Sistema de Exc. vs Estabilidad

Embed Size (px)

Citation preview

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    1/44

    - 1 -

    Impact of excitation system on power system stability

    ABBABB Industrie AG

    1.INTRODUCTION

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    2/44

    ABBABB Industrie AG

    - 2 -

    Impact of excitation system on power system stability

    HV SYSTEM

    THE POWER STATIONSTEP UP

    CONTROL ROOM

    TRANSFORMER LV SWITCHGEAR

    HV- BREAKERAC & DC

    AUXILIARYSYSTEMS

    GOVERNOR

    1GENERATOR

    BREAKER

    AUX.TRANSF

    .

    PROTECTION

    1

    CONTROLSYSTEMS

    SYNCHRONIZING

    PTs&CTs

    TURBINESYNCHRONOUS

    GENERATOR

    EXCITATIONSYSTEM

    STARPOINT

    CUBICLEEXCITATION

    TRANSFORMER

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    3/44

    ABBABB Industrie AG

    If Synchronous Ug

    Machine

    ExcitationSystem

    Grid

    Controller

    The automatic voltage control system

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    4/44

    ABBABB Industrie AG

    ~=

    SM E ~SM =

    1 a 200 A

    Rotating exciter100 a 10000

    A

    Static excitation

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    5/44

    ABBABB Industrie AG

    Basic Requirements Excitation Current up to 10000 amps

    Input frequency range from 16 Hz to 400 Hz

    Adaptable to different redundancy requirements for controls andconverters

    State of the art man machine interface

    Compatibility with most applied power plant control systems

    Remote diagnostics

    Comfortable commissioning tools

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    6/44

    ABBABB Industrie AG

    Operational Application

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    7/44

    Main Components of an UNITROL 5000 System

    AVR

    ABB Industrie AG

    ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    8/44

    Measuring

    System overview

    AVR 2

    AVR 1

    Protection

    Monitoring

    AVR + FCR

    Logic Control

    CONVERTER N

    CONVERTER 2

    CONVERTER 1

    Converter

    Control

    Field flashing

    Field suppressionFieldbreaker

    AVR = Autom. Voltage Reg.

    FCR = Field Current Reg. ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    9/44

    ABBABB Industrie AG

    MeasuringandA/D

    conversion

    Min.

    /max.value

    priorityQ

    Main Functions of the AVR

    with Field Current Controller

    UG, I

    G

    UG

    UG, I

    G, I

    f

    UG, I

    G, I

    f

    UG, IG

    If

    AVR Setpoint-V/Hz limiter

    - Soft start _- I Compensation

    - IP

    Compensation

    +

    Underexcit. limiter-Q=F(P,U,UG)

    -Stator current lead

    -Min. field current

    Overexcit. limiter-Max field current

    -Stator current lag

    Power System

    Stabilizer PSS

    Man setpoint _

    +

    PID

    PI

    To pulse

    generation

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    10/44

    -

    Impact of excitation system on power system stability

    2. IMPACT ON POWER SYSTEM STABILITY

    Voltage Control Dynamics ( controller, power stage and power source)

    Limiters

    Power System Stabilizer

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    11/44

    ABBABB Industrie AG

    -

    Impact of excitation system on power system stability

    2.1 Voltage Control Dynamics ( controller, power stage and power source)

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    12/44

    Parameter Description Unit Range

    TR Measuring filter time constant s 0.020

    Ts Gate control unit and converter time constant s 0.004

    KIR Reactive power compensation factor p.u. -0.20...+0.20

    KIA active power compensation factor p.u. -0.20...+0.20

    KR Steady state gain p.u. 10...1000

    Kc Voltage drop to commutations andimpedances p.u. Acc. Transf.

