30
1 Sistemi e Tecnologie della Comunicazione Lezione 8: strato fisico: multiplexing FDM, WDM, TDM e gerarchie di multiplexing

Sistemi e Tecnologie della Comunicazione

  • Upload
    alva

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

Sistemi e Tecnologie della Comunicazione. Lezione 8: strato fisico: multiplexing FDM, WDM, TDM e gerarchie di multiplexing. Multiplexing. Il multiplexing e’ una tecnica utilizzata per trasportare piu’ comunicazioni indipendenti sullo stesso mezzo trasmissivo - PowerPoint PPT Presentation

Citation preview

Page 1: Sistemi e Tecnologie della Comunicazione

1

Sistemi e Tecnologie della Comunicazione

Lezione 8: strato fisico: multiplexing FDM, WDM, TDM e gerarchie di multiplexing

Page 2: Sistemi e Tecnologie della Comunicazione

2

Multiplexing

Il multiplexing e’ una tecnica utilizzata per trasportare piu’ comunicazioni indipendenti sullo stesso mezzo trasmissivo

questa necessita’ si ha quando c’e’ bisogno di trasmettere molte comunicazioni ciascuna delle quali ha una piccola occupazione di banda, e si dispone di un mezzo trasmissivo capace di una banda molto piu’ ampia

La porzione della banda occupata da una singola comunicazione e’ detta canale

Vedremo tre modalita’ di multiplexing: FDM (multiplexing a divisione di frequenza) WDM (multiplexing a divisione di lunghezza d’onda) TDM (multiplexing a divisione di tempo)

Page 3: Sistemi e Tecnologie della Comunicazione

3

FDM (Frequency Division Multiplexing)

Come visto in precedenza, l’effetto della modulazione analogica si un segnale sinusiodale a frequenza f si traduce nella generazione di un segnale il cui spettro ha la stessa forma dello spettro del segnale modulante ma traslato attorno alla frequenza f della portante

Se ipotizziamo di disporre di una serie di segnali ciascuno con banda B, e di un mezzo trasmissivo che ha una capacita’ di banda limitata dai valori F1 e F2 (con F2-F1 >> B), possiamo utilizzare ciascun segnale per modulare segnali sinusoidali alle frequenze F1+B, F1+2B, F1+3B, etc.

I segnali modulati occuperanno porzioni distinte entro la banda trasmissiva del mezzo, e potranno essere trasmessi contemporaneamente senza interferire.

In ricezione, opportune operazioni di demodulazione e filtraggio permetteranno di separare i diversi traffici.

Page 4: Sistemi e Tecnologie della Comunicazione

4

Banda nella modulazione di frequenza

Page 5: Sistemi e Tecnologie della Comunicazione

5

Schema di modulazione di frequenza

Page 6: Sistemi e Tecnologie della Comunicazione

6

Generazione e ricezione del segnale

I diversi segnali da trasmettere (analogici, o digitali trasformati in analogici via modem) modulano portanti a diverse frequenze, dette sottoportanti

I segnali modulati vengono sommati, generando un segnale composito in banda base; le frequenze delle sottoportanti vengono scelte in modo da minimizzare la sovrapposizione dei segnali sommati

Il segnale composito (che e’ analogico) puo’ essere a sua volta utilizzato per modulare una portante per traslare il segnale ad una frequenza adatta al mezzo trasmissivo

In ricezione si demodula, riportando il segnale composito in banda base

Utilizzando ulteriori demodulatori (adattati alle sottoportanti) e filtri si separano infine i segnali originari

Page 7: Sistemi e Tecnologie della Comunicazione

7

Occupazione di banda

Se ipotizziamo di generare la modulazione con la sola banda laterale, la larghezza di banda occupata dal segnale composito sara’:

In realta’ la banda occupata e’ in genere leggermente superiore, per mantenere una separazione tra i diversi canali in modo da non avere interferenza e per tenere in conto la non idealita’ dei filtri in fase di demodulazione

iBB

Page 8: Sistemi e Tecnologie della Comunicazione

8

Gerarchia FDM per la telefonia

Una applicazione molto diffusa e’ il multiplexing di canali fonici per la trasmissione delle telefonate attraverso le dorsali a larga banda in coassiale o ponte radio

Il canale fonico e’ posto a 4 KHz (per distanziare i diversi canali multiplexati)

Sono definiti gli standard per diversi livelli di multiplexing, per adattarsi alla capacita’ di diversi mezzi:

gruppo: 12 canali fonici, banda di 48 KHz tra 60 e 108 KHz supergruppo: 5 gruppi, 60 canali, 240 KHz tra 312 e 552 KHz gruppo master: 10 supergruppi, 600 canali, 2.52 MHz tra

