23
1 Polinomi Zadatak 1.1 Odrediti koliˇ cnik K i ostatak r pri dijeljenju polinoma P sa poli- nomom Q ako je 1. P (x)= x 3 - 2x 2 + x - 1 i Q(x)= x 2 - x - 1, 2. P (x)=2x 4 + x 3 - 2x 2 - 3x +2 i Q(x)= x 2 +3x +2, 3. P (x)= x 5 +3x 3 - x 2 - 1 i Q(x)= x 2 - x +4, 4. P (x)= x 4 +5x 3 - 3x 2 + x - 6 i Q(x)= x 2 +1, 5. P (x)= x 4 - 3x 2 - 2 i Q(x)= x 3 + x +1, 6. P (x)= x 5 - x 4 + x 3 - x 2 + x - 1 i Q(x)= x 2 +2x - 1, 7. P (x)= x 5 - x i Q(x)= x - 1. Zadatak 1.2 Koriste´ ci Hornerovu ˇ semu odrediti koliˇ cnik K i ostatak r pri di- jeljenju polinoma P sa monomom Q ako je 1. P (x)=2x 3 + x 2 +4x - 5 i Q(x)= x - 1, 2. P (x)= x 3 - 3x 2 - 6x +1 i Q(x)= x +2, 3. P (x)=4x 4 - 2x 3 + x 2 +2x - 6 i Q(x)= x - 8, 4. P (x)= x 4 +6x 2 - 6x +1 i Q(x)= x - 3, 5. P (x)= x 4 - 3x 2 +2 i Q(x)= x +1, 6. P (x)= x 5 + x 3 + x i Q(x)= x - 1, 7. P (x)= x 5 - 1 i Q(x)= x - 1, Zadatak 1.3 Odrediti ostatak pri dijeljenju polinoma P sa monomom Q ako je 1. P (x)= x 3 - 2x 2 + x - 2 i Q(x)= x - 3, 2. P (x)= x 4 + x 3 - 2x 2 + x - 2 i Q(x)= x +1, 3. P (x)= x 5 + x 3 - 2x i Q(x)= x +2, Zadatak 1.4 Polinom P pri dijeljenju sa x - 1 daje ostatak 3, a pri dijeljenju sa x - 2 ostatak 4. Koliki je ostatak pri dijeljenju polinoma P sa (x - 1)(x - 2)? Zadatak 1.5 Polinom P pri dijeljenju sa x - 1 daje ostatak 3, a pri dijeljenju sa x +1 ostatak 1. Koliki je ostatak pri dijeljenju polinoma P sa x 2 - 1? Zadatak 1.6 Sastaviti polinom (sa koeficijentom 1 uz najstariji ˇ clan) ˇ cije su nule 1

Skrip Ta

Embed Size (px)

Citation preview

Page 1: Skrip Ta

1 Polinomi

Zadatak 1.1 Odrediti kolicnik K i ostatak r pri dijeljenju polinoma P sa poli-nomom Q ako je

1. P (x) = x3 − 2x2 + x− 1 i Q(x) = x2 − x− 1,

2. P (x) = 2x4 + x3 − 2x2 − 3x + 2 i Q(x) = x2 + 3x + 2,

3. P (x) = x5 + 3x3 − x2 − 1 i Q(x) = x2 − x + 4,

4. P (x) = x4 + 5x3 − 3x2 + x− 6 i Q(x) = x2 + 1,

5. P (x) = x4 − 3x2 − 2 i Q(x) = x3 + x + 1,

6. P (x) = x5 − x4 + x3 − x2 + x− 1 i Q(x) = x2 + 2x− 1,

7. P (x) = x5 − x i Q(x) = x− 1.

Zadatak 1.2 Koristeci Hornerovu semu odrediti kolicnik K i ostatak r pri di-jeljenju polinoma P sa monomom Q ako je

