54
SPICA 装装装装装装装装装 H. Kataza (ISAS/JAXA) SPICA 装装装装装 1

SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Embed Size (px)

Citation preview

Page 1: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

SPICA 装置検討状況と展望

H. Kataza     (ISAS/JAXA)

SPICA 検討チーム

 1

Page 2: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Scientific Goals

Where are we from ?How did the Universe originate and what is it made of ?

Are we alone ?What are the conditions for stellar and planetary formation and emergence of life?

2

Page 3: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

SPICA Scientific objectives (Mission Definitions)

Resolution of Birth and Evolution of Galaxies

Transmigration of Dust in the Universe Thorough Understanding of Planetary

System Formation

3

Page 4: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Requirements High spatial resolution

→ 3m-class telescope

Wavelength coverage 5 to 200m Wide Field of View Unique capabilities

→ 3m-class telescope

High sensitivity→ T<10K

Page 5: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Instruments on board SPICA MCS : Mid Infrared Camera and Spectrometer

Wide field Imaging, mid and high res. spectroscopy wavelength coverage : 5-38m

SAFARI : Far Infrared Imaging Fourier Spectrometer Wide field Imaging spectrometer wavelength coverage : 34-210m

SCI : SPICA Coronagraph Instrument Coronagraphic imaging and spectroscopy wavelength coverage : 3.5-27m Dedicated instrument for exoplanets study

FPC-S : NIR Focal Plane Camera for Sience Wide field Imaging and Low Res. Spec. with LVF wavelength coverage : 0.7-5.2m

5

Page 6: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Focal Plane InstrumentsWavelength coverage vs Resolving Power

λ

v

2 m 20 m 200 m

100(3000 km s-1)

1000(300 km s-1)

10000(30 km s-1)

Herschel

JWST

SPICA

FPC-S

MCS/HRS

SCISAFARI

MCS/WFC/LRS

MCS/MRS

Wavelength

US Inst

Unique Capability of SPICA/FPIs

Page 7: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

SPICA PLM (payload module)

7

Page 8: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

FPIA: Focal Plane Instrument Assembly

8

Page 9: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Focal Plane map

9

Page 10: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

MCS

10

Page 11: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Unveiling the Role of Environment in the Early Universe

MCS explore the star formation activities of galaxies along the large-scale structures in the high-z Universe up to z ~5, taking advantage of wide-field imaging capability and excellent sensitivity at > 20 micron.

z = 5 z = 1

Yahagi et al. (2005)M=6×10^14 Msun, 20Mpc×20Mpc (co-moving)

MCS/WFC

JWST/MIRI

11

Wide Field of View 5’x5’ Imager

Page 12: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Life cycle of dust revealed by Infrared Spectral Features in the MIR

ionized gas ; [NeII] 12.81m, [Ne III] 15.56m, 36.01m, [NeV] 14.32m, [S III] 33.48m, 18.71m,                [SIV] 10.51m, [PIII] 17.89m, [ArIII] 21.83m,[ArV] 13.07m, [OIV] 25.89m, [SiII] 34.82m,               [Fe II] 25.99m, 35.35m, 17.94m, 24.5m, [FeIII] 22.93m, 33.04m molecular gas ; H2  S(0) 28.219m, S(1) 17.035m, S(2) 12.279m, C2H2 (5=1-0)13.7m,                 HCN (2=1—0) 14.04m, 12CO2 14.9m solid phase molecules and dust grains ; GEMS, MgS, FeS, PAHs, crystalline silicates

12

Mid-R Spec. from 12 to 38

How the materials of various physical phases evolves in the Universe?

SNe as dust budgets in the early universe?

