23
science.sciencemag.org/content/371/6524/eabb6896/suppl/DC1 Supplementary Materials for QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis Kwontae You, Lingfei Wang, Chih-Hung Chou, Kai Liu, Toru Nakata, Alok Jaiswal, Junmei Yao, Ariel Lefkovith, Abdifatah Omar, Jacqueline G. Perrigoue, Jennifer E. Towne, Aviv Regev‡, Daniel B. Graham‡, Ramnik J. Xavier‡ ‡Corresponding author. Email: [email protected] (D.B.G.); [email protected] (A.R.); [email protected] (R.J.X.) Published 1 January 2021, Science 371, eabb6896 (2021) DOI: 10.1126/science.abb6896 This PDF file includes: Figs. S1 to S7 Captions for Tables S1 to S4 References Other Supporting Online Material for this manuscript includes the following: (available at science.sciencemag.org/content/371/6524/eabb6896/suppl/DC1) MDAR Reproducibility Checklist (.pdf) Tables S1 to S4 (.xlsx)

Supplementary Materials for...Fig. S1. scRNA-seq of intestinal monolayer cells shows the terminal-UPR signature during ER stress. (A) tSNE plots show the clustering of monolayer cells

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • science.sciencemag.org/content/371/6524/eabb6896/suppl/DC1

    Supplementary Materials for QRICH1 dictates the outcome of ER stress through transcriptional

    control of proteostasis

    Kwontae You, Lingfei Wang, Chih-Hung Chou, Kai Liu, Toru Nakata, Alok Jaiswal, Junmei Yao, Ariel Lefkovith, Abdifatah Omar, Jacqueline G. Perrigoue, Jennifer E. Towne,

    Aviv Regev‡, Daniel B. Graham‡, Ramnik J. Xavier‡

    ‡Corresponding author. Email: [email protected] (D.B.G.); [email protected] (A.R.); [email protected] (R.J.X.)

    Published 1 January 2021, Science 371, eabb6896 (2021) DOI: 10.1126/science.abb6896

    This PDF file includes:

    Figs. S1 to S7 Captions for Tables S1 to S4 References

    Other Supporting Online Material for this manuscript includes the following: (available at science.sciencemag.org/content/371/6524/eabb6896/suppl/DC1)

    MDAR Reproducibility Checklist (.pdf) Tables S1 to S4 (.xlsx)

  • CBEnterocyte

    Villin

    Goblet cells Tuft cells

    Alcian Blue(MUC) Dclk1

    Rel

    ativ

    e ce

    llab

    unda

    nce

    100

    DMSO Tm-13h Tm-25h

    EnterocytesGoblet Cells

    10-1

    ●●

    ●regulation of oxidative phosphorylation

    negative regulation of macroautophagy

    mRNA catabolic process

    translational initiation

    tRNA aminoacylation for protein translation

    protein localization to endoplasmic reticulum

    ER to Golgi vesicle−mediated transport

    response to endoplasmic reticulum stress

    mRNA metabolic process

    peptide biosynthetic process

    1.5 2.0 2.5 3.0 3.5−log10P.adj

    1.5

    2.0

    2.5

    3.0

    −log10P.adj

    No. of genes●

    ●●

    5101520

    GO enrichmentE

    D

    L−amino acid transporttranslational initiation

    positive regulation of transcription from RNA pol II promoter in response to ER stressER−nucleus signaling pathway

    signal peptide processingL−serine biosynthetic process

    protein foldingcell redox homeostasis

    protein localization to ERintrinsic apoptotic signaling pathway in response to ER stress

    ER to Golgi vesicle−mediated transportprotein N−linked glycosylation

    peptide biosynthetic processcellular amino acid metabolic process

    response to ER stress

    All

    Goble

    t

    Enter

    ocyte

    10

    20

    30

    No. of Genes10203040

    GO enrichment

    −log10P.adj

    A

    EnterocytesGoblet CellsTuft Cells

    Cluster-louvain-1-10

    logtmeanmitochondrial DNA

    Conditions

    Cell types

    Tm-13h-1Tm-13h-2Tm-25h-1Tm-25h-2

    DMSO-1DMSO-2

    01101112131423456789

    2

  • Fig. S1. scRNA-seq of intestinal monolayer cells shows the terminal-UPR signature during ER stress.

    (A) tSNE plots show the clustering of monolayer cells (colored by conditions, clusters, and celltypes).

    (B) Immunostaining of monolayer cells. Enterocytes, goblet cells, and Tuft cells are detected byVillin, Alcian Blue (Mucin), and Dclk1 staining.

    (C) Changes in relative abundance of enterocytes and goblet cells after Tm treatment. Twosamples were measured per conditions, with + signs indicating percentage of cells for eachmeasurement.

    (D) Gene set enrichment analysis (GSEA) shows enriched pathways in goblet cells andenterocytes upon 13 h of Tm treatment.

    (E) GSEA shows the enriched biological processes in the terminal-UPR signature illustrated inFig. 1H.

