51
Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Embed Size (px)

Citation preview

Page 1: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Surveying I.

Lecture 2.

Sz. Rózsa: Surveying I. – Lecture 1

Page 2: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Outline

Structure of levels

Adjustment of levels

Error sources

Procedure of levelling

Line levelling, detail point levelling

Processing levelling data

Sz. Rózsa: Surveying I. – Lecture 1

Page 3: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Sz. Rózsa: Surveying I. – Lecture 1

The principle of levelling

A

B

(lA)

(lB)

A

HAB

lA

B

lB

HAB=lA-lB=(lA)-A-(lB)+B

When A=B (spherical approximation, equal distance to A and B)

HAB=(lA)-(lB)

topography

equipotentialsurface

Line of sight

Page 4: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Tilting level

Levelling head

Tilting screw

Diaphragm

Bubble tube

Tilting axis

Clamping screw - to fix the telescope in one vertical plane

Tangent screw (slow motion screw) - to finely rotate the telescope along a vertical axis

Circular bubble

Sz. Rózsa: Surveying I. – Lecture 1

Page 5: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Elements of Surveyor’s level

How to set the line of sight to be exactly horizontal?

More general: how to set anything to be exactly horizontal?

The bubble tube

Sz. Rózsa: Surveying I. – Lecture 1

Page 6: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The bubble tube

The radius determines the sensitivity of the bubble tube:

R2R1

R greater thanR1 2

Sensitivity: how much the bubble moves due to a given amount of inclination. The more the bubble moves, the more sensitive the bubble tube is.

Sz. Rózsa: Surveying I. – Lecture 1

Page 7: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The bubble tube

The determination of sensitivity:

R1

L

l1

R1

L

l2

radians

L

ll 12

8.206264" radians

Sz. Rózsa: Surveying I. – Lecture 1

Page 8: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Kepler-type telescope

Object lens

Eyepiece

Object

Virtual image

Note that the virtual image is magnified and inverted!

Sz. Rózsa: Surveying I. – Lecture 1

Page 9: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s telescope

The diaphragm (cross-hairs)To provide visible horizontal and vertical reference lines in the telescope.

Line of collimation

With adjustment screws the diaphragm can be moved in the telescope to adjust the line of collimation.

Sz. Rózsa: Surveying I. – Lecture 1

Page 10: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s telescope

Parallax

When focusing the telescope, the real image formed by the objective lens is made to coincide with the diaphragm.

What is the parallax?

When viewing two distant objects approximately along a straight line, and the eye is moved to one side, then the more distant object moves relative to the other in the same direction.

This can lead to observation errors (wrong reading, wrong sighting).

If the real image formed by the objective lens does not coincide with the diaphragm a parallax is observed -> the reading depend on the position of the eye!

diaphragm image

Sz. Rózsa: Surveying I. – Lecture 1

Page 11: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s telescope

Focusing the telescope

External focusing

Internal focusing

Focusing lens

Variable length

Fixed length

Sz. Rózsa: Surveying I. – Lecture 1

Page 12: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Tilting level

Tribrach (Levelling head)

Tilting screw

Diaphragm

Bubble tube

Tilting axis

Clamping screw - to fix the telescope in one vertical plane

Tangent screw (slow motion screw) - to finely rotate the telescope along a vertical axis

Circular bubble

Sz. Rózsa: Surveying I. – Lecture 1

Page 13: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Sz. Rózsa: Surveying I. – Lecture 1

Page 14: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Sz. Rózsa: Surveying I. – Lecture 1

Page 15: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Tilting level

How can we view the bubble tube?

• Using a mirror (older instrument)• Prismatic coincidence reader (modern instruments)

Bubble tube

Prism

Bubble tube is tilted Bubble tube is horizontal (leveled)

Bubble tube

Sz. Rózsa: Surveying I. – Lecture 1

Page 16: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Setting up the level1. Fix the level on a tripod

2. Center the circular bubble by adjusting the foot screws.(to approximately level the instrument)

Sz. Rózsa: Surveying I. – Lecture 1

Page 17: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Setting up the level

3. Sight the levelling staff:

first: rotate the telescope in the direction of the staff

second: use the fine motion screws to ensure precise sighting

(note: on some instruments the fine motion screw works only, when

the alidade is fixed using the fixing clamp)

4. Adjust the levelling bubble using the levelling screw.

Sz. Rózsa: Surveying I. – Lecture 1

Page 18: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Automatic level

We must adjust the bubble tube before every reading when using the tilting level -> takes a lot of time, may cause blunders (large mistakes in the observations)

An automatic level contains an optical device, which compensates the tilting of the telescope - called compensator.

Sz. Rózsa: Surveying I. – Lecture 1

Page 19: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Sz. Rózsa: Surveying I. – Lecture 1

Page 20: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The Surveyor’s level

Operation of the compensator

Advantage: faster observations, elimination of a possible reason of blundersDisadvantage: vibrations (wind, traffic, etc.) have a bad impact on the operation of the compensator

Sz. Rózsa: Surveying I. – Lecture 1

Page 21: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

The levelling staff

Sz. Rózsa: Surveying I. – Lecture 1

Page 22: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Outline

Structure of levels

Adjustment of levels

Error sources

Procedure of levelling

Line levelling, detail point levelling

Processing levelling data

Sz. Rózsa: Surveying I. – Lecture 1

Page 23: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Adjusting the level

The two-peg test

d1 d2

a1b1

A BP

1d 2d

Collimation error - the line of collimation is not horizontal, when the level is levelled

The effect of collimation error cancels, when d1=d2.