    TB1 Controller first lag time constant s TB1 TB2TB2 Controller second lag time constant s 0

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    13/44

    ABB Industrie AG

    IR UR

    IDR

    UT

    ITIDT

    If Uf

    IDS

    IS

    US

    Synchronous machinethree-phase representation ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    14/44

    IQ2

    IQ1

    D axisra

    Idd Ud

    Stator

    dD

    rdD

    IdD

    rf f

    Uf If Q1

    Q2

    q Q axis

    rQ1 rQ2ra

    IqRotor

    Uq

    d

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    15/44

    decompositionABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    16/44

    Torque TM =

    TE =

    PM

    speed

    US Ep sin

    Xq +

    TM

    XT +XE

    Motion equation:

    0o 45o 180o

    TM TE = 2Hd

    dt

    The characteristic Dynamic Equation

    ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    17/44

    IEEE 421.1

    UF ceiling

    NR

    c

    b

    UF nominald

    AVR - Voltage control dynamic

    System type (Static excitation, Brush-less, DC Exciter)

    Settings of control algorithm

    Response time

    Ceiling capabilitiesExcitation system nominal

    response

    =c e -ao

    (ao)(oe)

    a

    oe=0.5s

    ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    18/44

    ABBABB Industrie AG

    Comparison of Excitation System Types

    Mechanical

    -Conversion of

    mech. to electr.

    Energy

    - Size of exciter

    - Sliprings

    Electrical

    - Rectifier

    - Directmeasuring

    of field current

    - Fast field

    suppression

    DC-Exciter

    yes

    power and speed

    yes

    not required

    possible

    possible

    AC-Exciter

    stat. diodes

    yes

    power and speed

    yes

    static external

    possible

    possible

    AC-Exciter

    rot. diodes

    yes

    power and speed

    no

    static rotary

    not possible

    not possible

    Stat. Exciter

    stat. thyristors

    main machine

    power

    yes

    static

    possible

    possible

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    19/44

    ABBABB Industrie AG

    Comparison of Exciter Characteristics

    Dynamic

    Performance

    - Major time

    constant of control circuit

    - Ceiling factor

    - Negative fieldcurrent

    Reliability (MTBF)

    - Machine, Transformer

    - Converter

    Maintenance

    - Machine, Transf.

    - Converter

    DC-Exciter

    TdL+TE

    limited

    possible

    good

    good

    at standstill

    at standstill

    AC-Exciterstat. diodes

    TdL+TE

    not limited

    not possible

    good

    better

    at standstill

    duringoperation

    AC-Exciterrot. diodes

    TdL+TE

    limited

    not possible

    good

    better

    at standstill

    at standstill

    Stat. Exciterstat. thyristors

    TdL

    not limited

    possible

    better

    better

    at standstill

    duringoperation

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    20/44

    ABBABB Industrie AG

    Ceiling limit

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    21/44

    -

    Impact of excitation system on power system stability

    ABBABB Industrie AG

    2.2 LIMITERS

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    22/44

    ABBABB Industrie AG

    -

    Impact of excitation system on power system stability

    Setpoint building

    Automatic

    channel

    -Setpoint

    Follow up

    Automatic

    Ug

    ACTransducer

    and filter

    -Soft start

    -V/Hz limiter

    -Q influence

    -P influence

    Ug actual

    effective setpoint

    +

    -

    Powersystem

    stabilizer

    (PSS)

    HVGate

    Gain

    + DC

    Gain

    Ucmax

    HF gain

    +

    UcAVRUnderexcitation

    limiters (UEL)

    Overexcitation

    limiters (OEL)

    LV +

    Gate

    +

    UcP gain

    1/TA 1/TB

    Ucmin Ucmax

    IFTransducer

    -

    and filter

    +

    Gain

    DC

    Gain

    P gain

    Uc FCR

    Manual set point

    Follow up

    Automatic

    Follow up Manual

    Follow upcontrol

    UcAVR

    Uc FCR

    Ucmin

    1/TA 1/TB AVR

    FCR

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    23/44

    ABBABB Industrie AG

    Theorectical stability

    limit

    Practical

    stability

    limit

    P [p.u.]

