25
О пространственных наблюдениях радиоисточников тонкой структуры солнечных радиовсплесков Чернов Г.П.1), Фомичев В.В.1), Сыч Р.А.2), Yan Yihua3), Fu Qijun3) 1) ИЗМИРАН, Москва,Троицк, [email protected] 2) Институт солнечно-земной физики, Иркутск 3) Key Laboratory of Solar activity, NAOC, Beijing, China ([email protected] ; www.izmiran.ru/~gchernov ) Измерения положений и размеров источников тонкой структуры являются определяющим фактором при выборе механизма радиоизлучения. Для объяснения самой интригующей зебра- структуры (ЗС) было предложено более десятка механизмов. В модели на двойном плазменном резонансе (ДПР) радиоисточник должен быть распределенным по высоте в короне, но квази-стационарным. В модели взаимодействия вистлеров с плазменными волнами источник тоже распределенный, но движущийся. Движение определяется величиной и направлением групповой скорости вистлеров, поэтому изменения пространственного дрейфа источников должны происходить синхронно с изменениями частотного дрейфа полос на динамическом спектре. В метровом диапазоне такая синхронность уже наблюдалась. В дециметровом диапазоне попытка определения смещения источника в течение одной полосы зебры в явлении 14.12.2006 с помощью системы FASR (Chen et al. Ap.J. 736, 64, 2011) не удалась из-за недостаточного временного разрешения, ~ 20 мс примерно на таком же временном интервале. В этой работе рассматривался механизм ДПР, а модель с вистлерами была отброшена из-за неточного определения групповой скорости вистлеров. С введением в строй нового Китайского солнечного радиогелиографа в дециметровом (CSRH I с угловым разрешением 10’’ на 2 ГГц ) и микроволновом (CSRH II с разрешением до 1.4’’ на 15 ГГц) диапазонах появится новая возможность для наблюдений движений радиоисточников в каждой полосе ЗС. На примере нескольких событий показана важность позиционных наблюдений. В явлении 24.02.2011 впервые обнаружено, что появление ЗС совпало с моментом магнитного пересоединения в линии SDO/AIA 171 Å. 11.04.2013 ЗС наблюдалась в ходе разгорания вспышечной аркады петель в линии SDO/AIA 335 Å. Только позиционные наблюдения помогут понять процессы в источниках, когда волокна (fiber bursts) появляются на фоне развитой ЗС с сильной сверхтонкой структурой в виде миллисекундных спайков, что наблюдалось 01.12.2004.

SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

  • Upload
    lora

  • View
    38

  • Download
    0

Embed Size (px)

DESCRIPTION

- PowerPoint PPT Presentation

Citation preview

Page 1: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

О пространственных наблюдениях радиоисточников тонкой структуры солнечных радиовсплесков

Чернов Г.П.1), Фомичев В.В.1), Сыч Р.А.2), Yan Yihua3), Fu Qijun3)1) ИЗМИРАН, Москва,Троицк, [email protected]) Институт солнечно-земной физики, Иркутск

3) Key Laboratory of Solar activity, NAOC, Beijing, China

([email protected] ; www.izmiran.ru/~gchernov)

• Измерения положений и размеров источников тонкой структуры являются определяющим фактором при выборе механизма радиоизлучения. Для объяснения самой интригующей зебра- структуры (ЗС) было предложено более десятка механизмов. В модели на двойном плазменном резонансе (ДПР) радиоисточник должен быть распределенным по высоте в короне, но квази-стационарным. В модели взаимодействия вистлеров с плазменными волнами источник тоже распределенный, но движущийся. Движение определяется величиной и направлением групповой скорости вистлеров, поэтому изменения пространственного дрейфа источников должны происходить синхронно с изменениями частотного дрейфа полос на динамическом спектре. В метровом диапазоне такая синхронность уже наблюдалась. В дециметровом диапазоне попытка определения смещения источника в течение одной полосы зебры в явлении 14.12.2006 с помощью системы FASR (Chen et al. Ap.J. 736, 64, 2011) не удалась из-за недостаточного временного разрешения, ~ 20 мс примерно на таком же временном интервале. В этой работе рассматривался механизм ДПР, а модель с вистлерами была отброшена из-за неточного определения групповой скорости вистлеров. С введением в строй нового Китайского солнечного радиогелиографа в дециметровом (CSRH I с угловым разрешением 10’’ на 2 ГГц ) и микроволновом (CSRH II с разрешением до 1.4’’ на 15 ГГц) диапазонах появится новая возможность для наблюдений движений радиоисточников в каждой полосе ЗС. На примере нескольких событий показана важность позиционных наблюдений. В явлении 24.02.2011 впервые обнаружено, что появление ЗС совпало с моментом магнитного пересоединения в линии SDO/AIA 171 Å. 11.04.2013 ЗС наблюдалась в ходе разгорания вспышечной аркады петель в линии SDO/AIA 335 Å. Только позиционные наблюдения помогут понять процессы в источниках, когда волокна (fiber bursts) появляются на фоне развитой ЗС с сильной сверхтонкой структурой в виде миллисекундных спайков, что наблюдалось 01.12.2004.

