52
Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Embed Size (px)

Citation preview

Page 1: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Solving Op Amp Stability IssuesPart 1

(For Voltage Feedback Op Amps)

Tim Green & Collin Wells

Precision Analog Linear Applications1

Page 2: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

2

OverviewMain Presentation Focus:1) Op Amp Stability Basics2) Stability Analysis – Method 1 : Loaded Aol & 1/b Technique

A) Riso Compensation Technique for Output Capacitive Loads3) Stability Analysis – Method 2 : Aol & 1/b Technique

A) CF Compensation Technique for Input Capacitance 4) Stability Tricks and Rules of Thumb

Appendix:5) Additional Useful Tools for your Analog Stability Toolbox

A) Op Amp Output ImpedanceB) Pole and Zero: Magnitude and Phase on Bode PlotsC) Dual Feedback Paths and 1/bD) Non-Loop Stability Problems

2) Nine different ways to stabilize op amps with capacitive loadsA) Definition by example using TINA-TI simulations

Page 3: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

The CulpritsOutput Capacitive Loads!

Input Capacitance and Large Value Resistors

Transimpedance Amplifiers!

Reference Buffers! Cable/Shield Drive! MOSFET Gate Drive!

Large Value Resistors or Low-Power Circuits!

-

+

IOP2

R3 499kR4 499k

+

VG2

Cin 25p Vout

-

+

OPA

Cin 1u

C1 1u

C2 1u

VIN 5Vin

Temp

GND

Vout

Trim

U1 REF5025

C3 10u

ADC_VREF

C4 100n

-

+

OPA

RL 250

Rf 20kRg 1k

+

Vin

-

+

OPA

C_Cable 10nVout

VREF 2.5

VREF

Shielded Cable

-

+

OPA

VRef 2.5

R1 20k

R2 20k

Vin 10

VReg

Q1

RL 200

Vo

Rf 1M

Rd 4.99G Cd 10p-

+

OPA

Id

Photodiode Model

Transient Suppression!

V+

-

+

OPA

Rf 49kRg 4.99M

Cd 200p Vout

+Vin

D1

D2TVS

3

Page 4: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Just Plain Trouble!

Inverting Input Filter??

Output Filter??

-

+

OPA

VoutV1 5R1 10k

R2 49kC1 10u C5 100n

-

+

OPA

Rf 100kRg 10k

Cin 1u

Vout

+

Vin

Oscillator

OscillatorT

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

T

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

4

Page 5: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Vcc

Vcc

VOUT

+

-

+3

4

52

1

U1 OPA333

Vcc 5V

R2 49kOhm

R1 49kOhm

C1

VIN

CLoad 1uF

100nF

+2.5V

+2.5V

T

Time (s)

0 500u 1m 2m 2m

VOUT

1.5

2.0

2.5

3.0

But it worked fine

in the lab!Transient on:+Input or –InputVcc or VeeOutput

5

Check ALL Op Amp Circuits for Stability regardless of their closed loop signal frequency of operation!

But I’m only using it at DC!

Page 6: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Recognize Amplifier Stability Issues on the Bench

• Required Tools:– Oscilloscope– Signal Generator

• Other Useful Tools:– Gain / Phase Analyzer– Network / Spectrum Analyzer

6

Page 7: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Recognize Amplifier Stability Issues• Oscilloscope - Transient Domain Analysis:

– Oscillations or Ringing– Overshoots– Unstable DC Voltages– High Distortion

T

Time (s)

1.75m 2.25m 2.75m

Vo

ltag

e (

V)

0.00

18.53m

T

Time (s)

1.75m 50.88m 100.00m

Ou

tpu

t

-14.83

0.00

15.00T

Time (s)

1.75m 2.25m 2.75m

Vo

ltag

e (

V)

0.00

21.88m

7

Page 8: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Recognize Amplifier Stability Issues• Gain / Phase Analyzer - Frequency Domain:

- Peaking, Unexpected Gains, Rapid Phase Shifts

T

Ga

in (

dB

)

-60.00

-40.00

-20.00

0.00

20.00

40.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

-360.00

-180.00

0.00

8

Page 9: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Quick Op-Amp Theory Bode Plot ReviewBasic Stability Tools

9

Page 10: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Poles and Bode Plots

+90

-90

+45

+-45

10 100 1k 10k 100k 1M 10M

Frequency (Hz)