Thus the height difference is: 11 baH AB

Sz. Rózsa: Surveying I. – Lecture 1

How much is the collimation error ()?

1. Establish a test line on an approximately flat surface.

2. Compute the elevation difference between the test points (A and B)!

Page 24: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Adjusting the level

321 ddd

3d

323212 dbdddaH AB

d +d1 2

a2b2

A B d3 Q

2122 ddbaH AB

11 baH AB 5. The true elevation difference is already computed from the previous configuration:

21

1122

dd

baba

Sz. Rózsa: Surveying I. – Lecture 1

3. Move the instrument to an external point on the extension of the AB line.

4. Compute the elevation difference from the observations (note that the elevation difference contains the effect of the collimation error)!

6. Thus the collimation error is:

Page 25: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Outline

Structure of levels

Adjustment of levels

Error sources

Procedure of levelling

Line levelling, detail point levelling

Processing levelling data

Sz. Rózsa: Surveying I. – Lecture 1

Page 26: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

The effect of curvature

Solution: Since the equipotential surface is approximately spherical, the effect of curvature is a function of the instrument-staff distance. When the backsight and foresight distances are equal, the effect of curvature cancels out.

Sz. Rózsa: Surveying I. – Lecture 1

(lA)

(lB)

A

HAB

lA

B

lB

topography

equipotentialsurface

Line of sight

Page 27: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

The refraction

The air has different optical properties everywhere. Air pressure, humidity etc. Have an impact on the refractivity. Thus the light does not propagate along a straight line, but along a curve:

For points with the same elevation, the effect of refraction can be neglected.

What to do, when they are not?

Sz. Rózsa: Surveying I. – Lecture 1

Page 28: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

13,0:

22

2

22

2

r

Rkgintroducin

r

R

R

d

R

R

r

d

EarththeofRadiusRr

d

r

r

Solution: the instrument should be set up exactly in the middle between two points, thus the effect of curvature is the same for the backsight and foresight.

Sz. Rózsa: Surveying I. – Lecture 1

d

r’radius of refractive curve

r

Page 29: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

The effect of collimation error

d1 d2

a1b1

A BP

Solution: the instrument should be set up exactly in the middle between two points and the collimation error must be constant, thus the effect is eliminated

Sz. Rózsa: Surveying I. – Lecture 1

Page 30: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

Tilting of the staff

The effect depends on the:• tilting angle• reading (the higher the reading is, the bigger the error is)

Solution: staffs should be equipped with circular bubbles and kept vertical

Sz. Rózsa: Surveying I. – Lecture 1

i

i=li-licos

Page 31: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

Settlement of the tripod

hbaH AB 11 habHBA 22

Solution: the reading should be taken in both order, and the mean value of the height differences should be computed (assuming constant observation speed)

Sz. Rózsa: Surveying I. – Lecture 1

A B

h

a1 b1

Measuring the height difference between A and B!

Measuring the height difference between B and A!

A B

h

a2 b2

Let’s compute the mean value of the HAB and HBA:

2222

22112211 BAABBAABAB

HHabbahabhbaHHH

Page 32: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

Settlement of the staff

Solution: - all lines should be run twice in the opposite directions;- a change plate must be used to support the staff.Graduation error of the staff

Solution: staffs must be calibrated regularly (the graduation must be checked in laboratories).

Sz. Rózsa: Surveying I. – Lecture 1

Problem: The staff has a subsidence during the observations. a change plate must be used to support the staff.

Problem: The cm graduation on the staff is not accurate. The units have different lengths.

Page 33: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

Index error of the staff

Problem: The bottom of the staff is not aligned with the 0 unit of the scale.

01

The effect of the index error on the reading:

l = (l) +

Where l is the reading taken, while is the index error

Sz. Rózsa: Surveying I. – Lecture 1

Page 34: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

The effect of index error on a single height difference:

H = lBS-lFS

H = [(lBS)+1]-[(lFS)+2)]=lBS-lFS+1-2

When only one staff is used, then the effect of index error cancels out (1=2)

Sz. Rózsa: Surveying I. – Lecture 1

Direction oflevelling

lBS

lFS

Sta

ff N

o.

1.

Sta

ff N

o.

2.

H

Page 35: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

What happens when two staffs are used?

Single height difference:

The sum of two height differences:

1

2

Sz. Rózsa: Surveying I. – Lecture 1

H = [(lBS)+1]-[(lFS)+2)]=lBS-lFS+1-2

Sta

ff N

o.

1.

Sta

ff N

o.

2.

Sta

ff N

o.

1.