1. P (x) = 2x3 + x2 + 4x− 5 i Q(x) = x− 1,

2. P (x) = x3 − 3x2 − 6x + 1 i Q(x) = x + 2,

3. P (x) = 4x4 − 2x3 + x2 + 2x− 6 i Q(x) = x− 8,

4. P (x) = x4 + 6x2 − 6x + 1 i Q(x) = x− 3,

5. P (x) = x4 − 3x2 + 2 i Q(x) = x + 1,

6. P (x) = x5 + x3 + x i Q(x) = x− 1,

7. P (x) = x5 − 1 i Q(x) = x− 1,

Zadatak 1.3 Odrediti ostatak pri dijeljenju polinoma P sa monomom Q akoje

1. P (x) = x3 − 2x2 + x− 2 i Q(x) = x− 3,

2. P (x) = x4 + x3 − 2x2 + x− 2 i Q(x) = x + 1,

3. P (x) = x5 + x3 − 2x i Q(x) = x + 2,

Zadatak 1.4 Polinom P pri dijeljenju sa x− 1 daje ostatak 3, a pri dijeljenjusa x− 2 ostatak 4. Koliki je ostatak pri dijeljenju polinoma P sa (x− 1)(x− 2)?

Zadatak 1.5 Polinom P pri dijeljenju sa x− 1 daje ostatak 3, a pri dijeljenjusa x + 1 ostatak 1. Koliki je ostatak pri dijeljenju polinoma P sa x2 − 1?

Zadatak 1.6 Sastaviti polinom (sa koeficijentom 1 uz najstariji clan) cije sunule

1

Page 2: Skrip Ta

1. x1 = −1, x2 = 1 i x3 = 5,

2. x1 = 1, x2 = x3 = −2,

3. x1 = 3, x2 = 2 +√

3 i x3 = 2−√3,

4. x1 = −2, x2 = 1− 2i i x3 = 1 + 2i,

5. x1 = −1, x2 = 1, x3 = 2 i x4 = −3,

6. x1 = −1, x2 = 2, x3 =√

5 i x4 = −√5,

7. x1 = 1, x2 = 3, x3 = 2 + i i x4 = 2− i.

Zadatak 1.7 Rastaviti polinom P na faktore

1. P (x) = x3 + 2x2 − x− 2,

2. P (x) = x3 − 4x2 + x + 6,

3. P (x) = −x3 + 6x2 − 11x + 6,

4. P (x) = x3 + 4x2 − 11x + 6,

5. P (x) = x3 + x− 2,

6. P (x) = x4 + x3 − x2 + x− 2,

7. P (x) = x4 + 4x3 + 3x2 − 4x− 4,

8. P (x) = x3 − 2x2 − 7x + 2,

9. P (x) = x3 − 3x2 − 5x + 7,

10. P (x) = 2x3 + 3x2 − 11x− 6,

11. P (x) = 3x3 + x2 − 6x− 2,

12. P (x) = 2x3 − 3x2 + 6x + 4.

Zadatak 1.8 Odrediti vrijednost parametra α ∈ R tako da x1 bude jedna nulapolinoma P, pa za tako dobijenu vrijednost parametra α odrediti ostale nulepolinoma P ako je

