solucion al capitulo 16 del serway

Embed Size (px)

Citation preview

  • 8/18/2019 solucion al capitulo 16 del serway

    1/22

    16Wave Motion

    CHAPTER OUTLINE

    16.1 Propagation of a Disturbance

    16.2 The Traveling Wave Model

    16.3 The Speed of Waves on Strings

    16.5 Rate of Energy Transfer by Sinusoidal

    Waves on Strings

    16.6 The Linear Wave Equation

    ANSWERS TO QUESTIONS

    Q16.1  As the pulse moves down the string, the particles of the

    string itself move side to side. Since the medium—here,

    the string—moves perpendicular to the direction of wave

    propagation, the wave is transverse by definition.

    Q16.2 To use a slinky to create a longitudinal wave, pull a few

    coils back and release. For a transverse wave, jostle the

    end coil side to side.

    *Q16.3  (i) Look at the coefficients of the sine and cosine functions: 2, 4, 6, 8, 8, 7. The ranking is d = 

    e > f > c > b > a.

      (ii) Look at the coefficients of x . Each is the wave number, 2π   λ , so the smallest k  goes with the

    largest wavelength. The ranking is d > a = b = c > e > f.

    (iii) Look at the coefficients of t . The absolute value of each is the angular frequency ω  = 2π  f . The

    ranking is f > e > a = b = c = d.

      (iv) Period is the reciprocal of frequency, so the ranking is the reverse of that in part iii: d = c =

    b = a > e > f.

      (v) From v =  f λ  = ω   k , we compute the absolute value of the ratio of the coefficient of t  to the

    coefficient of x  in each case. From a to f respectively the numerical speeds are 5, 5, 5, 7.5,

    5, 4. The ranking is d > a = b = c = e > f.

    *Q16.4 From v =T 

    µ  , we must increase the tension by a factor of 4 to make  v double. Answer (b).

    *Q16.5  Answer (b). Wave speed is inversely proportional to the square root of linear density.

    *Q16.6  (i) Answer (a). Higher tension makes wave speed higher.

    (ii) Answer (b). Greater linear density makes the wave move more slowly.

    Q16.7 It depends on from what the wave reflects. If reflecting from a less dense string, the reflected

    part of the wave will be right side up.

    Q16.8 Yes, among other things it depends on. The particle speed is described byv y,max

    v

    = = =

    ω π 

      π 

    λ  A fA

     A

    2

    2

    .Here v is the speed of the wave.

    427

    13794_16_ch1 6_p427 448.indd 42713794_16_ch16_p427-448.indd 427 12/11/06 5:03:1912/11/06 5:03:19

  • 8/18/2019 solucion al capitulo 16 del serway

    2/22

    428  Chapter 16

    *Q16.9  (a) through (d): Yes to all. The maximum particle speed and the wave speed are related by

      v y,max

     v

    = = =ω π   π 

    λ  A fA

      A2

    2. Thus the amplitude or the wavelength of the wave can be adjusted

      to make either v y,max

     or v larger.

    Q16.10  Since the frequency is 3 cycles per second, the period is 13

     second = 333 ms.

    Q16.11 Each element of the rope must support the weight of the rope below it. The tension increases with

      height. (It increases linearly, if the rope does not stretch.) Then the wave speed v =  T 

    µ  increases

    with height.

    *Q16.12 Answer (c). If the frequency does not change, the amplitude is increased by a factor of   2.

    The wave speed does not change.

    *Q16.13  (i) Answer a. As the wave passes from the massive string to the less massive string, the wave

      speed will increase according to

     

    v =  T 

    µ .

      (ii) Answer c. The frequency will remain unchanged. However often crests come up to the

    boundary they leave the boundary.

      (iii) Answer a. Since v =  f λ  , the wavelength must increase.

    Q16.14  Longitudinal waves depend on the compressibility of the fluid for their propagation. Transverse

    waves require a restoring force in response to shear strain. Fluids do not have the underlying

    structure to supply such a force. A fluid cannot support static shear. A viscous fluid can tempo-

    rarily be put under shear, but the higher its viscosity the more quickly it converts input work

    into internal energy. A local vibration imposed on it is strongly damped, and not a source of

    wave propagation.

    Q16.15  Let ∆t t t s p

    = −   represent the difference in arrival times of the two waves at a station at distance

      d t t s s p p= =v v   from the hypocenter. Then 

    d t s p

    = − 

     

     

      

    ∆1 1

    1

    v v

    . Knowing the distance from the

      first station places the hypocenter on a sphere around it. A measurement from a second sta-tion limits it to another sphere, which intersects with the first in a circle. Data from a third

    non-collinear station will generally limit the possibilities to a point.

    Q16.16  The speed of a wave on a “massless” string would be infinite!

    SOLUTIONS TO PROBLEMS

    Section 16.1  Propagation of a Disturbance

    P16.1  Replace x  by  x t x t − = −v 4 5.

      to get  y x t 

    =−(   )   +  

    6

    4 5 32

    .

    428  Chapter

    13794_16_ch1 6_p427 448.indd 42813794_16_ch16_p427-448.indd 428 12/9/06 12:46:4812/9/06 12:46:48

  • 8/18/2019 solucion al capitulo 16 del serway

    3/22

      Wave Motion 429

    *P16.2

    (a)

      (b)

      The graph (b) has the same amplitude and wavelength as graph (a). it differs just by being

    shifted toward larger x  by 2.40 m. The wave has traveled 2.40 m to the right.

    P16.3  (a) The longitudinal P wave  travels a shorter distance and is moving faster, so it will arrive

      at point B first.

    (b) The wave that travels through the Earth must travel

      a distance of 2 30 0 2 6 37 10 30 0 6 37 106 6 Rsin . . sin . .° °= ×(   )   = ×m m

      at a speed of 7 800 m  /s

    Therefore, it takes6 37 10

    8176

    .   ×=

    m

    7 800 m s

    s

      The wave that travels along the Earth’s surface must travel

    a distance of s R R= =        = ×θ 

      π 

    36 67 106rad m.

      at a speed of 4 500 m  /s

      Therefore, it takes6 67 10

    4 5001482

    6.   ×= s

      The time difference is 665 11 1s min= .

    P16.4  The distance the waves have traveled is d t t = (   )   = (   )   +(   )7 80 4 50 17 3. . .km s km s s  where t  is the travel time for the faster wave.

