View
147
Download
4
Embed Size (px)
DESCRIPTION
a method to solve indeterminate statics
DISPLACEMENT METHOD OF ANALYSIS: SLOPE DEFLECTION EQUATIONS! ! ! ! ! ! ! ! !
General Case Stiffness Coefficients Stiffness Coefficients Derivation Fixed-End Moments Pin-Supported End Span Typical Problems Analysis of Beams Analysis of Frames: No Sidesway Analysis of Frames: Sidesway
1
Slope Deflection Equationsi
P
w
j
k
Cj
settlement = j
Mij
i
P
w
j
Mji
i j
2
Degrees of FreedomM
AL
B
1 DOF:
P B
A
C
2 DOF: ,
3
StiffnesskBA
kAA
1
ALk AA = k BA = 4 EI L 2 EI L
B
4
kAB 1 Lk BB = k AB = 4 EI L 2 EI L
kBB
A
B
5
Fixed-End ForcesFixed-End Moments: Loads PPL 8 P 2
L/2 L
L/2
PL 8 P 2
wwL2 12wL 2
L
wL2 12wL 2
6
General Case
i
P
w
j
k
Cj
settlement = j
Mij
i
P
w
j
Mji
i j
7
Mij
i
P
w
j
iL
Mji
4 EI 2 EI i + j = M ij L L
jMji =
settlement = j
2 EI 4 EI i + j L L
i(MFij)
j
+(MFji) settlement = j P w (MFji)Load
+(MFij)Load
M ij = (
4 EI 2 EI 2 EI 4 EI ) i + ( ) j + ( M F ij ) + ( M F ij ) Load , M ji = ( ) i + ( ) j + ( M F ji ) + ( M F ji ) Load 8 L L L L
Equilibrium Equationsi
P
w
j
k
Cj
Mji Mjij
Cj M
jk
Mjk
+ M j = 0 : M ji M jk + C j = 0
9
Stiffness CoefficientsMij Mji
i
j
L
i
j
kii =
4 EI L
k ji =
12 EI L
2 EI L
i
+k jj = 4 EI L j
kij =
1
10
Matrix Formulation
M ij = (
4 EI 2 EI ) i + ( ) j + ( M F ij ) L L 2 EI 4 EI ) i + ( ) j + ( M F ji ) L L
M ji = (
M ij (4 EI / L) ( 2 EI / L) iI M ij F M = + (2 EI / L) ( 4 EI / L) j M ji F ji
[k ] =
kii k ji
kij k jj
Stiffness Matrix11
Mij
i
P
w
j
L
i
Mji
[ M ] = [ K ][ ] + [ FEM ]
Mij Mji
j
j
([ M ] [ FEM ]) = [ K ][ ]
[ ] = [ K ]1[ M ] [ FEM ]
i
j
+(MFij) (MFji)
Fixed-end moment Stiffness matrix matrix
[D] = [K]-1([Q] - [FEM]) +(MFij)Load P w (MFji)Load Displacement matrix Force matrix
12
Stiffness Coefficients Derivation: Fixed-End SupportMii
ij
Mj Real beam
LL
Mi + M j
Mi + M j
L/3
M jL 2 EI
L
Mj EI
Conjugate beamMi EI
+ M 'i = 0 : (
MiL 2 EI
M j L 2L MiL L )( ) + ( )( ) = 0 2 EI 3 2 EI 3 M i = 2 M j (1)M L MiL ) + ( j ) = 0 (2) 2 EI 2 EI
From (1) and (2); 4 EI ) i L 2 EI ) i Mj =( L Mi = (
+ Fy = 0 : i (
13
Stiffness Coefficients Derivation: Pinned-End SupportMii
iLMi Lj
jMi L
Real beam
2L 3
Conjugate beam
Mi EI
i+ M ' j = 0 : (
MiL 2 EI
j+ Fy = 0 : (MiL ML ) ( i ) + j = 0 3EI 2 EI
M i L 2L )( ) i L = 0 2 EI 3 ML i = ( i ) 3EI
j =(MiL 3EI ) Mi = L 3EI
MiL ) 6 EI14
i = 1 = (
Fixed end moment : Point LoadP Real beam A A MM EI
Conjugate beam BM EI
L
BM EI