1. P (x) = x3 + αx2 − 5x− 6 i x1 = 2,

2. P (x) = x3 + αx2 − 2x + 24 i x1 = −2.

Zadatak 1.9 Zadanu racionalnu funkciju rastaviti na parcijalne razlomke

1. R(x) = 5x+1x3+2x2−x−2 ,

2. R(x) = 2x2−8x−72x3+x2−13x+6 ,

2

Page 3: Skrip Ta

3. R(x) = −2x2+5x−4x3−4x2+5x−2 ,

4. R(x) = 3x2−7x+8x3−3x2+4 ,

5. R(x) = x2−x−1x3−x2 ,

6. R(x) = 2x2+xx3−2x2+x−2 ,

7. R(x) = x2+2x−3x3+x2+3x+3 ,

8. R(x) = 4x2+x+5x3+2x−3 ,

9. R(x) = x3+x2−2x+3x2+x−2 ,

10. R(x) = 2x4−3x3+x2+5x−32x2−3x+1 .

2 Matrice i determinante

Zadatak 2.1 Izracunati αA + βB ako je

1. A =(

1 −2 40 −1 −3

), B =

( −1 3 −52 −2 0

), α = 2 i β = 3,

2. A =

2 0−1 −4

7 −31 1

, B =

1 1−2 −4−3 7−2 0

, α = 3 i β = −2,

3. A =

−1 6 −3

2 −2 10 −1 4

, B =

2 0 −21 −1 36 2 −3

, α = −2 i β = −1.

Zadatak 2.2 Izracunati (ako postoje) proizvode AB i BA ako je

1. A =

−1 1

3 −84 −2

i B =

( −2 1 2 −3−4 2 −5 −1

),

2. A =( −1 0 2

1 1 −3

)i B =

−1 1 0 2

0 2 −3 −11 2 −2 −1

,

3. A =

1 −13 2

−2 4

i B =

(0 −2 0

−1 3 0

),

4. A =(

3 −3 5)

i B =

2 −2 1−1 5 2

3 −3 2

,

3

Page 4: Skrip Ta

5. A =

2−1

5

i B =

( −2 1 −5),

6. A =(

5 4−1 1

)i B =

(1 −32 −2

),

7. A =

−2 2 5

1 0 −13 −2 3

i B =

3 −2 1−5 4 −1

2 0 2

,

8. A =

−1 2 −2

1 3 10 5 2

i B =

−1 2 0

1 1 1−4 6 −2

.

Zadatak 2.3 Izracunati sljedece determinante

1.∣∣∣∣

3 −21 4

∣∣∣∣ ,

2.∣∣∣∣

x 22 x

∣∣∣∣ ,

3.∣∣∣∣

sin x cos x− cosx sin x

∣∣∣∣ ,

4.

∣∣∣∣∣∣

2 −1 33 1 1

−1 2 5

∣∣∣∣∣∣,

5.

∣∣∣∣∣∣

0 2 −31 0 −12 −2 4

∣∣∣∣∣∣,

6.

∣∣∣∣∣∣

2 1 43 −1 5

−2 2 −6

∣∣∣∣∣∣,

7.

∣∣∣∣∣∣

−3 5 62 −1 −43 −3 5

∣∣∣∣∣∣.

Zadatak 2.4 Odrediti (ako postoji) inverznu matricu zadane matrice

1. A =(

1 4−2 −7

),

2. A =( −2 −3−5 −8

),

4

Page 5: Skrip Ta

3. A =(

2 −3−5 6

),

4. A =

−1 1 4−2 0 5

1 4 3

,

5. A =

1 2 −22 6 −1

−1 −1 3

,

6. A =

−2 1 −2−2 2 −7−2 −1 9

,

7. A =( −1 4

2 −8

),

8. A =

−1 2 −3

2 1 −23 4 −7

.

Zadatak 2.5 Rijesiti sljedece matricne jednacine

1.(

2 −3−5 8

)X =

(1 0 −12 3 2

),

2. X

1 −1 30 2 32 1 10

=

(1 0 −12 3 2

).

Zadatak 2.6 Izracunati rang sljedecih matrica

1. A =

−1 3 2 −21 2 −1 −22 −1 −3 0

,

2. A =

−1 2 −21 3 2−1 7 −2

,

3. A =

−2 1 0 9 −9 24 −2 0 −18 18 −42 −1 0 −9 9 −2

,

4. A =

1 a −1 22 −1 a 51 10 −6 1

(u zavisnosti od parametra a ∈ R)