Page 2: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

On the Analogy between the Zebra Patterns in Radio Emissionfrom the Sun and the Crab Pulsar

V. V. Zheleznyakov, V. V. Zaitsev, and E. Ya. Zlotnik*

Page 3: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

More than ten different models have been proposed for ZPs; most of them include some emission of electrostatic plasma waves at the upper hybrid frequency at the double plasma resonance (DPR).

ωUH = (ωPe^2 + ωBe^2)^1/2 = sωBe The DPR mechanism explains only general properties of ZP, and when a tentative is

made to explain some unusual features some problems arise.

Fiber bursts differ from ZP stripes only by a constant negative frequency drift, and one of the first models explained the radio emission (t) of fiber bursts by the coalescence of plasma waves (l)

with whistlers (w), l + w t (Kuijpers, 1975)

In Chernov (1976; 1990), the mechanism l + w t was proposed as an unified model in which the formation of ZPs in the emission and absorption spectra was attributed to the oblique propagation of whistlers, while the formation of stripes with a stable negative frequency drift (the fiber bursts) was explained by the ducted propagation of waves along a magnetic trap. This model explains occasionally observed transformation of the ZP stripes into fibers and vice versa.

Calculations show that the DPR-based mechanism fails to describe the generation of a large number of ZP stripes in any coronal plasma model.

Page 4: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

Altitude dependence of the plasma frequency in accordance with the barometric law (heavy line) and altitude profiles of the electron cyclotron harmonics s (light lines) in the solar corona. For the electron temperature Te = 1.2 ∙ 10^6 K and initial frequency fP0 = 3800 MHz at an altitude of hB0 = 20 000 km, 34 DPR levels form between 2600 to 3800 MHz in the plasma layers (from Laptuhov and Chernov, 2010).

Page 5: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

Fig. 4. A giant interpulse from the Crab pulsar, (strong linearly polarized) observed andprocessed in exactly the same way as the main pulses. Total intensity time resolution 25.6 ns; dynamic spectral resolution 19.5 MHz and 25.6 ns. (Eilek & Hankins, 2007)

Page 6: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

A ZEBRA PATTERN IN A SOLAR DECIMETRIC RADIO BURST

Bin Chen1,2, T. S. Bastian2, D. E. Gary3, and Ju Jing4 (Astrophys. J. 736, 64, 2011) 1 Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA

The most cited and used model for ZP is mechanism at DPR, especially after the paper of Chen et al. (2011) where the authors allegedly confirm this mechanism using positional observation by the system FASR. In this connection, it is necessary to note that the model with whistlers was there mistakenly rejected. In the whistler model, when we estimate Vgr = 2.5 x 10^9 cm s-1 , that’s value in the quasi-longitudinal propagation (along the magnetic trap, it is not Vproj as authors used ). And Vproj = Vgr cos α1 , then for big whistler angle propagation (cos α1~0.1) you could receive the same value of tan α1 , as for tan α2 (see Fig. 6). So, no problem with the whistler model. The high speed of spatial drift of the zebra sources (~0.1 c) can be related with more high density gradient across the magnetic trap. Then, Chen et al. (2011) used convenient idealistic models for plasma density and magnetic field with exponential dependence, instead of very known barometric formula and dipole

dependence for B (or model of Dulk and McLean, 1978). An attempt at the determination of the displacement of source during one stripe of zebra

in phenomenon of 14.12.2006 with the aid of the system FASR did not succeed because of the insufficient time resolution, ~ 20 ms approximately in the same time interval. Thus, for the future, it is desirable to observe more long lasting zebra

with FASR to verify this.

