117
Module 1 - 1 Prof. Alessandro Tarantino, University of Strathclyde, UK Introduzione al comportamento idraulico dei terreni parzialmente saturi - principi fondamentali, riflessi sul comportamento idro-meccanico e sulle prestazioni di opere in vera grandezza Prof Alessandro Tarantino University of Strathclyde, Glasgow, UK ([email protected] ) Summer School – Cagliari, 22-23 giugno 2014

Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 1

Prof. Alessandro Tarantino, University of Strathclyde, UK

Introduzione al comportamento idraulico dei terreni parzialmente saturi -principi fondamentali, riflessi sul comportamento idro-meccanico e

sulle prestazioni di opere in vera grandezza

Prof Alessandro Tarantino

University of Strathclyde, Glasgow, UK([email protected] )

Summer School – Cagliari, 22-23 giugno 2014

Page 2: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 2

Prof. Alessandro Tarantino, University of Strathclyde, UK

Tarantino, A. 2010 Basic concepts in the mechanics and hydraulics of

unsaturated geomaterials

New Trends in the Mechanics of Unsaturated Geomaterials LyesseLaloui (ed.), 3-28. ISTE – John Wiley & Sons.

Page 3: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 3

Prof. Alessandro Tarantino, University of Strathclyde, UK

Surface tension and capillary systems

Page 4: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 4

Prof. Alessandro Tarantino, University of Strathclyde, UK

Cohesion and surface tension

Cohesion = Attraction force between molecules of the same type

At the surface, the resultant force is directed downward

The gas-liquid interface behaves like a membrane subject to a uniform tensile stress

liquid

gas

This stress is termed surface tension

Page 5: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 5

Prof. Alessandro Tarantino, University of Strathclyde, UK

Adhesion

Liquid

Liquid

Adhesion < Cohesion Adhesion < Cohesion

Contact angle (measured throughthe

liquid)

θ<90°

Adhesion = Attraction force between molecules of different type

θ>90°

Solid

sur

face

Supe

rfici

e so

lida

The liquid ‘wets’ the surface The liquid does not wet

Page 6: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 6

Prof. Alessandro Tarantino, University of Strathclyde, UK

Effect of curvature of the liquid-gas interface

θ

R

water

air

r

T

RT

rTuu aw

2cos2−=−=−

θ

ua = air pressure [F/L2]uw = water pressure [F/L2]θ = contact angleT = surface tension [F/L]r = radius of capillary tube [L]R = radius of curvature of spherical cup [L]

θπππ cos222 rTruru wa +=

if θ < 90°

The air pressure is partly sustained by the meniscus

The water pressure is lower than air pressure

Mechanical equilibrium

Page 7: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 7

Prof. Alessandro Tarantino, University of Strathclyde, UK

Rise in capillary tube

uw<0uw=0

uw=0uw=0

rThu ww

θγ cos2−=−=

h

If θ<90°, the liquid enter the cavities in the solid surface ⇒ the liquid is said to wet the surface

ua=0

Page 8: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 8

Prof. Alessandro Tarantino, University of Strathclyde, UK

Hysteresis of the contact angle

θ

θr θa

θr = receding angle

θa = advancing angle

θr=θmin

θmax=θa

In a capilary tube, the contact angle ranges from θa to θr

Page 9: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 9

Prof. Alessandro Tarantino, University of Strathclyde, UK

Hysteresis of the contact angle

PRESSUREWATER

Page 10: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 10

Prof. Alessandro Tarantino, University of Strathclyde, UK

Evaporation from a capillary tube

θ=θrθ>θr

θ=θr

1 2 3 4

uw=0 uw<0 uw= -2T cosθr /rr

uw= -2T cosθr /r

Page 11: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 11

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water retention of a capillary tube

θ=θr

1 2 3 4

Vw / V

- uw

V

1 2 3

4

θ=θr

θ=θr

θ>θr

Page 12: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 12

Prof. Alessandro Tarantino, University of Strathclyde, UK

Tensile stress of wate in the capillary tube

θ = 0

T = 0.073 N/m (20°C)

ua = 100 kPa (absolute pressure)

4 cosw a

Tu ud

θ− = −

siltsand clay

The absolute water pressure may be negative, i.e. The water is subject to a tensile stress

d grain (mm) 2 0.075 0.002

d pore (mm) 0.2 0.0075 0.0002

uw-ua (kPa) -1.4 -38 -1440

uw (kPa) +98.6 +62 -1340

4b

pore

Tsd

=

Page 13: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 13

Prof. Alessandro Tarantino, University of Strathclyde, UK

Evaporation from a system of capillary tubes

a

c

b

ra

rc

rb c

c

b

b

a

a

rrrθθθ coscoscos

==

wcwbwa uuu ==

La = Lb = Lc

ra = 2 rb = 4 rc

Meechanical equilibrium

Geometry

Page 14: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 14

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water retention of a sytem of capillary tubes

1 2 3 4 5

Vw / V

- uw

1 2

34

5

S

Page 15: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 15

Prof. Alessandro Tarantino, University of Strathclyde, UK

Increasing water tension in a capillary tube

1 2 3

wrTh

γθ 1cos2

=

wrTh

γθ 1cos2

=

Page 16: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 16

Prof. Alessandro Tarantino, University of Strathclyde, UK

Increasing water tension in a system of capillary tubes

Z

Vw / V1

S

Page 17: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 17

Prof. Alessandro Tarantino, University of Strathclyde, UK

Capillary effects in soils

particellaacqua interstiziale

uw < 0 The contact angle of water with the particle surface is less than 90°

The meniscus is concave toward the air side and pore water presure is negative

Particles are stuck together by surface tension and negative pressure

-uw

T

Page 18: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 18

Prof. Alessandro Tarantino, University of Strathclyde, UK

Soil as a system of capillary tubes

Page 19: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 19

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water retention behaviour

Page 20: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 20

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water retention relationship

Relationship between the degree of saturation (or water content) and suction

This relationship illustates the different state of water in the soil

It is determined in the laboratory by subjecting soil specimens to drying and wetting cycles

It is rarely determined in the field

Page 21: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 21

Prof. Alessandro Tarantino, University of Strathclyde, UK

Soil water retention

S

ln (s)