5

Page 6: Skrip Ta

3 Sistemi linearnih jednacina

Zadatak 3.1 Rijesiti sljedece sistema linearnih jednacina

1.2x −y = 3−3x +2y = −6

2. 2x −y = 3−4x +2y = −6

3. x −y = 2−2x +2y = −3

4.x +4y +3z = −14x +15y +17z = −105x +18y +22z = −14

R: (−2, 1,−1)

5.x −2y +2z = 44x −12y +5z = 134x −16y +3z = 11

R: (2, 0, 1)

6.x +6y −2z = −17−3x −16y +9z = 535x +28y −12z = −85

R: (−1,−2, 2)

7.x −2y +z = −22x −3y −z = −6−3x +5y +z = 9

R:(−1, 1, 1)

8.x −y +2z = 83x −2y +5z = 20x +2z = 7

R: (1,−1, 3)

9.x −2y +4z = −5−2x +5y −13z = 193x −7y +18z = −26

R: (1,−1,−2)

10.x −2y +z = −63x +2y −3z = 16x −2y +4z = −15

11.2x −y −z = 43x +4y −2z = 113x −2y +4z = 11

6

Page 7: Skrip Ta

12.x +y +z = 4x +2y +3z = 8x +3y +4z = 11

13.2x +2y +2z = 03x +2y +2z = 14x −3y +4z = −14

14.3x +2y +2z = 14x −3y +2z = −84x −3y +4z = −14

15.x +2y −z = 22x −y +z = 43x +y = 6

16.x −y = 1−x +y = −1−x +z = −2

17.12x −3y −2z = −1−x −y +z = 32x −4y +2z = 8

R: (t, 2t− 1, 3t + 2), t ∈ R

18.−x −3y −z = −2x −y −z = 02x −4y −3z = −1

R: (t,−t + 1, 2t− 1), t ∈ R

19.2x −3y −z = −1−x +3y −z = 2x +3y −5z = 4

R: (2t− 1, t, t− 1), t ∈ R

20.2x −2y +3z = −4−x +y −z = 23x −3y −5z = −6

R: (t− 1, t + 1, 0), t ∈ R

21.2x +3y −z = 44x −y −2z = 1−2x −5y +z = −6

R: (t, 1, 2t− 1), t ∈ R

22.x −y −2z = 4−x +y +z = −3−2x +2y +z = −5

R: (t, t− 2,−1), t ∈ R

7

Page 8: Skrip Ta

23.2x +y +z = 23x +y +z = 07x +2y +2z = 4

24.x +3y −2z = 12x +6y −4z = 3−x −3y +2z = 0

Zadatak 3.2 U zavisnosti od parametra a ∈ R rijesiti sistem linearnih jednacina

1.ax +y +z = 1x +ay +z = 1x +y +az = 1

2.ax +y +z = 12x +2ay +2z = 3x +y +az = 1

3.(a + 3)x +y −z = 1x +(a + 3)y −z = a + 2−x −y +z = 1

4.(a + 3)x −y −z = 1−x +(a + 6)y −z = a + 2x +y −z = 1

5.−x +y +z = 1−x −y +(a + 3)z = a + 2−x +(a + 6)y −z = 1

6.ax +y −z = −1x +ay +z = −1x +y +(a− 4)z = −1

7.(a− 5)x +y −z = 2x +(a− 5)y +z = 2x +y +az = 2

8.(a− 1)x +y +z = −2x +(a + 1)y +z = −1x +y +(a− 1)z = −2

9.(a + 1)x −y +z = 1−x +(a− 1)y +z = a− 1x +y −z = 1

8

Page 9: Skrip Ta

4 Granicna vrijednost funkcije

Zadatak 4.1 Izracunati

1. limx→∞

3x5 − x4 + 2x3 − x2 + x− 6x4 + x3 + x2 + x + 1

,

2. limx→∞

x4

x3 − x2 + 2x− 9,

3. limx→∞

3x4 + 2x3 − x2 − x− 12x4 − x2 + 6

,

4. limx→∞

4x3 − x2 + 2x− 32x3 + x

,

5. limx→∞

x3 − x2 + x− 1x4 − 1

,

6. limx→∞

2x

x2 + 1,

7. limx→∞

(x2 + 4x + 12)3(2x− 3)4

(x2 + 2x + 2)5,

8. limx→∞

√4x− 1√

x + 2√

x + 1,

9. limx→∞

2x + 53√

8x3 + 2√

x− 1.