Process of dust nucleation, grain growth and destruction of Dust

Chemical Evolution of the ISM

Page 13: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Observing the dissipation of gas and their structural evolution in planet-forming regions

The profiles of molecular emission lines

(CO, H2O, HCN, CO2, C2H2) in the MIR

useful to understand

how the structure of gas disks evolve

in the course of planet formation

13

Formation Mechanism of Gas Giant Planets Initial Conditions Required for Terrestrial Planet Formation High-R Spec. at MIR

Page 14: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

MCS : Instrument Overview

5 -- 38m Camera and Spectrometer Wide Field Camera

5 arcminutes square FOV x 2, 5--25 and 20--38m Mid Resolution Spectrograph

IFU by image slicer R:(1900--3000)+(1100 --31500) (12.2--23.0)+(23.0--37.5)m at once

High Resolution Spectrograph R : 20,000 ~ 30,000 4--8 m and 12--18m

Low Resolution Spectrograph R ~ 50--100 5-26m and (20-38 or 25-38(or 48))m

14

Page 15: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

15

Fore-OpticsFore-Optics

HR

S

WFC

-S

MR

SW

FC-L

LRS

Page 16: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Design: Optical architecture (full option)

16

Page 17: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Design: Optical architecture (base line)

17

Page 18: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Fore-Optcs

18

Relay optics with Collimator + Camera

Free-surface mirror

Wide FOV including WFC+(MRS/HRS)+LRS

Compensate telescope aberrations

Page 19: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

WFC-S

19

FOV: 5’ x 5’

Diffraction limited image

Zodiacal light limit noise

5 -- 25m

Si:As 2048x2048 0.”146 fov/pix

Page 20: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

WFC-L

20

FOV: 5’ x 5’ x 2 field

Diffraction limited image

Zodiacal light limit noise

20 -- 38m

Si:Sb 1024x1024 0.”293 fov/pix

Page 21: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Medium Resolution Spectrograph (MRS)

21

MRS-S 12.2 – 23.0 m R 1900 – 3000 Si:As 2k x 2k pixel scale 0”.403MRS-L 23.0 – 37.5 m R 1100 – 1500 Si:Sb 1k x 1k pixel scale 0”.485Image Slicer (slit length x width x slices)    MRS-S; 12” x 1”.2 x 5 MRS-L; 12” x 2”.5 x 3 sharing the same FOV,

Page 22: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1
Page 23: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

High Resolution Spectrometer (HRS)

HRS-L HRS-S

Array format Si:As (2k x 2k) Si:As (2k x 2k)

Wavelength coverage 12-18 μm 4-8 μm

Spectral resolution (R=λ/Δλ) 20,000-30,000 30,000

Pixel scale 0.48“/pix 0.288“/pix

Slit length x width 6.0” x 1.2” 3.5” x 0.72”

Main disperser CdTe or CdZnTe immersion grating ZnSe immersion grating

Specifications of HRS

Optical layout

23

Page 24: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

24

Page 25: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Spec.: Low Resolution Spectrograph (LRS)

Wide wavelength coverage High sensitivity LRS-S 5 -- 26 m covered by KBr prism 2’.5 x 1”.40 long slit R ~ 50 -- 100

LRS-L 20 -- 50 m prism CsI 2’.5 x 2”.66 long slit R ~ 50 – 100

S and L shares the same FOV 25

Page 26: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

LRS optics and configuration

26

Page 27: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

WFC expected performance

27

For both WFC-S (Si:As 2k x 2x)/WFC-L(Si:Sb 1k x 1k)

Pixel scale:0.36 arcsec

Frame integration:617.3 s Background (Zodiacal light) 261K BB18MJy/str at 25m.

Total integration time:3600s Aperture photometry within the first diffraction null ring

Page 28: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

MRS expected performance

28

Pixel scale, wavelength band width : value in the optical design

Frame integration time: 300s for MIR-S / 600s for MIR-L

High Background : BB T=268.5K normalized to 80 MJy/sr at 25μm

Low Background : BB T=274.0K normalized to 15 MJy/sr

Page 29: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

HRS expected performancePixel scale, wavelength band width : value in the optical design