    3

  • 4

  • Fig. S2. XBP1s-GFP reporter screens identify potent regulators of the ER stress-UPR pathway.

    (A) Dose-dependent response to Tunicamycin (Tm). Quantification of spliced XBP1 (XBP1s)level according to GFP intensity using FACS after 14 h of Tm treatment.

    (B) Gating strategy. The lowest and highest 15% of cells were sorted out based on the GFPintensities using FACS sorter.

    (C) Volcano plot shows the average gRNA enrichments in the non-stressed XBP1s screen. Thedashed line indicates the p-value cut-off. Known UPR genes and terminal-UPR genes arehighlighted in red and blue, respectively.

    (D) GSEA shows the enriched biological processes in the non-stressed XBP1s screen. Only thelist of genes for which KO promotes UPR activity is used for the GO analysis. Many of the knownER homeostasis-related GOs are shown on this screen.

    (E) GSEA shows enriched biological processes in the stressed XBP1s screen. UP and DN indicatethe list of genes for which KO promotes or reduces XBP1s expression in the Tm-treated cells.

    (F) Volcano plot of ER stress XBP1s screen shows the distribution of essential genes, highlightedin red.

    (G) Measurement of GFP intensities shows the level of XBP1s in wild-type (dashed black) or KO(filled blue) cells treated with DMSO. The symbol indicates the targeted gene. The dashed red lineindicates the GFP intensity in the Tm condition.

    5

  • 6

  • Fig. S3. QRICH1 regulates cell viability during ER stress.

    (A) Schematic diagram of the domain structure of QRICH1. Figure modified from theRCSB_PDB: Q2TAL8 (http://www.rcsb.org/pdb/protein/Q2TAL8).

    (B) The proportion of 7-AAD and/or Annexin V positive cells. sgNCtrl or sgQRICH1 transducedcells treated with Tm for the indicated time (n=2).

    (C) Left panel: Measurement of DDIT3 or HSPA5 in HT29 cells after the transduction ofCRISPRa amplifiers by qRT-PCR. Right panel: Transcriptional induction of QRICH1 byCRISPRa. Mean value of three guides. Error bars, mean +/- SD.

    (D) Immunoblot shows expression patterns of QRICH1 upon Tm treatment in the sgNCtrl or sgPERK transduced HT29 cells. A representative blot is shown (n=3, two-way ANOVA).

    (E) Quantification of QRICH1 mRNA (n=4) and protein level (n=3) in cells treated with0.3ug/ml of Tm for 1 day (multiple t-test).

    (F) Schematic diagram of upstream open reading frame (uORF) mediated translational controldepends on the status of eIF2α phosphorylation.

    (G) Schematic diagram shows QRICH1 mRNA isoforms. All variants encode the same protein— variant 4 was used for QRICH1 reconstitution.

    For panels D and E: *p

  • 8

  • Fig. S4. QRICH1 facilitates protein secretion during ER stress.

    (A) Immunoblot shows the kinetics of p-eIF2α, QRICH1, ATF4, and QRICH1-regulated targetgenes during prolonged ER stress. A representative blot is shown.

    (B) FACS analysis shows the level of XBP1s in DMSO-treated wild-type (black line) or sgRNAtransduced (filled blue) cells, as measured by GFP intensities. The target gene is indicated above each plot.

    (C) Assessment of protein synthesis rate in the cytosolic or ER/membrane fractions detected usinganti-puromycin. WT and QRICH1 KO cells were pulse-labeled with puromycin after Tm treatment for 3 days. The DMSO-sgNCtrl in cytosol and ER/memb were set to 100%, and were used to normalize the data in the cytosol and ER/memb fractions, respectively (n=2). ACTB and PERK were used as markers for cytosol and ER fractions, respectively.

    9

  • 10

  • Fig. S5. QRICH1 regulation during ER stress mediates proteotoxicity in primary mouse intestinal epithelium.

    (A) Immunoblot analysis of WT and Qrich1 knockout (sgQrich1) mouse intestinal monolayers.Three different Cas9 guides are noted A, B, and C.

    (B and C) WT or Qrich1 KO mouse intestinal monolayer cells were exposed to an indicated dose of Tm for 24 h. Quantification of cleaved Caspase 3 in those cells are measured by ImageJ (n=3, two-way ANOVA).

    (D) The activity of Caspase 3 was measured by in vitro Caspase 3 assay with fluorogenicCaspase 3 substrate (Z-DEVD-AMC) in WT or Qrich1 KO monolayer cells treated with Tm for24 h (n=3, two-way ANOVA). RFU, relative fluorescence unit.

    (E) Caspase 3 activity in the GFP or human QRICH1 transduced mouse intestinal organoidstreated with DMSO or Tm for 24 h (n=3, two-way ANOVA).

    For panels C-E: *p

  • 12

  • Fig. S6. Experimental scheme to measuring cell type-specific protein synthesis rate in human intestinal organoids during ER stress.

    (A) Expression patterns of MUC2 and TMIGD1 in the mouse and human intestinal epithelium.(17, 33). TPM denotes transcripts per million, TP10K denotes UMI counts normalized by thetotal number of UMIs per cell and converted to transcripts-per-10,000.