564 KHz e 3.084 MHz … esistono standard fino a 230.000 canali fonici

Page 9: Sistemi e Tecnologie della Comunicazione

9

Trasmissione radio/TV

L’esempio piu’ comune di FDM e’ la trasmissione radiotelevisiva. Questa utilizza diverse bande di frequenza, ciascuna delle quali viene suddivisa in canali di una certa capacita’, idonea a trasmettere i segnali delle diverse stazioni trasmittenti

trasmissioni a modulazione di ampiezza (AM) nella banda MF (Medium Frequency): 300-3000 KHz , con canali da 4 KHz per radio commerciali

trasmissioni AM nella banda HF (High Frequency): 3-30 MHz, con canali fino a 4 KHz (radio onde corte)

trasmissioni AM o FM nella banda VHF (Very High Frequency): 30-300 MHz, con canali fino a 5 MHz (radio FM e TV VHF)

trasmissioni FM nella banda UHF: 300-3000 MHz con canali fino a 20 MHz (TV UHF, ponti radio)

trasmissioni FM nella banda SHF: 3-30 GHz con canali fino a 500 MHz (microonde terrestri e satellitari)

Page 10: Sistemi e Tecnologie della Comunicazione

10

ADSL ADSL (Asymmetric Digital Subscriber Line) e’ lo standard per

fornire all’abbonato un accesso digitale a banda piu’ elevata di quanto non sia possibile con il modem

La linea telefonica terminale e’ costituita da un doppino su cui viene normalmente trasmessa la voce. Questa trasmissione si realizza applicando un filtro passa basso a 4 KHz

Tuttavia il doppino ha una capacita’ di banda che raggiunge il MHz (dipende dalla lunghezza del tratto terminale, che puo’ variare in base alla situazione tra poche centinaia di metri a diversi Km)

Lo spettro disponibile viene suddiviso in 256 canali da 4 KHz (fino a 60 Kbps ciascuno):

Il canale 0 viene riservato per la telefonia I successivi 4 canali non vengono utilizzati per evitare problemi di

interferenza tra la trasmissione dati e quella telefonica I restanti canali vengono destinati al traffico dati. Alcuni per il traffico

uscente (upstream), altri per il traffico entrante (downstream) Il modem ADSL riceve i dati da trasmettere e li splitta in flussi

paralleli da trasmettere sui diversi canali, genera un segnale analogico in banda base per ciascun flusso (con una modulazione QAM fino a 15 bit/baud a 4000 baud/s) e li trasmette sui diversi canali utilizzando la modulazione di frequenza

Page 11: Sistemi e Tecnologie della Comunicazione

11

Suddivisione dei canali nell’ADSL

In teoria l’ampiezza di banda disponibile consente un traffico pari a 13.44 Mbps, ma non tutti i canali sono capaci di trasmettere a piena banda. L’operatore decide quale servizio offrire.

Generalmente vengono dedicati alcuni canali per il traffico entrante, ed altri (meno) per il traffico uscente (da qui il termine Asymmetric)

Page 12: Sistemi e Tecnologie della Comunicazione

12

WDM (Wavelength Division Multiplexing)

La fibra ottica trasmette segnali elettromagnetici a lunghezza d’onda intorno a 850, 1300 o 1550 nm

Ognuna di queste bande puo’ trasmettere segnali a lunghezze d’onda che variano di circa 100 nm

In termini di frequenze si ha:

quindi una banda enorme a disposizione

GHz 28000 Hz 1028.0

Hz 1022.2 nm 900

Hz 1050.2 nm 800

1421

14

222

14

111

ffB

vf

vf

Page 13: Sistemi e Tecnologie della Comunicazione

13

WDM (cont.)

E’ stata sviluppata una tecnologia per poter trasmettere canali differenti su lunghezze d’onda differenti, chiamata WDM (Wavelength Division Multiplexing)

Si utilizza in multiplexing un combinatore ottico che mette insieme segnali alle diverse lunghezze d’onda

In ricezione un sistema analogo separa le diverse lunghezze d’onda

Sostanzialmente e’ una tecnica FDM, con la differenza che in questo caso il sistema sfrutta la diffrazione delle onde da reticolo, ed utilizza sistemi passivi, quindi altamente affidabili e che non introducono rumore

Con questa tecnologia e’ possibile gia’ ora trasmettere decine di canali a 10 Gbps su una sola fibra

Questo meccanismo permette di incrementare notevolmente la capacita’ trasmissiva ottenibile sulla fibra senza dover aumentare la frequenza della generazione degli impulsi ottici (cosa che oggi costituisce il fattore limitante per la velocita’ di trasmissione dati sulla fibra ottica)