1

Saturated soilQuasi-saturated soil

Partially saturated soil

Residual saturation

Page 22: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 22

Prof. Alessandro Tarantino, University of Strathclyde, UK

Saturated state

S = 1

uw < 0

Suction is generated by the curving of menisci at the boundary

Soil is saturated, air is dissolved in water

Page 23: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 23

Prof. Alessandro Tarantino, University of Strathclyde, UK

Quasi-saturated state

0.85-0.90 < S < 1

uw < 0

Suction is generated by the curving of menisci at the boundary and cavities form in the pore water

Gas phase is discontinuous, liquid phase is continuous

Page 24: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 24

Prof. Alessandro Tarantino, University of Strathclyde, UK

Partially saturated state

0-0.1 < S < 0.85-0.90

uw < 0

Suction is generated by the curving of menisci in the pores, are saturated parts (bulk water) and part where menisci form at the interparticle contact

Gas phase is continuous, liquid phase is continuous

Page 25: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 25

Prof. Alessandro Tarantino, University of Strathclyde, UK

Residual state

S < 0-0.1

uw < 0

Suction is generated by the curving of menisci in the pores, and menisci form at the interparticle contact

Gas phase is continuous, liquid phase is discontinuous

Page 26: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 26

Prof. Alessandro Tarantino, University of Strathclyde, UK

Retention curve parameters

S

ln (s)

1

Sr

sb sr

sb = air-entry value

sr = residual suction

Sr = residual degree of saturation

Page 27: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 27

Prof. Alessandro Tarantino, University of Strathclyde, UK

Air-entry suction It is the suction where the soil desaturates

As a first approximation, the soil can be assumed saturated for suction lower than the air-entry value, sb

For an order of magnitude of the air-entry suction :

The air-entry suction essentialy depend on the pore size

d grain (mm) 2 0.075 0.002

d pore (mm) 0.2 0.0075 0.0002

s b (kPa) 1.4 38 1440

siltsand clay

4b

pore

Tsd

=

Page 28: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 28

Prof. Alessandro Tarantino, University of Strathclyde, UK

Example No. 1

Clay subjected to cycles of drying and wetting

Very little evaporation is sufficient to curve menisci and lower water pressure to the air entry value, say uw=-1000 kPa

Little precipitation is sufficient to cancel meniscus curvature, and restore zero pore water pressure uw=0 kPa

As the soil is saturated, the effective stress increases of 1000 kPa, as if were placing an embankment 50 m high

Little evaporation and precipitation are sufficent to induce a cyclic stress change equivalent to the placement and removal of an embankment 50 m high

The effective stress redices of 1000 kPa, as if we were removing an embankment 50 m high

Page 29: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 29

Prof. Alessandro Tarantino, University of Strathclyde, UK

Vertical cut in silt

As the soil is saturated, the shear strength ctiterion can be written as follows:

τ = (σ-uw) tan φ’ = σ tan φ’ + (-uw) tan φ’ = σ tan φ’ + capparent

Assuming φ’=25 °, risulta capparent = 47 kPa

Hγ=20 kN/m3

In the classical dry soil mechanics, H=0 if c’=0

Assuming tha H=2c / γ we obtain H= 4.7 m!

Example No. 2

Very little evaporation is sufficient to curve menisci and lower water pressure to the air entry value, say uw=-100 kPa

Page 30: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 30

Prof. Alessandro Tarantino, University of Strathclyde, UK

Example No. 3

11 =

−=

αφ

γγη

tan'tanw

Infinite slope in sand

As the soil is saturated, the facor of safetu can be written as follows:

Assuming η=1, we obtain αmax= 50° !

αφ’ = 35°

γ = 20 kN/m3

H=1 m Water table at the ground surface.

°= 19maxα

( )ααγ

φαφ

γγη

cos sin 'tan

tan'tan

Huww −

+

−= 1

Very little evaporation is sufficient to curve menisci and lower water pressure to the air entry value, say uw=-10 kPa

Page 31: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 31

Prof. Alessandro Tarantino, University of Strathclyde, UK

Residual suction

It is the suction beyond which degree of saturation does not change significantly

This suction is controlled by the smaller pores, in turn controlled by the grain size distribution

S

ln (s)

1

0

20

40

60

80

100

0.001 0.01 0.1 1 10sb1

sb2

The higher is the coefficient of uniformity (well graded GSD), the higher is residual suction

Page 32: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 32

Prof. Alessandro Tarantino, University of Strathclyde, UK

Hydralic hystheresis

S

ln (s)

1

Hp: incompressible soil skeleton

Main drying curve

Main wetting curve

Scanning curves’

Page 33: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 33

Prof. Alessandro Tarantino, University of Strathclyde, UK

Intepretation of hysteresis using the capillary model

wrTh

γθ 1cos2

1=

r1

r2

0≅h

r2

At the same applied suction, the degree of saturation is greater along a drying path

Page 34: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 34

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water content

w

ln (s)

Water content is easier to determine and water retention curve is qualitatively similar to that in terms of degree of saturation but …

Page 35: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 35

Prof. Alessandro Tarantino, University of Strathclyde, UK

Saturated overconsolidated clay

w

ln (p’)

Specimens taken in the field and saturated in the lab are typically overconsolidated

S

ln (s)

A ⇒ sample in the fieldA

B≡ C

D

E

B ⇒ sample saturated in the lab

BCDEF ⇒ retention curve

C ⇒ air-entry value ?