    (B) Schematic of the workflow for hISC experiments and FACS analysis.

    13

  • 14

  • Fig. S7. Expression of QRICH1 signature in inflamed conditions.

    (A) Module score of the QRICH1_signature mapped to epithelial cells from the colon of healthyindividuals and the inflamed colon of UC patients. Cell types are annotated according topreviously annotated marker genes (69).

    (B) Heatmap shows the scaled average expression levels of each gene in the QRICH1_signatureacross the epithelial cell types in the colon of healthy individuals and patients with ulcerativecolitis (inflamed regions).

    15

  • Table S1. (separate Excel file) Differentially expressed genes for cell subsets and the terminal-UPR geneset from the ER stressed monolayer shown in Fig. 1H.

    Table S2. (separate Excel file) CRISPR-Cas9 Genome-wide screen data for ER stress-UPR pathway using the XBP1s-GFP reporter cells in Fig. 2.

    Table S3. (separate Excel file) ChIP-seq data using anti-QRICH1 and ATF4 and Gene Ontology results illustrated in Fig. 4.

    Table S4. (separate Excel file) Differentially expressed genes between WT and QRICH1 KO cells in response to Tm treatment are listed. Related to Fig. 5A.

    16

  • References and Notes 1. K. Pakos-Zebrucka, I. Koryga, K. Mnich, M. Ljujic, A. Samali, A. M. Gorman, The integrated

    stress response. EMBO Rep. 17, 1374–1395 (2016). doi:10.15252/embr.201642195 Medline

    2. C. Hetz, E. Chevet, S. A. Oakes, Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17, 829–838 (2015). doi:10.1038/ncb3184 Medline

    3. M. Wang, R. J. Kaufman, Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326–335 (2016). doi:10.1038/nature17041 Medline

    4. C. Hetz, F. R. Papa, The unfolded protein response and cell fate control. Mol. Cell 69, 169–181 (2018). doi:10.1016/j.molcel.2017.06.017 Medline

    5. A. Kirby, A. Gnirke, D. B. Jaffe, V. Barešová, N. Pochet, B. Blumenstiel, C. Ye, D. Aird, C. Stevens, J. T. Robinson, M. N. Cabili, I. Gat-Viks, E. Kelliher, R. Daza, M. DeFelice, H. Hůlková, J. Sovová, P. Vylet’al, C. Antignac, M. Guttman, R. E. Handsaker, D. Perrin, S. Steelman, S. Sigurdsson, S. J. Scheinman, C. Sougnez, K. Cibulskis, M. Parkin, T. Green, E. Rossin, M. C. Zody, R. J. Xavier, M. R. Pollak, S. L. Alper, K. Lindblad-Toh, S. Gabriel, P. S. Hart, A. Regev, C. Nusbaum, S. Kmoch, A. J. Bleyer, E. S. Lander, M. J. Daly, Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013). doi:10.1038/ng.2543 Medline

    6. M. Dvela-Levitt, M. Kost-Alimova, M. Emani, E. Kohnert, R. Thompson, E.-H. Sidhom, A. Rivadeneira, N. Sahakian, J. Roignot, G. Papagregoriou, M. S. Montesinos, A. R. Clark, D. McKinney, J. Gutierrez, M. Roth, L. Ronco, E. Elonga, T. A. Carter, A. Gnirke, M. Melanson, K. Hartland, N. Wieder, J. C.-H. Hsu, C. Deltas, R. Hughey, A. J. Bleyer, S. Kmoch, M. Živná, V. Barešova, S. Kota, J. Schlondorff, M. Heiman, S. L. Alper, F. Wagner, A. Weins, T. R. Golub, E. S. Lander, A. Greka, Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178, 521–535.e23 (2019). doi:10.1016/j.cell.2019.07.002 Medline

    7. C. E. Mays, C. Soto, The stress of prion disease. Brain Res. 1648, 553–560 (2016). doi:10.1016/j.brainres.2016.04.009 Medline

    8. P. Remondelli, M. Renna, The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front. Mol. Neurosci. 10, 187 (2017). doi:10.3389/fnmol.2017.00187 Medline

    9. A. E. Frakes, A. Dillin, The UPRER: Sensor and coordinator of organismal homeostasis. Mol. Cell 66, 761–771 (2017). doi:10.1016/j.molcel.2017.05.031 Medline

    10. A. Arunagiri, L. Haataja, A. Pottekat, F. Pamenan, S. Kim, L. M. Zeltser, A. W. Paton, J. C. Paton, B. Tsai, P. Itkin-Ansari, R. J. Kaufman, M. Liu, P. Arvan, Proinsulin misfolding is an early event in the progression to type 2 diabetes. eLife 8, e44532 (2019). doi:10.7554/eLife.44532 Medline

    11. B. P. Johnston, C. McCormick, Herpesviruses and the unfolded protein response. Viruses 12, 17 (2019). doi:10.3390/v12010017 Medline