      Then, 7 80 4 50 4 50 17 3. . . .−(   )(   )   = (   )(   )km s km s st 

      or t  = (   )(   )

    −(   )  =

    4 50 17 3

    7 80 4 5023 6

    . .

    . ..

    km s s

    km ss

      and the distance is d  = (   )(   ) =7 80 23 6 184. .km s s km .

    FIG. P16.2

    13794_16_ch1 6_p427 448.indd 42913794_16_ch16_p427-448.indd 429 12/9/06 12:46:4912/9/06 12:46:49

  • 8/18/2019 solucion al capitulo 16 del serway

    4/22

    430  Chapter 16

    P16.5 (a) Let u t x = − +10 34

    π π   π 

     du

    dt 

    dx 

    dt = − =10 3 0π π  at a point of constant phase

     dx 

    dt = =

    10

    33 33. m s

      The velocity is in the positive -direction x  .

      (b)  y 0 100 0 0 350 0 3004

    0 05. , . sin . .(   ) = (   )   − +     = −m   π 

      π 44 8 5 48m cm= − .

      (c) k  = =2

    3π 

    λ π : λ  = 0 667. m   ω π π = =2 10 f  :  f  = 5 00. Hz

      (d) v y y

    t t x =

     ∂∂

      = (   )(   )   − +    0 350 10 10 3 4

    . cosπ π π   π 

      v y, . .max m s= (   )(   ) =10 0 350 11 0π 

    Section 16.2  The Traveling Wave Model

    *P16.6  (a) a wave

      (b) later by T   4

      (c)  A is 1.5 times larger

      (d) λ  is 1.5 times larger

      (e) λ  is 2  3 as large

    P16.7   f  = =40 0 4

    3

    . vibrations

    30.0 sHz   v = =

    42542 5

    cm

    10.0 scm s.

      λ  = = = =v

     f 

    42 531 9 0 319

    43

    .. .

    cm s

    Hzcm m

    P16.8  Using data from the observations, we have λ  = 1 20. m  and  f  =8 00

    12 0

    .

    . s

      Therefore, v = = (   )     =λ  f  1 20

    8 00

    12 00 800.

    .

    ..m

    sm s

    P16.9   y x t = (   )   −(   )0 020 0 2 11 3 62. sin . .m in SI units  A = 2 00. cm

      k  = 2 11. rad m   λ    π = =2 2 98k 

    . m

      ω  = 3 62. rad s    f  = =ω 

    π 20 576. Hz

      v = = = = f k 

    λ   ω 

    π 

    π 

    2

    2 3 62

    2 111 72

    .

    .. m s

    13794_16_ch1 6_p427 448.indd 43013794_16_ch16_p427-448.indd 430 12/9/06 12:46:5012/9/06 12:46:50

  • 8/18/2019 solucion al capitulo 16 del serway

    5/22

      Wave Motion 431

    P16.10  v = = (   )(   ) = = f λ  4 00 60 0 240 2 40. . .Hz cm cm s m s

    *P16.11  (a) ω π π = =   (   ) =−2 2 5 31 41 f  s rad s.

      (b) λ  = = =−v

     f 20 4 00

    1m s

    5 sm.

      k  = = =2 2

    41 57

    π 

    λ 

    π 

    mrad m.

      (c) In y A kx t = − +(   )sin   ω φ   we take A = 12 cm. At x  = 0 and t  = 0 we have  y = (   )12 cm sinφ .  To make this fit

      y = 0, we take φ  = 0. Then

       y x t = (   )   (   )   − (   )(   )12 0 1 57 31 4. sin . .cm rad m rad s

      (d) The transverse velocity is∂∂

      = − −(   ) y

    t  A kx t ω ω cos

      Its maximum magnitude is  Aω  =   (   ) =12 31 4 3 77cm rad s m s. .

      (e) at t 

     A kx t A kx t  y

     y= ∂∂

      =  ∂∂

      − −(   )(   ) = − −(   )v

    ω ω ω ω  cos sin2

      The maximum value is  Aω 2 12

    0 12 31 4 118= (   )(   )   =−. .m s m s2

    P16.12  At time t , the phase of y x t = (   )   −(   )15 0 0 157 50 3. cos . .cm  at coordinate x  is

      φ  = (   )   − (   )0 157 50 3. .rad cm rad s x t . Since 60 03

    . ° = π 

    rad, the requirement for point B is that

      φ φ   π 

     B A= ±

    3rad, or (since x  A = 0),

      0 157 50 3 0 50 3. . .rad cm rad s rad s(   )   − (   )   = − (   ) x t t  B   ±± π 

    3rad

      This reduces to x  B =  ±

    (   )

     = ±π  rad

    rad cm

    cm

    3 0 157

    6 67

    .

    . .

    P16.13   y x t = −(   )0 250 0 300 40 0. sin . . m

      Compare this with the general expression y A kx t = −(   )sin   ω 

      (a)  A = 0 250. m

      (b) ω  = 40 0. rad s

      (c) k  = 0 300. rad m

      (d) λ   π π 

    = = =2 2

    0 30020 9

    k  ..

    rad mm

      (e) v = =         =       (   ) = f λ   ω 

    π  λ  π 2

    40 0

    2 20 9 133.

    .rad s

    m m ss

      (f) The wave moves to the right, in direction+ x  .

    13794_16_ch1 6_p427 448.indd 43113794_16_ch16_p427-448.indd 431 12/9/06 12:46:5112/9/06 12:46:51

  • 8/18/2019 solucion al capitulo 16 del serway

    6/22

    432  Chapter 16

    *P16.14  (a) See figure at right.

      (b) T  = = =2 2

    50 30 125

    π 

    ω 

    π 

    .. s  is the time from one peak

    to the next one.

     

    This agrees with the period found in the example

    in the text.

    P16.15  (a)  A y= = =max . .8 00 0 080 0cm m   k  = =(   )

     =   −2 2

    0 8007 85

    1π 

    λ 

    π 

    ..

    mm

      ω π π π  = =   (   ) =2 2 3 00 6 00 f  . . rad s

      Therefore,  y A kx t = +(   )sin   ω 

      Or (where y t 0 0,(   ) =  at = 0)  y x t = (   )   +(   )0 080 0 7 85 6. sin .   π  m

      (b) In general,  y x t = + +(   )0 080 0 7 85 6. sin .   π φ 

      Assuming  y x , 0 0(   ) =  at x  = 0 100. m

      then we require that 0 0 080 0 0 785= +(   ). sin .   φ 

      or φ  = −0 785.

