76
Towards 4G: LTE or WiMAX? Mahamod Ismail, UKM 16 March 2009, UNIMAS

Talk 4G - LTE or WiMAX

  • Upload
    ukays

  • View
    101

  • Download
    2

Embed Size (px)

Citation preview

Towards 4G: LTE or WiMAX?

Mahamod Ismail, UKM16 March 2009, UNIMAS

AbstractThere are various emerging wireless technologies and standards serving various environments such as Wireless Wide Area Network (WWAN), Wireless Metropolitan Area Network (WMAN), Wireless Local Area Network (WLAN) and Wireless Personal Area network (WPAN). These technologies include WCDMA, HSDPA, WiMAX, ZigBee, IEEE families 802.20, 802.16, 802.15.4, 802.11n, Ultra Wideband (UWB), Cognitive Radio, Wireless Sensors Network (WSN), Bluetooth, Radio Frequency Identification (RFID) and others. The the basic features, advantages and disadvantages provided by those wireless infrastructures will be highlighted. Since specific technologies and spectrum allocations for the 4th

Generations (4G) is been identified, many researchers expected the Third Generation Partnership Project Long Term Evolutions (3GPP‐LTE) and the Worldwide Interoperability for Microwave Access (WiMAX) will compete and complement each other. The 4G is expected to become true mobile broadband supporting 1 Gbps and 100 Mbps peak data rate for fixed and mobile services respectively based on flat All‐IP network architecture. However, during deployment, various issues such as network architectures compatibility, network security, user cost and killer applications need to be solved.

KNT 4153(Mobile & Wireless Communications)• Advance Cellular Technology

– GPS

– Bluetooth

– UMTS

– Home RF

– 4G Cellular phone

– WiMax

– Wireless security

– Ultra Wideband

Outline

• Introduction

• Technologies and Standards

• 4G Evolution

• 3GPP‐LTE

• WiMAX

• Challenges

• Conclusion

INTRODUCTION

• Wireless refers to the electromagnetic waves or Radio Frequency (RF) without the use of electrical conductors or wires.

• Wireless communication is the transfer of information over a distance through wireless medium or channel.

• The frequency spectrum is a scarce resource and must be manage efficiently. .

WirelessRadioMobility

User mobilityDevice portability

TypesWirelessMobileCellular/Personal

Private vs Public Wireless

Mobile

Cellular

INTRODUCTION

• Advantages– Cost independent of terrain and distance– Suitable for incremental capacity enhancement,

i.e. flexible planning– Reduced maintenance effort, i.e. better reliability– Ease of installation and maintenance, i.e.

suitability for temporary or emergency services– Dynamic use of medium, i.e. trunking capability– Mobility– Suitable for multiple operators, i.e. service

liberalisation

INTRODUCTION

• Limitations– Capacity limited by frequency allocation, i.e.

cellular design is expensive– Margin has to be provided for multipath

propagation effect and interferences, i.e.expensive for normal urban application

– Power source required at terminal end– Generally very low transmission rates for higher

numbers of users

INTRODUCTION

INTRODUCTION

• Multiplexing– FDMA, TDMA, CDMA, OFDM

INTRODUCTION

• Modulation– AM, FM, PM, ASK, FSK, PSK, QPSK etc.

INTRODUCTION

INTRODUCTION

• 2G Cellular Operators– Maxis (012, 017, 014 2xx xxxx)

– Celcom (013, 019, 014 8xx xxxx)

– Digi (016, 014 6xx xxxx)

• 3G Operators (March 2006)– Maxis

– Celcom

– U Mobile/MiTV (018)

– TT Dotcom/TIME & Digi

INTRODUCTION

• WiMAX Operators (March 2007)– Packet One Networks (P1)

– REDtone‐ CNX Broadband

– Bizsurf

– Asiaspace Dotcom (Amax)

INTRODUCTION

15

IEEE 802.15.3 UWB, BluetoothWi-Media, WUSB, BTSIG, MBOA

WAN

MAN

LAN

PAN ETSI HiperPAN

IEEE 802.11 Wi-Fi Alliance

ETSI-BRAN HiperLAN2

IEEE 802.16d WiMAX

ETSI HiperMAN & HIPERACCESS

IEEE 802.20IEEE 802.16e

3GPP (GPRS/UMTS)3GPP2 (1X--/CDMA2000)GSMA, OMA

SensorsIEEE 802.15.4(Zigbee Alliance)

RFID(AutoID Center)

IEE

E 8

02.2

1,IE

EE

802

.18

802.

