenze rese con reost.

Dcc

D’cc

Icc

I’cc

cc

’cc

Page 52: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Se Rr cresce, la retta delle potenze rese si sposta perché aumentano le perdite di rotore mentre rimane invariata la posizione della retta delle coppie (PT non dipende da Rr). Il segmento P’ccD’cc > PccDcc.

Icc è tanto minore quanto maggiore è Rr.

T aumenta fino a TM poi torna a diminuire.

La cond. di TM allo spunto è s=1 => Rr= Xr(1) => Ravv= Xr(1)- Rr.

Il calcolo della Ravv con il d.c. è più preciso rispetto alla formula ma rimane l’approssimazione EsEf.

0I0

Pcc

Vf

Retta delle coppie

PM

Il segmento P’ccH è proporzionale alla potenza assorbita allo spunto

P’ccH 3Ravv I’2cc

I’cc assorbita allo spunto si legge direttamente dal segmento 0P’cc

Retta delle potenze rese senza reost.

Retta delle potenze rese con reost.

Dcc

D’cc

Icc

I’cc

cc

’cc

H

Page 53: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Scorrimento e Diagramma CircolareScorrimento e Diagramma CircolareSia s=Pcur/PT DC/DP

Se s=0 ( a vuoto), P si sovrappone a P0

Se s=1 ( in corto), P si sovrappone a Pcc

Si può ottenere sul d.c. una scala per la misura diretta di s.

Si tracci una parallela alla retta delle coppie e si identifichi il segmento S0S1. Lo divido in 100 parti ed ottengo la scala di s.

Lo scorrimento si legge prolungando la direzione OP fino ad intercettare la scala s.

Page 54: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Rendimento e Diagramma CircolareRendimento e Diagramma CircolareSia =Pu/Pa PC/PA

La lettura di può essere effettuata sul d.c. su una scala ottenuta prolungando la direzione P0Pcc fino a tagliare l’asse reale in R.

In R porto una verticale t’.

Traccio una generica retta orizzontale che intercetta le direzioni indicate nei punti E0E1. Taro E0E1 in 100 parti ed ottengo la scala .

Per leggere prolungo PR fino ad incontrare la scala di e leggo la indicazione.

Si noti che a vuoto

E => E0

Page 55: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Curve Caratteristiche del Motore AsincronoCurve Caratteristiche del Motore AsincronoIl diagramma circolare consente di ricavare tutte le curve caratteristiche di macchina (Pa, Pu, Tg, Tm, cos, s, in funzione della corrente di carico basta immaginare di frenare gradatamente la macchina, da vuoto fino al corto.

P si muove da P0 a Pcc ed Is varia da I0 ad Icc .

Sui diversi diagrammi si leggono le relative

grandezze e si

riportano in funzione

della Is.

Page 56: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate
Page 57: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

cosI1

Pp s

Presa0 100%

Pn

Andamento qualitativo delle caratteristiche di un motore asincrono in funzione della potenza meccanica resa sull’asse

Page 58: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Studio della Caratteristica Tm(s) per -s+Studio della Caratteristica Tm(s) per -s+

Esaminiamo i possibili modi di funzionamento per le macchine asincrone:

1) Motore: Pe>0; Pm>0

UM3

Pe

Pm

La macchina riceve potenza elettrica dalla rete, Pe, e la converte in potenza meccanica, Pm, che viene fornita al carico, U.

2) Generatore: Pe<0; Pm<0

UM3

Pe

Pm

E’ la macchina primaria U che invia potenza meccanica al motore il quale la trasforma in elettrica e la invia in linea.

Page 59: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

1) Freno: Pe>0; Pm<0

UM3

Pass

Pm

Nella condizione di freno, la macchina riceve potenza sia dalla rete che dal carico e la dissipa al suo interno.

Vediamo per quali intervalli di scorrimento si realizzano questi tipi di funzionamento per la macchina asincrona. A tal fine è sufficiente analizzare i segni di Pe e di Pm.

A) per la Pm sappiamo che:

ed il suo segno è dettato dal fattore

Pm>0 se 0s1;

Pm<0 se -s0 e se 1s+.

2

rrm IRs

)s1(3P

s

)s1(

Page 60: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

B) Per la potenza elettrica Pe, trascuriamo le perdite nel ferro che sono costanti al variare di s, e mi riferisco al circuito equivalente trasformatorico riferito al primario:

2

s

srs

2s

2sr

2sr

2sse )

I

'I('R

s

1RI3'I'R

s

)s1('I'RIR3P

~Vfs

Is

ZsIs’

Z0 Zr’

IOra, il circuito equivalente può essere visto come un parallelo tra Z0 e Zr’

)1s('jXs

'R'ZjXZ r

rr0

Considero la formula del partitore di corrente in un parallelo e lo inserisco nella espressione della potenza elettrica, Pe.

2r

22r

222

s

s

)'XX(s'R

Xs)

I

'I(

2

r22

r

22

rs2

se )'XX(s'R

Xs'R

s

1RI3P

Page 61: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

..............))'XX(s'R(s

X'Rs))'XX(s'R(sRI3P

2r

22r

2r

22r

22rs2

se

)'RRX'RsR)'XX(s()'XX(s'R

I3P..... 2

rs2

rs2

r2

2r

22r

2s

e

L’analisi del segno di Pe si riconduce all’analisi del segno del trinomio al numeratore. Pe risulta positiva all’esterno dell’intervallo delimitato dagli zeri del polinomio, s1 ed s2.

2

r2

2s

rs

r2,1 X

)1s('X1

X

R411

X)1s('X

1R2

'Rs

Se si fanno le seguenti ipotesi semplificative:

s

r

RX

)1s('XX

s

r2

1

R

'Rs

0s

=>

Page 62: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

S

-

Cioè Pe<0 per s2ss1;

Pe>0 per -ss2 e per s1s+.

S

S2 S1 0 1

Pm

-

Pm

0 1+ --S2 S1Pe

-

Pe

- ++frenofrenofreno motoregeneratore

Generatore s2<s<s1

Motore s2<s<s1

s<s2

Freno 1<s

s1<s<0

Page 63: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Ipotesi di campo:

1) permeabilità magnetica del ferro infinita (f= => Hf=0).