      Therefore,  y x t = + −(   )0 080 0 7 85 6 0 785. sin . .π  m

    P16.16 (a)

    (b) k  = = =2 2

    0 35018 0

    π 

    λ 

    π 

    ..

    mrad m

      T  f 

    = = =1 1

    12 00 0833

    ..

    ss

      ω π π = = =2 2 12 0 75 4 f  . .s rad s

      v  = = (   )(   ) = f λ  12 0 0 350 4 20. . .s m m s

      (c)  y A kx t = + +(   )sin   ω φ  specializes to

       y x t = + +(   )0 200 18 0 75 4. sin . .m m s   φ 

      at  x  = 0, t  = 0 we require

     − × = +(   )

    = − = −

    −3 00 10 0 200

    8 63 0 151

    2. . sin

    . .

    m m   φ 

    φ  ° rrad

      so  y x t x t , . sin . . .(   ) =   (   )   + −(0 200 18 0 75 4 0 151m m s rad))

    0.0 –0.1 –0.2

    0.10.2

     y (m)

     x (m)

    t = 0

    0.2

    0.4

    FIG. P16.16(a)

     y (cm)

    t (s)

    10

    0

    0.1 0.2–10

    FIG. P16.14

    13794_16_ch1 6_p427 448.indd 43213794_16_ch16_p427-448.indd 432 12/9/06 12:46:5212/9/06 12:46:52

  • 8/18/2019 solucion al capitulo 16 del serway

    7/22

      Wave Motion 433

    P16.17   y x t = (   )   +    0 120 8

    4. sinm  π 

    π 

      (a) v = dy

    dt :  v = (   )(   )   +  

      0 120 4 8

    4. cosπ   π 

    π  x t 

      v 0 200 1 51. .s, 1.60 m m s(   ) = −

      a  d 

    dt =

    v:  a x t = −(   )(   )   +  

      0 120 4 8

    42

    . sinm   π   π 

    π 

      a 0 200 0. s, 1.60 m(   ) =

      (b) k  = =π π 

    λ 8

    2: λ  = 16 0. m

      ω π   π 

    = =42

    T : T  = 0 500. s

      v = = =λ 

    16 032 0

    ..

    m

    0.500 sm s

    P16.18  (a) Let us write the wave function as  y x t A kx t , sin(   ) = + +(   )ω φ 

       y A0 0 0 020 0, sin .(   ) = =φ  m

     dy

    dt  A

    0 0

    2 00,

    cos .= = −ω φ  m s

      Also, ω   π π 

    π = = =2 2

    0 025080 0

    T  ..

    ss

       A x i

    i2 2

    22

    0 020 02 00

    80 0= +   

        = (   )   +

       

    v

    ω π .

    .

    .m

    m s

    s   

    2

       A = 0 021. 5 m

      (b) A

     A

    sin

    cos

    .

     / .

    . tanφ 

    φ π 

    φ =

      = − =0 020 0

    2 80 0

    2 51

      Your calculator’s answer tan . .− −(   ) = −1 2 51 1 19 rad has a negative sine and positive cosine, just the reverse of what is required. You must look beyond your calculator to find

      φ π = − =1 19 1 95. .rad rad

      (c) v y   A, . . .max m s m s= =   (   ) =ω π 0 021 5 80 0 5 41

      (d) λ  = = (   )(   ) =v x T  30 0 0 025 0 750. . .m s 0 s m

      k  = = =2 2

    0 750

    π 

    λ 

    π 

    . m8.38 m   ω π = 80 0. s

       y x t x t , . sin . .(   ) = (   )   + +0 021 5 8 38 80 0m rad m rad sπ  11 95. rad(   )

    13794_16_ch1 6_p427 448.indd 43313794_16_ch16_p427-448.indd 433 12/9/06 12:46:5312/9/06 12:46:53

  • 8/18/2019 solucion al capitulo 16 del serway

    8/22

  • 8/18/2019 solucion al capitulo 16 del serway

    9/22

      Wave Motion 435

    P16.23  v = =  ⋅

    ×  =−

    µ 

    1350

    5 00 10520

    3

    kg m s

    kg mm s

    2

    .

    P16.24  v =  T 

    µ 

     

    T A r 

    = = =

    = (   )(   )   ×   −µ ρ ρπ  

    π 

    v v v2 2 2 2

    48 920 7 50 10kg m3 . mm m s

    N

    (   )   (   )

    =

    2 2200

    631T 

    P16.25  T Mg= is the tension; v = = = =T Mg

    m L

     MgL

    m

     L

    t µ    is the wave speed.

      Then, MgL

    m

     L

    t =

    2

    2

      and g  Lm

     Mt = =

      ×(   )×

    −2

    31 60 4 00 10

    3 00 10

    . .

    .

    m kg

    kg 3.61 222 1 64

    sm s

    2

    (   )  = .

    P16.26  The period of the pendulum is T   L

    g= 2π 

      Let F  represent the tension in the string (to avoid confusion with the period) when the pendulum

    is vertical and stationary. The speed of waves in the string is then:

      v = = =F Mg

    m L

     MgL

    mµ    

      Since it might be difficult to measure L precisely, we eliminate  L  T g=

    2π 

      so

    v = = Mg

    m

    T g   Tg M 

    m2 2π π 

    P16.27  Since µ

     

    is constant, µ  = =T T 

    2

    2

    2

    1

    1

    2v v

    and

    T T 2

    2

    1

    2

    1

    2

    30 0

    20 06 00=

       

       

      =   

       

    v

    v

    .

    ..

    m s

    m sNN N(   ) = 13 5.

    P16.28  From the free-body diagram mg T = 2 sinθ 

      T   mg

    =2sinθ 

      The angle θ  is found from cosθ  = =3 8

    2

    3

    4

     L

     L

      

      

      ∴ =θ  41 4. °

      (a) v =   T µ 

     

    v = =×(   )−

    mg

    2 41 4

    9 80

    2 8 00 10 43µ sin .

    .

    . sin°

    m s

    kg m

    2

    11 4. °    

         m

      or v =   

      

      30 4.

    m s

    kgm

      (b) v = =60 0 30 4. .   m  and m = 3 89. kg

    FIG. P16.28

    13794_16_ch1 6_p427 448.indd 43513794_16_ch16_p427-448.indd 435 12/9/06 12:46:5512/9/06 12:46:55

  • 8/18/2019 solucion al capitulo 16 del serway

    10/22

    436  Chapter 16

    P16.29  If the tension in the wire is T , the tensile stress is

      Stress = =   (   )T 

     AT Aso stress

      The speed of transverse waves in the wire is

      v = =   (   ) = =T Am L m AL mµ Stress Stress Stress

    Volume   == Stress

    ρ 

      where ρ is the density. The maximum velocity occurs when the stress is a maximum:

      vmax.