19 RANIEEE 802.22

TECHNOLOGIES & STANDARDS

TECHNOLOGIES & STANDARDS

• WWAN– Cellular (2G, 3G), LTE, IEEE802.20 (MBWA), IEEE802.22 (WRAN)

• WMAN – WiMAX, Zigbee, IEEE 802.16, 

• WLAN– Bluetooth, WiFi, IEEE 802.11

• WPAN– Ultra Wideband (UWB), IEEE 802.15 

TECHNOLOGIES & STANDARDS

TECHNOLOGIES & STANDARDS

TECHNOLOGIES & STANDARDS

www.mimos.my © 2008 MIMOS Berhad. All Rights Reserved.

Source: Fujitsu

TECHNOLOGIES & STANDARDS

TECHNOLOGIES & STANDARDS

TECHNOLOGIES & STANDARDS

TECHNOLOGIES & STANDARDS

4G Evolution

• Historically wireless generations have been defined in terms of air interface technology, focusing on raw bandwidth

• As 3G demonstrates, good wireless access technology and high raw bandwidth is no longer sufficient for business success

• Thus for 4G, it seems more appropriate to use other criteria such as:

• Technology view• Network operator view• User view

4G Evolution

– Fourth generation (4G) mobile communications• high-speed data rates at 20 to 100 Mbps,

• suitable for high-resolution movies and television, and virtual 

• Initial deployments are anticipated in 2006‐2010. –Killer applications

• Visualized virtual navigation Telegeoprocessing: GIS, GPS

• Life‐ saving:  Telemedicine

• Voice over Internet Protocol (VoIP) for IPv6

4G Evolution

– ITU – “IMT Advanced”– Expected targets

• True Mobile Broadband• 1Gbps peak data rate for fixed services• 100Mbps data rate for mobile services• High mobility to 500Km/H• Flat All-IP network architecture

2G9.6 - 14.4 kbps

Evolution from GSM/GPRS 2G to 3G

WCDMAGSM

GPRSEDGE

TDMA

GSMGPRSGSM

PDC

cdma2000 1xEV

cdma2000 1xcdmaOne

2.5 G64-144 kbps

AMPS

NMT

ETACS

3 G384 - 2 Mbps

3 G+1GAnalogue

Always Best Connected

‘ABC’

4G Evolution

4G Evolution

4G Evolution

4G Evolution

www.mimos.my

4G Evolution

Source: Nokia

www.mimos.my

4G Evolution

Source: Fujitsu

www.mimos.my

4G Evolution

3GPP‐LTE

3GPP‐LTE

3GPP‐LTE

3GPP‐LTE

3GPP‐LTE

3GPP‐LTE

3GPP‐LTE

3GPP‐LTE

3GPP‐LTE

3GPP‐LTE

• WiMAX (IEEE 802.16)– Worldwide Interoperability for Microwave Access

– A standards‐based technology enabling the delivery of last mile wireless broadband access as an alternative to cable

– To provide fixed, nomadic, portable and, eventually, mobile wireless broadband connectivity without the need for direct line‐of‐sight (LOS) with a base station.

– For fixed and portable access applications• Up to 40 Mbps per channel, in a cell radius of 3 ~ 10 km

– For mobile network deployments • Up to 15 Mbps per channel, in a cell radius up to 3 km

WiMAX

45

WiMAX

Source: Intel

WiMAX

Source: White Paper WiMAX Spectrum ‐ Fujitsu

WiMAX

• WiMAX (2.3/2.5 GHz, 3.5/3.7 GHz, 5.8 GHz)

WiMAX

Speaker Name

Title of Speaker

USA2.5 & 5.8 GHz

Central & So America2.5, 3.5 & 5.8 GHz

EUROPE3.5 & 5.8 GHzPossible: 2.5 GHz

MIDDLE EASTAFRICA3.5 & 5.8 GHz

ASIA PACIFIC2.3, 2.5, 3.3, 3.5 & 5.8 GHz

CANADA2.3, 2.5, 3.5 & 5.8 GHz

RUSSIA 3.5 & 5.8 GHzPossible: 2.3, 2.5 GHz

WiMAX

WiMAX

WMAX

WiMAX

WiMAX

WiMAX• Tradeoff between link robustness and capacity• Adaptation on a burst by burst basis• Modulation format QPSK/16QAM/64QAM

• Aiming at developing relay mode based on IEEE 802.16e, to gain:– Coverage extension, and– Throughput enhancement

www.mimos.my © 2008 MIMOS Berhad. All Rights Reserved.