    17

    http://dx.doi.org/10.15252/embr.201642195http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27629041&dopt=Abstracthttp://dx.doi.org/10.1038/ncb3184http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26123108&dopt=Abstracthttp://dx.doi.org/10.1038/nature17041http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26791723&dopt=Abstracthttp://dx.doi.org/10.1016/j.molcel.2017.06.017http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29107536&dopt=Abstracthttp://dx.doi.org/10.1038/ng.2543http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23396133&dopt=Abstracthttp://dx.doi.org/10.1016/j.cell.2019.07.002http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31348885&dopt=Abstracthttp://dx.doi.org/10.1016/j.brainres.2016.04.009http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27060771&dopt=Abstracthttp://dx.doi.org/10.3389/fnmol.2017.00187http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28670265&dopt=Abstracthttp://dx.doi.org/10.1016/j.molcel.2017.05.031http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28622521&dopt=Abstracthttp://dx.doi.org/10.7554/eLife.44532http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31184302&dopt=Abstracthttp://dx.doi.org/10.3390/v12010017http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31877732&dopt=Abstract

  • 12. A. Kaser, A.-H. Lee, A. Franke, J. N. Glickman, S. Zeissig, H. Tilg, E. E. S. Nieuwenhuis, D. E. Higgins, S. Schreiber, L. H. Glimcher, R. S. Blumberg, XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008). doi:10.1016/j.cell.2008.07.021 Medline

    13. J. Grootjans, A. Kaser, R. J. Kaufman, R. S. Blumberg, The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016). doi:10.1038/nri.2016.62 Medline

    14. D. B. Graham, A. Lefkovith, P. Deelen, N. de Klein, M. Varma, A. Boroughs, A. N. Desch, A. C. Y. Ng, G. Guzman, M. Schenone, C. P. Petersen, A. K. Bhan, M. A. Rivas, M. J. Daly, S. A. Carr, C. Wijmenga, R. J. Xavier, TMEM258 is a component of the oligosaccharyltransferase complex controlling ER stress and intestinal inflammation. Cell Rep. 17, 2955–2965 (2016). doi:10.1016/j.celrep.2016.11.042 Medline

    15. J. A. Kropski, T. S. Blackwell, Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J. Clin. Invest. 128, 64–73 (2018). doi:10.1172/JCI93560 Medline

    16. J. H. Lin, H. Li, D. Yasumura, H. R. Cohen, C. Zhang, B. Panning, K. M. Shokat, M. M. Lavail, P. Walter, IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007). doi:10.1126/science.1146361 Medline

    17. A. L. Haber, M. Biton, N. Rogel, R. H. Herbst, K. Shekhar, C. Smillie, G. Burgin, T. M. Delorey, M. R. Howitt, Y. Katz, I. Tirosh, S. Beyaz, D. Dionne, M. Zhang, R. Raychowdhury, W. S. Garrett, O. Rozenblatt-Rosen, H. N. Shi, O. Yilmaz, R. J. Xavier, A. Regev, A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017). doi:10.1038/nature24489 Medline

    18. A. Tsuru, Y. Imai, M. Saito, K. Kohno, Novel mechanism of enhancing IRE1α-XBP1 signalling via the PERK-ATF4 pathway. Sci. Rep. 6, 24217 (2016). doi:10.1038/srep24217 Medline

    19. H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, K. Mori, XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001). doi:10.1016/S0092-8674(01)00611-0 Medline

    20. J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg, K. F. Donovan, I. Smith, Z. Tothova, C. Wilen, R. Orchard, H. W. Virgin, J. Listgarten, D. E. Root, Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016). doi:10.1038/nbt.3437 Medline

    21. B. Adamson, T. M. Norman, M. Jost, M. Y. Cho, J. K. Nuñez, Y. Chen, J. E. Villalta, L. A. Gilbert, M. A. Horlbeck, M. Y. Hein, R. A. Pak, A. N. Gray, C. A. Gross, A. Dixit, O. Parnas, A. Regev, J. S. Weissman, A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016). doi:10.1016/j.cell.2016.11.048 Medline

    22. D. E. Leto, D. W. Morgens, L. Zhang, C. P. Walczak, J. E. Elias, M. C. Bassik, R. R. Kopito, Genome-wide CRISPR analysis identifies substrate-specific conjugation modules in ER-associated degradation. Mol. Cell 73, 377–389.e11 (2019). doi:10.1016/j.molcel.2018.11.015 Medline

    18

    http://dx.doi.org/10.1016/j.cell.2008.07.021http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18775308&dopt=Abstracthttp://dx.doi.org/10.1038/nri.2016.62http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27346803&dopt=Abstracthttp://dx.doi.org/10.1016/j.celrep.2016.11.042http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27974209&dopt=Abstracthttp://dx.doi.org/10.1172/JCI93560http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29293089&dopt=Abstracthttp://dx.doi.org/10.1126/science.1146361http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17991856&dopt=Abstracthttp://dx.doi.org/10.1038/nature24489http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29144463&dopt=Abstracthttp://dx.doi.org/10.1038/srep24217http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27052593&dopt=Abstracthttp://dx.doi.org/10.1016/S0092-8674(01)00611-0http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11779464&dopt=Abstracthttp://dx.doi.org/10.1038/nbt.3437http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26780180&dopt=Abstracthttp://dx.doi.org/10.1016/j.cell.2016.11.048http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27984733&dopt=Abstracthttp://dx.doi.org/10.1016/j.molcel.2018.11.015http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30581143&dopt=Abstract