    =  ×

    =2 70 10

    18 Pa

    7 860 kg m85 m s

    3

    *P16.30  (a)  f  has units Hz s= 1 , so T  f 

    =1

     has units of seconds, s . For the other T  we have T  =  µ v2,

      with unitskg

    m

    m

    s

    kg m

    sN

    2

    2 2=

      ⋅= .

      (b) The first T  is period of time; the second is force of tension.

    P16.31  The total time is the sum of the two times.

      In each wire t   L

     LT 

    = =v

    µ 

      Let A represent the cross-sectional area of one wire. The mass of one wire can be written both as

    m V AL= =ρ ρ   and also as m L= µ  .

      Then we have µ ρ   πρ 

    = = A  d 

    2

    4

      Thus, t L  d 

    T =

        

       

    πρ  21 2

    4

      For copper, t  = (   )  (   )(   )   ×(   )

    (   )(   )

    20 08 920 1 00 10

    4 150

    3 2

    ..π 

      =

    1 2

    0 137. s

      For steel, t  = (   )   (   )(   )   ×(   )(   )(   )

    30 0 7 860 1 00 104 150

    3 2

    . .π 

      =

    1 2

    0 192. s

      The total time is 0 137 0 192 0 329. . .+ = s

    Section 16.5  Rate of Energy Transfer by Sinusoidal Waves on Strings

    P16.32   f  = = =v

    λ 

    30 0

    0 50060 0

    .

    .. Hz   ω π π = =2 120 f  rad s

      P = =        (   )   (   )

    1

    2

    1

    2

    0 180

    3 60120 0 100 302 2

    2 2µω π  A v

    .

    .. .. .0 1 07(   ) = kW

    13794_16_ch1 6_p427 448.indd 43613794_16_ch16_p427-448.indd 436 12/9/06 12:46:5612/9/06 12:46:56

  • 8/18/2019 solucion al capitulo 16 del serway

    11/22

      Wave Motion 437

    P16.33  Suppose that no energy is absorbed or carried down into the water. Then a fixed amount of power

    is spread thinner farther away from the source. It is spread over the circumference 2π r  of anexpanding circle. The power-per-width across the wave front

      P 

    2π r   is proportional to amplitude squared so amplitude is proportional to

      P 

    2π r 

    P16.34  T  = constant; v =  T 

    µ ; P  =

    1

    2

    2 2µω   A v

      (a) If L is doubled, v remains constant and P is constant .

      (b) If A is doubled and ω  is halved, P ω 2 2 A remains constant .

      (c) If λ  and A are doubled, the product ω λ 

    2 22

    2 A

      A  remains constant, so

     P remains constant .

      (d) If L and λ  are halved, then ω λ 

    2

    2

    1  is quadrupled, so P is quadrupled .

      (Changing L doesn’t affect P   .)

    P16.35   A = ×   −5 00 10 2. m   µ  = ×   −4 00 10 2. kg m   P = 300 W T  = 100 N

      Therefore, v = =T 

    µ 50 0. m s

      P   =1

    2

    2 2µω   A v : ω 2 = 2P  _____ µ A2v

     2 2 2

    2 300

    4 00 10 5 00 10 50 0=

      (   )

    ×(   )   ×(   )− −. . .((   )

     

    ω 

    ω 

    π 

    =

    = =

    346

    255 1

    rad s

    Hz f  .

    P16.36  µ  = = ×   −30 0 30 0 10 3. .g m kg m

     

    λ 

    ω π 

    =

    = = =

    =

    1 50

    50 0 2 314

    2 0 150

    1

    .

    . :

    . :

    m

    Hz s

    m

     f f 

     A A == ×   −7 50 10 2. m

      (a)  y A x t = −    sin

    2π 

    λ ω 

       y x t = ×(   )   −(   )−7 50 10 4 19 3142. sin .

      (b) P = = ×(   )(   )   ×(   )− −1

    2

    1

    230 0 10 314 7 50 10

    32 2 3 2 2 2µω   A v . .114

    4 19.

      

       W   P   = 625 W

    FIG. P16.36

    13794_16_ch1 6_p427 448.indd 43713794_16_ch16_p427-448.indd 437 12/9/06 12:46:5712/9/06 12:46:57

  • 8/18/2019 solucion al capitulo 16 del serway

    12/22

    438  Chapter 16

    P16.37  (a) v = = = = = f k k 

    λ   ω 

    π 

    π ω 

    2

    2 50 0

    0 80062 5

    .

    ..m s m s

      (b) λ   π π 

    = = =2 2

    0 8007 85

    k  ..m m

      (c)  f  = =50 0

    27 96

    ..

    π Hz

      (d) P = = ×(   )(   )   (   )−1

    2

    1

    212 0 10 50 0 0 150 62 52 2 3

    2 2µω  A v . . . .((   )   =W W21 1.

    P16.38  Comparing y t x = − +    0 35 10 3 4

    . sin   π π   π 

     with y A kx t A t kx = − +(   ) = − − +(   )sin sinω φ ω φ π  

     we have k 

    m=

    3π , ω π = 10 s, A = 0 35. m. Then v = = = = = f f 

    k λ π 

      λ 

    π 

    ω π 

    π 2

    2

    10

    33 33

    s

    mm s. .

      (a) The rate of energy transport is

      P = = ×(   )(   )   (   )−1

    2

    1

    275 10 10 0 35 32 2 3

    2 2µω π  A v kg m s m. .. .33 15 1m s W=

      (b) The energy per cycle is

     E λ  = P T  Aµω λ π  = = ×(   )(   )−

    1

    2

    1

    275 10 10 0 352 2 3

    2kg m s m.((   )   =2

    23 02

    π 

    π 

    m

    3J.

    P16.39  Originally,

     

    0

    2 2

    0

    2 2

    0

    2 2

    1

    2

    1

    2

    1

    2

    =

    =

    =

    µω 

    µω µ 

    ω µ 

     A

     A  T 

     A T 

    v

      The doubled string will have doubled mass-per-length. Presuming that we hold tension constant,

    it can carry power larger by 2 times.