    Declared rated

    operation point

    ofgenerating

    unit

    Turbine

    ouputpowerlimit

    Thermal limit

    of stator

    LEADING

    (underexcited

    )

    n

    LAGGING(overexcited

    )

    Thermal

    limit of

    rotor

    -1.0 p.u. U2

    Xq

    U2

    Xd

    Minimum

    Field current

    limitSafe operationrange

    1.0 Q [p.u.]

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    24/44

    ABBABB Industrie AG

    The Power Chart of a solid polesynchronous machine

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    25/44

    Synchronous machine operation Limits

    Max.Max. fieldfield currentcurrent limiterlimiter

    Min.Min. fieldfield currentcurrent limiterlimiter

    StatorStatorcurrentcurrent limiterlimiter

    UnderUnderexcitationexcitation P,QP,Q limiterlimiterP

    Theoreticalstability limit

    -Q 1/Xd +Q

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    26/44

    ABBABB Industrie AG

    Main duty of the limiters:

    Keep the synchronous machine operating withinthe safe and stable operation limits, avoidingthe action of protection devices that may tripthe unit.

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    27/44

    ABB Industrie AG

    VOLTAGE REGULATOR WITH LIMITERS

    ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    28/44

    ABBABB Industrie AG

    LOWERVAL.GATE

    Voltagesetpoint

    Supply

    ~ - +

    =-

    Ifth setpoint

    Ifact-

    +

    IfmaxI2dt max

    = / ~

    =

    + I2

    dt

    COMP

    / #

    SM =

    ~

    THE OPERATING PHILOSOPHY OF Ifmax LIMITER

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    29/44

    Fieldcurrent

    xIFN

    Ceiling limit

    thermal limit

    setpoint

    switch time

    Time [s]

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    30/44

    ABB Industrie AG

    Machine

    frequencyfT [p.u]

    Machineterminalvoltage

    UT [p.u]

    Machine field

    1

    1+ sTR

    V / Hz Limiter

    x yy=KVHZ.x+U_fn-KVHZ

    -KVHZ

    U_fn +

    x>0

    T_V_Hz

    Delay

    UTMAX

    UTMAX

    0

    U_V/HZ

    Volt/Hz

    influence

    signal

    toAVR

    [p.u.]current

    IF [p.u.]1

    1+ sTR

    Max. field current limiter-

    KIFmax+

    x2

    -KCF

    +

    EmaxFy

    Setpoint 2 forIF max limiter

    (option)

    Stator

    IFth1

    IFth2

    KHF

    x>0 0IFmax1

    IFmax2

    1s

    xx>y

    LV

    Gate

    Current

    IT [p.u.]1

    1+ sTR

    Stator current limiter

    +

    -KCS

    EmaxSy

    - KITind

    +

    To OEL limiter

    gate ofAVRKHS

    x>0

    1s

    0

    xx>y

    ITth

    ITmaxTo UEL limiter

    gate ofAVR

    -+

    KITcap

    Min. field current limiter+

    KIFmin

    -

    HV

    Gate

    Generatorreactivepower

    1 P/Q limiter

    IFmin

    QT[p.u.]

    1+ sTRGeneratorterminal

    voltageUT [p.u.]

    x2

    1

    le

    - KPQ

    +

    ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    31/44

    ABB Industrie AG

    Generator

    active powerPT [p.u.]