Fowler-16 sampling – Read noise: 5 electron/pix/read-out

Frame integration time: 300s

High Background : BB T=268.5K normalized to 80 MJy/sr at 25μm

Low Background : BB T=274.0K normalized to 15 MJy/sr

29

Page 30: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

MCS: 開発状況まとめ光学設計 : よい設計解を見つけた        トレランス解析結果も良好        調整方法もシミュレートし、方向性確立構造設計: 最も複雑な MRS 部分でお試し設計        意外にも軽くできそう光学素子: エマルジョン回折格子の試作成功        ミラーの製造もうまくいきそう        フィルターの開発は継続検出器: Si:As は JWST からの拡張 Si:Sb は低暗電流が実現しそう      熱設計も大丈夫そうSPICA 指向揺らぎ : 大きい! Tip-tilt が必要に

30

Page 31: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

MCS: Next step

On-going review process

mid-term report

mandatory : WFC , MRS

high rated option : HRS-L

option : HRS-S, LRS

final report within a half year

Focus on the reduced function is necessary!

Scientific operation plan should be developed

31

Page 32: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

LRS

LRS R ~ 50--100 5-26m and 20-38m Full field grism/prism in WFC + Short slit at

the edge of FOV Binning MRS

32

Page 33: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Wavelength coverage

5 12.2 23 37.5

LRS-S LRS-LMRS

WFC-S grism

MRS

5 -- 98 --14.5

13 -- 2321 -- 38

WFC-L grism

Slitless / Small Slit / Slit and LVF exchange wheel ?

Short Slit : 7arcsec WFC 293 x 300 arcsec

Page 34: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

MCS : Collaborations with ASIAA

ASIAA: 検出器の供給 / サイエンス検討 MCS プロポーザル改定・レガシー観測提案で共同作業

SAFARI との協力 MCS+SAFARI で SPICA を認めてもらわねば レガシー観測提案には SAFARI も含めよう

34

Page 35: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

SAFARI

35

Page 36: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

36

Page 37: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

37

Page 38: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

38

Page 39: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

39

Page 40: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

40

Page 41: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

41

Page 42: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

42

Page 43: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

43

Page 44: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

44

Page 45: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

SCI

45

Page 46: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Establish MIR “Spectral Atlas” of exoplanet atmospheres

(Hanel et al. Sci, 206, 952, 1979)

MIR Spectrum of Jupiter by Voyager

Spatially resolved, spectroscopic characterization of planet atmosphere is a key to understand planet formation.

NIR - MIR spectrum of the planet atmosphere is rich in various molecular features, which is difficult to access from the ground.

Detailed MIR spectrum of planet atmosphere we know so far is only from our solar planets (Jupiter, Saturn, etc).

MIR Spectrum of exoplanets

Coronagraph with Spectroscopic capabilities

Page 47: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Coronagraphic observation for exoplanets in 2020’s

• JWST and Large ground-based telescopes (e.g. TMT)– Powerful tools for discovery

of many exopalnets– Spectroscopic capability is

very limited

• SPICA-SCI– Unique tool for

charcterization by wide IR spectroscopy with coro.

Fine synergy: productive and complementally!

(Marois et al. 2008) Kalas et al. (2008)Thalman al. (2009)

Figure by Fukagawa

Page 48: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

SPICA Coronagraph Instrument (SCI) Scientific objectives

Detection and characterization of Jupiter-like planets by direct imaging and spectroscopy

Study of physical parameters and atmospheric compositions of exoplanets

Establish “Infrared Spectral Atlas” of exoplanet atmospheres

Instrument Design

Binary pupil mask as a coronagraph Contrast after PSF subtraction = 106

(Raw contrast = 104) High-contrast coronagraphic imaging

spectroscopy ( R = ~ 20, 200 )

Project status International review is ongoing Binary Pupil Mask

Page 49: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

1Gyr

5Gyr

Planet model atmospheres and the sensitivity of SCIFigures from M. Fukagawa

Direct detection and spectroscopy of nearby Jupiter-like planets

Young (<1Gyr), ~ 1MJup planets

Matured (< 5Gyr), a few MJup planets

Survey strategy: Young stars in young associations (<1 Gyr,

<50pc)

Very nearby, Matured stars (<5Gyr, 10pc)