      21

    22

    0

    2 2P    =   ω µ  A T 

    *P16.40  As for a string wave, the rate of energy transfer is proportional to the square of the amplitude

    and to the speed. The rate of energy transfer stays constant because each wavefront carries con-

    stant energy and the frequency stays constant. As the speed drops the amplitude must increase.

      We write P   = F Av 2  where F  is some constant. With no absorption of energy,

     

    F A F Av v

    v

    bedrock bedrock 

    2

    mudfill mudfill

    2

    bedro

    =

    cck 

    mudfill

    mudfill

    bedrock 

    mudfill

    mudv

    v

    v

    = = A

     A

    25

    f fill

    = 5

      The amplitude increases by 5.00 times.

    13794_16_ch1 6_p427 448.indd 43813794_16_ch16_p427-448.indd 438 12/9/06 12:46:5812/9/06 12:46:58

  • 8/18/2019 solucion al capitulo 16 del serway

    13/22

      Wave Motion 439

    Section 16.6  The Linear Wave Equation

    P16.41  (a)  A = +(   )7 00 3 00 4 00. . . yields  A = 40 0.

      (b) In order for two vectors to be equal, they must have the same magnitude and the samedirection in three-dimensional space. All of their components must be equal.

      Thus, 7 00 0 3 00. ˆ ˆ . ˆ ˆ ˆ ˆi j k i j k+ + = + + A B C  requires  A B C = = =7 00 0 3 00. , , .and .

     (c)  In order for two functions to be identically equal, they must be equal for every value

    of every variable. They must have the same graphs.

      In

       A B Cx Dt E x t + + +(   ) = + + +cos . cos . . .0 7 00 3 00 4 00 2 0mm 00(   )

      the equality of average values requires that  A = 0 . The equality of maximum values requires

       B = 7 00. mm . The equality for the wavelength or periodicity as a function of x  requires

      C  = 3 00. rad m . The equality of period requires  D = 4 00. rad s , and the equality of 

      zero-crossings requires  E  = 2 00. rad .

    P16.42  The linear wave equation is∂

    ∂=

      ∂

    2

    2 2

    2

    2

    1 y

     x 

     y

    t v

      If  y eb x t 

    =  −(   )v

      then∂

    ∂= −

      −(   ) y

    t b e

    b x t v

      v

      and∂

    ∂=

      −(   ) y

     x be

    b x t v

     ∂

    ∂=

      −(   )2

    2

    2 2 y

    t b e

    b x t v

      v

      and∂

    ∂=

      −(   )2

    2

    2 y

     x b e

    b x t v

      Therefore, ∂∂

    =   ∂

    2

    2

    2 2

    2

     y

     y

     x v , demonstrating that eb x t 

    −(   )v  is a solution.

    P16.43  The linear wave equation is1

    2

    2

    2

    2

    2v

    ∂=

      ∂

     y

     y

     x 

      To show that  y b x t = −(   )[ ]ln   v  is a solution, we find its first and second derivatives with respect

      to  x  and t  and substitute into the equation.

     ∂

    ∂=

    −(   )  −(   )

     y

    t b x t  b

    1

    v

    v  ∂

    ∂=

      − −(   )

    −(   )  = −

    −(   )

    2

    2

    2

    2 2

    2

    2

    1 y

    b

    b x t x t  

    v

    v

    v

    v

     ∂

    ∂= −(   )[ ]

    − y

     x b x t bv

    ∂= − − = −

    2

    2

    2

    2

    1 y

     x 

    b

    b x t 

     x t 

    ( )

    ( )

    v

    v

      Then 1 1 12

    2

    2 2

    2

    2 2

    2

    2v v

    v

    v v

    ∂=

    −(   )−(   )

      = −−(   )

      =  ∂

     y

    t x t x t  

     y

     x  so the given wave function is a solution.

    13794_16_ch16_p427 448.indd 43913794_16_ch16_p427-448.indd 439 12/28/06 612/28/06 6

  • 8/18/2019 solucion al capitulo 16 del serway

    14/22

    440  Chapter 16

    P16.44 (a) From y x t = +2 2 2v ,

      evaluate∂∂

      = y

     x  x 2  

    ∂∂

      =2

    22

     y

     x 

     ∂

    ∂   =

     y

    t  t v

    2

    ∂   =

    2

    2

    2

    2

     y

    t v

      Does∂∂

      =  ∂

    2

    2 2

    2

    2

    1 y

     y

    t v?

      By substitution, we must test1

    22

    2=v

    v  and this is true, so the wave function does satisfy

    the wave equation.

      (b) Note 

    1

    2

    1

    2

    2 2 x t x t +(   )   + −(   )v v  = + + + − +

    1

    2

    1

    2

    1

    2

    1

    2

    2 2 2 2 2 2 x x t t x x t t v v v v

      = + x t 2 2 2v as required.

      So

     f x t x t +(   ) = +(   )v v122   and g x t x t  −(   ) = −(   )v v12

    2

      (c)  y x t = sin cosv makes

     ∂∂

      = y

     x  x t cos cosv  

    ∂∂

      = −2

    2

     y

     x  x t sin cosv

     ∂∂

      = − y

    t  x t v vsin sin  

    ∂∂

      = −2

    2

    2 y

    t  x t v vsin cos

      Then

    ∂∂

      =  ∂

    2

    2 2

    2

    2

    1 y

     x 

     y

    t v

      becomes − = −

    sin cos sin cos x t x t vv

    v v

    1

    2

    2 which is true as required.

      Note sin sin cos cos sin x t x t x t +(   ) = +v v v

     sin sin cos cos sin x t x t x t −(   ) = −v v v

      So sin cos x t f x t g x t v v v= +(   )+ −(   ) with

       f x t x t +(   ) = +(   )v v1

    2sin   and g x t x t  −(   ) = −(   )v v

    1

    2sin

    Additional Problems

    P16.45  Assume a typical distance between adjacent people ~1 m.

