14
טבת תשע"ד דצמבר3102 תהליך האוטופאגיה בשליה כחלק מהפתוגנזה של רעלת הריוןAutophagy in the placenta as part of the pathogenesis of preeclampsia עבודת הגמר של התלמידה תמר צ'סלה ת.ז:1-3013022-2 כתובת דוא"ל:[email protected] כמילוי חלק מהדרישות לשם קבלת תואר דוקטור לרפואה, מטעם בית הספר לרפואה של האוניברסיטה העברית והדסה, ירושלים. העבודה התפרס מה כמאמר בעיתון "Placenta ", אוגוסט3102 . "Expression profiling of autophagy associated genes in placentas of preeclampsia". Placenta. 2013 Oct;34(10):959-62. doi: 10.1016/j.placenta.2013.07.069. Epub 2013 Aug 15. PMID: 23953864 העבודה נעשתה בהדרכתן של: פרופ' חיימוב- קוכמן רונית- יחידת ההפריה החוץ גופית, המרכז ל חקר שליית האדם, מחלקת נשים ויולדות, האוניברסיטה העברית, ביה" ח" הדסה הר הצופים" , ירושלים[email protected] ד" ר גולד מן- וואהל דבורה, המרכז ל חקר שליית האדם, מחלקת נשים ויולדות, האוניברסיטה העברית, ביה" ח" הדסה הר הצופים" , ירושלים.[email protected]

T.cesla - Autophagy in the placenta as part of the ...arad.mscc.huji.ac.il/dissertations/W/MLB/001917018.pdf · T.cesla - Autophagy in the placenta as part of the pathogenesis of

  • Upload
    vokhanh

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

3102 דצמבר תשע"ד טבת

הריון רעלת של מהפתוגנזה כחלק בשליה האוטופאגיה תהליך

Autophagy in the placenta as part of the pathogenesis

of preeclampsia

תמר צ'סלהעבודת הגמר של התלמידה

1-3013022-2ת.ז:

[email protected]כתובת דוא"ל:

, כמילוי חלק מהדרישות לשם קבלת תואר דוקטור לרפואה

העברית והדסה, ירושלים.בית הספר לרפואה של האוניברסיטה מטעם

.3102", אוגוסט Placentaכמאמר בעיתון " מההתפרסהעבודה

"Expression profiling of autophagy associated genes in placentas of preeclampsia". Placenta. 2013 Oct;34(10):959-62. doi: 10.1016/j.placenta.2013.07.069. Epub 2013 Aug 15. PMID: 23953864

העבודה נעשתה בהדרכתן של:

, האדם שליית חקרל המרכזיחידת ההפריה החוץ גופית, -רונית קוכמן-חיימוב פרופ'

, ירושלים "הצופים הר הדסה" ח"ביה, העברית האוניברסיטה, ויולדות נשים מחלקת

[email protected]

, ויולדות נשים מחלקת, האדם שליית חקרל המרכז, דבורה וואהל-מןגולד ר"ד

, ירושלים. "הצופים הר הדסה" ח"ביה, העברית האוניברסיטה

[email protected]

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

3

Introduction:

Preeclampsia is a multi-system disorder characterized by hypertension and proteinuria in

the last half of pregnancy. Although most affected pregnancies deliver at term or near term

with good maternal and fetal outcomes, Preeclampsia is a potentially dangerous syndrome

with increased risk for maternal and/or fetal mortality or serious morbidity. Preeclampsia

occurs in up to 7.5 percent of pregnancies worldwide.

The pathophysiology of preeclampsia likely involves both maternal and fetal/placental

factors. Abnormalities in the development of placental vasculature early in pregnancy may

result in relative placental underperfusion or ischemia, which then leads to release of

antiangiogenic factors into the maternal circulation that alter maternal systemic endothelial

function and cause hypertension and other manifestations of the disease. However, the

molecular basis for placental dysregulation of these pathogenic factors remains unknown.

The pathogenesis of preeclampsia, is thought to originate in the placenta (1). Characteristics

often associated with preeclampsia, including an excessive inflammatory response (2),

premature placental aging (Tenney-Parker change), metabolic syndrome, hypoxia and

placental insufficiency are reminiscent of features of impaired autophagy.