2) distribuzione del campo magnetico identica in tutti i piani perpendicolari all’asse di macchina (si trascurano gli effetti di bordo nelle testate).

3) andamento radiale delle linee di flusso al traferro (le componenti tangenziali del campo devono essere nulle).

Con valore costante del campo al traferro ed in regime di linearità, il campo rotante può essere espresso in funzione di una sola variabile lineare, x, valutata lungo il perimetro del traferro.

Si è già visto che il campo H è rettangolare lungo lo sviluppo planare e periodico perché valutato su una circonferenza

Studio delle Armoniche nei Motori AsincroniStudio delle Armoniche nei Motori Asincroni

2

inc

pe

x

4 poli

x:: ep

pe

x

Page 64: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Essendo H(x) rettangolare e periodica, posso svilupparla in serie di Fourier:

2

inc

2

inc

)n(sinn

1H

4......)3(sin

3

1H

4)(Hsin

4)(H eeee

dove

2

inH c

)dispari(1n p

c )x

n(sinn

1in2)x(H=>

In presenza di q cave per polo e per fase sfasate tra loro del passo di cava, c, otteniamo una serie di q profili rettangolari sfasati tra loro del passo di cava, ognuno dei quali può essere sviluppato in serie.

Page 65: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Le fondamentali sono identiche ma risultano sfasate tra loro dell’angolo elettrico, c, che sottende il passo di cava, c.

Il profilo delle Asp al traferro, sviluppato su un piano, è a gradini, con un andamento periodico a valor medio nullo.

Il profilo dato dalla composizione delle fondamentali sfasate è ancora una funzione trigonometricaIl diverso sfasamento fa si che la somma algebrica delle onde

differisca da quella geometrica (come nel caso delle f.e.m.). Introduciamo di nuovo il coefficiente di avvolgimento, Ka.

Page 66: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

)x

cos(iqnKK1

)x(Hp

caf1

Ora ci ricordiamo della corrente che attraversa i conduttori ha una legge di variazione temporale in stato stazionario:

)tcos(I2)tcos(I)t(i eeM

L’espressione della f.m.m. è funzione di tempo t e di spazio x:

Se applichiamo il teorema di Prostaferesi otteniamo:

)x

cos()tcos(I2qnKK1

)t,x(Hp

ecaf1

)x

cos()tcos(H)t,x(Hp

eM1

IqnK221

H caM

)x

tcos(H2

1)

xtcos(H

2

1)t,x(H

peM

peM1

)]x

t(cos)x

t([cosH2

1)t,x(H

pee

peeM1

Page 67: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

)]v

xt(cos)

v

xt([cosH

2

1)t,x(H

ce

ceM1

La fondamentale di una fase può essere scomposta in due componenti che pulsano nel tempo con la stessa frequenza e che si muovono nello spazio con la stessa velocità e versi opposti (onda progressiva concorde con la direzione di x ed onda regressiva.

Se vc è la velocità periferica di questo campo di f.m.m. ed e è la pulsazione elettrica, possiamo ipotizzare che nel medesimo tempo t* in cui un singolo polo investe un conduttore si ha una variazione di della grandezza elettrica. Quindi:

epc

e

*

c

p* vtmav

t

Page 68: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Sistema Trifase Equilibrato

L’onda di un campo magnetico stazionario generato al traferro da una corrente di fase sinusoidale è equivalente a due campi controrotanti di eguale ampiezza (1/2 HM) ed uguale velocità in modulo.

Se si ripetono le stesse considerazioni per gli altri avvolgimenti sfasati di 120° e 240°, rispettivamente, abbiamo, per le fondamentali:

)3

4xcos()

3

4tcos(H)t,x(H

)3

2xcos()

3

2tcos(H)t,x(H

)x

cos()tcos(H)t,x(H

peMC

peMB

peMA

Applichiamo di nuovo Prostaferesi.

Page 69: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

)]3

4x

3

4tcos()

3

4x

3

4t[cos(H

2

1)t,x(H

)]3

2x

3

2tcos()

3

2x

3

2t[cos(H

2

1)t,x(H

)]x

tcos()x

t[cos(H2

1)t,x(H

pe

peMB

pe

peMB

pe

peMA

Per l’ipotesi di linearità, in ogni punto x del traferro e per ogni istante, i singoli campi si sommano in un campo risultante:

)]3

8xtcos()

3

4xtcos()

xt[cos(H

2

1

)]x

t[cos(H2

3)t,x(H

pe

pe

peM

peM

Il secondo termine da la somma di tre vettori uguali in modulo e sfasati di 120° uno dall’altro che è uguale a zero. Il campo magnetico viene descritto dalla relazione al primo termine.

Page 70: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

L’equazione:

)]v

xt([cosH

2

3)]

xt[cos(H

2

3)t,x(H

ceM

peM

Descrive il campo magnetico rotante nello spazio con pulsazione c, sincrono con il campo di rotore, in condizioni di stazionarietà, che pulsa nel tempo seguendo l’andamento delle correnti che lo generano.

Si conclude che in un sistema equilibrato di correnti, la somma delle componenti inverse del campo da esse generato si annullano mentre quelle dirette danno origine ad un unico campo rotante.

IqnK221

H caM

Page 71: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Le Armoniche di Ordine Superiore al I°Le Armoniche di Ordine Superiore al I°

Si vogliono studiare gli effetti delle armoniche create dalla struttura a gradini del campo magnetico.

Se si sviluppa un’onda quadra spaziale in serie di Fourier si nota che le armoniche si dispongono per coprire spazi proporzionali al passo polare, p.

Fondamentale

5a armonica

p

p/5

La fondamentale copre lo spazio di 2p prima di ripresentarsi uguale a se stessa; la terza armonica si presenta uguale a se stessa dopo (2p/3); la quinta dopo (2p/5) e così via. In generale,

ii

22 p

ip

i

Il passo della i-ma armonica è proporzionale all’inverso del proprio ordine rispetto al passo polare della fondamentale.