Page 7: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

Simplified source model (Fig. 14 from Chen et al. (2011) using positional observation by FASR ), supplemented by the scheme of vectors of the group velocity of whistlers

Page 8: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

New models of zebra-patterns

• The continuous discussions stimulate the developments of new models. Treumann et al. (2011) proposed new mechanism of ZP, the ion-cyclotron maser. Thanks to the special delta-shaped distribution function of the accelerated ions, the ion-cyclotron maser generates a number of electromagnetic ion-cyclotron harmonics which modulate the electron maser emission. A part of the accelerated relativistic protons passes along the magnetic field across the trapped loss-cone electron distribution. The modulation of the loss-cone will necessarily cause a modulation of the electron cyclotron maser. Locally this produces the typical “Zebra” emission/absorption bands. However this mechanism can work in the strong magnetic field, when fpe/fce < 1.

• Karlicky et al. (2013) continued the development of the model of Kuznetsov (2006) for fiber bursts: fiber bursts can be explained by the propagating fast sausage magnetoacoustic wave train. Then Karlicky (2013) extended a similar model for ZP: the magnetoacoustic waves with density variations modulate the radio continua, and this modulation generates zebra effects. It should be noted that close model was examined earlier in three works by Laptuhov and Chernov (2006; 2009; 2012).

• Yurovsky (2011) continued a series of works about the formation ZP due to the refraction (interference mechanism) of rays on the heterogeneities in the corona. However the author doesn't refer to the previous works (Ledenev et al. 2006), and carried out the simplified simulation of ZP stripes which is well coinciding with those observed.

Page 9: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

• In contrast to all the above models, only• the model with the whistlers allows to explain many special features the

zebra- structure: • - the oscillatory frequency drift and the frequency splitting of stripes, • - a change in the spatial drift of radio source synchronously with the

frequency drift of stripes in the spectrum, • - the millisecond superfine structure of stripes.

• It should be noted that the relative significance of several recent possible mechanisms remains uncertain.

• Simultaneous or consecutive appearance the zebra- structure in different frequency ranges is obviously connected with the dynamics of flare processes.

Page 10: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

2. Last observations Fig. 1. Zebra- structure and pulsation during 13 sec registered by the SBRS/Huairou after the second flare ejection. The numerous stripes of zebra- structure reveal the superfine structure in the form of millisecond spikes. Radio emission is not polarized.

Page 11: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

Fig.5. Two frames from the movie of SDO/AIA 171 Å showing the beginning of the second ejection (24.02.2011) at 07:37:02 UT ( on the left) and its continuation at 07:38:48 UT (on the right). In the right frame the ejection has form of a magnetic reconnection with a X- point. The thickness of the loop bases under X- point is of ≤ 1".

Page 12: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

New events with ZP. 11 April 2013 event was simultaneously observed in 4 ground-based observatories and SDO/AIA

Page 13: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 14: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 15: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 16: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 17: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 18: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 19: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 20: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 21: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 22: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF
Page 23: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

Fig. 5. The 1 December 2004 event. Fiber bursts are immerged into zebra pattern. Zebra stripes consist of spikes, however fiber bursts are almost continuous (uninterrupted). It is very important to know whether both elements have the same radio source?

Page 24: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

• Now, we hope on the progress of the solar radio spectral imaging observations. The Chinese spectral radioheliograph (CSRH) is a new generation solar radio telescope which will be the largest and most advanced radio imaging telescope for solar corona in the world. It can provide true imaging spectroscope with high temporal, spatial, and spectral resolutions, covering decimeter and centimeter wavelengths.

• In decimeter range (0.4 – 2 GHz) 40 antennas with diameter of 4.5 m CSRH I will provide space resolution 10.3’’ at 2GHz, and CSRH II with 60 antennas with diameter of 2 m will provide space resolution 1.4’’ at 15 GHz (Yan et al. 2012; Yan et al. 2013).

• New possibilities we also wait from upgraded SSRT; 96 antenna radioheliograph in the range 4 – 8 GHz will construct one image at one frequency each 0.1 – 1 c (Lesovoi et al. 2013).

Page 25: SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF

• Conclusions• We demonstrated several events with radio fine

structures in which the positional observations could be a determining factor for the selection of the radio emission mechanism.

• It is very important to compare the source sizes of continuum and different fine structures, and to know whether the radio source is moving (shock wave) or not.

• Radio sources of fiber bursts and ZP in the whistler model must have moving sources, and the spatial drift of ZP stripes should change synchronously with changes of frequency drift in the dynamical spectrum.

• In the DPR model the ZP source must be rather stationary.