'Autophagy' (in Latin = "self eating") refers to any intracellular process that involves the

degradation of cytosolic components by the lysosome. There are at least three distinct

autophagic pathways: Macroautophagy, Microautophagy and Chaperone-mediated

autophagy. Macroautophagy, here referred to as 'autophagy' ,a lysosomal pathway of

cellular component degradation, is known to play an essential role in such diverse processes

as cell survival under stress and nutrient deprivation, cell differentiation, development,

immunity and clearance of defective macromolecules. In addition to its role in normal

cellular homeostasis, defects in autophagy are implicated in pathologies such as

neurodegeneration, cancer, inflammation and aging (3-5). On the one hand, autophagy is an

essential cellular process through which defective or harmful proteins are eliminated. On the

other hand, it is a process through which cells can survive under stress conditions by

digesting cellular organelles and proteins for reuse. Although previously described as a death

pathway, autophagy is now considered an important survival phenomenon in response to

environmental stressors to which most organs are exposed.

Although possible roles for autophagy in placental function have recently been suggested (6,

7), Studies of autophagy in the placenta are still lagging. Two main players in the regulation

of autophagy, Beclin-1 (which plays a pivotal role in the regulation of autophagy by

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

2

combining with positive and negative co-factors) and LC3- ll (which required for the

formation of the autophagosomal membranes), have been studied in preeclampsia. LC3-ll

was found to be increased in placentas of preeclampsia, while Beclin-1 was not (8).

To elucidate a possible association between autophagy and the clinical syndrome of

preeclampsia we undertook an expression profile analysis with a directed focus of

autophagy associated genes from placentas of preeclamptic pregnancies as compared to

controls. We used microarray data including publicly available data from the NCBI Gene

Expression Omnibus (GEO) platform, to analyze over 40 genes known to be regulated in

autophagy. We compared datasets from 106 normal and 78 preeclamptic placental samples

to determine whether they displayed statistically significant differential expression of these

autophagy-related genes.

Materials and Methods:

1. Expression profile analysis: Five datasets were examined for a total of 78

preeclamptic and 106 control placental samples (Table 1). Datasets were carefully

chosen for validation that was performed through additional methods such at RT-

PCR. Additionally, at least two of the genes known to be associated with

preeclampsia, FLT1 (fms-like tyrosine kinase-one) and ENG (endoglin)(9), were found

to be upregulated in all the third trimester datasets that we used. Analysis of

whole genome expression transcriptional profiling with RMA (quantile

based) normalization using the PARTEK GENOMIC SUITE 6.6. PCA

(principal component analysis) was performed to remove outlier samples. Unpaired

t-tests were performed to detect statistically significant differentially expressed

genes. 43 genes known to have a role in the macroautophagy pathway (Table 2)

found in the "Amigo – Gene Ontology" Database

http://amigo.geneontology.org/cgi-bin/amigo/term-

assoc.cgi?gptype=all&speciesdb=all&taxid=9606&evcode=all&term_assocs=all&ter

m=GO%3A0016236&session_id=9416amigo1353235318&action=filter were

analyzed with a t test. p <0.05 was considered statistically significant.

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

4

2. Immunohistochemistry: Immunohistochemistry was performed on archival FFPE

normal third trimester (4 sections) and preeclamptic (8 sections) placental sections

as well as a 17 day secretory endometrium sample. The KIAA1324 antibody (Sigma

prestige antibody produced in rabbit) was used (as being the most upregulated gene

in Preeclamptic placenta, see results section) according to the manufacturer's

instructions with citrate buffer antigen retrieval (1:100 dilution). The secondary

antibody was Zytomed (Germany) systems HRP one-step polymer, antimouse/

rabbit/ rat. Color detection was with AEC (Zymed, CA) and GVA (Zymed, CA)

mounting was used.

Results:

We analyzed five different microarray datasets, from five different studies, (10-14) (Winn et

al. 2009, Sitras et al. 2009, Herse et al. 2012, Tsai et. al 2011, Founds et al. 2009), comprising

gene expression data of placental tissue. Each dataset included both preeclamptic and

control samples. Detailed information on the datasets is shown in Table 1. We analyzed each

dataset separately for several reasons, but mainly because each study defined preeclampsia

differently as regards severe (10, 11) or mild (12-14) disease.