    Then the wave speed is v = ∆∆ x 

    t ~ ~

    110

    m

    0.1 sm s

      Model the stadium as a circle with a radius of order 100 m. Then, the time for one circuit around

    the stadium is

      T   r 

    =  (   )

    =2 2 10

    1063 1

    2π    π 

    v

    ~ ~m s

    s min

    13794_16_ch1 6_p427 448.indd 44013794_16_ch16_p427-448.indd 440 12/9/06 12:47:0012/9/06 12:47:00

  • 8/18/2019 solucion al capitulo 16 del serway

    15/22

      Wave Motion 441

    *P16.46  (a) From  y = 0.150 m sin(0.8 x  – 50t )

      we compute dy  dt  = 0.150 m (–50) cos(0.8 x  – 50t )

      and a = d 2 y  dt 2 = –0.150 m (–50  s)2 sin(0.8 x  – 50t )

      Then amax  =  375 m/s2

      (b) For the 1-cm segment with maximum force acting on it, ΣF  = ma = [12 g  (100 cm)]1 cm 375 m  /s2 =  0.045 0 N

      We find the tension in the string from v =  fλ  = ω  k  = (50  s)  (0.8  m) = 62.5 m  /s = (T   µ )1  2

      T  = v2µ  = (62.5 m  /s)2(0.012 kg  m) = 46.9 N.

     

    The maximum transverse force is very small compared to the tension, more than a

    thousand times smaller.

    P16.47  The equation v = λ  f  is a special case of 

      speed = (cycle length)(repetition rate)

      Thus,

    v = ×(   )(   ) =−

    19 0 10 24 0 0 4563

    . . .m frame frames s m s

    P16.48  (a) 0 175 0 350 99 6. . sin .m m rad s= (   )   (   )   t 

      ∴   (   )    =sin . .99 6 0 5rad s   t 

      The smallest two angles for which the sine function is 0.5 are 30° and 150°, i.e., 0.523 6 rad

    and 2.618 rad.

      99 6 0 523 61. .rad s rad(   )   =t  , thus t 1 5 26= . ms

      99 6 2 6182. .rad s rad(   )   =t  , thus t 2 26 3= . ms

      t t t  2 1 26 3 5 26 21 0− = − =. . .ms ms ms

      (b) Distance traveled by the wave =        =

       

       

      ×   −ω 

    k t ∆

    99 6

    1 2521 0 10 3

    .

    ..

    rad s

    rad ms m(   ) = 1 68. .

    P16.49  Energy is conserved as the block moves down distance x :

     

    K U U E K U U  

     Mgx 

    g s g s+ +(   )   + = + +(   )

    + + + = +

    top bottom∆

    0 0 0 0 001

    2

    2

    2+

    =

    kx 

     x   Mg

      (a) T kx Mg= = =   (   )(   ) =2 2 2 00 9 80 39 2. . .kg m s N2

      (b)  L L x L  Mg

    k = + = +0 0

    2

       L = + =0 50039 2

    0 892..

    .mN

    100 N m

    m

      (c) v = =T TL

    mµ 

     v

    v

    =  ×

    ×

    =

    39 2 0 892

    10

    83 6

    3

    . .

    .

    N m

    5.0 kg

    m s

    13794_16_ch1 6_p427 448.indd 44113794_16_ch16_p427-448.indd 441 12/9/06 12:47:0112/9/06 12:47:01

  • 8/18/2019 solucion al capitulo 16 del serway

    16/22

    442  Chapter 16

    P16.50   Mgx kx =1

    2

    2

      (a) T kx Mg= = 2

      (b)  L L x L  Mg

    k = + = +

    0 0

    2

      (c) v = = = +    

    T TL

    m

     Mg

    m L

      Mg

    k µ 

    2 20

    *P16.51 (a) The energy a wave crest carries is constant in the absence of absorption. Then the rate at

    which energy passes a stationary point, which is the power of the wave, is constant. The

    power is proportional to the square of the amplitude and to the wave speed. The speed

    decreases as the wave moves into shallower water near shore, so the amplitude must

    increase.

      (b) For the wave described, with a single direction of energy transport, the intensity is the same at

    the deep-water location 1  and at the place 2  with depth 9 m. To express the constant inten-sity we write

     

     A A A gd 

     A

    1

    2

    1 2

    2

    2 2

    2

    2

    2

    2

    21 8 9 8

    v v= =

    (   )   =. .m 200 m s m s22 m

    m s

    m s

    m s

    (   )

    =

    =   

        

    9

    9 39

    1 8200

    9 39

    2

    2

    2

     A

     A

    .

    ..

    11 2

    8 31= . m

     

    (c) As the water depth goes to zero, our model would predict zero speed and infinite amplitude.

    In fact the amplitude must be finite as the wave comes ashore. As the speed decreases the

    wavelength also decreases. When it becomes comparable to the water depth, or smaller, ourformula gd  for wave speed no longer applies.

    P16.52  Assuming the incline to be frictionless and taking the positive x -direction to be up the incline:

      F T Mg x ∑   = − =sinθ  0  or the tension in the string is T Mg= sinθ 

      The speed of transverse waves in the string is then v = = =T Mg

    m L

     MgL

    mµ 

    θ θ sin sin

      

      The time interval for a pulse to travel the string’s length is ∆t   L

     L  m

     MgL

    mL

     Mg= = =

    v sin sinθ θ 

    13794_16_ch1 6_p427 448.indd 44213794_16_ch16_p427-448.indd 442 12/9/06 12:47:0212/9/06 12:47:02

  • 8/18/2019 solucion al capitulo 16 del serway

    17/22

      Wave Motion 443

    *P16.53  (a) In P   = 12

    2 2µω   A v   where v is the wave speed, the quantity ω A is the maximum particle

    speed v ymax 

    . We have µ  = 0.5 × 10–3 kg  m and  v = (T   µ )1  2 = (20 N  0.5 × 10–3 kg  m)1  2 = 200 m  /s

      Then P   =1

    2 (0.5 × 10–3

     kg  m) v2

     ymax  (200 m  s) =  (0.050 0 kg/s)v2

     y,max 

      (b) The power is proportional to the square of tthe maximum particle speed.

      (c) In time t  = (3 m)  v = (3 m)  (200 m  /s) = 1.5 × 10–2 s, all the energy in a 3-m length of stringgoes past a point. Therefore the amount of this energy is

     E  = P  t  = (0.05 kg  s) v2 y, max

     (0.015 s) = 7.5 × 10−4 kg v y,max2

      The mass of this section is m3 = (0.5 × 10–3 kg  m)3 m = 1.5 × 10–3 kg so (1  2)m

    3 = 7.5 × 10−4 kg

      and  E  = (1/2) m3v

    2 y,max

     = K max 

    . The string also contains potential energy. We could write its

      energy as U max 

     or as U avg

     + K avg

      (d)  E  = P t  = (0.05 kg  s) v2 y,max 

     (6 s) =  0.300 kg v y,max

    2  

    P16.54  v =  T 

    µ and in this case T mg= ; therefore, m

    g=

     µ v2

      Now =   f λ  implies v = ω 

    k  so that

      mg k 

    =         =

    −µ ω π 

    π 

    2 10 250

    9 80

    18

    0 750

    .