M
ML 2 EI
PPL2 16 EIPL 4 EI
ML 2 EI
M EI
PL2 16 EI
PL ML ML 2 PL2 + Fy = 0 : + = 0, M = 2 EI 2 EI 16 EI 8 15
PPL 8P 2
L P/2P 2
PL 8
PL/8 -PL/8-
P/2
-PL/8
-PL/8
-PL/16-
-PL/16 PL/4+
-PL/8
PL PL PL PL + = + 16 16 4 8
16
Uniform load w A MM EI
Real beam A
Conjugate beam BM EI M EI
L
B
M
ML 2 EI
ML 2 EI
M EI
w
wL3 24 EI
wL2 8 EI
wL3 24 EI
wL2 ML ML 2 wL3 + Fy = 0 : + = 0, M = 2 EI 2 EI 24 EI 12 17
Settlements Mi = Mj LMi + M j
Real beam
Mj A Mi + M j LM EI M EI
Conjugate beam
M EI
B
M
L
ML 2 EI
M
ML 2 EI
M EI
ML L ML 2 L )( ) + ( )( ) = 0, 2 EI 3 2 EI 3 M= 6 EI L218
+ M B = 0 : (
Pin-Supported End Span: Simple CaseP A4 EI 2 EI A + B L L
w B
L
2 EI 4 EI A + B L L
AA
+P
Bw
B
(FEM)AB A B = 0 = (4 EI / L) A + (2 EI / L) B + ( FEM ) AB
(FEM)BA
M AB
(1) ( 2)
M BA = 0 = (2 EI / L) A + (4 EI / L) B + ( FEM ) BA 2(2) (1) : 2 M BA = (6 EI / L) B + 2( FEM ) BA ( FEM ) BA
M BA = (3EI / L) B + ( FEM ) BA
( FEM ) BA 2
19
Pin-Supported End Span: With End Couple and SettlementP MA A4 EI 2 EI A + B L L
w B
L
2 EI 4 EI A + B L L
AA (MF AB)load (MFAB)
P
B
w
B (MF BA)load
A A
B B
(MF BA)
M AB = M A =
E lim inate A by
4 EI 2 EI F F A + B + ( M AB )load + ( M AB ) (1) L L 2 EI 4 EI F F A + B + ( M BA )load + ( M BA ) (2) M BA = L L 2(2) (1) 3EI 1 1 M F F F : M BA = B + [( M BA )load ( M AB )load ] + ( M BA ) + A 2 2 2 2 L
20
Fixed-End MomentsFixed-End Moments: Loads PPL 8
L/2
L/2
PL 8
P L/2 L/2PL 1 PL 3PL + ( )[( )] = 8 2 8 16
wL2 12
wL2 12
wL2 1 wL2 wL2 )] = + ( )[( 12 2 12 8
21
Typical ProblemA
P1
CB w
P2 C
L1
B
L2wL2 12
PL 8
P L
PL 8
w L
wL2 12
0 PL 4 EI 2 EI M AB = A + B + 0 + 1 1 8 L1 L1 0 EI PL 2 EI 4 M BA = A + B + 0 1 1 8 L1 L1 0 2 P2 L2 wL2 4 EI 2 EI M BC = B + C + 0 + + L2 L2 8 12 0 2 P2 L2 wL2 2 EI 4 EI B + C + 0 + M CB = 8 12 L2 L2
22
P1 A L1 MBA B
CB w
P2 C L2
CB M BC
B
M BA = M BC
PL 2 EI 4 EI A + B + 0 1 1 8 L1 L12
P L wL 4 EI 2 EI = B + C + 0 + 2 2 + 2 L2 L2 8 12
+ M B = 0 : C B M BA M BC = 0 Solve for B
23
P1 MAB A L1
MBA B
CB w
P2 C M CB
MBC L2
Substitute B in MAB, MBA, MBC, MCB 0 PL 4 EI 2 EI A + B + 0 + 1 1 M AB = L1 L1 8 0 EI PL 2 EI 4 M BA = A + B + 0 1 1 8 L1 L1 0 2 4 EI 2 EI P2 L2 wL2 B + C + 0 + + M BC = 8 12 L2 L2 0 2 P2 L2 wL2 2 EI 4 EI B + C + 0 + M CB = L2 L2 8 12
24
P1 MAB A Ay L1
MBA B
CB w
P2 MCB Cy C
MBC L2
By = ByL + ByR C MCB
P1 MAB A Ay B
B MBA MBC ByR
P2
L1
ByL
L2
Cy
25
Example of Beams
26
Example 1 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant.