0

(d

egre

es)

-45o @ fP

-45o/Decade

-90o

0o

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

-20dB/Decade-6dB/Octave

fPG

0.707G = -3dB

Actual Function

Straight-Line Approximation

R

CVIN

VOUT

A = VOUT/VIN

Single Pole Circuit Equivalent

X100,000

Pole Location = fP

Magnitude = -20dB/Decade Slope

Slope begins at fP and continues down as frequency increases

Actual Function = -3dB down @ fP

Phase = -45°/Decade Slope through fP

Decade Above fP Phase = -90° (-84.3°)

Decade Below fP Phase = 0° (-5.7°)

RC2

1fp

10

Page 11: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

VINR

VOUT

A = VOUT/VIN

Single Zero Circuit Equivalent

1Vpx

100k

L159H

100kRs

Zeros and Bode Plots

Zero Location = fZ

Magnitude = +20dB/Decade Slope

Slope begins at fZ and continues up as frequency increases

Actual Function = +3dB up @ fZ

Phase = +45°/Decade Slope through fZ

Decade Above fZ Phase = +90° (+84.3°)

Decade Below fZ Phase = 0° (5.7°)

RL

*2

1fz

+90

-90

+45

+-45

10 100 1k 10k 100k 1M 10M

Frequency (Hz)0

(d

egre

es)

+90o

0o

+45o/Decade

+45o @ fZ

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (d

B)

fZ

+20dB/Decade+6dB/Octave

Straight-Line Approximation

G

1.414G = +3dB(1/0.707)G = +3dB Actual

Function

fp

11

Page 12: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Capacitor - Intuitive Model

frequencycontrolled

resistor

OPEN SHORT

DC XCHi-f XCDC < XC < Hi-f

XC = 1/(2fC)

12

Page 13: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Inductor - Intuitive Model

frequencycontrolled

resistor

SHORT OPEN

DC XLHi-f XLDC < XL < Hi-f

XL = 2fL

13

Page 14: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Capacitor and Inductor - Impedance vs FrequencyT

Capacitor Impedance

C = 159nF Inductor Impedance

L = 159mH

Frequency (Hz)100m 1 10 100 1k 10k 100k 1M 10M

Imp

ed

an

ce (

oh

ms)

100m

1

10

100

1k

10k

100k

1M

10M

Inductor Impedance

L = 159mH

Capacitor Impedance

C = 159nF

Capacitor and InductorImpedance vs Frequency

14

Low frequency=Low Impedance

High frequency=High Impedance

Low frequency=High Impedance

High frequency=Low Impedance

Page 15: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Op Amp - Intuitive Model

K(f)Ro

Rin

Vo

Vout

Vdiff+

-

IN+

IN-

x1

15

Page 16: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Op-Amp Loop Gain Model

VOUT/VIN = Acl = Aol/(1+Aolβ)

If Aol >> 1 then Acl ≈ 1/β

Aol: Open Loop Gain

β: Feedback Factor

Acl: Closed Loop Gain

VOUT

VFB

RF

RI

=VFB/VOUT

network

Aol+

-

VOUTVIN

+

-

RF

RI

VIN

+

-

network

VFB

VOUTAol

16

Page 17: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

17

VOUT

VFB

RF

RI

=VFB/VOUT

network

+

-

RF

RI

VIN

+

-

network

VFB

VOUT

β is easy to calculate as feedback network around the Op Amp

1/β is reciprocal of β

Easy Rules-Of-Thumb and Tricks to Plot 1/β on Op Amp Aol Curve

Plotting Aol Curve and 1/β Curve shows Loop Gain

b and 1/b

Page 18: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Amplifier Stability CriteriaVOUT/VIN = Aol / (1+ Aolβ)

If: Aolβ = -1

Then: VOUT/VIN = Aol / 0 ∞

If VOUT/VIN = ∞ Unbounded Gain

Any small changes in VIN will result in large changes in VOUT which will feed

back to VIN and result in even larger changes in VOUT OSCILLATIONS

INSTABILITY !!