Page 72: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Perché si riferisce a stelle di frequenza aumentata con un coefficiente pari all’ordine della armonica.

Campo di i-ma armonica in avvolgimenti ad m fasi.

Si considera la i-ma armonica della prima fase di un avvolgimento ad m fasi. L’espressione della relativa f.m.m. è:

Se consideriamo la composizione di armoniche dovute alla presenza di q cave/polo/fase sfasate del passo di cava c si deve modificare anche il coefficiente di Blondel.

Se

2i

qsin

2qi

sinK

2qsin

2q

sinK

e

e

ae

e

a i1

)x

icos(qKi

1

2

in4)

xicos(qK

i

1H

4)x(H

pa

c

pai iiA

Page 73: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

)tcos()x

icos(qKIni

2)t,x(H e

paMci iA

Se si pone iA aMciM qKIn

i

2H

L’espressione diventa

)tcos()x

icos(H)t,x(H ep

MiAiA

Per la seconda fase, e per le successive, devo tener conto dello sfasamento

)m

2tcos()]

m

2x(icos[H)t,x(H e

pMi

BiB

)m

2)1K(tcos()]

m

2)1K(

x(icos[H)t,x(H e

pMii KK

ConiKiiCiBAi

MMMMM H....H....HHH

Page 74: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

L’espressione del campo di f.m.m. dovute alle m fasi della i-ma armonica si ottiene sommando i singoli contributi.

)m

2)1K(tcos()]

m

2)1K(

x(icos[H)t,x(H e

p

m

1KMi i

Si applica di nuovo Prostaferesi

)]m

2)1K(

x(i)

m

2)1K(tcos[(H

2

1

)]m

2)1K(t()

m

2)1K(

x(icos[H

2

1)t,x(H

pe

m

1KM

ep

m

1KMi

i

i

]m

2)1K(i

xi

m

2)1K(tcos[H

2

1

]m

2)1K(t

m

2)1K(i

xicos[H

2

1)t,x(H

pe

m

1KM

ep

m

1KMi

i

i

Page 75: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Quindi

]m

2)1K)(1i(

xitcos[H

2

1

]m

2)1K)(1i(t

xicos[H

2

1)t,x(H

pe

m

1KM

ep

m

1KMi

i

i

Analizzando questi termini si vede che (K-1) è comunque un numero intero perché varia entro il numero di fasi, m (K=1=>m).

Caso A). Se i termini (i-1)/m ed (i+1)/m sono interi, i prodotti

(K-1)(i-1)/m ed (K-1)(i+1)/m sono multipli di 2 e mantengono in fase i contributi vettoriali delle sommatorie. La somma dei componenti è diversa da 0.

Caso B). Se i termini (i-1)/m ed (i+1)/m non sono interi, le sommatorie che li contengono sono uguali a 0 perché stelle simmetriche di fasori.

Oss.: non ci sono armoniche spaziali di ordine inferiore ad m, con l’eccezione della prima armonica inferiore a m se questo è pari.

Page 76: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Esempio: caso m=3

]3

2)1K)(1i(

xitcos[H

2

1

]3

2)1K)(1i(t

xicos[H

2

1)t,x(H

pe

3

1KM

ep

3

1KMi

i

i

Fondamentale i=1 (m=3)

]x

tcos[H2

3]

3

2)1K)(0(

xtcos[H

2

1

]3

2)1K)(2(t

xcos[H

2

1)t,x(H

peM

pe

3

1KM

ep

3

1KM1

11

1

Il primo termine entro parentesi si annulla perché è la sintesi di una stella di fasori equispaziati. La seconda sommatoria ci la la nota espressione del campo rotante

Page 77: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

0]3

2)1K)(13(

x3tcos[H

2

1

]3

2)1K)(13(t

x3cos[H

2

1)t,x(H

pe

3

1KM

ep

3

1KM3

3

3

Se il sistema è connesso a stella, H3(x,t)=0.

Sulla base di questo ragionamento, tutte le armoniche dispari multiple di 3 sono nulle.

Quinta Armonica i=5 (m=3)

Terza Armonica i=3 (m=3)

]tx5

cos[H2

3]

3

2)1K)(15(

x5tcos[H

2

1

]3

2)1K)(15(t

x5cos[H

2

1)t,x(H

ep

Mp

e

3

1KM

ep

3

1KM5

55

5

La 5° armonica ruota in senso contrario rispetto alla fondamentale.

Page 78: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La 7° ruota in senso opposto alla 5° e nella stessa direzione della 1°

Oss.: la 11°, la 13°, 17°………si calcolano allo stesso modo.

Monofase m=1: ci sono tutte le armoniche dispari.

Bifase m=2: ci sono tutte le armoniche ma ruotano in senso alternato.

Dodecafase m=12: è presente la fondamentale; sono assenti tutte le armoniche fino alla 10°; dalla 11° in poi sono tutte presenti a versi alternati.

Conclusione: sono presenti + campi rotanti oltre a quello della 1°arm.

Settima Armonica i=7 (m=3)

]x7

tcos[H2

1]

3

2)1K)(17(

x7tcos[H

2

1

]3

2)1K)(17(t

x7cos[H

2

1)t,x(H

peM

pe

7

1KM

ep

3

1KM7

77

7

Page 79: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Conclusione: il campo rotante che genera la coppia motrice è relativo alla fondamentale ma è accompagnato da una serie di armoniche , dovute all’andamento a gradini del campo originale, che generano a loro volta campi rotanti di 5°, 7°, 11°, 13°…. che ruotano con versi alterni.

• Con una opportuna scelta del riferimento si eliminano tutte le armoniche pari.

• Con la connessione a stella degli avvolgimenti si eliminano la 3° armonica e tutti i suoi multipli dispari.

• Le armoniche presenti hanno un indice i=3k1 (con k=0, 2, 4, 6..)

– le armoniche di ordine i=3k+1 ruotano nel verso della fondamentale.

– Quelle di ordine i=3k-1 ruotano nel verso opposto.

