Synergy - Nano-Tera 2016

Embed Size (px)

Citation preview

  • 8/17/2019 Synergy - Nano-Tera 2016

    1/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    Synergy : Systems for Ultra-high

    Performance Photovoltaic Energy

    Harvesting

    26.04.2016

    Christophe Ballif 

  • 8/17/2019 Synergy - Nano-Tera 2016

    2/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    Prof. Michael

    Graetzel

    Prof. Christophe

    Ballif 

    Prof. Anna

    Fontcubertai Morral

    Dr. Julien Bailat Prof. Ayodhya N. Tiwari

    Industrial partners:

    2

    Dr. Björn

    Niesen

  • 8/17/2019 Synergy - Nano-Tera 2016

    3/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    Goal of the project

    “Realizing photovoltaic energy harvesting systems based on

    tandem solar cells with efficiency beyond that achievable withstate-of-the-art industrial single-junction cells”

    3

  • 8/17/2019 Synergy - Nano-Tera 2016

    4/37

    C. Ballif, Nano-Tera.ch Meeting 2016 4

    Benchmark

    • 0.55-0.8 €/W at 17-21 % module

    efficiency (95-160 €/m2)

    • Electricity at 5 cts/kWh in sunny

    countries

    Various markets

    Photovoltaic

    power plants

    • Needs higher 

    efficiency, lower 

    manufacturingcosts, higher 

    reliability (> 30

    years lifetime)

  • 8/17/2019 Synergy - Nano-Tera 2016

    5/37

    C. Ballif, Nano-Tera.ch Meeting 2016 5

    Benchmark

    •  Application specific• Needs best efficiency at

    low-medium illumination

    level («shunt free

    devices»)

    Ubiquitous energy

    scavengers

    • Needs higher 

    efficiency

    •  Acceptable

    manfacturing costs

    • Sufficient reliability

    Various markets

  • 8/17/2019 Synergy - Nano-Tera 2016

    6/37

    Copyright 2016 CSEM | Jba/CBa| Page 6

    Energy scavenger: flexible PV with high performance at

    ultra-low illumination

    100% manuf. @CSEM

    Meas. after encapsulation

    Pm = 15 μW/cm2

    Vm = 0.5 V

    Pm = 1.5 μW/cm2

    Vm = 0.44 V

  • 8/17/2019 Synergy - Nano-Tera 2016

    7/37Copyright 2016 CSEM Didier Dominé | Page 7

    Autonomy for the internet of things

    • Two 9.4 cm2 PV cells

    • Jumpers for: series / parallel connection

    • 1000 Lux: Voc = 670 mV per cell; Pmpp = 60 μW/cm2 (564 μW)

    • 25 Lux: Voc > 520 mV per cell; Pmpp >1 μW/cm2 (>9.4 μW)

  • 8/17/2019 Synergy - Nano-Tera 2016

    8/37Copyright 2016 CSEM Didier Dominé | Page 8

    Small series production for powering the internet of things

    • Series connection and voltage up

    to 1000 V on mm2 possible

    • Over 5000 chips produced and

    tested in 2016 already

  • 8/17/2019 Synergy - Nano-Tera 2016

    9/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    Perovskite

    CdTe

    Breaking the barriers

    Lab record Efficiencies (worldwide):

    Silicon solar cells: 25.6%

    CIGS: 22.3%

    Close to practical limit: 26-27% for Si

    (theoretical 1 sun limit 29.4%)

    Source: U. Sydney, updated values added

    CIGS

    9

    Solution….?