  • 23. R. T. Schinzel, R. Higuchi-Sanabria, O. Shalem, E. A. Moehle, B. M. Webster, L. Joe, R. Bar-Ziv, P. A. Frankino, J. Durieux, C. Pender, N. Kelet, S. S. Kumar, N. Savalia, H. Chi, M. Simic, N.-T. Nguyen, A. Dillin, The hyaluronidase, TMEM2, promotes ER homeostasis and longevity independent of the UPRER. Cell 179, 1306–1318.e18 (2019). doi:10.1016/j.cell.2019.10.018 Medline

    24. R. A. Panganiban, H.-R. Park, M. Sun, M. Shumyatcher, B. E. Himes, Q. Lu, Genome-wide CRISPR screen identifies suppressors of endoplasmic reticulum stress-induced apoptosis. Proc. Natl. Acad. Sci. U.S.A. 116, 13384–13393 (2019). doi:10.1073/pnas.1906275116 Medline

    25. J. H. Reiling, C. B. Clish, J. E. Carette, M. Varadarajan, T. R. Brummelkamp, D. M. Sabatini, A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin. Proc. Natl. Acad. Sci. U.S.A. 108, 11756–11765 (2011). doi:10.1073/pnas.1018098108 Medline

    26. T. Hart, A. H. Y. Tong, K. Chan, J. Van Leeuwen, A. Seetharaman, M. Aregger, M. Chandrashekhar, N. Hustedt, S. Seth, A. Noonan, A. Habsid, O. Sizova, L. Nedyalkova, R. Climie, L. Tworzyanski, K. Lawson, M. A. Sartori, S. Alibeh, D. Tieu, S. Masud, P. Mero, A. Weiss, K. R. Brown, M. Usaj, M. Billmann, M. Rahman, M. Constanzo, C. L. Myers, B. J. Andrews, C. Boone, D. Durocher, J. Moffat, Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 7, 2719–2727 (2017). doi:10.1534/g3.117.041277 Medline

    27. N. Gonen, A. Meller, N. Sabath, R. Shalgi, Amino acid biosynthesis regulation during endoplasmic reticulum stress is coupled to protein expression demands. iScience 19, 204–213 (2019). doi:10.1016/j.isci.2019.07.022 Medline

    28. J. Han, S. H. Back, J. Hur, Y.-H. Lin, R. Gildersleeve, J. Shan, C. L. Yuan, D. Krokowski, S. Wang, M. Hatzoglou, M. S. Kilberg, M. A. Sartor, R. J. Kaufman, ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013). doi:10.1038/ncb2738 Medline

    29. S. Konermann, M. D. Brigham, A. E. Trevino, J. Joung, O. O. Abudayyeh, C. Barcena, P. D. Hsu, N. Habib, J. S. Gootenberg, H. Nishimasu, O. Nureki, F. Zhang, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015). doi:10.1038/nature14136 Medline

    30. R. C. Wek, Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb. Perspect. Biol. 10, a032870 (2018). doi:10.1101/cshperspect.a032870 Medline

    31. K. K. Kojima, J. Jurka, Crypton transposons: Identification of new diverse families and ancient domestication events. Mob. DNA 2, 12 (2011). doi:10.1186/1759-8753-2-12 Medline

    32. P. Tsaytler, H. P. Harding, D. Ron, A. Bertolotti, Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011). doi:10.1126/science.1201396 Medline

    33. C. S. Smillie, M. Biton, J. Ordovas-Montanes, K. M. Sullivan, G. Burgin, D. B. Graham, R. H. Herbst, N. Rogel, M. Slyper, J. Waldman, M. Sud, E. Andrews, G. Velonias, A. L.

    19

    http://dx.doi.org/10.1016/j.cell.2019.10.018http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31761535&dopt=Abstracthttp://dx.doi.org/10.1073/pnas.1906275116http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31213543&dopt=Abstracthttp://dx.doi.org/10.1073/pnas.1018098108http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21677192&dopt=Abstracthttp://dx.doi.org/10.1534/g3.117.041277http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28655737&dopt=Abstracthttp://dx.doi.org/10.1016/j.isci.2019.07.022http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31377665&dopt=Abstracthttp://dx.doi.org/10.1038/ncb2738http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23624402&dopt=Abstracthttp://dx.doi.org/10.1038/nature14136http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25494202&dopt=Abstracthttp://dx.doi.org/10.1101/cshperspect.a032870http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29440070&dopt=Abstracthttp://dx.doi.org/10.1186/1759-8753-2-12http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22011512&dopt=Abstracthttp://dx.doi.org/10.1126/science.1201396http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21385720&dopt=Abstract