Aolβ: Loop Gain

Aolβ = -1 Phase shift of +180°, Magnitude of 1 (0dB)

fcl: frequency where Aolβ = 1 (0dB)

Stability Criteria:

At fcl, where Aolβ = 1 (0dB), Phase Shift < +180°

Desired Phase Margin (distance from +180° Phase Shift) > 45°

18

Page 19: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

19

Aol+

-

VOUTVIN

Op Amp Loop Gain Model

Op Amp is “Closed Loop”

Loop Gain Test:

(An Open Loop Test)

Break the Closed Loop at b

Ground VIN

Inject AC Source, VTest, into b

Aolβ = VOUT

Aol+

-

VOUTVIN

+

-

VTest

Traditional Loop Gain Test

Page 20: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

20

Op Amp Loop Gain Model

Op Amp is “Closed Loop”

VOUT/VIN = Aol / (1+Aolb)

SPICE Loop Gain Test:

Op Amp Loop Gain Test is an “Open Loop” Test

SPICE finds a DC Operating Point before it does an AC Analysis so loop must be closed for DC and open for AC.

Break the Closed Loop at VOUT

Ground VIN source impedance low for AC analysis

Inject: AC Source, VTest, into RF

(Inject: AC Source into High Impedance Node)

Read: Aolβ = Loop Gain = VOUT

(Read: Loop Gain from Low Impedance Node)

+

-

RF

RI

VIN

+

-

network

VFB

VOUT

+

-

VTest

1TF

1TH

Short for ACOpen for DC

Open for ACShort for DC

Aol+

-

RF

RI

VIN

+

-

network

VFB

VOUTAol

Traditional Loop Gain Test

Page 21: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

-

++

4

3

5

1

2

U1 OPA2376V1 2.5V

V2 2.5V

VOUT

RI 1kOhm

RF 10kOhm

LT 1TH

CT 100nF

+

VG1

VFB

VF1 -279.24uV

-25.38uV

-279.24uV

-

++

4

3

5

1

2

U1 OPA2376V1 2.5V

V2 2.5V

VOUT

RI 1kOhm

RF 10kOhm

+

VG1

VFB CT Open

LT Short

-

++

4

3

5

1

2

U1 OPA2376V1 2.5V

V2 2.5V

VOUT

RI 1kOhm

RF 10kOhm

+

VG1

VFB CT Short

LT Open

21

SPICE Loop Gain Test

Loop Gain (Aol) = VOUT = VFB1/ = 1 / VFBAol = VOUT / VFB

DC Equivalent Circuit AC Equivalent Circuit

DC Analysis

DC Analysis DC Analysis

Page 22: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

Aol (

dB)

fcl

Acl

Aol

Aol (Loop Gain)

Closed Loop Response

Open Loop Response

22

Plot (dB) 1/β on Op Amp Aol (dB)

Aolβ = Aol(dB) – 1/β(dB)

Aolβ = Aol / (1/β) = Aolβ

Note how Aolβ changes with frequency

Loop Gain (Aolb) from Aol and 1/b

Page 23: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

23

“Rate-of-Closure” Stability Criteria using 1/β & Aol

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

Aol (

dB)

Aol

fcl1

fcl4

fcl3

fcl2

**

*

**

*

At fcl: Loop Gain (Aolb) = 1 (0dB)

Rate-of-Closure @ fcl =(Aol slope – 1/β slope)

*20dB/decade Rate-of-Closure @ fcl = STABLE

**40dB/decade Rate-of-Closure @ fcl = UNSTABLE

Page 24: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

24

Loop Gain (Aolb) Example

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

Aol

fcl

fp1

fp2fz1

Aol

Rate-of-Closure @ fcl = 40dB/decade

UNSTABLE!

+

-

+

-

VIN

RI

RFCin

VOUT

10k

1k

0.15F

STABLE

Example 1: Note locations of poles and zeros in Aol & 1/b

Aol 1/ Loop Gainfp1 pole ----- polefp2 pole ----- polefz1 ----- zero pole

Page 25: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (d

B)

fp1

fz1

fp2

fcl

25

To Plot Aolβ from Aol & 1/β Plot:Poles in Aol curve are Poles in Aolβ (Loop Gain)PlotZeros in Aol curve are Zeros in Aolβ (Loop Gain) Plot

Poles in 1/β curve are Zeros in Aolβ (Loop Gain) PlotZeros in 1/β curve are Poles in Aolβ ( Loop Gain) Plot[Remember: β is the reciprocal of 1/β]

Loop Gain (Aolβ) Plot from Aol & 1/β Plot

180

0

135

45

10 100 1k 10k 100k 1M 10M

Frequency(Hz)

90

(d

egre

es)