• Se sono presenti più campi rotanti, è necessario studiare la loro influenza sul rotore perché possono generare sistemi di correnti e quindi campi rotanti di ordine superiore.

Page 80: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Le Coppie Parassite nelle M.A.Le Coppie Parassite nelle M.A.

Le armoniche di campo generano campi rotanti che interagiscono con il rotore dando origine a f.e.m. indotte e, quindi, a correnti di rotore che a loro volta generano il loro campo rotante (+armoniche relative).

I campi armonici di rotore possono interagire con quelli di statore.

La interferenza tra campi armonici di rotore e di statore può originare coppie parassite solo se:

1) ruotano alla stessa velocità e nella stessa direzione;

2) hanno lo stesso numero di poli.

Se non sono verificate queste condizioni, le correnti indotte generano perdite Joule e coppie mediamente nulle ma istantaneamente diverse da zero (vibrazioni e rumore).

Sappiamo che un campo che ruota con pulsazione s, pari ad una velocità meccanica c= s/p induce su un avvolgimento fermo un regime elettrico di pulsazione r = s.

Page 81: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Si consideri la i-ma armonica della fase A:

Se si applica Prostaferesi si ha :

in condizioni di stazionarietà, le funzioni trigonometriche della somma e della differenza delle variabili t ed x rappresentano onde rotanti a velocità costante.

Se considero un osservatore solidale con l’onda in una posizione x1, al tempo t1 questi “vede” un’intensità di campo HiA(x1,t1).

Se l’onda si muove con una velocità costante, v, dopo un tempo t il nostro osservatore si trova nella posizione x2 e misura un tempo t2.

Se si considera un componente di campo valutati in H1:

)tcos()x

icos(H)t,x(H ep

MiAiA

)xi

tcos(H2

1)

xitcos(H

2

1)t,x(H

peM

peMi

AiAiA

H1 H2

x2, t2x1, t1

)xi

tcos(H2

1)t,x('H

p

11eM11i

AiA

Page 82: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Dopo un tempo t l’osservatore solidale con l’onda ha percorso uno spazio x alla velocità costante v. L’intensità H rimane inalterata.

Allora:

L’uguaglianza dei moduli sussiste se gli argomenti sono uguali

La velocità dell’onda è:

ora

moltiplicando ambo i membri per 1/p e tenendo conto della relazione di sopra:

)xi

tcos(H2

1)t,x('H

p

22eM22i

AiA

p

22e

p

11e

xit

xit

p

2121e

)xx(i)tt(

idt

dx

)tt(

)xx( pe

21

21

prepre v:v:

rr

ipp

1

ip

v

pe

p

pec

p

re

r

r

Page 83: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Un campo generato dalla i-ma armonica, che ruota con pulsazione

ci= s/ip, sempre rispetto allo statore, è come se fosse dotato di ip

coppie polari.

Possiamo studiare la i-ma armonica come se fossimo di fronte ad una macchina asincrona che ha ip coppie polari.

Ne segue che lo studio degli effetti delle armoniche su una macchina a p coppie polari è equivalente allo studio di infinite macchine aventi ip coppie polari (i=3k1).Rotore in movimento (r)

Si consideri un rotore che ruota con pulsazione r. Per la i-ma armonica, il processo di induzione è equivalente al caso di rotore fisso e campo rotante con velocità ridotta:

sempre per gli effetti di quanto accade sul rotore, la pulsazione elettrica delle f.e.m. di armonica i-ma sarà:

(macchina con ip coppie polari)

rs

rc ipi

rsrc ip)(ipi

Page 84: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Queste f.e.m. fanno circolare correnti aventi la stessa pulsazione, le quali daranno origine ad altri campi rotanti di rotore contenenti armoniche. E’ il rotore che genera ulteriori armoniche di campo.

Riassumendo:coppie polari equiv. di statore p 5p 7p 11p 13p ip

campi armonici di statore 1° -5° 7° -11° 13° i°

campo armonici di rotore 1°1 1°5 1°7 1°11 1°13 1°i

5°1 5°5 5°7 5°11 5°13 5°i

7°1 7°5 7°7 7°11 7°13 7°i

k°1 k°5 k°7 k°11 k°13 k°i

Si consideri il campo rotante induttore di ordine i e lo si consideri generato da una macchina equivalente di ip coppie polari rispetto alla macchina originale e si consideri la ki-ma armonica di rotore ad essa collegata.

L’armonica indotta ha kiip coppie di poli.

Page 85: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Quale è la velocità meccanica di questo campo di ki-ma armonica di rotore ?

Rispetto allo statore si ha:

Affinchè i campi armonici di rotore e di statore possano interferire, originando coppie parassite, devono ruotare alla stessa velocità e devono avere lo stesso numero di poli.

Se esiste un campo armonico di statore di ordine che possa interferire con il campo armonico di rotore di ordine ki deve valere la condizione sulla velocità:

l’espressione rappresenta la uguaglianza tra velocità assoluta della ° armonica di statore e quella della ki° armonica di rotore, indotta dal campo generato dalla i-ma armonica di statore.

Ricordando che: l’equazione precedente vale

i

ir

i

s

i

irsr

i

rs

k

)k1(

ipkipk

)k1(ip

ipk

ip

i

ir

i

ss

k

)k1(

ipkp

p)s1( s

r

Page 86: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Semplificando, si ottiene:

A) condizione di uguale pulsazione

B) stesso numero di poli

, i e ki sono numeri interi. Si devono ricercare le combinazioni che portano al rispetto di A) e B).

Si consideri la velocità di rotazione del campo generato dalla i-ma armonica di statore.

Questo induce nel rotore delle correnti aventi una frequenza fri=sif con

i

is

i

ss

pk

)k1()s1(

ipkp

i

i

i k

)k1)(s1(

ik

11

ii ikipkp

i

1

p

f60n

ic

c

rc

c

rc

i n

inn

in

ni

n

s

Page 87: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Ho dei nuovi campi prodotti da queste correnti che, rispetto al rotore, ruotano con velocità

(ki è l’ordine di armonica di rotore generata dalla armonica i di statore)

la velocità vista dallo statore sarà:

Ora, si consideri una generica armonica di statore, , con i.