  • Haber, K. Jagadeesh, S. Vickovic, J. Yao, C. Stevens, D. Dionne, L. T. Nguyen, A.-C. Villani, M. Hofree, E. A. Creasey, H. Huang, O. Rozenblatt-Rosen, J. J. Garber, H. Khalili, A. N. Desch, M. J. Daly, A. N. Ananthakrishnan, A. K. Shalek, R. J. Xavier, A. Regev, Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019). doi:10.1016/j.cell.2019.06.029 Medline

    34. J. S. Hyams, S. Davis, D. R. Mack, B. Boyle, A. M. Griffiths, N. S. LeLeiko, C. G. Sauer, D. J. Keljo, J. Markowitz, S. S. Baker, J. Rosh, R. N. Baldassano, A. Patel, M. Pfefferkorn, A. Otley, M. Heyman, J. Noe, M. Oliva-Hemker, P. Rufo, J. Strople, D. Ziring, S. L. Guthery, B. Sudel, K. Benkov, P. Wali, D. Moulton, J. Evans, M. D. Kappelman, A. Marquis, F. A. Sylvester, M. H. Collins, S. Venkateswaran, M. Dubinsky, V. Tangpricha, K. L. Spada, A. Britt, B. Saul, N. Gotman, J. Wang, J. Serrano, S. Kugathasan, T. Walters, L. A. Denson, Factors associated with early outcomes following standardised therapy in children with ulcerative colitis (PROTECT): A multicentre inception cohort study. Lancet Gastroenterol. Hepatol. 2, 855–868 (2017). doi:10.1016/S2468-1253(17)30252-2 Medline

    35. M. P. Suppli, K. T. G. Rigbolt, S. S. Veidal, S. Heebøll, P. L. Eriksen, M. Demant, J. I. Bagger, J. C. Nielsen, D. Oró, S. W. Thrane, A. Lund, C. Strandberg, M. J. Kønig, T. Vilsbøll, N. Vrang, K. L. Thomsen, H. Grønbæk, J. Jelsing, H. H. Hansen, F. K. Knop, Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G462–G472 (2019). doi:10.1152/ajpgi.00358.2018 Medline

    36. P. Lefebvre, F. Lalloyer, E. Baugé, M. Pawlak, C. Gheeraert, H. Dehondt, J. Vanhoutte, E. Woitrain, N. Hennuyer, C. Mazuy, M. Bobowski-Gérard, F. P. Zummo, B. Derudas, A. Driessen, G. Hubens, L. Vonghia, W. J. Kwanten, P. Michielsen, T. Vanwolleghem, J. Eeckhoute, A. Verrijken, L. Van Gaal, S. Francque, B. Staels, Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight 2, e92264 (2017). doi:10.1172/jci.insight.92264 Medline

    37. I. Novoa, H. Zeng, H. P. Harding, D. Ron, Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001). doi:10.1083/jcb.153.5.1011 Medline

    38. H. P. Harding, Y. Zhang, H. Zeng, I. Novoa, P. D. Lu, M. Calfon, N. Sadri, C. Yun, B. Popko, R. Paules, D. F. Stojdl, J. C. Bell, T. Hettmann, J. M. Leiden, D. Ron, An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003). doi:10.1016/S1097-2765(03)00105-9 Medline

    39. N. L. Maas, J. A. Diehl, Molecular pathways: The PERKs and pitfalls of targeting the unfolded protein response in cancer. Clin. Cancer Res. 21, 675–679 (2015). doi:10.1158/1078-0432.CCR-13-3239 Medline

    40. C. Hetz, The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012). doi:10.1038/nrm3270 Medline

    41. J. T. San Agustin, N. Klena, K. Granath, A. Panigrahy, E. Stewart, W. Devine, L. Strittmatter, J. A. Jonassen, X. Liu, C. W. Lo, G. J. Pazour, Genetic link between renal

    20

    http://dx.doi.org/10.1016/j.cell.2019.06.029http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31348891&dopt=Abstracthttp://dx.doi.org/10.1016/S2468-1253(17)30252-2http://dx.doi.org/10.1016/S2468-1253(17)30252-2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28939374&dopt=Abstracthttp://dx.doi.org/10.1152/ajpgi.00358.2018http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30653341&dopt=Abstracthttp://dx.doi.org/10.1172/jci.insight.92264http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28679947&dopt=Abstracthttp://dx.doi.org/10.1083/jcb.153.5.1011http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11381086&dopt=Abstracthttp://dx.doi.org/10.1016/S1097-2765(03)00105-9http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12667446&dopt=Abstracthttp://dx.doi.org/10.1158/1078-0432.CCR-13-3239http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25182515&dopt=Abstracthttp://dx.doi.org/10.1038/nrm3270http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22251901&dopt=Abstract

  • birth defects and congenital heart disease. Nat. Commun. 7, 11103 (2016). doi:10.1038/ncomms11103 Medline