  • 8/17/2019 Synergy - Nano-Tera 2016

    10/37

    C. Ballif, Nano-Tera.ch Meeting 2016 10

    Multi-junction solar cells

    Combination of high bandgap top cell

    with low bandgap bottom cell

    Realistic potential for efficiencies > 30%

    Careful choice of absorber materials is

    important

    Source: pveducation.org

    Si

  • 8/17/2019 Synergy - Nano-Tera 2016

    11/37

    C. Ballif, Nano-Tera.ch Meeting 2016 11

    Tandem cells

    Several PV technologycombinations:

    • Top cell:

    Perovskites or GaAs nanowires

    • Bottom cell:CIGS or Silicon cell

    Superstrate /encapsulation

    Si or CIGS bottom cell

    Transparent contact

    Perovskite or GaAs NW

    top cell

    Optical coupling/

    interconnection

    Transparent contact

    Transparent contact

    Rear contact

    Substrate /

    encapsulation

    Two tandem configurations:

    • Mechanically stacked 4-terminal tandems

    • Monolithically integrated 2-

    terminal tandems

  • 8/17/2019 Synergy - Nano-Tera 2016

    12/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    Superstrate /encapsulation

    Si or CIGS bottom cell

    Transparent contact

    Perovskite or GaAs NW

    top cell

    Optical coupling/

    interconnection

    Transparent contact

    Transparent contact

    Rear contact

    Substrate /

    encapsulation

    12

    Top Cell Developement

    Challenges:

    • Top cell performance

    • Electrodes with broadband

    transparency• Parasitic absorption in charge

    transport layers

    • Low-temperature processing

    • Stability• Up-scaling to bottom cell size

  • 8/17/2019 Synergy - Nano-Tera 2016

    13/37

    C. Ballif, Nano-Tera.ch Meeting 2016 13

    Proof of concept III-V on Si

  • 8/17/2019 Synergy - Nano-Tera 2016

    14/37

    C. Ballif, Nano-Tera.ch Meeting 2016 14

    Top cell: GaAs nanowire arrays

    Eg(GaAs) = 1.42 eV

    Eg(Si) = 1.1 eV

    Fontcuberta et al., Nature Photon. (2013)

    Monolithic tandem Mechanically stacked

  • 8/17/2019 Synergy - Nano-Tera 2016

    15/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    ITO

    PDMS

    ITO

     NW

    2 m

    200 400 600 800 1000 12000.0

    0.2

    0.4

    0.6

    0.8

    1.0

          E      Q       E

    Wavelength, nm

     Si solar cell along

     with high density NW-PDMS

     with low density NW-PDMS

    2 m

     

    1 cm

    321

    1 – 5x10⁷ /cm²

    2 – 3x10⁸ /cm²

    3 – 5x10⁸ /cm² NW density

    Transmittance

    NW embedded in the PDMS and peeledfrom the substrate

    15

    G A i b d ll ith

  • 8/17/2019 Synergy - Nano-Tera 2016

    16/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    GaAs nanowire-based cells with

    transparent contact

    • GaAs n-i-p cells are made by radial

    doping of nanowires and sputtered ITOtransparent front contact

    • Proof of concept device with Jsc = 12.5

    mA/cm2 and Voc = 0.24 V

    2 µm

    GaAs NWs ITO

    PDMS

    p-Si

    Al

    P+-Si

    ITO

    PDMS

    p-i-n GaAsNW forest

    Principal scheme of device

    Ti/Au

    16

  • 8/17/2019 Synergy - Nano-Tera 2016

    17/37

    C. Ballif, Nano-Tera.ch Meeting 2016 17

    Validation of concept with Si bottom

  • 8/17/2019 Synergy - Nano-Tera 2016

    18/37

    C. Ballif, Nano-Tera.ch Meeting 2016 18

    GaInP/ Silicon heterojunction tandem

    Mechanically stacked 4-terminal GaInP /

    Si heterojunction tandem cell

    Cell size: 1 cm2

    29.8% certified efficiency

    WR for Si-based tandem!S. Essig et al. To be

    published in IEEE JPV   But expensive top cell….

  • 8/17/2019 Synergy - Nano-Tera 2016

    19/37

    C. Ballif, Nano-Tera.ch Meeting 2016 19

    Top cell: Perovskite solar cell

    Variable bandgap 1.5 -

    2.3 eV

    Most commonly used

    material: MAPbI3 with Eg=

    1.56 eV Efficiency > 21%

    Potential for low-cost

    processing

     A = large cation (CH3NH3, Cs)

    B = small cation (Pb, Sn)X = halogen (I, Cl, Br)

    Green et al., Nature Photon. (2014)

    Substrate (Glass, PET Foil, etc.)