Zadatak 4.2 Izracunati

1. limx→2

x2 + x− 6x2 − x− 2

,

2. limx→1

x3 + x2 + x− 3x2 − 1

,

3. limx→−3

x3 − 7x + 6x3 + 3x2 + x + 3

,

4. limx→ 1

2

2x3 − 3x2 + 5x− 22x2 + 5x− 3

,

5. limx→−1

2x3 + 3x2 − 1x2 + 2x + 1

.

Zadatak 4.3 Izracunati

1. limx→0

sin 2x

3x,

9

Page 10: Skrip Ta

2. limx→0

sin 3x

sin 6x,

3. limx→0

tan 3x

x,

4. limx→0

sin 3x− sin x

sin 2x,

5. limx→0

1− cosx

x2,

6. limx→0

1− cos2x

x sin x.

Zadatak 4.4 Izracunati

1. limx→∞

(x− 2x + 3

)2x

,

2. limx→∞

(x− 1x + 4

)−x

,

3. limx→∞

(x + 5x− 1

)x

,

4. limx→∞

(x + 3x− 4

) 3x4

,

5. limx→∞

(x + 4x + 2

) x−1x+1

.

5 Izvod funkcije

Zadatak 5.1 Koristeci se tablicom izvoda i pravilima diferenciranja izracunatiizvod zadane funkcije (u bilo kojoj tacki)

1. y = x3 + 2x2 − 6x + 5− 4√

x + x−2 + 3x−4,

2. y =x5

5− 2x3

3+

(1− x2

2

)2

+1x

+1

2x2+

16x3

,

3. y = 6 3√

x2 − 4 4√

x +(

1− 13√

x

)2

+84√

x− 6

3√

x,

4. y = 5x + 4,

5. y =2x

3− 4

5,

6. y =3x

2,

10

Page 11: Skrip Ta

7. y =2x− 1

3,

8. y =x4 − 2x2 + 4

√x− 3

x

3x2 − 2x + 1,

9. y =x2 + 3x + 4√

x− 2x

,

10. y = (2x2 + 3x− 1)3x,

11. y = (x4 + 2x3) exp (x),

12. y = (√

x− 4√

x) log4 x,

13. y =2x− 3

5ln x,

14. y =3x− 1

3x,

15. y =log2 x

x− 1,

16. y =1 + ln x

x,

17. y =exp (x)(2x + 3)

(x + 1) ln x,

18. y =x4x

4x− 3,

19. y = 2x +(

12

)x

20. y = 2−x + 3−x

21. y = exp (−x) + exp (−2x) +√

exp (x)

22. y = x2 cos x,

23. y = x2 exp (x),

24. y = x2 cot x− x + sin x +tan x√

x,

25. y = tan x,

26. y = cot x,

27. y =cosx

1 + 2 sin x,

11

Page 12: Skrip Ta

28. y =cosx

1− sin x,

29. y =√

1− x2 arcsin x,

30. y = exp (−x) arcsin x,

31. y = x arctan x,

32. y =arctanx

1 + x2,

Zadatak 5.2 Koristeci se pravilom za izvod slozene funkicje izracunati izvodzadane funkcije (u bilo kojoj tacki)