    42. Deciphering Developmental Disorders Study, Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017). doi:10.1038/nature21062 Medline

    43. A. Ververi, M. Splitt, J. C. S. Dean, A. F. Brady, DDD Study, Phenotypic spectrum associated with de novo mutations in QRICH1 gene. Clin. Genet. 93, 286–292 (2018). doi:10.1111/cge.13096 Medline

    44. J. C. Lui, Y. H. Jee, A. Lee, S. Yue, J. Wagner, D. E. Donnelly, K. S. Vogt, J. Baron, QRICH1 mutations cause a chondrodysplasia with developmental delay. Clin. Genet. 95, 160–164 (2019). doi:10.1111/cge.13457 Medline

    45. A. Aziz, S. P. Harrop, N. E. Bishop, Characterization of the deleted in autism 1 protein family: Implications for studying cognitive disorders. PLOS ONE 6, e14547 (2011). doi:10.1371/journal.pone.0014547 Medline

    46. M. Giannandrea, V. Bianchi, M. L. Mignogna, A. Sirri, S. Carrabino, E. D’Elia, M. Vecellio, S. Russo, F. Cogliati, L. Larizza, H.-H. Ropers, A. Tzschach, V. Kalscheuer, B. Oehl-Jaschkowitz, C. Skinner, C. E. Schwartz, J. Gecz, H. Van Esch, M. Raynaud, J. Chelly, A. P. M. de Brouwer, D. Toniolo, P. D’Adamo, Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am. J. Hum. Genet. 86, 185–195 (2010). doi:10.1016/j.ajhg.2010.01.011 Medline

    47. G. Martínez, S. Khatiwada, M. Costa-Mattioli, C. Hetz, ER proteostasis control of neuronal physiology and synaptic function. Trends Neurosci. 41, 610–624 (2018). doi:10.1016/j.tins.2018.05.009 Medline

    48. S. Pasini, C. Corona, J. Liu, L. A. Greene, M. L. Shelanski, Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep. 11, 183–191 (2015). doi:10.1016/j.celrep.2015.03.025 Medline

    49. T. E. Adolph, M. F. Tomczak, L. Niederreiter, H.-J. Ko, J. Böck, E. Martinez-Naves, J. N. Glickman, M. Tschurtschenthaler, J. Hartwig, S. Hosomi, M. B. Flak, J. L. Cusick, K. Kohno, T. Iwawaki, S. Billmann-Born, T. Raine, R. Bharti, R. Lucius, M.-N. Kweon, S. J. Marciniak, A. Choi, S. J. Hagen, S. Schreiber, P. Rosenstiel, A. Kaser, R. S. Blumberg, Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013). doi:10.1038/nature12599 Medline

    50. H. Miyoshi, T. S. Stappenbeck, In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013). doi:10.1038/nprot.2013.153 Medline

    51. V. Mohanan, T. Nakata, A. N. Desch, C. Lévesque, A. Boroughs, G. Guzman, Z. Cao, E. Creasey, J. Yao, G. Boucher, G. Charron, A. K. Bhan, M. Schenone, S. A. Carr, H.-C. Reinecker, M. J. Daly, J. D. Rioux, K. G. Lassen, R. J. Xavier, C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 359, 1161–1166 (2018). doi:10.1126/science.aan0814 Medline

    21

    http://dx.doi.org/10.1038/ncomms11103http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27002738&dopt=Abstracthttp://dx.doi.org/10.1038/nature21062http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28135719&dopt=Abstracthttp://dx.doi.org/10.1111/cge.13096http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28692176&dopt=Abstracthttp://dx.doi.org/10.1111/cge.13457http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30281152&dopt=Abstracthttp://dx.doi.org/10.1371/journal.pone.0014547http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21283809&dopt=Abstracthttp://dx.doi.org/10.1016/j.ajhg.2010.01.011http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20159109&dopt=Abstracthttp://dx.doi.org/10.1016/j.tins.2018.05.009http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29945734&dopt=Abstracthttp://dx.doi.org/10.1016/j.celrep.2015.03.025http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25865882&dopt=Abstracthttp://dx.doi.org/10.1038/nature12599http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24089213&dopt=Abstracthttp://dx.doi.org/10.1038/nprot.2013.153http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24232249&dopt=Abstracthttp://dx.doi.org/10.1126/science.aan0814http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29420262&dopt=Abstract

  • 52. E. M. Brown, X. Ke, D. Hitchcock, S. Jeanfavre, J. Avila-Pacheco, T. Nakata, T. D. Arthur, N. Fornelos, C. Heim, E. A. Franzosa, N. Watson, C. Huttenhower, H. J. Haiser, G. Dillow, D. B. Graham, B. B. Finlay, A. D. Kostic, J. A. Porter, H. Vlamakis, C. B. Clish, R. J. Xavier, Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25, 668–680.e7 (2019). doi:10.1016/j.chom.2019.04.002 Medline

    53. T. Sato, D. E. Stange, M. Ferrante, R. G. J. Vries, J. H. Van Es, S. Van den Brink, W. J. Van Houdt, A. Pronk, J. Van Gorp, P. D. Siersema, H. Clevers, Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011). doi:10.1053/j.gastro.2011.07.050 Medline