Over 200 target stars

Target of SCI: Young and matured Jupiter-like planets

Page 50: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

C3.5µm C4.7µm C10µm C15µmHR8799 b 5.89E-06 9.11E-06 1.44E-04 2.30E-04HR8799 c 1.70E-05 1.63E-05 2.72E-04 3.15E-04HR8799 d 1.70E-05 1.63E-05 2.72E-04 3.15E-04HR8799 e 1.20E-05 1.37E-05 2.28E-04 2.90E-04Fomalhaut b - - - -Beta pic b 1.49E-04 1.01E-04 1.04E-02 4.91E-032M J044144 b 3.15E-02 2.05E-02 1.53E-02 1.25E-022M1207 b 1.78E-03 1.59E-03 1.74E-02 1.69E-02AB Pic b - - - -UScoCTIO 108 b 8.55E-04 1.95E-04 4.20E-03 3.99E-031RXS 1609b 3.13E-05 1.21E-05 1.37E-04 1.28E-04Ross 458AB c 5.55E-07 1.89E-06 1.43E-05 5.58E-05GSC 06214-00210 b 1.11E-04 4.18E-05 3.41E-04 3.13E-04HIP78530 b 3.13E-06 1.18E-06 3.19E-06 5.21E-06CD-35 2622 b 3.22E-03 1.18E-03 1.17E-02 1.11E-02SR 12AB b 6.14E-03 2.18E-03 1.62E-02 1.42E-02

CFBDS 1458 b 3.83E-04 1.61E-03 1.39E-02 5.63E-02GQ Lup b 1.74E-04 6.80E-05 5.08E-04 4.68E-04

(Marois et al. 2008)

Contrast of directly image exoplanets (estimation by T. Matsuo)

Follow-up observations of exoplanets discovered by ground-based direct imaging

Complementary to NIR ground-based observations Contrast, sensitivity is enough for most of the targets IWA is a main limitation A number of targets will significantly increase in a next decade

Target of SCI:Follow-up Observation of Known Exoplanets

Page 51: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Specifications of the instrumentObservation mode Coronagraphic Imaging SpectroscopyCoronagraph method Binary pupil maskGuaranteed contrast @PSF* Raw contrast > 10^4

After PSF subtraction >10^6Spectral Resolution in ~ 5, 20, 200 Inner - Outer working angle 3.3 – 12 λ/D (mask1)

1.7 – 4.5 λ/D (mask2) FoV 1’ x 1’Detector and channel Short channel: 2k x 2k InSb (λ<5μm)

Long channel: 2k x 2k Si:As (λ>5μm) Wavelength coverage 3.5-27m (Coronagraph Imaging/spectroscopy)

1-27m (Non- coronagraph Imaging/spectroscopy)

Binary Pupil MaskStar PSF

High-contrastRegion

Page 52: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Current Development Status

Basic optical design was finished

Simplification for a robust design Deformable mirror is omitted

Focal-plane mask without moving mechanism

Key technology development Binary pupil mask

Cryogenic testbed

Diamond turning metallic mirror

SCI simulation software

Page 53: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

Simulation Examples

5um

Contrast = 5.5E-7

Contrast enhancement by a PSF subtraction method, under the existence of telescope pointing error = 0.06”

Contrast after PSF subtraction ~ 106 (Raw contrast=104) Spectroscopy + PSF subtraction

Target: K5V, PSF reference: A0V star

Page 54: SPICA 装置検討状況と展望 H. Kataza (ISAS/JAXA) SPICA 検討チーム 1

SCI: Sumarry SPICA Coronagraph Instrument (SCI) is a high-contras imaging spectrometer for SPICA

Scientific Objectives Detection and Characterization of Jupiter-like planets (<5 Gyr) by direct

imaging and spectroscopy

Study of physical parameters and atmospheric compositions of exoplanets

Establish MIR “Spectral Atlas” of exoplanet atmospheres

Development Status Basic optical design was done

Simplification for a robust design ( no DM, focal plane mask ) Key technologies development is ongoing (Free-standing mask, cryogenic

optical testbed, mirrors etc)

SCI simulation software