-45

fp1

fz1

fp2

fcl

Loop Gain (Aolb) Phase at fcl:

Phase Shift = -180

Phase Margin = 0

STABLE

STABLE

Example 1: Note locations of poles and zeros in Loop Gain

Aol 1/ Loop Gainfp1 pole ----- polefp2 pole ----- polefz1 ----- zero pole

Page 26: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

26

1/β Always = Closed Loop Response

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

VOUT/VIN

Aol

fcl

SSBW(Small Signal BandWidth)

VOUT/VIN = Aol/(1+Aolβ)At fcl: Aolβ = 1 VOUT/VIN = Aol/(1+1) ~ Aol No Loop Gain left to correct for errors VOUT/VIN follows the Aol curve at f > fcl

Note:

1/β is the AC, Small Signal, Closed Loop, ”Noise Gain” for the Op Amp.

VOUT/VIN is often NOT the same as 1/β.

+

-

RI

RF

VOUT

10k

100k

1kRn

Cn16nF

+

-VIN

VNOISE

Page 27: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

27

How to Modify 1/β for Stable Circuits

+

-

+

-

VIN

VOUT

RFRI

Rn Cn RpCp

ZIINPUT Network

ZFFEEDBACK Network

Page 28: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

28

1/β “First Order Analysis” for ZF

+

-

+

-

VIN

VOUT

RFRI

RpCp

100k1k

10k1.59nF

1/β Low Frequency = RF/RI = 100 40dB

Cp = Open at Low Frequency 1/β High Frequency = (Rp//RF)/RI ≈ Rp/RI = 10 20dB

Cp = Short at High Frequency Pole in 1/β when Magnitude of XCp = RF

Magnitude XCp = 1/(2∙п∙f∙Cp)

fp = 1/(2∙п∙RF∙Cp) = 1kHz Zero in 1/β when Magnitude of XCp = Rp

fz = 1/(2∙п∙Rp∙Cp) = 10kHz)]RF//RI(Rp[Cp2

1fz

)RpRF(Cp21

fp

:equationsExact ZF

Page 29: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

T

Aol

1/

fz

fp

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-40

-20

0

20

40

60

80

100

120

140

fp

fz

Aol

1/

ZF Network (fp and fz)Aol and 1/

29

TINA SPICE: 1/β for ZF

Lo fHi f

1st Order Actualfp 1kHz 917.020Hzfz 10kHz 9.038kHz

1st Order ActualLo f 40dB 40.086dBHi f 20dB 20.079dB

+

-

+

-

VIN

VOUT

RFRI

RpCp

100k1k

10k1.59nF

Page 30: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

30

+

-

+

-

VIN

VOUT

RFRI

Rn Cn

100k

1k

10k

15.9nF

1/β Low Frequency = RF/RI = 10 20dB

Cn = Open at Low Frequency 1/β High Frequency = RF/(RI//Rn) ≈ RF/Rn =100 40dB

Cn = Short at High Frequency Zero in 1/β when Magnitude of XCn = RI

Magnitude XCn = 1/(2∙п∙f∙Cn)

fz = 1/(2∙п∙RI∙Cn) = 1kHz Pole in 1/β when Magnitude of XCn = Rn

fp = 1/(2∙п∙Rn∙Cn) = 10kHz

1/β “First Order Analysis” for ZI

)]RF//RI(Rn[Cn21

fz

RnCn21

fp

:equationsExact ZI

Page 31: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

T

Aol

1/

fz

fp

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-40

-20

0

20

40

60

80

100

120

140

fp

fz

Aol

1/

ZI Network (fp and fz)Aol and 1/

31

TINA SPICE: 1/β for ZI

Lo f

Hi f

1st Order Actualfz 1kHz 999.496Hzfp 10kHz 9.935kHz

1st Order ActualLo f 20dB 20.828dBHi f 40dB 40.906dB

+

-

+

-

VIN

VOUT

RFRI

Rn Cn

100k

1k

10k

15.9nF

Page 32: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Stability Analysis - Method 1 (Loaded Aol & 1/b Technique)

(Riso Compensation)

Page 33: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

V+

V-

+

-

+

U1 OPA627E

Vo

R2 100kR3 4.99k

+

Vin CLoad 1u

33

Capacitive Loading on Op Amp Outputs

T

Time (s)

0.00 150.00u 300.00u

V1

0.00

20.00m

40.00m

VG1

0.00

1.00m

0 150u 300uTime (seconds)

40m

0

Vo (V)

Vin (V)

20m

01m

Unity Gain Buffer Circuits Circuits with Gain

V+

V-

+

Vin

+

-

+

U1 OPA627E

Vo

CLoad 1uF

0 150u 300uTime (seconds)

80m

0

Vo (V)

T

Time (s)

0.00 150.00u 300.00u

VF1

-40.00m

-10.00m

20.00m

50.00m

80.00m

VG1

0.00

20.00m

Vin (V)

20m

-40m20m

10m

Will this circuit behavior get you a raise in pay?