Affinchè si sviluppi una coppia è necessario che i campi di statore e rotore siano sincroni.

Tra le tante combinazioni di i, ki e , si vede subito che se ki =1 =>

allora i=

i

r

r k

1

p

f60n i

ki

i

rc

c

rc

ic

i

i

r k

inn

n

inn

k

1n

k

1

p

fs60n

ki

i

rircr

i

rcrrs k

nkinnn

k

innnnn

kiki

i

ricc

k

n)ik(nn

i

nn cc

Page 88: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La condizione i= implica che se i prende valori in i=1, 5, 7, 11.. si

deve considerare solo la relativa fondamentale di rotore cioè, ki=1

Le coppie parassite possono nascere dalla interferenza dei campi armonici di statore con i fondamentali campi armonici di rotore.

ki=1, per qualsiasi velocità, verifica la condizione A) (per qualsiasi

condizione di s, tenendo però presente il segno da attribuire all’ordine della armonica).

Se ki=1, allora è verificata anche la condizione B) perché

Questa condizione corrisponde alla configurazione di una coppia parassita asincrona il cui il campo rotante indotto interagisce con il suo campo induttore.

II°caso

è possibile

evidenziare una nuova condizione

ii ikipkp

i

i

i k

)k1)(s1(

ik

11

Page 89: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

S=1 per diversi valori di ki.

Ciò significa che allo spunto, dato che i campi di rotore e di statore hanno la stessa frequenza, ne viene che le armoniche di rotore e statore coincidono.

Questa condizione implica la presenza di coppie parassite allo spunto o in corto circuito (s=1)

Caratteristica Meccanica T=f(s), T=f(n) CompletaCaratteristica Meccanica T=f(s), T=f(n) Completa

Riassumendo:

la f.m.m. ha un andamento a gradini la cui scomposizione in serie di Fourier mette in evidenza la presenza di armoniche che generano coppie parassite. In particolare,

i=1 => f.m.m. fondamentale che origina un campo rotante con velocità di sincronismo pari a n0=60f/p;

i=5 => f.m.m. di ordine 5 che origina un campo rotante con velocità di sincronismo pari a n5=-60f/5p=-n0/5 nel verso contrario alla 1°.

Page 90: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

i=7 => f.m.m. di ordine 7 che origina un campo rotante con velocità di sincronismo pari a n7=60f/7p=n0/7 nel verso della fondamentale.

i=11 => f.m.m. di ordine 11 che origina un campo rotante con velocità di sincronismo pari a n11=-60f/11p=-n0/11; nel verso contrario alla

fondamentale.

Lo scorrimento per la i-ma armonica vale:

Di particolare importanza sono le coppie parassite di tipo asincrono dovute alle armoniche del 5° e 7° ordine perché possono modificare sensibilmente il valore e l’andamento della coppia dovuta alla interazione delle fondamentali.

)s1(i1i

i

i

ip

ips

c

rc

c

rc

s

rs

i

Page 91: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Coppia di 5°

la 5° armonica origina una coppia parassita che ha il verso opposto rispetto alla fondamentale. I giri di sincronismo sono pari a n5=-n0/5.

Se si considera una macchina equivalente a quella assegnata, avente però ip numero di coppie polari, la espressione della coppia rimane invariata.

Il profilo della caratteristica è invariato solo che l’attraversamento dell’asse orizzontale avviene nel semipiano negativo.

la coppia di 5° si manifesta per valori di s<0, nella zona generatore e freno. Nella zona motore (0-s-1) si ha una riduzione di coppia quasi uniforme e comunque di limitata entità.

T

Tr

Page 92: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Coppia di 7°

con analoghe considerazioni, si perviene al tracciamento della coppia parassita di ordine 7. I giri di sincronismo sono pari a n7=n0/7.

Questo grafico mette in evidenza un insellamento della caratteristica in corrispondenza di n0/7 che si trova nel campo di valori di scorrimento per il motore.

A parte casi particolari, non ci si preoccupa dell’effetto dei campi di 11° e 13° etc.

L’ampiezza del campo di 13° è ridotto mentre la 11°, ruotando in senso opposto alla fondamentale, si fa sentire nel campo generatore.

Caratteristica Completa

Se si sommano per punti le caratteristiche di ordine 1, 5 e 7, si ottiene una caratteristica completa più aderente alla realtà.

T

Tr

Page 93: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

In presenza di una coppia resistente con andamento rappresentato in figura, i punti di equilibrio sono 3.

A e C sono stabili mentre B è instabile.

In fase di avviamento, la velocità cresce fino al punto C, poi non aumenta oltre.

Questo fenomeno è noto come impuntamento di 7° armonica.

Rumorosità

Se si considerano le interferenze tra campi di statore e di rotore, con un diverso numero di poli, la configurazione periferica dei flussi segue una legge di battimenti. Essa presenta dei massimi e dei minimi lungo la periferia del traferro.

Il numero dei cicli della configurazione è uguale alla differenza tra i

T

Tr. ..AB

C

Page 94: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

numeri di paia di poli dei due campi interagenti.

La configurazione ruota,

rispetto allo statore, con velocità pari a

dove ps e pr sono i numeri di coppie polari dei campi interferenti ed ns ed nr le rispettive velocità riferite allo statore.

I casi più pericolosi sono quelli in cui i numeri di poli differiscono di due e di quattro, rispettivamente.

Nel primo caso si ha una distribuzione di un solo ciclo che presenta un massimo ed un minimo di flusso diametralmente opposti. Questi danno origine ad una attrazione unilaterale sul rotore e quindi, se le caratteristiche elastiche dell’albero lo consentono, una deformazione o delle vibrazioni che possono cadere in campo acustico.

Nel secondo, la configurazione presenta due cicli con massimi diametralmente opposti e minimi in quadraturacon ovoidalizzazione dei cuscinetti e vibrazioni in campo acustico.

rs

rrssc pp

npnpn

Page 95: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Il fenomeno della vibrazione del rotore o dello statore è legato soprattutto all’effetto dei denti, e si verifica quando il numero C della cave di statore differisce di poco da quello di rotore.