1. y = (2x− 3)12,

2. y =

√4x + 3

5,

3. y = exp (2x− 1),

4. y = exp (6x),

5. y = exp (−x),

6. y = exp(x

4

),

7. y = exp(

4x− 33

),

8. y = ln(

2x + 34

),

9. y = lnx

2,

10. y = sin (ax + b),

11. y = tanx

4,

12. y = arcsin (x + 3),

13. y = arctan ax,

14. y = (x2 + 2x− 1)14,

15. y = 4√

1− x2,

16. y =1

arctanx,

17. y = ln2 x,

12

Page 13: Skrip Ta

18. y =√

cos x,

19. y = exp (− tanx),

20. y = log4 (arctan x),

21. y = sin 2x,

22. y = sinx2

2x + 1,

23. y = cos√

x,

24. y = tan x2,

25. y = arctanx

x + 1,

26. y = 4

√1 + cos2

2x

3,

27. y =√

1− sin 2x +√

1 + sin 2x,

28. y =1

(2 + cos3 2x)4,

29. y =x2 − 1√

ln 2x,

30. y = x√

x3 + 2,

31. y = lnx2

1− x2,

32. y = ln

√x + 1x− 1

,

33. y = ln(tan

4+

x

2

)),

34. y = lnx2

√ax2 + bx + c

,

35. y = ln(√

x +√

x + 1 +√

x + 2),

36. y = ln(sinx +

√1 + cos 3x

),

37. y = ln 4

√sin 2x

1 + sin2 x2

,

38. y = exp (−x2),

13

Page 14: Skrip Ta

39. y =√

x

x− 1exp

(√x

2

),

40. y = exp (sin 2x) + cos (2 exp (−x)),

41. y = ln[exp (ax) + x exp (−x)

],

42. y =exp (x) + exp (−x)exp (x)− exp (−x)

,

43. y = ln

√exp (ax)

exp (ax) + 1.

Zadatak 5.3 Detaljno ispitati zadanu funkciju, a zatim skicirati njen grafik

1. f(x) =x2 − 5x + 4

x− 5,

2. f(x) =(x− 3)2

x− 5,

3. f(x) =x2 − 7x + 10

x− 6,

4. f(x) =x2 − 3x

x− 4,

5. f(x) =x2 − 2x− 4

x− 4,

6. f(x) =x2 + x− 6

x2 + x,

7. f(x) =x2 + 5x

x2 + 5x + 4,

8. f(x) =x2 − x− 6x2 − x + 1

,

9. f(x) =x2 + 3x− 4x2 + 3x + 1

,

10. f(x) =x2 − 5x

x2 − 5x + 9,

11. f(x) =x2 + x

x2 + x− 6,

12. f(x) = (x− 2) exp (3x),

13. f(x) = (3− x) exp (x),

14

Page 15: Skrip Ta

14. f(x) = (2x + 1) exp (2x),

15. f(x) = (3x− 2) exp (−x),

16. f(x) = (5− 2x) exp(−x

2

),

17. f(x) = x ln x,

18. f(x) = (x + 2) ln (x + 2),

19. f(x) = (3− 2x) ln (3− 2x),

20. f(x) =x

2ln x,

21. f(x) = x lnx

3.

6 Neodredeni integral

Zadatak 6.1 Izracunati sljedece neodredene integrale

1.∫

5x4dx,

2.∫

8.3x−0.17dx,

3.∫

(3x + 1) dx,

4.∫ (

x5 − 4x3 + 2x− 1)dx,

5.∫

dx

x2,

6.∫ (

3x2 − 2x +3x−√x + 2 4

√x3

)dx,

7.∫

dx7√

x5,

8.∫ (

2x

+x

2

)dx,

9.∫

3√

x 3√

xdx,

10.∫

(x− 2) (√

x + 1)x2

dx,

15

Page 16: Skrip Ta

11.∫

4√

x− 8√

x5

9√

x4dx,

12.∫

3x exp (x)dx,

13.∫

5 · 4x + 4 · 5x

4xdx,

14.∫

ax

(1 +

a−x

3√

x2

)dx,

15.∫

exp (−x)(

1 +exp (x)√

x5

)dx,

16.∫

4x − 6x

12xdx,

17.∫

cos 2x

cos2 x sin2 xdx,

18.∫

dx

cos2 x sin2 x,

19.∫

tan2 xdx,

20.∫

1 + sin3 x

sin2 x,

21.∫ (

sinx

2− cos

x

2

)2

dx,

22.∫

x2

x2 + 1dx,

23.∫

x2 + 2x2 + 1

dx,

24.∫

x3 + x− 2x2 + 1

dx,

25.∫

x4

x2 + 1dx.