Page 34: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

T

fp1

Aol Pole

Low Frequency

fp2

Loaded Aol

Additional Pole

-20dB/decade

-40dB/decade

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-80

-60

-40

-20

0

20

40

60

80

100

120

140

Rate-of-Closure

40dB/decade

fcl

1/

Loaded Aol due to CLoad

-40dB/decade

-20dB/decade

fp2

Loaded Aol

Additional Pole

fp1

Aol Pole

Low Frequency

34

Loaded Aol V+

V-

V+

V-V+ 15V

V- 15V+

-

+

U1 OPA627E

VOUT

CLoad 1uF

+

Vtest

LT 1THCT 1TF

VFB

Loaded Aol = VOUT / VFB

For AC Test VFB = Vtest

Loaded Aol = VOUT

353.900776nV

353.900776nV

STABLE

Page 35: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

V+

V-

V+

V-V+ 15

V- 15+

-

+

U1 OPA627E

VOUT

CLoad 1u

+

Vtest

LT 1TCT 1T

VFB

Loaded Aol = VOUT / VFB

For AC Test VFB = Vtest

Loaded Aol = VOUT

35

Loaded Aol Model

Loaded AolRo 54

CLoad 1u

+

Vtest

-

+

-

+

Aol 1M

LT Open

CT Short

+

Aol

Ro 54

CLoad 1u

Loaded Aol

Page 36: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

36

Loaded Aol Model

T

Ga

in (

dB

)-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

Loaded AOLPole

+

Aol

Ro 54

CLoad 1u

Loaded Aol

fp2

CLoadRo2

12fp

Equation Pole AolLoaded

Page 37: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

37

Loaded Aol Model

+

=

T

Ga

in (

dB

)

-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

100

T

Vo

lta

ge

(V

)

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Vo

lta

ge

(V

)

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gain

(dB)

Phas

e (de

gree

s)

Frequency (Hz)

100

Aol Aol Load

Loaded Aol

fp1

fp1

fp2

fp2

Note: Addition on Bode Plots = Linear Multiplication

Page 38: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

T

Ga

in (

dB

)

-80

-60

-40

-20

0

20

40

60

80

100

120

140

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ph

ase

[de

g]

-45

0

45

90

135

180

Gain :

VOUT A:(222.74k; -32.46f)

Phase :

VOUT A:(222.74k; 548.41m)