Vibrazioni

112 CC 112 pCCVibrazioni nel rotore si possono verificare se è

212 pCC212 CCVibrazioni nello statore si possono verificare se è

nel rotore: C2 = 19, 21, 23, 25, 27, 29

nello statore: C2 = 18, 22, 26, 30

possono verificarsi vibrazioni se è:

esempio:p = 4 e C1 = 24

a 50 Hz la frequenza delle vibrazioni è in ogni caso di 600 p/s

Page 96: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Va tuttavia sottolineato il fatto che i fenomeni vibratori possono essere causati anche da squilibri meccanici e da squilibri elettromagnetici. Va tuttavia sottolineato il fatto che i fenomeni vibratori possono essere causati anche da squilibri meccanici e da squilibri elettromagnetici.

per eliminare questi inconvenienti è necessario scegliere opportunamente il numero delle cave di rotore, inclinare le cave rispetto all’asse della macchina, adottare avvolgimenti di statore a passo accorciato, e scegliere ampiezze di traferro

non troppo ridotte. in ogni caso è necessario evitare di scegliere un numero di cave di rotore uguale a quello di statore o che differisca di un numero di cave eguale al numero dei poli.

Provvedimenti per ridurre i fenomeni indesiderati

Page 97: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Motore di piccola potenza con rotore a gabbia

Per attenuare il fenomeno delle vibrazioni bisogna porre innanzitutto attenzione al numero di cave, mentre è anche utile ricorrere ad una inclinazione relativa fra le cave di rotore e quelle di statore

cave di rotore inclinate

rispetto a quelle di statore

Page 98: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

conduttori attivi

anelli di corto circuito

alette di raffreddamento

I Rotori a GabbiaI Rotori a Gabbia

I rotori a gabbia semplice sono costituiti da un solo conduttore per cava (alluminio pressofuso cetrifugato per piccole potenze,

barre di alluminio elettrolitico per grandi potenze), non isolato rispetto a massa, le cui estremità sono collegate in corto da anelli frontali (saldati per potenze elevate).

La gabbia non ha un numero di poli proprio, prefissato, ma “copia” il numero di poli dello statore per effetto dell’induzione elettromagnetica.

Page 99: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Le singole barre vengono investite dal campo rotante ed ognuna di esse si concatena con una quota di flusso magnetico che dipende dalla posizione angolare relativa tra barra ed onda. Con riferimento alla figura, le prime 7 barre si concatenano con un flusso di segno positivo dando origine a 7 f.e.m. che sono sfasati tra loro di

dove Zr è il numero di cave di rotore. rc pZ2

D

Page 100: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Sotto il polo di segno contrario, le barre sono interessate dallo stesso flusso ma di segno contrario al precedente. La gabbia è sottoposta ad un regime di fem indotte che si ripetono periodicamente un numero di volte pari al n.di coppie polari di statore.

Lo stesso avvolgimento di rotore può “copiare” un n.di poli di statore fino ad un massimo di Zr.

Si genera un sistema di correnti equilibrate, limitate dalle resistenze e dalle reattanze di barre ed anello.

Le fem generano delle correnti nelle gabbie che si chiudono negli anelli frontali, limitate dalle resistenze e dalle reattanze di barre ed anello.

Le relazioni elettriche si determinano studiando un modello semplificato che considera una maglia chiusa composta da due barre e la porzione di anello che le unisce.

Is

Ia

Page 101: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Per la simmetria del circuito, la fase della f.e.m. e della corrente di barra differiscono da quella adiacente per l’angolo elettrico c

Applicando il II°K alla maglia composta da due barre sfasate dell’angolo elettrico c e dal tratto di anello che le chiude:

1

2121

aaa

bbbbbbbb

I)jXR(

I)jXR(I)jXR(EE

Rb

Ra

Xb

Xa

Xb

Rb

Ia1Ia0

Ia2

Ib1 Ib2

Eb1 Eb1

A B

Se si applica il I°K al nodo A si ha:

101 aab III

c

12

c

12

jbb

jbb eII;eEE

Lo stesso vale per segmenti circolari adiacenti di anello: c

10

jaa eII

Page 102: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Ora 12121 aaabbbbbb I)jXR()II)(jXR(EE

Sostituendo nella equazione dal II°K

Tenendo conto degli sfasamenti, si può scrivere che

1

c

211

c

21 bj

bbbj

bb I)e1(II;E)e1(EE

1

cc

11011 ajj

aaaab I)e1(eIIIII Analogamente

)e1(

I)jXR(I)e1)(jXR()e1(E

c

1

1

cc

1 j

baab

jbb

jb

Dividendo per (1-e) ed evidenziando la Ib1

)e1)(e1(

)jXR()jXR(IE

cc11 jjaa

bbbb

Sapendo che: 2

c

2

2

j

2

jjj

2jsin2ee)e1)(e1(

cc

cc

Sostituendo:

Page 103: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Questa relazione mostra che si può tenere conto degli effetti degli anelli aumentando l’impedenza di ciascuna barra della quantità:

Se si considera che si hanno Zr/m cave di rotore per fase, allora si possono definire le resistenze e le reattanze di fase di rotore che tengono anche conto degli anelli

2

c

aabbbb

)2

(sin2

)jXR()jXR(IE

11

2

c

aa

)2

(sin2

)jXR(

2

c

ab

rr

)2

(sin2

RR

m

ZR

2

c

ab

rr

)2

(sin2

XX

m

ZX

Page 104: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Ib

Ia

La relazione tra intensità di corrente di barra e di anello si determina considerando un generico nodo di giunzione.

per Zr grande, c piccolo

Ia

I’a

Ib

c

r

acab Z2

p senI22senI2I

br

a Ip

Z1I

c: angolo elettrico fra due cave vicine

Zr : numero di cave della gabbia

pZ rc

Ia I’a

Ib

Page 105: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

I motori asincroni a gabbia semplice assorbono allo spunto una corrente elevata che non sempre è tollerata dall’impianto (Is=56 In) a cui corrisponde una coppia di spunto bassa (Ts10%Tn).