    Transparent front electrode

    Transport layer (p oder n)

    Perovskite

    Transport layer (n oder p)

    Single-junction: metal electrode

    Tandems: Transparent electrode

     A new class of «direct

    bandgap» semiconductor 

  • 8/17/2019 Synergy - Nano-Tera 2016

    20/37

    C. Ballif, Nano-Tera.ch Meeting 2016 20

    High efficiency single junction

  • 8/17/2019 Synergy - Nano-Tera 2016

    21/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    Stability and performance: Novel PK materials

    M. Saliba et al.,Energy Env. Sci. 2016

    • Small fraction of Cs included into perovskite absorber• Record efficiency of 21.1% measured at MPP

    • Enhanced stability compared to standard perovskite

    materials

    21

    Lo temperat re pero skite process

  • 8/17/2019 Synergy - Nano-Tera 2016

    22/37

    C. Ballif, Nano-Tera.ch Meeting 2016 22

    Low temperature perovskite process:

    solution-based recipe

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    -25

    -20

    -15

    -10

    -5

    0

    Voltage / V

            J sc/mAcm-2

    SnO2

    TiO2

     At 10 mV/s

    X

    X

     

    i

    SnO2

     

    FTO

    Perovskite

    HTL

     Au

     

    Scan

    directio

    n

    Jsc(mA cm-2)

    Voc(V)

    FFPCE

    (%)

    Light

    intensity

    (mW cm-2)

    SnO2backward 21.3 1.14 0.74 18.4

    98.4forward 21.2 1.13 0.75 18.1

    TiO2 SnO2

    X

    Perovskite Perovskite

    ESL

    FTO

    Perovskite

    HTL

     Au

    Highly efficient planar perovskite solar cells through band alignment engineering

    DOI: 10.1039/C5EE02608C (Communication) Energy Environ. Sci., 2015, 8, 2928

    L t t kit

    http://dx.doi.org/10.1039/C5EE02608Chttp://dx.doi.org/10.1039/1754-5706/2008http://dx.doi.org/10.1039/1754-5706/2008http://dx.doi.org/10.1039/C5EE02608C

  • 8/17/2019 Synergy - Nano-Tera 2016

    23/37

    C. Ballif, Nano-Tera.ch Meeting 2016 23

    • Pin-hole free perovskite layer 

    • Flat and homogeneous over

    5x5cm2 substrates

    • Controllable thickness and

    composition

    • High sub-bandgap transmittance

    Low temperature perovskite process:

    hybrid vacuum/solution-processing

  • 8/17/2019 Synergy - Nano-Tera 2016

    24/37

    C. Ballif, Nano-Tera.ch Meeting 2016 24

    Semitransparent planar perovskite solar cell with 16% efficiency

    Maximum power point tracking for > 8 minutes

    Negligible hysteresis

    Perovskite cell with transparent contacts (2)

    Hybridevaporation/

    solution-

    processing

    process,(

  • 8/17/2019 Synergy - Nano-Tera 2016

    25/37

    C. Ballif, Nano-Tera.ch Meeting 2016 25

    Perovskite mini-module

    ~100 cm2

    ~10 cm2

    ~0.2 cm2

    Standard

    lab cell size

    Challenges:1) Obtain uniform perovskite layer over full substrate size

    2) Eliminate pinholes in perovskite and transport layers

    Mini-modulesize

    Typical 4-inch

    wafer size

  • 8/17/2019 Synergy - Nano-Tera 2016

    26/37

    C. Ballif, Nano-Tera.ch Meeting 2016 26

    Perovskite mini-module: Approach

    Soo-Jin Moon et al. IEEE JPV, 2015

    Unpublished

    Uniform perovskite layer by optimized

    spin-coating process

    Laser scribing to define and

    interconnect segments

    • Module with active area

    efficiency of 12.6%

    •  Aperture area efficieny of 11.5%

  • 8/17/2019 Synergy - Nano-Tera 2016

    27/37

    C. Ballif, Nano-Tera.ch Meeting 2016 27

    Bottom cell development

    Cu(In,Ga)Se2 and silicon

    heterojunction bottom cells

    • Optimization of CIGS absorbermaterial for tandem cells

    • Highly transparent electrodes

    (ITO, IZO, ZnO:B, …)