fcl

Loaded Aol

Loop Gain & Phase

a

38

Loaded Aol – Loop Gain & Phase

V+

V-

V+

V-V+ 15V

V- 15V+

-

+

U1 OPA627E

VOUT

CLoad 1uF

+

Vtest

LT 1THCT 1TF

VFB

Loop Gain (Aol) = VOUT

Phase Margin at fcl

STABLE

Page 39: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

39

Riso Compensation

V+

V-

V+

V-

V+ 15V

V- 15V

+

-

+

U1 OPA627E VOUT

CLoad 1uF+

VIN

Riso 6Ohm

VOA

Riso will add a zero in the Loaded Aol Curve

Page 40: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

T

fp1

Aol Pole

Low Frequency

fp2

Loaded Aol

Additional Pole

fz1Loaded AolRiso CompensationAdditional Zero

-20dB/decade

-20dB/decade

-40dB/decade

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-80

-60

-40

-20

0

20

40

60

80

100

120

140Loaded Aol with Riso Compensation

1/Rate-of-Closure

20dB/decade

-40dB/decade

-20dB/decade

-20dB/decade

fz1Loaded AolRiso CompensationAdditional Zerofp2

Loaded Aol

Additional Pole

fp1

Aol Pole

Low Frequency

fcl

40

Riso Compensation Results

V+

V-

V+

V-

V+ 15V

V- 15V

+

-

+

U1 OPA627E VOUT

CLoad 1uF

Riso 6Ohm

VOA

LT 1THCT 1TF

+

Vtest

Loaded Aol = VOA

STABLE

Page 41: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

41

Riso Compensation Theory

VOUTRo 54

CLoad 1u

+

Vtest

-

+

-

+

Aol 1M

Riso 6

LT Open

CT Short

Loaded Aol

+

Aol

Ro 54

CLoad 1u

Loaded Aol

Riso 6

V+

V-

V+

V-V+ 15

V- 15+

-

+

U1 OPA627E

VOUT

CLoad 1u+

Vtest

LT 1T

CT 1T

Riso 6

VOA

Page 42: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

T

Ga

in (

dB

)

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

-90.00

-45.00

0.00

0

-20

-40

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

42

Riso Compensation Theory+

Aol

Ro 54

CLoad 1u

Loaded Aol

Riso 6

sCLoadRiso)(Ro1

sRisoCLoad1 (s)Loaded Aol

Function Transfer

CLoadRiso)(Ro2

1 2fp

:Pole

CLoadRiso2

1 1fz

:Zero

fp2fz1

Page 43: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

43

Riso Compensation TheoryT

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

100T

Ga

in (

dB

)

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gain

(dB)

Phas

e (d

egre

es)

Frequency (Hz)

100

+

=

Aol

Aol Load

Loaded Aol

fp2 fz1

fp1

fp1

fp2 fz1

Note: Addition on Bode Plots = Linear Multiplication

Page 44: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

Riso Compensation Design Steps

1) Determine fp2 in Loaded Aol due to CLoadA) Measure in SPICE with CLoad on Op Amp Output

2) Plot fp2 on original Aol to create new Loaded Aol

3) Add Desired fz2 on to Loaded Aol Plot for Riso CompensationA) Keep fz1 < 10*fp2 (Case A)B) Or keep the Loaded Aol Magnitude at fz1 > 0dB (Case B) (fz1>10dB will allow for Aol variation of ½ Decade in Unity Gain Bandwidth)

4) Compute value for Riso based on plotted fz1

5) SPICE simulation with Riso for Loop Gain (Aolb) Magnitude and Phase

6) Adjust Riso Compensation if greater Loop Gain (Aolb) phase margin desired

7) Check closed loop AC response for VOUT/VINA) Look for peaking which indicates marginal stabilityB) Check if closed AC response is acceptable for end application

8) Check Transient response for VOUT/VIN A) Overshoot and ringing in the time domain indicates marginal stability B) Determine if settling time is acceptable for end application

44

Page 45: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

T

-40dB/decade

Case B: CLoad=2.9nF

-20dB/decade

Case A: CLoad=1uF

fp2

Case B

CLoad=2.9nF

fp2

Case A

CLoad=1uF

Vo

ltag

e (

V)

-80

-60

-40

-20

0

20

40

60

80

100

120

140

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Vo

ltag

e (

V)

-45

0

45

90

135

180

fp2

Case B

CLoad=2.9nF

fp2

Case A

CLoad=1uF

Case A: CLoad=1uF

Case B: CLoad=2.9nF

-40dB/decade

-20dB/decade

Loaded Aol

Case A: CLoad = 1uF

Case B: Cload = 2.9nF

VOA[1] 2.9n[F] A:(983.366787k; 21.799287)

VOA[1] 2.9n[F] A:(983.366787k; 45)

VOA[2] 1u[F] B:(2.980143k; 71.980276)

VOA[2] 1u[F] B:(2.980143k; 45)

ab

1),2) Loaded Aol and fp2

45

Case A, CLoad=1uF, fp2=2.98kHzCase B, CLoad=2.9nF, fp2=983.37kHz

V+

V-

V+

V-

V+ 15V

V- 15V

+

-

+

U1 OPA627E VOUT

CLoad 2.9nF

Riso 0Ohm

VOA

LT 1THCT 1TF

+

Vtest

Loaded Aol = VOA

Page 46: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

3) Add fz1 on Loaded Aol

46

T

fp2

Case B

CLoad=2.9nF

fz1

Case B

CLoad=2.9nF

fp2

Case A

CLoad=1uF

fz1

Case A

CLoad=1uF

Frequency (Hz)1 10 100 1k 10k 100k 1M 10M

Vo

ltag

e (

V)