Si sfrutta il fenomeno dell’addensamento di corrente per migliorare lo spunto (aumentare la coppia e diminuire la corrente).

Fenomeni di addensamento di corrente

Una corrente variabile nel tempo che circola in un conduttore genera un campo magnetico nello spazio circostante che si concatena anche con il conduttore stesso. Se il conduttore è inserito in una cava, la concatenazione non è uniforme (come nei cavi).

La sezione 4 si concatena con tutto il flusso mentre le sezioni 3, 2 ed 1, si concatenano con un flusso via via meno intenso.

Le f.e.m. indotte e le correnti che circolano di conseguenza, sono via via meno intense partendo dal fondo cava (4) per arrivare all’apertura di cava (1).

Page 106: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Queste correnti hanno verso contrario alla causa che le generano (la corrente circolante che genera il campo

magnetico). La corrente complessiva circolante in cava si riduce in 4 rispetto ad 1 (effetto pelle).

Il fenomeno è in diretta relazione con la frequenza.

Due sono le conseguenze: aumentano la resistenza e le perdite.

Aumento delle perdite:

Si consideri un conduttore massiccio, di sezione S=hb, di resistenza R, attraversato dalla corrente I a densità costante.

Le perdite Joule sono: P=RI2

Ora si suppone che una quota di corrente i si addensi nella metà superiore dalla metà inferiore. In totale, la corrente del conduttore è sempre I.

Lo schema di riferimento è equivalente a due conduttori in parallelo, ognuno avente sezione S/2 e resistenza 2R rispetto a sopra.

h

b

R

I

h/2

b

2R ; I+i

h/22R ; I-i

Page 107: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La corrente che fluisce nelle due metà è sempre la stessa ma le perdite Joule cambiano

2R I+i

2R I-i

I

I

22 )i2

I(R2)i

2

I(R2'P

i2

I2i)

2

I(i

2

I2i)

2

I(R2

)i2

I()i

2

I(R2'P

2222

22

22222 iR4PiR4)2

I(R4i2)

2

I(2R2'P

La non uniforme distribuzione di corrente provoca una aumento di perdite.

Aumento delle resistenze:

Si consideri una cava di tipo rettangolare Sc=hcbc occupata da un conduttore pieno di sezione S=hb. Si fanno le seguenti ipotesi:

Page 108: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

h

b

hc

bc

dx

x

1) f => =0;

2) li linee di campo in cava sono parallele tra loro;

3) le linee di campo sono perpendicolari alla uperfice di cava;

4) la permeabilità in cava è 0.

Con queste ipotesi, lo studio del problema dell’addensamento di corrente da 3D diventa lineare, nella sola direzione x.

Sia (x) la densità di corrente nella sezione infinitesimale dS(x)=dxb posta a distanza x dal fondo cava (riferimento);

Sia dH(x) l’intensità locale del campo magnetico.

Con riferimento alla figura, nella sezione dS(x) circola una corrente:

dI(x)= (x).b.dx per il teorema di Ampere dI(x)= dH(x).bc

uguagliando

x

)x(H

b

b)x(b)x(dHdxb)x()x(dI c

c

Page 109: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Dalla leggi di Maxwell e dalle leggi di legame materiale:

x

)x(E;

t

H

t

BE 0

Uguagliando e considerando le condizioni di sopra:

2

2cc

0 x

)x(H

b

b

x

)x(H

b

b

xt

H

t

BE

t

)t(H

b

b

x

)x(H

c

02

2

Se l’intensità del campo H varia sinusoidalmente nel tempo e la relazione diventa

Hjt

H

c

02

c

02

2

b

bjKconHKHj

b

b

x

)x(H

Che è una equazione differenziale del secondo ordine a coefficienti costanti.

Page 110: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La soluzione è del tipo

Le costanti A e B si determinano dalle condizioni iniziali.

Se x=0 allora H=0; => A+B=0 => A=-B

Se x=h allora H=I/bc => =>

Risolvendo rispetto a B:

KxKx BeAe)x(H

c

KhKh

b

IBeAe

c

KhKh

b

IBeBe

)Kh(sinhb2

I

b)ee(

IB

b

I)ee(B

ccKhKh

c

KhKh

)Kh(sinhb2

IA

)Kh(sinhb2

IB

cc

Se consideriamo la soluzione generale, tenendo conto delle costanti:

Kx

c

Kx

c

e)Kh(sinhb2

Ie

)Kh(sinhb2

I)x(H

)Kh(sinhb2

)Kx(sinh2I)ee(

)Kh(sinhb2

I)x(H

c

KxKx

c

Page 111: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Quindi:

Tenendo ora conto della relazione tra H(x) e (x) si ha che:

)Kh(sinhb

)Kx(Isinh)x(H

c

)Kh(bsinh

)Kxcosh(KI

)Kh(sinhb

)Kx(Isinh

xb

b

x

)x(H

b

b)x(

c

cc

Riassumendo, in un conduttore in cava rettangolare, l’andamento di H(x) e (x) seguono le due leggi:

)Kh(sinhb

)Kx(Isinh)x(H

c

)Kh(bsinh

)Kxcosh(KI)x(

I cui andamenti possono essere schematizzati come segue:

Page 112: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Lo spostamento della corrente nelle sezioni superiori del conduttore può essere visto come una riduzione della sua sezione con conseguente aumento della resistenza in cc.

Il coeff. k si ricava dallo studio più accurato del fenomeno (in Costruzioni Elettromeccaniche). In generale:

L’addensamento di corrente modifica anche le reattanze (si trascura).

Addensamento di corrente nei conduttori di statore

Nelle cave di statore sono di solito presenti nc conduttori o, nel caso di un solo conduttore, ns sezioni in parallelo che risentono del fenomeno.