Zadatak 6.2 Medodom zamjene izracunati sljedece integrale

1.∫

(3x− 2)14 dx,

2.∫

4√

2x + 8,

16

Page 17: Skrip Ta

3.∫

dx

7√

(3x + 5)4,

4.∫

exp (2x− 9)dx,

5.∫

exp (−x)dx,

6.∫

exp(

3x− 54

)dx,

7.∫

exp(−x

3

)dx,

8.∫

sin 2xdx,

9.∫

dx

cos2 (−x + 1),

10.∫

dx

x− a,

11.∫

dx

5x + 6,

12.∫

dx

(5x− 4)2 + 1,

13.∫

dx√−x2 + 4x− 3,

14.∫

dx√2x− x2

,

15.∫

dx

exp (−x) + exp (x),

16.∫

exp (x)dx

1 + exp (2x),

17.∫

(ax + b)n,

18.∫

dx

x2 + 4,

19.∫

dx

x2 + 6,

17

Page 18: Skrip Ta

20.∫

dx√3− x2

,

Zadatak 6.3 Medodom zamjene izracunati sljedece integrale

1.∫

2xdx

x2 + 1,

2.∫

(2x− 3)dx

x2 − 3x + 6,

3.∫

tan xdx,

4.∫

cot xdx,

5.∫

sin xdx

cosx− 6,

6.∫

dx

x ln x,

7.∫

xdx

x2 − 2,

8.∫

(x2 + 1)dx

x3 + 3x− 9,

9.∫

exp (2x)dx

exp (2x)− 4,

10.∫

dx

(x2 + 1) arctan x,

11.∫

xdx

(x2 + 6)4,

12.∫

(x2 + 2)dx5√

x3 + 6x− 1,

13.∫

cosxdx

sin4 x,

14.∫

5√

x4 + 2x3 − 6(2x3 + 3x2

)dx,

15.∫ √

ln xdx

x,

16.∫

(arctanx)3 dx

1 + x2,

18

Page 19: Skrip Ta

17.∫

cos4 x sinxdx,

18.∫

sin (x2 + 3)xdx,

19.∫

x2dx

cos2 x3,

20.∫

2x + arctan x

1 + x2dx,

21.∫

2x + 3√

arcsin x√1− x2

dx,

22.∫

dx

x ln4 x.

Zadatak 6.4 Metodom parcijalne integracije izracunati sljedece integrale

1.∫

x exp (x)dx,

2.∫

x sin xdx,

3.∫

(2x− 3) exp(−x

2

)dx,

4.∫ (x

2+ 4

)cos 3xdx,

5.∫

x2 sin xdx,

6.∫

(x2 + 3x− 1) cos xdx,

7.∫

(x2 − x + 4) sin 4xdx,

8.∫

x4 ln xdx,

9.∫

ln xdx4√

x3,

10.∫

ln xdx,

11.∫

arctanxdx,

19

Page 20: Skrip Ta

12.∫

x arctan xdx,

13.∫

arcsin xdx,

14.∫

x · 2xdx,

15.∫

exp (2x) cos xdx,

16.∫

exp (x) sinx

2dx,

17.∫

exp(x

2

)sin 3xdx,

Zadatak 6.5 Izracunati sljedece integrale racionalnih funkcija

1.∫

dx

x2 − 1,

2.∫

4x2 + x− 6x3 − x2 − 2x

dx,

3.∫

4x2 − 9x− 1x3 − 2x2 − x + 2

dx,

4.∫

5x + 42x3 + 3x2 − 3x− 2

dx,

5.∫

x2 − 23x + 123x3 − 4x2 − 5x + 2

dx,

6.∫

3x2 − 2x− 2x3 + x2

dx,

7.∫

3x2 − 8x− 1x3 − 3x + 2

dx,

8.∫

3x2 − 2x + 8x3 − x2 + 2x− 2

dx,

9.∫

4x3 + 3x2 + 7x + 5

dx,

10.∫

x2 + 2x + 1x3 − x2 + x− 1

dx.