-80

-60

-40

-20

0

20

40

60

80

100

120

140

Loaded Aol

Add Riso Compensation

4.07MHz

fz1

Case B

CLoad=2.9nF

fp2

Case B

CLoad=2.9nF

fz1

Case A

CLoad=1uF

fp2

Case A

CLoad=1uF983.37kHz

29.8kHz

2.98kHz

Case A, CLoad=1uF, fz1=29.8kHzCase B, CLoad=2.9nF, fz1=4.07MHz

Page 47: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

4) Compute Value for Riso

47

Case A, CLoad=1uF, fz1=29.8kHzCase B, CLoad=2.9nF, fz1=4.07MHz

CLoad1fz2

1Riso

CLoadRiso2

1 1fz

:Zero

5.36Ω use

:29.8kHzfz1 F,1CLoad A,Case Zero,

34.5F1kHz8.292

1Riso

CLoadRiso21

1fz

13.7Ω use

:4.07MHzfz1 2.9nF,CLoad B, Case Zero,

48.13nF9.2MHz07.42

1Riso

CLoadRiso2

1 1fz

Page 48: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

T

VOA

-20

0

20

40

60

80

100

120

140

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

VOA

0

45

90

135

180fcl

Loop Gain

Case A: CLoad=1uF

VOA:

VOA A:(1.519941M; 1.364794f)

VOA:

VOA A:(1.519941M; 87.522388)

a

5),6) Loop Gain, Case A

48

Phase Margin at fcl = 87.5 degrees

V+

V-

V+

V-

V+ 15V

V- 15V

+

-

+

U1 OPA627E VOUT

CLoad 1uF

Riso 5.36Ohm

VOA

LT 1THCT 1TF

+

Vtest

Loop Gain (Aol) = VOA

Page 49: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

5),6) Loop Gain, Case B

49

T

VOA

-20

0

20

40

60

80

100

120

140

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

VOA

0

45

90

135

180fcl

Loop Gain

Case B: CLoad=2.9nF

VOA:

VOA A:(4.48315M; -1.528291f)

VOA:

VOA A:(4.48315M; 54.167774)

a

Phase Margin at fcl = 54 degrees

V+

V-

V+

V-

V+ 15V

V- 15V

+

-

+

U1 OPA627E VOUT

CLoad 2.9nF

Riso 13.7Ohm

VOA

LT 1THCT 1TF

+

Vtest

Loop Gain (Aol) = VOA

Page 50: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

50

7) AC VOUT/VIN, Case A

T VOA

-3dB=1.58MHz

VOUT

-3dB=30.44kHz

Ga

in (

dB

)

-80

-60

-40

-20

0

20

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ph

ase

[de

g]

-180

-135

-90

-45

0

VOUT/VINRiso CompensationCase A, CLoad=1uF

VOA

-3dB=1.58MHz

VOUT

-3dB=30.44kHz

V+

V-

V+

V-

V+ 15V

V- 15V

+

-

+

U1 OPA627E VOUT

CLoad 1uF

Riso 5.36Ohm

VOA

+

VIN

Page 51: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

51

8) Transient Analysis, Case A

T

Time (s)

0 500u 1m 2m 2m

VIN

-10.00m

10.00m

VOA

-10.27m

10.27m

VOUT

-10.01m

10.01m

VOUT / VINTransient AnalysisCase A, CLoad=1uF

V+

V-

V+

V-

V+ 15V

V- 15V

+

-

+

U1 OPA627E VOUT

CLoad 1uF

Riso 5.36Ohm

VOA

+

VIN

Page 52: Solving Op Amp Stability Issues Part 1 (For Voltage Feedback Op Amps) Tim Green & Collin Wells Precision Analog Linear Applications 1

V+

V-

V+

V-

V+ 15V

V2 15V

+

-

+

U1 OPA627E

VOUT

CLoad 1uF

Riso 6Ohm

VOA

VIN 5V RLoad 200Ohm

A+

ILoad 24.271845mA

5V

4.854369V

52

Riso Compensation: Key Design Consideration

V+

V-

V+

V-

V+ 15V

V2 15V

+

-

+

U1 OPA627E

VOUT

CLoad 1uF

Riso 6Ohm

VOA

VIN 5VRLoad 1kOhm

A+

ILoad 4.970179mA

5V

4.970179V

Accuracy of VOUT depends on Load Current

Light Load Current

Heavy Load Current