    1+ sTR Look-upTab

    yn

    = f(xn)

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    32/44

    2.3 Power system Stabilizer

    ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    33/44

    -

    Impact of excitation system on power system stability

    IXq(s) XT XE

    Ep UG

    Ep

    XT+XE

    US

    InfiniteBus

    Ep-S = I. Xq

    Ep

    H

    UG

    =I.Xq

    X q ( s ) = X q 1 + s Tq '

    1 + s Tq ' '

    = I. (XE+XT)

    US

    1 + sT q o ' 1 + s T q o ' '

    Stationary and transient air gap voltages ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    34/44

    Pe E

    p U G US

    90o

    phasorrotation

    Transient behavior ofand PEPE

    ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    35/44

    2

    A) HXT+XE

    Infinite Bus

    B)H1 H2 Equivalent Inertia Heq =

    XT+XE

    H1 H2

    H1+H2

    TM TE = 2 H d TM TE Hd

    taking dt = 2

    dt2

    For small oscillations keeping the drivingtorque constant the dynamic equationlinearized can be written as: 2 H

    n

    d2

    dt2

    + D d

    n dt +K1=0

    Inertia. Ang. Acc. Dampingtorque

    SynchronizingTorque

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    36/44

    Dynamic equation of synchronousmachine+grid for small oscillations ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    37/44

    Oscillation frequency

    phasorrotation K1

    n

    2 H

    rad/s

    Negative Damping(Unstable Region)

    UG

    D/ws*

    Torque

    Positive Damping(Stable Region)

    Damping axis

    K1=synchronizing coefficient

    operating point

    K1 =slope =T

    =E p ' . Us

    coso'Te=K1.

    ResultingTorque

    Xq'+XE +XT

    Synchronizing Axis 0o o 90o

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    38/44

    Phasor diagram of machine+gridfor small oscillations ( without AVR) ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    39/44

    -

    Impact of excitation system on power system stability

    2H n

    d2

    dt2

    +D

    d

    n dt+K1

    +K2 Ep'=0

    Inertia.Ang. Acc. Dampingtorque

    Synchron.Torque

    Add .Torquefrom exc. system

    Negative Damping(Unstable Region)

    K2.Ep

    UGD/ws*

    -UG

    phasorrotation

    Positive Damping(Stable Region)

    Resulting torque componentwithou t excitation system

    Te=K1.Resulting torque componentwit h excitation system

    ABB Industrie AG

    Synchronizing Axis

    Phasor diagram of machine+grid+excitation systemfor small oscillations ABB

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    40/44

    ABBABB Industrie AG

    AVR

    FINAL

    CTRLELEMENT

    ~

    ALTERNATIVE

    PSS

    UG

    M

    P,Q

    Fig3: PSS in the excitation system

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    41/44

    Main Target of PSS:

    It provides an additional torque component in order to get:

    1) A positive resulting torque component on damping axis, even for thehighest possible rotor oscillation frequency.

    2) A positive torque component on synchronizing axis for partialcompensation of generator terminal voltage variations even forthe highest possible oscillation frequency

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    42/44

    ABBABB Industrie AG

    PSS2A acc. IEEE 421.5 1992PM

    1 + s.2.H

    + N+

    PA

    1 + s.2.H VSTmax VSTmax

    s.TW1 s.TW2 (1 + s

    T 8)

    1+s.T1 1+s.T3 VST

    1 + s.TW1 1 + s.TW2 (1+

    s

    T9)M

    + Ks1

    -

    1+s.T2 1+s.T4

    Ks3

    VSTmin VSTmin

    PE s.TW3

    1 + s.TW3

    s.TW4

    1 + s.TW4

    Ks2

    1 + s.T7

    PE

    1 + s.2.H

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    43/44

    ABBABB Industrie AG

    Adaptive PSS (APSS) Alternative to PSS2A

    Driving Power Pa

    UG , IGUref +

    + -

    AVR+

    Uf

    +

    Synchronous

    Generator

    UG

    Measurement

    P

    GRID

    APSS3rd Order System Model

    Filter

    P

    Estimator

    White

    noise+ Regulator

    +

  • 7/27/2019 Sistema de Exc. vs Estabilidad

    44/44

    ABBABB Industrie AG

    +

    Multi Band PSS (MBPSS)

    FB1(s)

    + K b-

    FI1(s)

    +

    K i

    -FI2(s)

    Limit To

    AVR

    +

    FH1(s)

    +

    K h-