D ⇒ air-entry value

ln (s),sc

Page 36: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 36

Prof. Alessandro Tarantino, University of Strathclyde, UK

Effect of void ratio on WRC (1)

Main drying curves

S

ln (s)

1

θr θr

Page 37: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 37

Prof. Alessandro Tarantino, University of Strathclyde, UK

Effect of void ratio on WRC (2)

0.00 0.20 0.40 0.60 0.80 1.00Water ratio, ew

0.01

0.1

1

10

100

1000

Sucti

on (M

Pa)

e ≈ 0.63

e ≈ 0.92

p y

qu d o

a(Ss) ≈ 300 MPa

Vapo

r equ

ilibriu

mte

chniq

ue (v

apor

phas

e co

ntro

l)

Air o

verp

ress

ure

tech

nique

(liqu

idph

ase

cont

rol)

b(Ss, path)

e wm

≈ 0.40

(Romero and Vaunat 2000)

Page 38: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 38

Prof. Alessandro Tarantino, University of Strathclyde, UK

Effect of void ratio on WRC (3)(Tarantino and Tombolato 2005)

0 200 400 600 800 1000Matric suction, s: kPa

0.4

0.6

0.8

1

Deg

ree

of s

atur

atio

n, S

r

e<0.850.85<e<0.950.95<e<1.051.05<e<1.151.15<e<1.25e>1.25 1.36

1.35

1.271.221.26

1.261.10

1.12

1.13

1.171.17

1.091.09 1.04

0.981.03

1.23

1.121.11

1.021.03

0.990.971.14

1.08

1.001.021.011.02

1.001.02 0.93

0.93

0.870.98

0.910.92 0.82

0.860.86

0.79 0.820.63

e=0.7

e=0.8

e=0.9

e=1.0

e=1.3

e=1.1

Wetting paths (undrained compression)

Page 39: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 39

Prof. Alessandro Tarantino, University of Strathclyde, UK

Effect of void ratio on air-entry and air-occlusion value

(Karube and Kawai, 2001)

Page 40: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 40

Prof. Alessandro Tarantino, University of Strathclyde, UK

Soil water retention mechanisms and the concept of suction

Page 41: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 41

Prof. Alessandro Tarantino, University of Strathclyde, UK

Suction through the liquid phase

An unsaturated soil is capable of drawing water through the liquid phase.

This property is termed matric suction

Terreno non saturo

Page 42: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 42

Prof. Alessandro Tarantino, University of Strathclyde, UK

Capillary mechanisms

uw = 0

particlepore water

uw < 0Owing to capillary tension, pore water pressure is negative

Page 43: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 43

Prof. Alessandro Tarantino, University of Strathclyde, UK

Osmotic mechanisms

+- - - - - - - - - -

+ + + + + + + + ++

++

++

++

++

+ + + + + + + + + ++

++

++

++

++

Clay particle

+

+

+

+

+

+

-

--

- -

-

Free water

+++

+

++

++

+

+

++

+

--

--

--

-

--

--

--

+

+

+ +-

---

+ -+ -

- - - - - - - - - -

Page 44: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 44

Prof. Alessandro Tarantino, University of Strathclyde, UK

Electrostatic mechanisms

+- - - - - - - - - -

++

+

+

+++ +

- - - - - - - - - -HH

O

HH

O

(Hydrogen bonding)

Hydration of exchangebale cations

- - - - - - - - - -H H

O

H H

O

H H

O

Oxygen plane

Hydroxile plane

Page 45: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 45

Prof. Alessandro Tarantino, University of Strathclyde, UK

Suction generated by the solid matrix(matric suction)

MEDIUM AND HIGH DEGREE OF SATURATION

Capillary mechanisms

LOW DEGREE OF SATURATION OF HIGH CLAY FRACTION

Osmotic and electrostatics mechanisms

Page 46: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 46

Prof. Alessandro Tarantino, University of Strathclyde, UK

Suction through gas phase

Unsaturated soil

An unsaturated soil is capable of drawing water through the gas phase.

This property is also termed suction

Page 47: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 47

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium (pure water - flat interface)

water, pw

vapour, p°v

pw = p°v p°v = p°v (T)

c

b

a

liquid

vapour

solid

p p

T

at T = 20°p°v ≅ 2.3 kPa

p°v is a function of temperature only

Phase diagram of water

Page 48: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 48

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium (pure water + air - flat interface)

water, pw

vapour, p°v

air, pa

pw = p°v+ pa ≅ pa

p°v ≅ p°v (T)

In presence of air, the relationship p°v = p°v (T) remains practically unchanged. p°v shall be regarded as partial pressure

Page 49: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 49

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium (free water - curved interface)

water, pw

pv < p°v

The curvature of the gas-liquid interface reduces the (partial) vapour pressure

vapour, pv

air, pa

Owing to the meniscus, liquid pressure is negative

pw < pa = 0

Why ?

(p°v= vapour pressure over flat surface)

Page 50: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 50

Prof. Alessandro Tarantino, University of Strathclyde, UK

Rusty in basic thermodynamics ?….. get out our thermodynamics book !

Page 51: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 51

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium for curved interface (1)

water, p0w

vapour, p°v

air, pa

water, pw

vapour, pv

air, pa

Reference state, 0 Current state, 1

w vµ µ=

Equilibrium is controlled by the chemical potential µ of the species water in liquid and gas phase

Page 52: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 52

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium for curved interface (2) CHEMICAL POTENTIAL

h Ts u pv Tsµ ≡ − = + −Enthalpy Entropy

Temperature

Internal energy

(Extensive variables are per unit mass)

PressureVolume

First principle

Second principle

du q pdvδ= −

q Tdsδ = d vdp sdTµ = −

Heat

Page 53: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 53

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium for curved interface (3)

1 1 1 10 0 0 0 w v w w v

v

RTd d v dp dpp

µ µ= ⇒ =∫ ∫ ∫ ∫

Assuming:i) water vapour follows the ideal gas law ii) isothermal transformation (dT=0), iii) liquid water is incompressible

Bring the system, reversibly and isothermally, from reference state 0 to current state 1 (liquid under negative pressure).

1 10 0w vd dµ µ=∫ ∫

0 0

1 1

w v

w v

µ µµ µ

=

=

Page 54: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 54

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium for curved interface (4)

Integration leads to:

( )00

expv ww w

v

p v p pp RT

= − −

10 100 1000 10000 100000Capillary suction, pw

0 - pw (kPa)

1

0.9

0.8

0.7

0.6

0.5

Air r

elat

ive h

umid

ity, p

v/pv0

Suction

Page 55: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 55

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium for aqueous solution (1)(acqueous solution - flat interface)

pv < p°v

Dissolved ions reduces the (partial) vapour pressure

acqueous solution, pw

+

++

+

+

++

+

- --

-

--

-

vapour, pv

air, pa

Why ?