Page 14: Sistemi e Tecnologie della Comunicazione

14

Schema del multiplexing WDM

Page 15: Sistemi e Tecnologie della Comunicazione

15

TDM (Time Division Multiplexing)

Il multiplexing a divisione di tempo e’ utilizzato quando si dispone di un canale digitale capace di un elevato tasso di trasmissione dati in cui poter trasmettere contemporaneamente un insieme di comunicazioni a tasso inferiore

Invece che mettere insieme i segnali a frequenze differenti (FDM) si mischiano i dati delle diverse comunicazioni, inframezzando i bit delle diverse trasmissioni

Di fatto si divide la disponibilita’ del canale in periodi temporali, e si dedicano a turno i diversi periodi a diversi flussi trasmissivi

Page 16: Sistemi e Tecnologie della Comunicazione

16

Slot e frame

Ogni intervallo temporale si chiama slot e puo’ contenere uno o piu’ bit relativi ad un flusso indipendente

Il flusso dei dati e’ organizzato in trame (frame)

Una trama e’ l’insieme di slot temorali che contiene almeno un bit per ciascuna trasmissione

Anche in questo caso il flusso relativo ad una singola trasmissione e’ detto canale

Page 17: Sistemi e Tecnologie della Comunicazione

17

Schema del TDM

Page 18: Sistemi e Tecnologie della Comunicazione

18

Sorgenti di ingresso per il TDM

I dati in ingresso non debbono necessariamente essere tutti digitali: puo’ essere un ingresso analogico che viene convertito in segnale digitale tramite campionamento, con relativa generazione del codice PCM

I segnali in ingresso non debbono nemmeno essere tutti ad uguale tasso trasmissivo Ad esempio, possiamo fare multiplexing TDM di

due canali a 1200 bps ed uno a 2400 bps su un canale a 4800 bps, costruendo un frame di 4 bit (di 833 microsecondi) e dedicando una slot (1 bit) ciascuno ai canali a 1200 bps, e due slot (2 bit) al canale a 4800 bps

Page 19: Sistemi e Tecnologie della Comunicazione

19

TDM sincrono

Il TDM sincrono prevede di avere in ingresso un certo numero di trasmissioni a cui e’ staticamente allocato un canale, cioe’ ogni slot temporale e’ dedicata ad una particolare trasmissione

Quando un ingresso non ha dati da trasmettere, la trasmissione continua e le slot dedicate a quel canale non trasporteranno dati

Page 20: Sistemi e Tecnologie della Comunicazione

20

Sincronizzazione e framing

Poiche’ i frame sono trasmessi in continuazione, il ricevente deve poter identificare l’inizio dei frame e mantenere il sincronismo

Per fare cio’ il frame conterra’ alcuni bit dedicati allo scopo: in genere si dedicano uno o piu’ bit di controllo che assumono valori ben definiti e difficilmente presenti nel campo dei dati

All’inizio il ricevente cerca di identificare i bit di sincronizzazione: quando li trova in un certo numero di frame consecutivi, assume di avere agganciato il sincronismo e inizia a gestire il traffico dei dati

Durante il traffico, il ricevente continua a verificare i bit di sincronizzazione

Se si perde la sincronizzazione, il ricevente ritorna in modalita’ di sincronizzazione fino a che non identifica nuovamente i limiti dei frame

Page 21: Sistemi e Tecnologie della Comunicazione

21

Pulse stuffing Uno dei problemi principali e’ la sincronizzazione dei diversi

canali da trasmettere, che essendo indipendenti non necessariamente hanno un clock in comune

Una variazione relativa dei diversi clock puo’ far perdere la sincronizzazione nella costruzione del frame

Diversamente, si potrebbe avere un insieme di trasmissioni i cui tassi trasmissivi non sono multipli uno dell’altro

Per ovviare a questi problemi si usa una tecnica detta pulse stuffing:

il tasso trasmissivo in uscita e’ leggermente superiore alla somma dei tassi in ingresso

i bit in eccesso in ogni slot vengono riempiti con bit fittizi di giustificazione, per allineare i diversi ingressi

qualora si rendesse necessario, questi spazi possono essere utilizzati per risincronizzare gli ingressi

esisteranno bit di controllo nella trama per gestire le diverse eventualita’

Page 22: Sistemi e Tecnologie della Comunicazione

22

Esempio

Page 23: Sistemi e Tecnologie della Comunicazione

23

Gerarchie digitali

Anche per il TDM esistono gerarchie di multiplexing definite come standard per la trasmissione a diversi tassi in funzione delle possibilita’ trasmissive del mezzo

Il Nord America ed il Giappone utilizzano una gerarchia (nata prima) diversa da quella standardizzata dall’ISO ed adottata in Europa

Entrambi utilizzano come base di durata temporale del frame quella necessaria alla trasmissione di un canale vocale (8000 campionamenti al secondo = 125 microsecondi di tempo per il frame)