WiMAX

Coverage extension at cell edge

Penetration into inside room

Shadow of buildings

Coverage hole

Underground

Valley between buildings

Coverage extension to isolated area

Multihop Relay

Mobile Access

BS RS

RS

RS

RS

RS

RS

To overcome these problems:1. Shadow of buildings2. Valley between buildings3. Coverage extension at cell edge

www.mimos.my © 2008 MIMOS Berhad. All Rights Reserved.

WiMAX

WiMAX

WiMAX

CHALLENGES

CHALLENGES

• Interoperability– Telecommunication Industry Association (TIA) moving from emergency to commercial services

– Global System for Mobile Telecommunications (GSM) moving from commercial to emergency services

• Standards– Third Generation Partnership Project (3GPP)

– Open Mobility Alliance

CHALLENGES

CHALLENGES

CHALLENGES

CHALLENGES

Conventional “Single Input Single Output” (SISO) systems were favored for simplicity and low‐cost but have some shortcomings:– Outage occurs if antennas fall into null

• Switching between different antennas can help– Energy is wasted by sending in all directions

• Can cause additional interference to others– Sensitive to interference from all directions– Output power limited by single power amplifier

channelRadioDSPBits

TXRadio DSP Bits

RX

CHALLENGES

Multiple Input Multiple Output (MIMO) systems with multiple parallel radios improve the following:

– Outages reduced by using information from multiple antennas– Transmit power can be increased via multiple power amplifiers– Higher throughputs possible– Transmit and receive interference limited by some techniques

channelRadio

DSP

Bits

TX

Radio

Radio

DSP

Bits

RX

Radio

CHALLENGES

• Security of mobile terminal– Unauthorized user, virus and theft

• Privacy – data, communication and location

– Service provision e.g. DOS attack

CHALLENGES

CHALLENGES

• User interfaces– Multi‐lingual

– Cross‐cultural

– Simpler and more intuitive

• Less reliance on infrastructure– Ad‐hoc and multi‐hop networks

– Better power usage and alternative power sources

• Better support for resource and device sharing– Privacy and security

– Immediate and itemized charging, billing, and payment

– Personalization

CHALLENGES

• Modular, streamlined products– Remove the unnecessary bells and whistles

– Allow incremental upgrade and pay‐only‐for‐what‐you‐use

– Better software and system design

• Biometric and non‐linguistic security

• Be open to Reverse Flow of Innovation– Incorporate diverse feedback loops into the product process

– Examples: handcrank radios, MiniGSM

CHALLENGES

CONCLUSION

• LTE & WIMAX are based on excellent technology and are variant of each other.

• It is phisible to develop multimode WiMAX‐LTE on the same chip

• Currently, WiMAX has the time‐to‐market advantage over LTE, but it is behind HSPA. If WiMAX vendors finalize the development of the add‐on networking approach soon enough, they may be able to take a larger market share from the LTE and HSPA. So it is “HSPA versus WiMAX” and not LTE

CONCLUSION

• Options:– Long Term Evolution ‐ LTE (3GPP)

– Mobile WiMAX – 802.16m (IEEE)

– Ultra Mobile Broadband – UMB (3GPP2)

CONCLUSION

References• Peter Rysavy, EDGE, HSPA, LTE – Broadband Innovation, Sept. 2008. (www.3gamericas.org)

• Ehud Reshef, LTE & WiMAX Evolution to 4G, Comsys Communication & Signal Processing Ltd., Oct. 2008

• Zion Hadad & Peretz Shekalim, WiMAX/16e/16m vs LTE : Technology and Performances comparison, Runcom Technologies Ltd., Oct. 2008.

• Ron Resnick, WiMAX™Connecting People Connecting The World, WiMAX Forum. 2008.

• Mohamad Yusoff Alias, Technical Overview of WiMAX Technology, NCTT‐MCP Special Session on WiMAX Technology, August 2008.

References• Borhanuddin Mohd Ali, WiMAX Research and the Way Forward, NCTT‐MCP Special Session on WiMAX Technology, August 2008.

• Borhanuddin Mohd Ali, WiMAX Research and the Way Forward, NCTT‐MCP Special Session on WiMAX Technology, August 2008.

• Borhanuddin Mohd Ali  & Hafizal Mohamed, Technical Overview of WiMAX Technology, Lecture Notes for KK5955: Special Topics on Emerging Wireless Communication Technologies, Universiti Putra Malaysia, 2009

• Robert Bestak, Towards 4G, Czech Technical University in Prague, 2008