Page 56: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 56

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium for aqueous solution (2)

water, p0w

vapour, p°v

air, pa

Reference state, 0 Current state, 1

w vµ µ=

Equilibrium is controlled by the chemical potential µ of the species water in liquid and gas phase

acqueous solution, pw

+

++

+

+

++

+

- --

-

--

-

vapour, pv

air, pa

Page 57: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 57

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium for aqueous solution (3)

Ideal water vapour

Bring the system, reversibly and isothermally, from reference state 0 to current state 1 (liquid under negative pressure).

1 10 0w vd dµ µ=∫ ∫

0 0

1 1

w v

w v

µ µµ µ

=

=

( ) ( )00

, , ln vv v v v

v

pp T p T RT

pµ µ

= +

( ) ( )0 , ln 1w w w sp T RT xµ µ= + − Ideal (diluted) aqueous solution

Molar fraction of solute

Page 58: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 58

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium for aqueous solution (4)

Raoult’s law

( )0 1v v sp p x= −

Page 59: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 59

Prof. Alessandro Tarantino, University of Strathclyde, UK

Liquid-vapour equilibrium (acqueous solution - curved interface)

pv < p°v

pv = pv (T, Xs, pw) < p°w (T)

vapour, pv

air, pa

Owing to dissolved ions and water tensile stresses :

acqueous solution, pw

+

++

+

+

++

+

- --

-

--

-In particular:

(Negative) liquid pressure

Solute concentration

Page 60: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 60

Prof. Alessandro Tarantino, University of Strathclyde, UK

Suction mechanism through gas phase

An unsaturated soil draws water through the gas phase because of the gradient in vapour pressure.

(Total) suction is generated by the combined action of negative pressure (solid matrix) and dissolved ions

Unsaturated soil

pv p°v

Page 61: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 61

Prof. Alessandro Tarantino, University of Strathclyde, UK

Principle of suction measurement

Page 62: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 62

Prof. Alessandro Tarantino, University of Strathclyde, UK

Direct measurement of matric suction

sm/γw

sm = ua - uw

The water level in the piezometer moves downward to generate a (negative) pressure to counterbalances the suction exerted by soil water

The difference between the external air pressure, ua, and the water pressure in the instrument, uw, is referred to as matric suction

(sm = - uw if ua=0)

The term ‘matric’ points out that suction exerted by soil water is, in turn, due to the action of the matrix (capillary, osmotic, and electrostatics mechanisms)

Page 63: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 63

Prof. Alessandro Tarantino, University of Strathclyde, UK

Osmotic (solute) suction

sm/γw

semipermeable membrane

st/γw

Water pressure in the instrument further decreases to counterbalance the attraction exerted by ions dissolved in the pore water

The acqueous solution in the pores and the pure water in the instrument form an osmotic system.

Osmotic suction so depends on the difference on concentration gradient between the pore water and the pure water in the instrument

Total suction st also account for the action of ions dissolved in the pore water

so/γw

Pure water

Page 64: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 64

Prof. Alessandro Tarantino, University of Strathclyde, UK

Need for indirect measurement of suction

sm/γw

Water in the measuring system is subjetced to cavitation

cavity

A trick it to increase the ambient air pressure to translate instrument water pressure into the positive range (axis-translation technique)

sm/γw

Pa>0

Pa/γw

Page 65: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 65

Prof. Alessandro Tarantino, University of Strathclyde, UK

Suction measurement through vapour equilibrium

pv < p°v Another trick is to measure the partial pressure of water vapour in equilibrium with the soil water.

Vapour pressure is related to the negative pore water pressure by the psycrometric law

( )RHvRT

pp

vRTs

mv

v

mt lnln 0 −=

−=

Water in the measuring system (vapour phase) is pure water whereas ions are dissolved in the pore water. Owing to the concentration gradient, the total suction is actually measured

It is not possible to differentiate between the osmotic and matric component of suction

Dry bulbWet bulb

Page 66: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 66

Prof. Alessandro Tarantino, University of Strathclyde, UK

Indirect measurement of total suction

( )0 0exp wv v w w

vp p p pRT

= − −

0ln lnv

tw v w

pRT RTs RHv p v

= =

Total suction is measured indirectly by:

1) Measuring the relative humidity RH in equilibrium with the soil water2) Relating the relative humidity RH using the theoretical relationship

developed previuosly (known as psychrometric law)

(Psychrometric law)

Page 67: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 67

Prof. Alessandro Tarantino, University of Strathclyde, UK

Some comments

o The psychrometric law is NOT the thermodynamic definition of suction as opposed to the ‘enginnering’ defintion given by the difference between between ambient-air pressure and pore-water pressure.

It is the theoretical relationship to transform the vapour pressure in the equivalent liquid pressure that can generate such a vapour pressure

o The discriminating factor between total and matric suction measurement is the nature of the liquid in the measurement system, pure water or aqueos solution respectively.

o The solute suction is often referred to as osmotic suction, which should not be mistaken by the omostico mechanism generating the matric suction.

Page 68: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 68

Prof. Alessandro Tarantino, University of Strathclyde, UK

Unsaturated hydraulic conductivity

Page 69: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 69

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water flow equation

( ) grad ww

w

uv - k u z γ

= +

div 0 v tθ∂

+ =∂

Darcy’s law

Mass balance equation (no water vapour flow)

( )w div grad w ww

w w

u uk u zu tθγ

γ ∂∂

= + ∂ ∂

Water flow equation (Richard’s equation)

Page 70: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 70

Prof. Alessandro Tarantino, University of Strathclyde, UK

Flow through a saturated round capillary tube

Poiseuille’s law for laminar fluid flow

q = flow ratev = average flow velocityi = hydraulic gradientAw = wetted areaη = kinematic viscosityγ = unit weight of the permeantR = tube radiusRH = hydraulic radius

q

D=4RH

A A

section A_A

Aw = wetted area

2

flow channel cross section area 4wetted perimeter 4

wH

w

DA DRP D

π

π= = = =

k

2

2act Hw

q gv R iA η

= = ⋅

Pw = wetted perimeter

Page 71: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 71

Prof. Alessandro Tarantino, University of Strathclyde, UK

Saturated hydraulic conductivityHydraulic conductivity

(Kinematic viscosity of water at 20°C η=10-6 m2/s)