Page 24: Sistemi e Tecnologie della Comunicazione

24

Gerarchia Nordamericana Il frame del livello primario e’ costituito dall’unione di 24

canali vocali Un frame contiene un campionamento per canale (24 canali

* 8 bit = 192 bit) piu’ un bit di sincronizzazione di frame Il tasso di trasmissione sara’ quindi 1.544 Mbps Per la trasmissione di dati numerici si utilizza lo stesso

frame, in cui vengono messi insieme 23 canali dati, mentre un byte viene riservato ad un ulteriore dato di sincronizzazione

Page 25: Sistemi e Tecnologie della Comunicazione

25

Gerarchia Nordamericana (cont.)

Il formato descritto si chiama DS-1, o T1 Il livelli gerarchici successivi sono:

T2: 4*T1 a 6.312 Mbps T3: 7*T2 a 44.736 Mbps T4: 6*T3 a 274.176 Mbps

Si puo’ osservare come ad ogni livello successivo il tasso trasmissivo reale e’ superiore a quello utile, in quanto ad ogni passaggio si devono introdurre nella trama bit di controllo (per il framing, per la gestione della linea, per identificare gli errori)

Page 26: Sistemi e Tecnologie della Comunicazione

26

Gerarchia digitale europea

L’ITU-T ha prodotto uno standard differente da quello nordamericano, adottato in Europa ed altrove

Questo standard si basa come quello americano sul canale fonico, con tempo di frame di 125 microsecondi

La gerarchia prevede i seguenti livelli di aggregazione:

E1: 32 canali vocali (2 dedicati a controllo) a 2.048 Mbps E2 = 4*E1 a 8.448 Mbps E3 = 4*E2 a 34.368 Mbps E4 = 4*E3 a 139.264 Mbps E5 = 4*E4 a 565.148 Mbps

Page 27: Sistemi e Tecnologie della Comunicazione

27

Sonet e SDH

Sonet (Synchronous Optical NETwork) ed SDH (Sinchronous Digital Hierarchy) sono due standard di multiplexing gerarchico sviluppati per la trasmissione su fibra ottica

L’obiettivo e’ quello di sfruttare l’ampia banda trasmissiva della fibra per poter ospitare le trasmissioni delle gerarchie digitali gia’ viste

I due standard (AT&T e ITU-T) sono leggermente differenti STS-1/OC-1: 51.84 Mbps (ospita un T3) STS-3/OC-3 e STM-1: 155.52 Mbps (ospita un E4) … fino a STS-192/OC-192 e STM-64 a 9.9 Gbps

Page 28: Sistemi e Tecnologie della Comunicazione

28

Frame del Sonet Il frame e’ costituito da 810 byte (di durata

temporale 125 microsecondi, da cui i 51.84 Mbps), e si descrivono come una matrice di 9 righe e 90 colonne

Le prime tre colonne vengono dedicate ad informazioni di controllo

i primi due byte assumono sempre lo stesso valore e sono utilizzati per il framing

un byte viene utilizzato come puntatore per indicare l’inizio dei dati validi sul frame, in modo da poter inviare dati utili anche se questi si presentano mentre si sta preparando un frame, senza dover attendere il frame successivo

alcuni byte nel campo di controllo sono utilizzati per costruire un singolo canale dati per il management, o anche un canale vocale

altri byte di controllo sono usati per informazioni di parita’, allineamento delle singole trame ed informazioni sul loro contenuto

Page 29: Sistemi e Tecnologie della Comunicazione

29

Schema del frame in Sonet

Page 30: Sistemi e Tecnologie della Comunicazione

30

TDM asincrono Un limite del TDM sincrono e’ che quando un canale in

ingresso non trasmette, la capacita’ di banda assegnata a quel canale non viene utilizzata (le slot dedicate al canale non trasportano dati utili)

Una soluzione talvolta adottata e’ quella di accettare in input un insieme di canali per cui il tasso totale e’ superiore al tasso trasmissivo del canale in uscita

L’ipotesi e’ che non tutti trasmetteranno contemporaneamente a piena banda

Si utilizzano dei buffer per poter gestire gli intervalli in cui la banda in uscita non e’ sufficiente a gestire i dati in ingresso

va pero’ considerato che maggiore e’ la dimensione dei buffer, maggiore e’ il ritardo introdotto in trasmissione, quindi non si puo’ eccedere; d’altra parte minore e’ la dimensione dei buffer, minore e’ il margine oltre il quale si perdono dati

In questa modalita’ di multiplexing, non essendoci una assegnazione statica tra canale e trasmittente, si dovranno introdurre informazioni di controllo per identificare la trasmissione associata alle slot