    . .

    kg m

    m s

    s2 mm

    kg−

      =1

    2

    14 7.

    P16.55  Let M = mass of block, m = mass of string. For the block, F ma∑   =  implies T    mr 

    m r b= =v

    22ω 

      The speed of a wave on the string is then

     

    v

    v

    = = =

    = =

    = = =

    T M r 

    m r r 

      M 

    m

    t   r m

     M 

    t   m

     M 

    µ 

    ω ω 

    ω 

    θ ω 

    2

    1

    0 0032

      

    . kg

    00.450 kgrad= 0 084 3.

    P16.56  (a) µ ρ ρ = = =dm

    dL A

     dx 

    dx  A

      v = = =+(   )[ ]

     =+(   )  

    − −

    T T 

     A

    ax b

     x µ ρ ρ    ρ  10 103 2 cm2

      With all SI units,

    v =+(   )   − − −T 

     x ρ  10 10 103 2 4m s

      (b) v x =   − −

    =(   )   +(   )(   )  

    =0 2 4

    24 0

    2 700 0 10 1094 3

    .. m s

      v  x =   − − −= (   )   +(   )(   )   =

    10 0 2 2 4

    24 0

    2 700 10 10 1066

    .

    ..77 m s

    13794_16_ch1 6_p427 448.indd 44313794_16_ch16_p427-448.indd 443 12/9/06 12:47:0312/9/06 12:47:03

  • 8/18/2019 solucion al capitulo 16 del serway

    18/22

    444  Chapter 16

    P16.57  v =  T 

    µ  where T xg= µ  , to support the weight of a length x , of rope.

      Therefore, v =   gx 

      But v = dx 

    dt , so that dt 

      dx 

    gx =

      and t   dx 

    gx g

     x L

    g

     L   L

    = = =∫ 0

    12 0

    12

    P16.58  At distance x  from the bottom, the tension is T   mxg

     L Mg=   

       +   , so the wave speed is:

    v = = = +      =

    T TL

    m xg

      MgL

    m

    dx 

    dt µ 

      (a) Then t dt xg  MgL

    mdx 

    t L

    = = +     

    ∫ ∫ 

    0

    1 2

    0

      t g

     xg MgL m

     x 

     x L

    =  + (   )  

    =

    =

    11 2

    12

    0

      t g

     Lg  MgL

    m

     MgL

    m= +  

         −

       

      

    2 1 2 1 2  t 

      L

    g

    m M M 

    m=   + − 

        

    2

      (b) When M  = 0, as in the previous problem, t   L

    g

    m

    m

     L

    g=

      − 

         =2

    02

      (c) As m → 0 we expand m M M   m

     M  M 

      m

     M 

    m

     M + = +  

         = + − +

      

       

    1 11

    2

    1

    8

    1 2 2

    2…

      to obtain t   L

    g

     M m M m M M 

    m=

      +   (   ) −   (   ) + − 

     

     

      2

    12

    18

    2 3 2 …

      t   L

    g

    m

     M 

    mL

     Mg≈

       

     

     

       =2

    1

    2

    P16.59 (a) The speed in the lower half of a rope of length L is the same function of distance (from the

      bottom end) as the speed along the entire length of a rope of length L

    2

      

      

    .

      Thus, the time required =  ′

    2  L

    g with ′ = L

      L

    2

      and the time required = =   

      

      2

    20 707 2

     L

    g

     L

    g.

      It takes the pulse more that 70% of the total time to cover 50% of the distance.

      (b) By the same reasoning applied in part (a), the distance climbed in τ  is given by d   g=

      τ 2

    4

      For τ  = =t L

    g2 , we find the distance climbed =  L

    4 .

      In half the total trip time, the pulse has climbed1

    4 of the total length.

    13794_16_ch1 6_p427 448.indd 44413794_16_ch16_p427-448.indd 444 12/9/06 12:47:0412/9/06 12:47:04

  • 8/18/2019 solucion al capitulo 16 del serway

    19/22

      Wave Motion 445

    P16.60  (a) Consider a short section of chain at the top of the loop. A

    free-body diagram is shown. Its length is s =  R(2θ ) and its

    mass is µ R2θ . In the frame of reference of the center of the

    loop, Newton’s second law is

      F ma y y∑   =   2 20

    2

    0

    2

    T    m R

     R R

    sinθ    µ θ down down= =v v

      For a very short section, sinθ θ =  and T  =  µ v02

      (b) The wave speed is v v= =T 

    µ 0

      (c) In the frame of reference of the center of the loop, each pulse moves with equal speed

    clockwise and counterclockwise.

     

    In the frame of reference of the ground, once pulse moves backward at speed v v v0 02+ =  

    and the other forward at v v0 0− = .

     The one pulse makes two revolutions while the loop makes one revolution and the other

    pulse does not move around the loop. If it is generated at the six-o’clock position, it will

    stay at the six-o’clock position.

    P16.61  Young’s modulus for the wire may be written as Y  =  T A

     L L

      

      ∆, where T  is the tension maintained in

      the wire and ∆ L is the elongation produced by this tension. Also, the mass density of the wire

      may be expressed as ρ   µ =

     A

      The speed of transverse waves in the wire is then

      v = = =  (   )T T A

     A

    Y L L

    µ µ ρ 

      

      

      ∆

      and the strain in the wire is∆ L

     L=

     ρ v2

      If the wire is aluminum and v = 100 m s, the strain is

     ∆ L

     L=

    ×(   )(   )×

    =2 70 10 100

    7 00 103

    3 2

    10

    .

    .

    kg m m s

    N m

    3

    2..86 10 4×   −

    R 2θ 

    θ θ 

    T   T

    FIG. P16.60(a)

    v0   v0   v0

    v v

    FIG. P16.60(c1)

    v0   v0   v0

    FIG. P16.60(c2)

    13794_16_ch1 6_p427 448.indd 44513794_16_ch16_p427-448.indd 445 12/11/06 3:50:2912/11/06 3:50:29

  • 8/18/2019 solucion al capitulo 16 del serway

    20/22

    446  Chapter 16

    P16.62  (a) Assume the spring is originally stationary throughout, extended to have a length L much

    greater than its equilibrium length. We start moving one end forward with the speed v at

    which a wave propagates on the spring. In this way we create a single pulse of compression

    that moves down the length of the spring. For an increment of spring with length dx  and

    mass dm, just as the pulse swallows it up, F ma

    ∑  =

      becomes kdx adm=   ork 

    dm dx a

      =

      Butdm

    dx = µ   so a

      k =

    µ 

      Also, a  d 

    dt t = =

    v v

      when vi = 0

      But  L = vt,  so a L

    =v

    2

      Equating the two expressions for a, we havek 

     Lµ =

    v2

      or v =  kL

    µ 

      (b) Using the expression from part (a) v = = =  (   )(   )

    =kL kL

    mµ 

    2 2100 2 00

    0 400 31 6N m m

    kg m.