22 2 5 2

26

9.8 1 3 10 32 32 10

mg sk D D D

m sms

η −

= = = ⋅ ⋅

d grain (mm) 2 0.075 0.002

d pore (mm) 0.2 0.0075 0.0002

k (m/s) 6·10-3 2·10-6 6·10-9

siltsand clay

Page 72: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 72

Prof. Alessandro Tarantino, University of Strathclyde, UK

water

air

solid

wetted area, Aw

solid area, As

total area, A

void area, Av

wetted perimeter, Pw

Flow through a unsaturated round capillary tube

2

2act w w w

w

v A A Agv iA P Aη

⋅ = = ⋅ ⋅

As for the saturated tube:

0 0

11

1

w r

w s

eA S Ae

P A S ASe

= + = = +

S0 = specific surfaceSr = degree of saturatione = void ratio

Page 73: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 73

Prof. Alessandro Tarantino, University of Strathclyde, UK

Hydraulic conductivity of unsaturate geomaterials

Kozeny-Carman equation3

320

12 1 r

g ev S iS eη

= ⋅ +

33 3

20

12 1 r sat r

g ek S k SS eη

= = ⋅ +

Page 74: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 74

Prof. Alessandro Tarantino, University of Strathclyde, UK

Influence of S on unsaturated permeability of compacted clay

∝k S3

Page 75: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 75

Prof. Alessandro Tarantino, University of Strathclyde, UK

Hysteresis of the permeability function

Page 76: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 76

Prof. Alessandro Tarantino, University of Strathclyde, UK

Effect of the shape of the permeability function on sample drying

k/ksat

ln (s)

evaporation

‘impermeable’ outer shell

Faster drying

Page 77: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 77

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water flow in boundary value problems:

Stability of vertical cuts

Page 78: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 78

Prof. Alessandro Tarantino, University of Strathclyde, UK

σh=0

Vertical cuts in ‘cohesionless’ soils:the ‘dry’ approach

σ’

τ

φ’

σ’h σ’v

Total = Effective

σv

uw

+

Zero pore pressure

Hmax=0

Vertical cuts cannot be stable

Hmax

LOWER BOUND THEOREM OF PLASTICITY

Page 79: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 79

Prof. Alessandro Tarantino, University of Strathclyde, UK

Stable vertical cuts in ‘cohesionless’ soils(De Vita et al. 2008, IJEGE)

Giugliano near Naples, Italy(courtesy of Prof. De Vita, University of Naples Federico II)

Dry approach (c’=0)

Pyroclastic ‘cohesionless’ silty sand

Hmax = 0 !!!

H = 10-12m

Page 80: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 80

Prof. Alessandro Tarantino, University of Strathclyde, UK

σh=0

Stable vertical cuts in ‘cohesionless’ soils

The real situationStable because of suction

σ’’

τ

φ’

σ’’h σ’’vσh σv

Effective

Total

Pyroclastic ‘cohesionless’ silty sand

σv

uw

H=10-20m

-

+

τ = σ’’ tan (φ’) = [σ+sSrM ] tan (φ’)

Page 81: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 81

Prof. Alessandro Tarantino, University of Strathclyde, UK

Shear strength criteria for unsaturated materials(incorporating suction and degree of saturation)

( ) ( )tan ' or k kr rsS q M p sSτ σ φ= + = +

( ) ( )tan ' or rM rMsS q M p sSτ σ φ= + = +

= w wmrM

wm

e eSe e

−−

Tarantino and Tombolato (2005)

Vanapalli et al. (1996):

Intra-aggregate water(not contributing to strength)

⇒ Microstructural water ratio, ewm(Romero and Vaunat 2000)

• Two criteria different conceptually but equivalent in terms of modelling capability• In principle, only one test sufficient to characterise unsat shear strength (k or ewm)

Inter-aggregate water(contributing to strength)

Effective degree of saturation

Degree of saturation of macropores

(Tarantino and El Mountassir 2012)

Page 82: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 82

Prof. Alessandro Tarantino, University of Strathclyde, UK

Validation for non-aggregated geomaterials (ewm=0, k=1)

0 200 400 600 800 10001200p+sSr (kPa)

0

200

400

600

800

q (

)

SaturatedUnsaturated

Compacted silt(Capotosto and Russo 2011)

0 40 80 120 160p+sSr (kPa)

0

50

100

150

200

250

q (k

Pa)

Saturateds=6 kPas=12 kPas=20 kPa

Natural silty sand(Papa et al. 2008)

Μ1

Μ1

0 400 800 1200p+sSr (kPa)

0

400

800

1200

1600

SaturatedUnsaturated

Reconstituted silt(Geiser et al. 2006)

Μ

1

0 400 800 1200σ+sSr (kPa)

0

200

400

600

800

τ (k

Pa)

SaturatedUnsaturated

Reconstituted clayey sandy silt (Boso 2005)

tan φ'1

0 200 400 600 800 1000S (kP )

0

400

800

1200

1600

saturateds=5 kPas= 20 kPas=75 kPa

Natural and reconstituted silty sand(Cattoni et al. 2007)

0 200 400 600 800+ S (kP )

0

200

400

600

800

1000

q (k

Pa)

Saturateds=100 kPas=200 kPa

Compacted Silt (Thu et al. 2006)

Μ1

( ) ( ) or r rq M p sS q M p sS= + = +

p + sSr

Devia

tor s

tress

, q

No. 1 No. 2 No. 3

No. 4 No. 5 No. 6

(Tarantino and El Mountassir 2012)

Page 83: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 83

Prof. Alessandro Tarantino, University of Strathclyde, UK

Pyroclastic soils(Stanier and Tarantino 2013)

∆τ = tan φ’ · sSr if s ≤ sr

∆τ = tan φ’ · sr Sr (sr) if s > sr

(φ’ = 37°)

Water retention function

Page 84: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 84

Prof. Alessandro Tarantino, University of Strathclyde, UK

σh=0

Stable vertical cuts in ‘cohesionless’ soilsunder hydrostatic conditions

Pyroclastic ‘cohesionless’ silty sand

σv

uw

Hc

-

+

Hw

0

2

4

6

8

10

12

14

0 10 20 30 40 50

Hc (m)

Hw (m)

Page 85: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 85

Prof. Alessandro Tarantino, University of Strathclyde, UK

Suction has beneficial effect on shear strength and, hence, stability

What about loss of suction associated with rainfall?