    • Rear reflector, to boost infraredquantum efficiency

    Superstrate /encapsulation

    Si or CIGS bottom cell

    Transparent contact

    Perovskite top cell

    Optical coupling/

    interconnection

    Transparent contact

    Transparent contact

    Rear contact

    Substrate /

    encapsulation

  • 8/17/2019 Synergy - Nano-Tera 2016

    28/37

    C. Ballif, Nano-Tera.ch Meeting 2016

    Exemple: bottom cell: Cu(In,Ga)Se2

    Efficiencies > 20% with low band gap materials and high

    spectral response in the high wavelength region

    ideal as bottom cell

    High SR

    suitable as

    bottom cell

     A. Chirila et al., Nature Materials 10, 857 (2011) A. Chirila, P. Reinhard et al., Nature Materials 12, 1107 (2013)

    20.4%

    28

  • 8/17/2019 Synergy - Nano-Tera 2016

    29/37

    C. Ballif, Nano-Tera.ch Meeting 2016 29

    Si heterojunction cells with amorphous IZO

    Superior performance

    compared to standard

    ITO electrode

    M. Morales-Masis, et al.IEEE J. Photovoltaics 5 (2015).

    • Baseline process for 21-22% devices

    • With 22.5% certified

    Mechanically stacked 4 Terminal

  • 8/17/2019 Synergy - Nano-Tera 2016

    30/37

    C. Ballif, Nano-Tera.ch Meeting 2016 30

    Mechanically stacked 4-Terminal

    tandems

    • Both sub-cells processed

    independently

    • Offers large freedom fortemperature budget, cell

    orientation and surface texture

    • 3 transparent electrodes needed,

    resulting in increased parasiticabsorption

    Superstrate /

    encapsulation

    Si or CIGS bottom cell

    Transparent contact

    Perovskite top cell

    Optical coupling/

    interconnection

    Transparent contact

    Transparent contact

    Rear contact

    Substrate /

    encapsulation

    4 terminal Perovskite/CIGS tandem solar cell

  • 8/17/2019 Synergy - Nano-Tera 2016

    31/37

    C. Ballif, Nano-Tera.ch Meeting 2016 31

    4-terminal Perovskite/CIGS tandem solar cell

    20.5% efficiency

    Voc (mV) Jsc (mA/cm2) FF (%) h (%)

    Perovskite top cell 1104 17.4 73.6 14.2

    CIGS cell (stand-alone) 699 34.1 76.7 18.3

    CIGS bottom cell 667 12.7 74.9 6.3

    4-terminal tandem cell 20.5

    Fu et al., Nat. Commun. 6, 8932 (2015)

    With low-temperature perovskite cell:

    perovskite/CIGS tandem efficiency record!

    Perovskite/silicon heterojunction 4 terminal

  • 8/17/2019 Synergy - Nano-Tera 2016

    32/37

    C. Ballif, Nano-Tera.ch Meeting 2016 32

    Perovskite/silicon heterojunction 4-terminal

    tandem measurements

    With optical coupling liquid between sub-cells and antireflection foil on perovskite glass substrate

     Aperture area:

    PSC cell: 0.25 cm2

    SHJ cell: 4 cm2

    Voc Jsc FF Eff.