10 kN A 4m 4m B 6m
6 kN/m C
27
10 kN A 4m PL 8 P 4m PL 8 FEM MBA [M] = [K][Q] + [FEM] 0 B 6m wL2 30
6 kN/m C
w
wL2 20 MBC
B
4 EI 2 EI (10)(8) A + B + 8 8 8 0 2 EI 4 EI (10)(8) M BA = A + B 8 8 8 0 4 EI 2 EI (6)(6 2 ) B + C + M BC = 6 6 30 0 2 EI 4 EI (6)(6) 2 B + C M CB = 6 6 20 M AB =
+ M B = 0 : M BA M BC = 04 EI 4 EI (6)(6 2 ) + =0 ( ) B 10 + 8 6 30 2.4 B = EI Substitute B in the moment equations:
MAB = 10.6 kNm, MBA = - 8.8 kNm,
MBC = 8.8 kNm MCB = -10 kNm 28
10 kN 8.8 kNm 10.6 kNm A 4m 4m B 8.8 kNm 6m
6 kN/m C 10 kNm
MAB = 10.6 kNm, MBA = - 8.8 kNm,
MBC = 8.8 kNm MCB= -10 kNm 10 kN 2m 18 kN 6 kN/m B 8.8 kNm B 10 kNm 8.8 kNm
10.6 kNm
A
Ay = 5.23 kN
ByL = 4.78 kN
ByR = 5.8 kN
Cy = 12.2 kN
29
10 kN 10.6 kNm A 4m 4m B 6m
6 kN/m C 10 kNm
5.23 kN
12.2 kN
4.78 + 5.8 = 10.58 kN 5.23 + - 4.78 10.3 M (kNm) -10.6 Deflected shape + -8.8 2.4 B = EI
5.8 + -12.2 x (m) -10 x (m)30
V (kN)
x (m)
Example 2 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN A 4m 4m B 6m 6 kN/m C
31
10 kN A 4m PL 8 P 4m PL 8 FEM 10 [M] = [K][Q] + [FEM] 0 4 EI 2 EI (10)(8) A + B + M AB = (1) 8 8 8 10 2 EI 4 EI (10)(8) A + B (2) M BA = 8 8 8 4 EI 2 EI 0 (6)(6 2 ) B + C + (3) M BC = 6 6 30 2 EI 4 EI 0 (6)(6) 2 B + C (4) M CB = 6 6 20 6 EI 2(2) (1) : 2 M BA = B 30 8 3EI B 15 (5) M BA = 8 B 6m wL2 30
6 kN/m C
w
wL2 20
32
MBA BM BC
MBC
4 EI (6)(6 2 ) = B + 6 30
(3)
Substitute A and B in (5), (3) and (4): MBA = - 12.19 kNm
M CB =M BA =
2 EI (6)(6) B 6 20
2
(4)
MBC = 12.19 kNm MCB = - 8.30 kNm
3EI B 15 (5) 8 + M B = 0 : M BA M BC = 0
3EI 4 EI (6)(6 2 ) + = 0 (6 ) ( ) B 15 + 8 6 30 7.488 B = EI
Substitute B in (1) : 0 =
4 EI 2 EI A + B 10 8 8 23.74 A = EI
33
10 kN 12.19 kNm A 4m 4m B 12.19 kNm 6m
6 kN/m C 8.30 kNm
MBA = - 12.19 kNm, MBC = 12.19 kNm, MCB = - 8.30 kNm 2m 10 kN A B B 12.19 kNm 12.19 kNm Ay = 3.48 kN ByL = 6.52 kN ByR = 6.65 kN Cy = 11.35 kN 18 kN 6 kN/m C 8.30 kNm
34
10 kN A 3.48 kN 4m 4m B 6m
6 kN/m C 11.35 kN
6.52 + 6.65 = 13.17 kN 3.48 6.65 x (m) - 6.52 14 M (kNm) -12.2 Deflected shape 23.74 A = EI
V (kN)
-11.35