Page 86: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 86

Prof. Alessandro Tarantino, University of Strathclyde, UK

Analysis of effect of rainfall on suction profile

Darcy’s law (under 1-D conditions)

Mass balance equation (no water vapour flow)

Water flow equation (Richard’s equation)

𝑣𝑣 = −𝑘𝑘 𝑢𝑢𝑤𝑤𝜕𝜕𝜕𝜕𝜕𝜕

𝑢𝑢𝑤𝑤𝛾𝛾𝑤𝑤

+ 𝜕𝜕

𝜕𝜕𝑣𝑣𝜕𝜕𝜕𝜕

+𝜕𝜕𝜃𝜃𝜕𝜕𝑡𝑡

= 0

𝜕𝜕𝜕𝜕𝜕𝜕

𝑘𝑘 𝑢𝑢𝑤𝑤𝜕𝜕𝜕𝜕𝜕𝜕

𝑢𝑢𝑤𝑤𝛾𝛾𝑤𝑤

+ 𝜕𝜕 =𝜕𝜕𝜃𝜃𝜕𝜕𝑡𝑡

𝜕𝜕𝜃𝜃𝜕𝜕𝑡𝑡

= 𝑆𝑆𝑟𝑟𝜕𝜕𝑛𝑛𝜕𝜕𝑢𝑢𝑤𝑤

𝜕𝜕𝑢𝑢𝑤𝑤𝜕𝜕𝑡𝑡

+ 𝑛𝑛𝜕𝜕𝑆𝑆𝑟𝑟𝜕𝜕𝑢𝑢𝑤𝑤

𝜕𝜕𝑢𝑢𝑤𝑤𝜕𝜕𝑡𝑡

𝜃𝜃 =𝑉𝑉𝑤𝑤𝑉𝑉

= 𝑛𝑛 � 𝑆𝑆𝑟𝑟

Volumetric water content

𝑆𝑆𝑟𝑟 = 1If then𝜕𝜕𝜃𝜃𝜕𝜕𝑡𝑡

= −𝜕𝜕𝜀𝜀𝑣𝑣𝜕𝜕𝑡𝑡

𝑘𝑘 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠

Terzaghi’s consolidation equation

Page 87: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 87

Prof. Alessandro Tarantino, University of Strathclyde, UK

Analysis of effect of rainfall on suction profile via numerical analysis

𝜕𝜕𝜕𝜕𝜕𝜕

𝑘𝑘 𝑢𝑢𝑤𝑤𝜕𝜕𝜕𝜕𝜕𝜕

𝑢𝑢𝑤𝑤𝛾𝛾𝑤𝑤

+ 𝜕𝜕 =𝜕𝜕𝜃𝜃𝜕𝜕𝑢𝑢𝑤𝑤

𝜕𝜕𝑢𝑢𝑤𝑤𝜕𝜕𝑡𝑡

k

uw

θ

uw

+ Boundary and initial conditions

Page 88: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 88

Prof. Alessandro Tarantino, University of Strathclyde, UK

The simplest analysis of effect of rainfall on suction profile

2

2sat w w

ww

k u ux t

uθγ

∂ ∂=

∆ ∂ ∂∆

Assumptions:i) hydraulic conductivity = constant = ksat (conservative assumption)ii) Water retention curve is linearised

Terzaghi consolidation equation

Water flow equation

Assumptions:iii) Initial condition: hydrostatic suction profile (conservative assumption)iv) Boundary condition: Ponded infiltration (conservative assumption)

Initially triangular excess pore-water pressure(with solution from undegraduate geotechnical textbooks)

Page 89: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 89

Prof. Alessandro Tarantino, University of Strathclyde, UK

Linearising the water retention curve

Page 90: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 90

Prof. Alessandro Tarantino, University of Strathclyde, UK

Example for pyroclastic soilHigh permeability, ksat=5⋅10-6 m/s

0 20 40 60 80 100Suction, s (kPa)

10

8

6

4

2

0

Dep

th, z

(m)

Hydrostatic

t = 1 day

t = 2 days

Suction reduces but still remains significant

Suction (kPa)

Dept

h (m

)

Page 91: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 91

Prof. Alessandro Tarantino, University of Strathclyde, UK

Example for pyroclastic soilLow permeability, ksat=7⋅10-7 m/s

Suction is essentially affected by rainfall only at very shallow depths

-300 -200 -100 0Pore-water pressure, uw (kPa)

30

20

10

0

Dep

th, z

(m)

2 days of ponded infiltrationHydrostatic

Hw=10m

Hw=20m

Hw=30m

Negative pore-water pressure (kPa)

Dept

h (m

)

Page 92: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 92

Prof. Alessandro Tarantino, University of Strathclyde, UK

An analytical solution for unsaturated water flow

Assumptions:

i) Exponential hydraulic conductivity and water retention function

ii) Initial condition from steady-state water flow

Yuan and Lu 2005

𝜓𝜓 𝐿𝐿, 𝑡𝑡

=1𝛼𝛼𝑙𝑙𝑛𝑛

𝛼𝛼𝐾𝐾𝑠𝑠𝐾𝐾𝑠𝑠𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 −𝛼𝛼𝐿𝐿 − 8𝑞𝑞1

𝛼𝛼𝐾𝐾𝑠𝑠�𝑛𝑛=1

∞𝑠𝑠𝑠𝑠𝑛𝑛2 𝜆𝜆𝑛𝑛𝐿𝐿

2𝛼𝛼 + 𝛼𝛼2𝐿𝐿 + 4𝐿𝐿𝜆𝜆𝑛𝑛21 − 𝑒𝑒𝑒𝑒𝑒𝑒 −𝐷𝐷 𝜆𝜆𝑛𝑛2 +

𝛼𝛼2

4𝑡𝑡

Solution :