20

Page 21: Skrip Ta

7 Odredeni integral

Zadatak 7.1 Primjenom Njutn-Lajbicove formule izracunati sljedece odredeneintegrale

1.∫ 2

0

x3dx,

2.∫ 2

1

(x2 − 2

x

)2

dx,

3.∫ π

3

0

sin xdx,

4.∫ π

4

0

cos2 xdx,

5.∫ π

3

π6

dx

cos2x,

6.∫ 9

1

√xdx,

7.∫ e2

1

dx

x,

Zadatak 7.2 Metodom zamjene ili metodom parcijalne integracije izracunatisljedece odredene integrale

1.∫ 2

0

dx

4 + x2,

2.∫ 1

0

xdx

(x2 + 1)2,

3.∫ 1

12

dx√2x− x2

,

4.∫ 1

0

exp (x)dx

1 + exp (2x),

5.∫ √

e

1

dx

x√

1− ln2 x,

6.∫ e

1

ln xdx,

7.∫ e

1

ln3 xdx,

21

Page 22: Skrip Ta

8.∫ e−1

0

ln (x + 1)dx,

9.∫ 1

0

x exp (−x)dx,

10.∫ 1

0

x3 exp (2x)dx,

11.∫ π

2

0

x cosxdx,

12.∫ π

0

x2 sin xdx,

13.∫ π

4

π6

xdx

sin2 x,

14.∫ π

0

exp (x) sin xdx,

15.∫ π

2

0

exp (2x) cos xdx.

Zadatak 7.3 Izracunati povrsinu koju ogranicavaju

1. kriva y = cos x, prave x = −π

2, x =

π

2i 0x osa,

2. kriva y = x3, prave x = 0, x = 2 i 0x osa,

3. kriva y = tan x, prave x = 0, x =π

3i 0x osa.

Zadatak 7.4 Izracunati povrsinu koju ogranicavaju krive

1. y1(x) = −x2 − 2x + 1 i y2(x) = x + 3,

2. y1(x) = −x2 − 6x− 7 i y2(x) = −3x− 5,

3. y1(x) = −x2 + 4x− 5 i y2(x) = x− 3,

4. y1(x) = −x2 − 4x− 5 i y2(x) = −x− 3,

5. y1(x) = −x2 + 4 i y2(x) = x2 − 4,

6. y1(x) = x2 + 2x− 3 i y2(x) = −x2 − 2x + 3,

7. y1(x) = x2 + x− 7 i y2(x) = −2x2 − 2x + 29.

Zadatak 7.5 Odrediti parcijalne izvode prvog i drugog reda sljedecih funkcija

1. f(x, y) = x5 + 8 3√

y − 2x2y4 +√

xy + 6,

22

Page 23: Skrip Ta

2. f(x, y) = 8x− 3yx ,

3. f(x, y) = xx2+y2 ,

4. f(x, y) =√

x2 + y2,

5. f(x, y) = xy + xy ,

6. f(x, y) = xyx+y ,

7. f(x, y) = arcsin xy ,

8. f(x, y) = ln exp (x) + exp (y).

Zadatak 7.6 Odrediti ekstremne vrijednosti zadane funkcije

1. f(x, y) = 14x3 + 27xy2 − 69x− 54y,

2. f(x, y) = x2 − 5xy − y2,

3. f(x, y) = 2x2 − xy − 3y2 − 3x + 7y,

4. f(x, y) = x3 − 3xy2 + y3.

23