    PSC reverse 1050 19.8 75.6 15.76

    PSC forward 1044 19.7 77.2 15.98PSC Mpp tracking 16.05

    SHJ 724 38.3 78.3 21.73

    SHJ filtered 701 16.4 78.2 8.96

    4-terminal tandem measurement efficiency (stab. Meas.) 25.01

    unpublished

    From mechanically stacked to

  • 8/17/2019 Synergy - Nano-Tera 2016

    33/37

    From mechanically stacked to

    monolithically integrated

    33MRS spring - EE3.4.2 - [email protected]

    4TT

    Change top

    cell orientation

    Double-side

    polishedbottom

    Replace glass

    substrate bysilicon cell 2TT

    Single- junction perovskite process flow ≈ Perovskite top cell in monolithic tandem process flow

    n

    p

    p

    n

    Glass substrate

    n

    p

    p

    n

    Glass substrate

    n

    p

    p

    n

    Glass substrate

    n

    p

    p

    n

    Recombination layer 

    n

    p

    p

    n

    Recombination layer 

    Low temperature Perovskite/Silicon

  • 8/17/2019 Synergy - Nano-Tera 2016

    34/37

    C. Ballif, Nano-Tera.ch Meeting 2016 34

    Low-temperature Perovskite/Silicon

    monolithic tandem solar cells

     Aper ture

    area (cm2)

    Voc(mV)

    Jsc(mA/cm2)

    FF

    (%)

    Eff.

    (%)

    MPP

    tracking

    DSP-SHJ 1.22 704 32.1 74.4 16.8

    DSP-SHJ, 53% illu mination 1.22 687 17.0 77.1 9.02

    Monolithic

    tandem

    with ARF 1.22 1703 16.1 70.9 19.5 19.2w/o ARF 0.17 1670 13.8 78.6 18.1

    with ARF 0.17 1692 15.8 79.9 21.4 21.2

    J.Werner et al.

    JPCL 7, 161-166

    (2016)

    Highest published performance for perovskite/Si

    monolithic tandem!

  • 8/17/2019 Synergy - Nano-Tera 2016

    35/37

    C. Ballif, Nano-Tera.ch Meeting 2016 35

    Summary Tandem Efficiencies

    Cells 4TT 2TT Reference

    PK/Si 13.4% P. Löper et al. PCCP, 17, 2014 Synergy

    PK/Si 17% C. Bailie et al. EES, 2014

    PK/Si 13.7% J. Mailoa et al. APL, 106, 2015

    PK/Si 21.3% Oxford PV, first announced at HOPV15

    PK/Si 19.6% J. Werner et al. SolMat, 141, 2015 Synergy

    PK/Si 18% S. Albrecht et al. EES, 2015PK/Si 21.2% J. Werner et al. JPCL, 7, 2016 Synergy

    PK/Si 19.8% D. McMeekin et al. Science, 351, 2016

    PK/Si 20.1% Duong et al. IEEE JPV, 2016

    PK/Si 25.0% J. Werner et al. Announced at Spring MRS 2016 Synergy

    PK/CIGS 18.6% C. Bailie et al. EES, 2014

    PK/CIGS 19.5% L. Kranz et al. JPCL 6, 2676, 2015 Synergy

    PK/CIGS 20.5% F. Fu et al. Nat. Commun. 6, 8932, 2016 Synergy

  • 8/17/2019 Synergy - Nano-Tera 2016

    36/37

    C. Ballif, Nano-Tera.ch Meeting 2016 36

    Summary

    GaAs nanowire solar cell with transparent electrodes

    High-performance perovskite cells with Cs-based absorber materialwith enhanced stability and efficiency of 21.2%

    Fully laser-scribed 5 cm x 5 cm perovskite mini-module

    4-terminal perovskite/CIGS and perovskite/Si tandem cell

    measurements with performance up to 25%

    Monolithic perovskite/Si tandem cell with >21% efficiency

    Promising steps towards optimized tandem devices, with potential

    efficiencies beyond 30% Exploring commercialization paths with industry partners

  • 8/17/2019 Synergy - Nano-Tera 2016

    37/37

    C Ballif Nano Tera ch Meeting 2016

    Thank you for your attention!

    Thanks to all co-workers at EPFL LPI,

    PV-lab , LMSC at EMPA and CSEM andto industry partners for providing

    technical and hardware support !