𝐾𝐾 = 𝐾𝐾𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼𝜓𝜓 𝜃𝜃 = 𝜃𝜃𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼𝜓𝜓

Page 93: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 93

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water flow in boundary value problems:

Slope Stability

Page 94: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 94

Prof. Alessandro Tarantino, University of Strathclyde, UK

Infinite slope

α

dx

W

T

N

W=γHdx

Wsinα

Wcosα

τmob=T / (dx/cosα)=W sinα / (dx/cosα) = γHsinαcosα

σn = N / (dx/cosα) = W cosα / (dx/cosα) = γHcos2α

H

Page 95: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 95

Prof. Alessandro Tarantino, University of Strathclyde, UK

Factor of safety

( ) ( ) ( )wwwn

mob

res uH

uH

u ηηααγ

ταφ

ααγτφσ

ττη +=

∆+=

∆+== 0cossintan

'tancossin

'tan

Shear strength criterion

( )wnres uτφστ ∆+= 'tan( )( )

<>∆><∆

0 if 00 if 0

ww

ww

uuuu

ττ

Factor of safety

Page 96: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 96

Prof. Alessandro Tarantino, University of Strathclyde, UK

Saturated slope

α

EquipotentialFlowline

Hcos2α

uw

αφ

γγ

ααγφ

αφ

ττη

tan'tan1

cossin'tan

tan'tan

−=

−+== ww

mob

res

Hu

( ) ( )'tan'tan'tan φφσφστ wnwnres uu −+=−=

+

Page 97: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 97

Prof. Alessandro Tarantino, University of Strathclyde, UK

Partly dry slope

α hwcos2α

uw

αφ

γγ

ααγφ

αφ

ττη

tan'tan1

cossin'tan

tan'tan

−=

−+==

Hh

Hu www

mob

res

( ) ( )'tan'tan'tan φφσφστ wnwnres uu −+=−=

hw

+

Page 98: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 98

Prof. Alessandro Tarantino, University of Strathclyde, UK

Saturated slope with negative pressures

α

EquipotentialFlowline

Hcos2α

uw

ααγφ

αφ

γγ

ααγφ

αφ

ττη

cossin'tan

tan'tan1

cossin'tan

tan'tan

Hs

Hu bww

mob

res +

−=

−+==

( ) ( )'tan'tan'tan φφσφστ wnwnres uu −+=−=

+

-

sb/γw

Page 99: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 99

Prof. Alessandro Tarantino, University of Strathclyde, UK

Unsaturated slope

α

EquipotentialFlowline

uw

( )ααγ

ταφ

ττη

cossintan'tan

Huw

mob

res ∆+==

( ) ( )'tan'tan'tan φφσφστ wnwnres uu −+=−=

-

Page 100: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 100

Prof. Alessandro Tarantino, University of Strathclyde, UK

Stability of saturated/unsaturated slopes

α

W

H

Hw

'tantan'tan1 φαφγγ

≤≤

− w

'tantan φα >

'tan1tan φγγα

−< w Unconditionally stable

Unstable for uw≥0

Stable for uw<0

Page 101: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 101

Prof. Alessandro Tarantino, University of Strathclyde, UK

Landslides in presence of water table

T

N

α

z

uw

_

hW

H

∆l

( ) )tan()'tan( bwu φφστ −+=

( ) ( )Hh sin cos

tantan

'tan<

−+=

ααγφ

αφη

hu bw

Page 102: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 102

Prof. Alessandro Tarantino, University of Strathclyde, UK

Factor of safety under hydrostatic conditions

y

soil (φ' < α)

bedrock

z' zH

y'

2

H*1

α

-uw 1

z

η

HH*

Page 103: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 103

Prof. Alessandro Tarantino, University of Strathclyde, UK

Modelling water flow

( ) grad (h) u - Kv w=

0 div =∂Θ∂

+ t

v

Darcy’s law

Mass balance equation (no water vapour flow)

( )[ ]

Θ∂=

=∂∂

wu

hKth

w Cwith

grad divC

γ

Page 104: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 104

Prof. Alessandro Tarantino, University of Strathclyde, UK

One-dimensional flow in infinite slope

( ) cossin '

'

'

'

C ww γuαz'α y'h zhK

zyhK

yth

++=

∂∂

∂∂

+

∂∂

∂∂

=∂∂

In y’, z’ reference system:

Since:

0 '

and 0'

2

2=

∂=

∂∂

yh

yK

then:

'

'

C

∂∂

∂∂

=∂∂

zhK

zth

One-dimensional flow

Page 105: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 105

Prof. Alessandro Tarantino, University of Strathclyde, UK

Low intensity rainfall

-2.0

-1.5

-1.0

-0.5

0.0

dept

h (m

)

hydrostaticafter 1hafter 3hafter 6hη = 1

0.96 1 1.04 1.08 1.12 1.16factor of safety η

-2.0

-1.5

-1.0

-0.5

0.0

dept

h (m

)

a)

b)

Page 106: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 106

Prof. Alessandro Tarantino, University of Strathclyde, UK

High intensity rainfall

-2.0

-1.5

-1.0

-0.5

0.0

dept

h (m

)

hydrostaticafter 1hafter 2hη = 1

0.9 1 1.1 1.2 1.3factor of safety η

-2.0

-1.5

-1.0

-0.5

0.0

dept

h (m

)

a)

b)

Page 107: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 107

Prof. Alessandro Tarantino, University of Strathclyde, UK

Intensity-duration threshold curve

0 5 10 15 20 25duration (h)

0.0

0.5

1.0

1.5

2.0

2.5

inten

sity (

x 10-

5 m/

s)

deep slides

shallow slides

Excellent qualitative agreement with experimental data (Wieczorek 1987)

Page 108: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 108

Prof. Alessandro Tarantino, University of Strathclyde, UK

Shallow landslides in absence of water table

H

y'

y

zz'

H'h'

h

α

impervious bedrock

( ) ( )[ ] 'tanφχστ waa uuu −+−=

Page 109: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 109

Prof. Alessandro Tarantino, University of Strathclyde, UK

Shear strength criterion (Khalili and Kabbaz 1998)