Per diminuire gli effetti negativi, vengono effettuate le permutazioni o trasposizioni di sezione. Se n è il numero delle sezioni ed l è la lunghezza dei conduttori, ogni s/l m vengono ruotate le sezioni.

ccaccc kR)s('s

lR;

s

lR

2

422

222 1)(

hfkRfR dc

resistenza di rotore R2 alla frequenza di rotore f2 (R2dc = resistenza di rotore in continua)

Page 113: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Il conduttore in posizione “1” viene spostato in posizione “4”, “4” in “3”, “3” in “2” e “2” in “1”.

In questo modo, il +i che attraversa “1” in posizione inizio cava compensa parzialmente il -i che si ha quando è in fondo cava, e così via. La compensazione è solo parziale ma la trasposizione aiuta molto a ridurre le perdite aggiuntive dovute alla non uniforme distribuzione della densità di corrente.

Addensamento di corrente nei conduttori di rotore.

Nel rotore si sfrutta l’aumento di resistenza per migliorare la coppia di spunto. Allo spunto, i conduttori sono investiti da un campo a frequenza piena e la corrente viene spinta verso l’esterno. A regime, per effetto dello scorrimento limitato, la frequenza delle grandezze elettriche di rotore è bassa ed il fenomeno può essere trascurato.

Gabbia a barre profonde

È composta da una gabbia a barra singola ma con una forma piuttosto allungata per sfruttare maggiormente l’effetto pelle ed il conseguente

Page 114: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

aumento di resistenza nei conduttori di rotore allo spunto.

La forma rettangolare è la più semplice da studiare ma se è profonda restringe notevolmente lo spessore del dente in corrispondenza al fondo cava portandolo in saturazione. Per questo motivo sono proposte cave di forma diversa, la più utilizzata delle quali è la forma lanceolata ( c). Con la forma di tipo (b) il fenomeno è accentuato.

sat (a) (b)(c) (d)

La resistenza effettiva dipende dalla frequenza, dalle profondità e dalla forma della gabbia e dalla resistività del conduttore.

La resistenza si determina con simulazioni che producono grafici utili al progetto, come quello riportato in fig.

Page 115: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La doppia gabbia (Boucherot)

È composta da una gabbia più esterna di materiale con resistività più elevata e da una gabbia interna di materiale a bassa resistività (es. bronzo- alluminio).

Le forme si ispirano a combinazioni di forme per gabbia semplice (esterna) e a barre profonde (interna).

Il flusso concatenato con la gabbia secondaria investe anche il traferro (ridotta)

L

si LL

si XX

Il flusso concatenato con la gabbia primaria investe il traferro solo parzialmente ( elevata)

Viene riportato un andamento qualitativo del flusso da cui si vede che il flusso concatenato della barra inferiore è maggiore di quella superiore.

La differenza è legata alla diversità della forma delle due barre

Page 116: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

rotore

statore

gabbia superiore

Rs ; Xs

gabbia inferiore

Ri ; Xi

h

Le gabbie sono caratterizzate da:

superiore: elevata Rs (barre ed anelli di piccola sezione ed elevata resistività) limitata Xs (prossimità del traferro, dimensioni contenute).

inferiore: bassa Ri (barre ed anelli di grande sezione e bassa resistività) elevata Xi (barre di forma allungata immerse nel ferro).

)1(jsXRZ sss

)1(jsXRZ iii All’avviamento (s=1), le X hanno il valore massimo. Si possono trascurare le R in rapporto alle X. Allora

In funzionamento nominale (s<0.06) le X hanno valori molto bassi e possono essere trascurate rispetto alle resistenze.

isiiss ZZ)1(jXZ;)1(jXZ

isiiss ZZRZ;RZ

Page 117: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La R equivalente è pari al parallelo delle due e Re è Ri.

Il circuito equivalente riportato allo statore che ne deriva è composto da due impedenze equivalenti di rotore poste in parallelo, tali che:

Rs Xs

Vf

IsX’i

R’i/s

R’s/sX’s

La Caratteristica Meccanica

E’ il risultato della composizione di due contributi di coppia, quello relativo alla gabbia esterna a maggiore resistenza e quella interna a minore resistenza.

Tm

Ta

Page 118: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

La Classificazione delle Macchine Asincrone

Vengono classificate in 4 classi, in base al tipo di coppia di spunto.

Tipo A => Ts << Tmax

Corrisponde alla m.a. con gabbia semplice. Ha buone prestazioni a carico e modeste all'avviamento; basso scorrimento a pieno carico; elevato. Tmax è superiore al 100% Tn. L’Elevata Iccs costringe ad avviamenti con basso carico a tensione piena o con più carico ma a tensione ridotta (avviamento stella/triangolo: stella all’avviamento). Il tipo A è std per potenze sotto i 10 kW.

Tipo B => Ts Tmax

si può impiegare per spunti su carichi maggiori con correnti minori. Impiega doppie gabbie o barre profonde. S ed sono simili al tipo A. L’elevata X fa diminuire il cos e la Tmax. E’ usato in azionamenti per soffianti, pompe e macchine utensili.

Page 119: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate

Tipo C => Ts >Tmax

M.A. con doppia gabbia e resistenza rotorica più elevata rispetto al tipo B e bassa Iccs. Vanno contrapposti un inferiore ed s superiore

rispetto ai motori dei tipi A e B. Impieghi tipici sono l'azionamento

di compressori e di nastri tasportatori.

Tipo D => Ts >> Tmax con s elevato

Ha un rotore con gabbia semplice ad elevata resistenza (ottone). Anche la Tmax è elevata e presentano s > al 50% . Alti valori di s e basso lo rendono indicato per azionamenti di carichi intermittenti che richedano gravose accelerazioni o di carichi impulsivi quali, ad esempio, presse e tranciatrici (il motore viene solitamente accoppiato ad un volano che aiuta a fornire l'energia impulsiva e riduce le pulsazioni di potenza sulla

rete di alimentazione).

Page 120: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate
Page 121: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate
Page 122: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate
Page 123: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate
Page 124: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate
Page 125: Si consideri una macchina asincrona con il rotore avvolto o a gabbia. Lo statore viene collegato ad una rete a potenza infinita con tensioni concatenate