    . . ss

    P16.63  (a) P  x A A ek k 

     A ebx (   ) = =        =

    −1

    2

    1

    2 2

    2 2 2

    0

    2 2

    3

    0

    2µω µω    ω µω 

    v  −−2bx 

      (b) P 02

    3

    0

    2(   ) =  µω 

    k  A

      (c)P ( x )

     

    _____

     

    P (0)  e   bx =   −2

    P16.64  v = = =4 450

    468 130km

    9.50 h

    km h m s

      d g

    = =  (   )

    (   ) =

    v2 2130

    9 801 730

    m s

    m sm

    2.

    13794_16_ch1 6_p427 448.indd 44613794_16_ch16_p427-448.indd 446 12/9/06 12:47:0612/9/06 12:47:06

  • 8/18/2019 solucion al capitulo 16 del serway

    21/22

      Wave Motion 447

    P16.65  (a) µ   x (   ) is a linear function, so it is of the form µ   x mx b(   ) = +

      To have µ µ 0 0(   ) =  we require b = µ 0. Then µ µ µ  L mL L(   ) = = + 0

      so m  L

     L

    =  −µ µ 0

      Then µ   µ µ 

    µ  x  x 

     L

     L(   ) =  −(   )

    +00

      (b) From v = dx 

    dt , the time required to move from x  to x  + dx  is dx 

    v

    . The time required to move

      from 0 to L is

      ∆

    t   dx dx  

    T T  x dx 

    t T 

     x 

     L L L

     L

    = = =   (   )

    =  −(   )

    ∫ ∫ ∫ v

    0 0 0

    0

    1

    1

      µ µ 

    µ µ 

     L L Ldx 

      L L

     L

     L

      

      − 

        

       − 

        ∫    µ 

      µ µ 

    µ µ 0

    1 2

    0

    00

     

    t T 

     L   x 

     L L

     L

     L

    =−

      

       

    −(   ) +  

       

    1 1

    0

    0

    0

    3 2

    32 0

    µ µ µ µ  µ 

    t t   L

    t  L

     L

     L

     L L L

    =−(   )

      −(   )

    =  −(   )   +

    2

    3

    2

    0

    3 2

    0

    3 2

    0

    µ µ µ µ 

    µ µ µ µ µ  ∆ 00 0

    0 0

    0 0

    3

    2

    3

    +(   )−(   )   +(   )

    =  + +

    +

    µ 

    µ µ µ µ  

    µ µ µ µ  

    µ 

    t   L

     L L

     L L

     L

    ∆µ µ 0

     

      

      

    ANSWERS TO EVEN PROBLEMS

    P16.2  See the solution. The graph (b) has the same amplitude and wavelength as graph (a). It differs justby being shifted toward larger x by 2.40 m. The wave has traveled 2.40 m to the right.

    P16.4  184 km

    P16.6  See the solution

    P16.8  0 800. m s

    P16.10  2 40. m s

    P16.12  ±6 67. cm

    P16.14  (a) see the solution (b) 0.125 s, in agreement with the example

    P16.16  (a) see the solution (b) 18.0 m; 83 3. ms; 75 4. rad s; 4 20. m s

    (c) 0 2 18 75 4 0 151. sin . .m(   )   + −(   ) x t 

    P16.18  (a) 0.021 5 m (b) 1.95 rad (c) 5 41. m s  (d)  y x t x t , . sin . . .(   ) = (   )   + +(   )0 021 5 8 38 80 0 1 95m   π 

    13794_16_ch1 6_p427 448.indd 44713794_16_ch16_p427-448.indd 447 12/9/06 12:47:0612/9/06 12:47:06

  • 8/18/2019 solucion al capitulo 16 del serway

    22/22

    448  Chapter 16

    P16.20  (a) see the solution (b) 3.18 Hz

    P16.22  (a)  y x t = (   )   −(   )0 2 16 3140. sinmm   (b) 158 N

    P16.24  631 N

    P16.26  v = Tg M 

    m2π 

    P16.28  (a) v =⋅

     

      

      30 4.

    m

    s kgm   (b) 3 89. kg

    P16.30  (a) s and N (b) The first T  is period of time; the second is force of tension.

    P16.32  1.07 kW

    P16.34  (a), (b), (c) P    is a constant (d) P   is quadrupled

    P16.36  (a)  y x t = (   )   −(   )0 075 0 4 19 314. sin .   (b) 625 W

    P16.38  (a) 15.1 W (b) 3.02 J

    P16.40  As for a string wave, the rate of energy transfer is proportional to the square of the amplitude and to the

    speed. The rate of energy transfer stays constant because each wavefront carries constant energy and the

    frequency stays constant. As the speed drops the amplitude must increase. It increases by 5.00 times.

    P16.42  see the solution

    P16.44  (a) see the solution (b)1

    2

    1

    2

    2 2 x t x t +(   )   + −(   )v v   (c)

    1

    2

    1

    2sin sin x t x t +(   )+ −(   )v v

    P16.46  (a) 375 m  /s2  (b) 0.0450 N. This force is very small compared to the 46.9-N tension, more than a

    thousand times smaller.

    P16.48  (a) 21.0 ms (b) 1.68 m

    P16.50  (a) 2 Mg  (b)  L   Mgk 

    0 2+   (c) 2 20 Mgm

     L   Mgk 

    +     

    P16.52  ∆t   mL

     Mg=

    sinθ 

    P16.54  14.7 Kg

    P16.56  (a) v =+(   )− −

     x ρ  10 107 6 in SI units (b) 94 3. m s; 66 7. m s

    P16.58  See the solution.

    P16.60  (a) µ v02  (b) v0  (c) One travels 2 rev and the other does not move around the loop.

    P16.62  (a) see the solution (b) 31.6 m

     

     /s

    P16.64  130 m s; 1.73 km