( ) ( )[ ] 'tanφχστ waa uuu −+−=

( )( ) ( ) ( )

( ) ( )

−<−=

−>−

−−

=−

bwawa

wawabwa

wa

uuuu

uuuuuuuu

1

b

55.0

χ

χ

with

Non-linear envelope

Page 110: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 110

Prof. Alessandro Tarantino, University of Strathclyde, UK

Factor of safety

( ) ( ) ( ) ( )

( ) ( ) ( ) cossin

'tan

tan'tan

cossin

'tan

tan'tan

b

b

55.045.0

www

wwbww

uuh-u

uuh

-u-u

−<−+=

−>−+=

ααγφ

αφη

ααγφ

αφη

Page 111: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 111

Prof. Alessandro Tarantino, University of Strathclyde, UK

Modelling water flow

'

'

∂∂

∂∂

=∂∂

zhK

zthC

** *

* **

∂∂

∂∂

=∂

∂zhK

zthC

1-D flow in infinite slope

1-D flow in vertical direction

( ) ww zuu γα cos1* *w −+=

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]wwww

wwww

zuKuKuK

zuuu

γα

γαθθθ

cos1*

cos1*

***

***

−+=≡

−+=≡

Page 112: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 112

Prof. Alessandro Tarantino, University of Strathclyde, UK

Case study: Upper Carinthia and Eastern Tyrol

Page 113: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 113

Prof. Alessandro Tarantino, University of Strathclyde, UK

Water retention and conductivity function

0.1 1 10 100 1000 10000Suction (kPa)

0.000.050.100.150.200.250.300.35

Volum

etric

water

conte

nt θ

0.1 1 10 100 1000 10000Suction (kPa)

1E-016

1E-014

1E-012

1E-010

1E-008

1E-006

Hydra

ulic c

ondu

ctivit

y (m/

s)

From pedo-transfer function by:Vereecken et al. 1989 Vereecken 1990

Page 114: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 114

Prof. Alessandro Tarantino, University of Strathclyde, UK

Antecedent evapotranspiration

1 10 100 1000 10000Log suction (kPa)

0

0.4

0.8

1.2

1.6

2

Elev

ation

z (m

)

initial (hydrostatic)after 6dafter 12dafter 12d and 16h

1 10 100Log suction (kPa)

0

0.4

0.8

1.2

1.6

2

Elev

ation

z (m

)

initial (hydrostatic)after 10d and 3hafter 60d

qflux=const. s=const.

Page 115: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 115

Prof. Alessandro Tarantino, University of Strathclyde, UK

Rainfall infiltration

0 10 20 30 40 50Suction (kPa)

0

0.4

0.8

1.2

1.6

2El

evati

on z

(m)

critical suctioninitialafter 10hafter 20hafter 30hafter 36h after 36h 45'

i=5 mm/h

Page 116: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 116

Prof. Alessandro Tarantino, University of Strathclyde, UK

Intensity-duration threshold curve

0.01 0.1 1 10 100 1000Rainfall duration (h)

0.1

1

10

100

1000

Rain

fall i

nten

sity

(mm

/h)

Numerical simulation Observed Data

Page 117: Summer School – Cagliari, 22 -23 giugno 2014 · Summer School – Cagliari, 22 -23 giugno 2014. Module 1 - 2 Prof. Alessandro Tarantino, University of Strathclyde, UK Tarantino,

Module 1 - 117

Prof. Alessandro Tarantino, University of Strathclyde, UK

References

De Vita, P., Angrisani, A.C., Di Clemente, E., 2008. Engineering geological properties of the phlegraean pozzolan soil (Campania region, Italy) and effect of the suction on the stability of cut slopes. Italian Journal of Engineering Geology and Environment 2, 5–22.

Karube, D. & Kawai, K. (2001). The role of pore water in the mechanical behaviour of unsaturated soils. Geotech. Geol. Engng 19, 211–241.

Romero, E. & Vaunat, J. (2000). Retention curves in deformable clays. In Experimental evidence and theoretical approaches in unsaturated soils: Proceedings of an international workshop (eds A. Tarantino and C. Mancuso), pp. 91–106. Rotterdam: A. A. Balkema.

Stanier S and Tarantino A (2013). An approach for predicting the stability of vertical cuts in cohesionless soils above the water table. Engineering Geology, Geology 158, 98–108.

Tarantino, A. & Bosco, G. 2000. Role of soil suction in understanding the triggering mechanisms of flow slides associated with rainfall. In G.F. Wieczorek & N.D. Naeser (eds.), Debris-Flow Hazard Mitigation, Second International Conference on debris-flow hazards mitigation, 16-18 August 2000, Taipei, Taiwan: 81-88. Rotterdam: A. A. Balkema.

Tarantino, A. and Mongiovì, L. 2003. Numerical modelling of shallow landslides triggered by rainfall. International Conference on Fast Slope Movements, Sorrento, Italy, 491-495.

Tarantino, A., and Tombolato, S. 2005. Coupling of hydraulic and mechanical behaviour in unsaturated compacted clay. Géotechnique, 55(4), 307-317. Tarantino, A. 2010. Basic concepts in the mechanics and hydraulics of unsaturated geomaterials. New Trends in the Mechanics of Unsaturated Geomaterials Lyesse Laloui (ed.), 3-28. ISTE – John Wiley & Sons.

Tarantino, A. 2010. Field measurement of suction, water content and water permeability. New Trends in the Mechanics of Unsaturated Geomaterials Lyesse Laloui (ed.), 129-154. ISTE – John Wiley & Sons

Tarantino, A. 2010. Basic concepts in the mechanics and hydraulics of unsaturated geomaterials. New Trends in the Mechanics of Unsaturated Geomaterials Lyesse Laloui (ed.), 3-28. ISTE – John Wiley & Sons.

Tarantino A and El Mountassir G (2013). Making unsaturated soil mechanics accessible for engineers: preliminary hydraulic-mechanical characterisation & stability assessment. Engineering Geology, 165 , 89–104.

Yuan F and Lu Z 2005. Analytical Solutions for Vertical Flow in Unsaturated, Rooted Soils with Variable Surface Fluxes. Vadose Zone Journal 4:1210–1218 (2005).