H = [(lBS)+1]-[(lFS)+2)]=lBS-lFS+1-2

H = [(lBS)+2]-[(lFS)+1)]=lBS-lFS+2-1

Page 36: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Systematic error in levelling

H1 +H2 = (lBS)-(lFS)

When two staffs are used, an even number of stations have to be created in the levelling line. In this case the effect of the index error of the staff cancels out.

Sz. Rózsa: Surveying I. – Lecture 1

H1 = [(lBS)+1]-[(lFS)+2)]=(lBS)-(lFS)+1-2

H2 = [(lBS)+2]-[(lFS)+1)]=(lBS)-(lFS)+2-1

Page 37: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Outline

Structure of levels

Adjustment of levels

Error sources

Procedure of levelling

Line levelling, detail point levelling

Processing levelling data

Sz. Rózsa: Surveying I. – Lecture 1

Page 38: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Procedure of levelling

1. The instrument must be set up with the same distance to the staffs.

2. The bubble tube must be levelled before each reading (tilting level).

3. You must not use the parallax screw between the backsight and foresight readings

4. The bubble tube must not be affected by strong heat.

5. Readings must be taken 30-50 cm above the ground.

6. Staff should be set up vertically.

7. A change plate should be used to place the staff on the ground.

8. Levelling must be done in two opposite directions.

Sz. Rózsa: Surveying I. – Lecture 1

Page 39: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Procedure of levelling

9. All the observations should be made with a constant speed.

10. Observations should be made only in suitable weather: cloudy sky, constant temperature, early morning, or late afternoon.

11. Staff should be calibrated.

12. If there are three hairs in the diaphragm, one should use all of them to take a reading.

13. When two staffs are used, an even number of stations must be used to create the levelling line.

Sz. Rózsa: Surveying I. – Lecture 1

Page 40: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Outline

Structure of levels

Adjustment of levels

Error sources

Procedure of levelling

Line levelling, detail point levelling

Processing levelling data

Sz. Rózsa: Surveying I. – Lecture 1

Page 41: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Line levelling

Principle of levelling

What happens, when we want to measure the height difference of two distant points?

Sz. Rózsa: Surveying I. – Lecture 1

(lA)

(lB)

A

HAB

lA

B

lB

topography

equipotentialsurface

Line of sight

Page 42: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Line levelling

The previous procedure is repeated as many times as need to cover the distance between the points.

H=h1+h2+h3+h4

The direction of levelling

H

h1

h2

h3

h4

Sz. Rózsa: Surveying I. – Lecture 1

H=lBSlFS

Page 43: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Outline

Structure of levels

Adjustment of levels

Error sources

Procedure of levelling

Line levelling, detail point levelling

Processing levelling data

Sz. Rózsa: Surveying I. – Lecture 1

Page 44: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Processing Levelling Data

Sz. Rózsa: Surveying I. – Lecture 1

Line levelling (one-way)

A

B

MSLReference level

HA HB=?

Page 45: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

A

BHA HB=?

Sz. Rózsa: Surveying I. – Lecture 1

PID d BS FS Rise Fall HA

1

1

d=20m

20

12 14

14 58 0.244

103.455

2

2

d=19

19

08 33

13 99 0.566

d=15

3

3 15

14 74

09 13 0.561

d=13

B 13

08 69

11 25 0.256

0.561 1.066

HAB=Rise-Fall=-0.505 m

102.950

Line Levelling – one way (the Rise&Fall Method)

Page 46: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

PID d BS FS Rise Fall HA 12 14 103.4551 20 08 33 14 58 0.2442 19 14 74 13 99 0.5663 15 08 69 09 13 0.56

1B 13 11 25 0.256

B 12 031 11 10 01 09 11 0.29

22 13 13 53 15 19 -0.5183 18 15 22 09 41 0.41

2A 22 11 97 0.32

5

Sz. Rózsa: Surveying I. – Lecture 1

Line Levelling – two-way (the Rise&Fall Method)

HAB=Rise-Fall=-0.505 m

HBA=Rise-Fall=+0.511m

Let’s compute the mean height difference:

mHH

H BAABAB 508.0

2

511.0505.0

2 HB=103.455-0.508=102.947m

Page 47: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Sz. Rózsa: Surveying I. – Lecture 1

Detail Point Levelling – The Height of Collimation Method

Detail Point Levelling: The elevation of some detail points (characteristic points of objects) should be determined.

A

B

MSLReference level

HA HB

The elevation of the characteristic points of the ditch should be determined!

Page 48: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Sz. Rózsa: Surveying I. – Lecture 1

Detail Point Levelling – The Height of Collimation Method

Height of collimation: The elevation of the horizontal line of sight. It can be computed by adding the elevation of the backsight point and the backsight reading.

Page 49: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Levelling - Bookkeeping

Rise and fall method:

Sz. Rózsa: Surveying I. – Lecture 1

Page 50: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Levelling - Bookkeeping

Height of Collimation method:

Sz. Rózsa: Surveying I. – Lecture 1

Page 51: Surveying I. Lecture 2. Sz. Rózsa: Surveying I. – Lecture 1

Thanks for the Attention!

Sz. Rózsa: Surveying I. – Lecture 1