    54. F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018). doi:10.1186/s13059-017-1382-0 Medline

    55. L. Wang, lingfeiwant/mda: 0.1.0. Zenodo (2020); https://doi.org/10.5281/zenodo.4070249. 56. C. H. Chen, T. Xiao, H. Xu, P. Jiang, C. A. Meyer, W. Li, M. Brown, X. S. Liu, Improved

    design and analysis of CRISPR knockout screens. Bioinformatics 34, 4095–4101 (2018). doi:10.1093/bioinformatics/bty450 Medline

    57. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). doi:10.1038/nmeth.2089 Medline

    58. J. Brumbaugh, I. S. Kim, F. Ji, A. J. Huebner, B. Di Stefano, B. A. Schwarz, J. Charlton, A. Coffey, J. Choi, R. M. Walsh, J. W. Schindler, A. Anselmo, A. Meissner, R. I. Sadreyev, B. E. Bernstein, H. Hock, K. Hochedlinger, Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nat. Cell Biol. 21, 1449–1461 (2019). doi:10.1038/s41556-019-0403-5 Medline

    59. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). doi:10.1093/bioinformatics/btp324 Medline

    60. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). doi:10.1093/bioinformatics/btp352 Medline

    61. Broad Institute, Picard toolkit (2019). 62. Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum, R.

    M. Myers, M. Brown, W. Li, X. S. Liu, Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). doi:10.1186/gb-2008-9-9-r137 Medline

    63. S. Picelli, O. R. Faridani, Å. K. Björklund, G. Winberg, S. Sagasser, R. Sandberg, Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014). doi:10.1038/nprot.2014.006 Medline

    64. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). doi:10.1093/bioinformatics/btu170 Medline

    22

    http://dx.doi.org/10.1016/j.chom.2019.04.002http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31071294&dopt=Abstracthttp://dx.doi.org/10.1053/j.gastro.2011.07.050http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21889923&dopt=Abstracthttp://dx.doi.org/10.1186/s13059-017-1382-0http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29409532&dopt=Abstracthttps://doi.org/10.5281/zenodo.4070249http://dx.doi.org/10.1093/bioinformatics/bty450http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29868757&dopt=Abstracthttp://dx.doi.org/10.1038/nmeth.2089http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22930834&dopt=Abstracthttp://dx.doi.org/10.1038/s41556-019-0403-5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31659274&dopt=Abstracthttp://dx.doi.org/10.1093/bioinformatics/btp324http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19451168&dopt=Abstracthttp://dx.doi.org/10.1093/bioinformatics/btp352http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19505943&dopt=Abstracthttp://dx.doi.org/10.1186/gb-2008-9-9-r137http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18798982&dopt=Abstracthttp://dx.doi.org/10.1038/nprot.2014.006http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24385147&dopt=Abstracthttp://dx.doi.org/10.1093/bioinformatics/btu170http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24695404&dopt=Abstract

  • 65. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). doi:10.1186/s13059-014-0550-8 Medline

    66. A. Zhu, J. G. Ibrahim, M. I. Love, Heavy-tailed prior distributions for sequence count data: Removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019). doi:10.1093/bioinformatics/bty895 Medline

    67. Y. Zhou, B. Zhou, L. Pache, M. Chang, A. H. Khodabakhshi, O. Tanaseichuk, C. Benner, S. K. Chanda, Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019). doi:10.1038/s41467-019-09234-6 Medline

    68. E. K. Schmidt, G. Clavarino, M. Ceppi, P. Pierre, SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6, 275–277 (2009). doi:10.1038/nmeth.1314 Medline

    69. X. Zhang, L. Lai, G. Xu, X. Zhang, J. Shi, M. A. G. Koffas, Z. Xu, Rewiring the central metabolic pathway for high-yield l-serine production in Corynebacterium glutamicum by using glucose. Biotechnol. J. 14, e1800497 (2019). doi:10.1002/biot.201800497 Medline

    23

    http://dx.doi.org/10.1186/s13059-014-0550-8http://dx.doi.org/10.1186/s13059-014-0550-8http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25516281&dopt=Abstracthttp://dx.doi.org/10.1093/bioinformatics/bty895http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30395178&dopt=Abstracthttp://dx.doi.org/10.1038/s41467-019-09234-6http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30944313&dopt=Abstracthttp://dx.doi.org/10.1038/nmeth.1314http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19305406&dopt=Abstracthttp://dx.doi.org/10.1002/biot.201800497http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30791233&dopt=Abstract

    202010_Science_QRICH1_Supplementary-MethodsRemoved.pdfSFigure.1-scRNAseq_HK_v2B (1).pdfabb6896_SupplementalMaterial_v6.pdf202010_Science_QRICH1_Supplementary-MethodsRemoved.pdf

    202010_Science_QRICH1_SupplementaryMaterials.pdfabb6896_You_SM.refs.pdfReferences and Notes