The five datasets were created using three discrete microarray platforms: Affymetrix Human

Genome U133A and U133B Array (10, 14), Illumina human-6 v2.0 expression beadchip (12,

13), and ABI Human Genome Survey Microarray Version2 (11).

Table 1 shows that the five datasets differ in the number of samples collected. In one

dataset (14) the tissue collected differs from the others, as it was obtained via chorionic

villus sampling at first trimester and not placental sampling at delivery.

t-test did not reveal a statistical difference between autophagy associated gene expression

of normal and preeclamptic placental samples. Of the five datasets, very few autophagy

genes differed significantly between the two groups, and only three of them had a fold

change higher than 1.5 (in preeclamptic samples vs. control). They were the genes

KIAA1324, WDR45L (which are involved in the vacuole formation stage of macroautophagy)

and NPC1 (which is one of the negative regulators of macroautophagy). The gene mTOR

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

5

(FRAP1) displayed a 2-fold change in one of the datasets but was not significant (p=0.0624)

(Figure 1A-E).

The gene KIAA1324 displayed a 1.6 fold overexpression in preeclampsia as compared to

control samples. The gene, also known as EIG121, is a transmembrane protein that is

estrogen-induced and is overexpressed in endometrial carcinoma (15) . Overexpression of

tetracycline inducible EIG121 in stably transfected cells coupled with starvation was found to

upregulate autophagy (16). To investigate KIAA1324 protein expression in placenta we

performed immunohistochemistry on normal third trimester and first pregnancy severe

preeclampsia placental sections. As a positive control for the antibody we used secretory

phase endometrium. As expected, staining was observed in the glandular epithelium (Figure

2A). The serum only control was negative (Figure 2B). In three of four normal third trimester

placenta staining was observed surrounding fetal vessels; In six of eight of the preeclampsia

placentas we observed staining in the smooth muscle cells surrounding fetal vessels Figure

(Figure 2C,D). Overall however, the preeclamptic placental staining appeared less intense

than the staining intensity observed in the normal sections.

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

2

Table 1. Characteristics of the five datasets used in the analysis

Platform Sampling Procedure Number of Cases Study Author, year

Affymetrix

Human Genome

U133A and

U133B Array.

Basal plate biopsies of preterm labor (24-36 weeks) and preterm severe preeclampsia (24-36 weeks).

12 severe preterm

PE, 11 control

preterm delivery

GSE14722 Winn, 2009

Illumina human-

6 v2.0 expression

beadchip

The placental sample, excluding fetal membranes, was obtained within 5 cm of the placental umbilical insertion site.

23 preeclampsia,

37 control

GSE25906 Tsai, 2011

Affymetrix

Human Genome

U133 Plus 2.0

Array

A nested case control study of CVS tissues collected at 10–12 weeks’ gestation in 160 patients with singleton fetuses.

4 CVS samples of

PE, 8 matched

controls

GSE12767 Founds,

2009

ABI Human

Genome Survey

Microarray

Version 2

Chorionic tissue was dissected from a standardized location – approximately 2 cm from the umbilical cord insertion, from the middle layer of placenta midway between maternal and fetal surfaces.

17 preeclampsia,

26 control

GSE10588 Sitras, 2009

Affymetrix

Human Genome

U133 Plus 2.0

Array

Placental biopsies were excised from

a macroscopically normal looking,

centrally located cotyledon, omitting

the decidual layer.

22 preeclampsia,

24 control

Biobank

Collection Oslo

University

Hospital

Herse, 2012

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

7

Table 2. Autophagy related genes and function

Induction Nucleation Expansion Vacuole

formation

Co-

Regulators

of

Autophagy

and

Apoptosis:

Degradation

of misfolded

proteins

Positive

regulation of

Macroautophagy

Negative

regulators of

Macroautophagy

mTOR RB1CC1 ATG3 ATG9A CLN3 HDAC6 LARP1 LZTS1

ULK1 ATG101 ATG4B ATG9B SQSTM1 PAFAH1B2 NPC1

BECN1 ATG4C ATG13 SIRT1 NRBP2

PIK3C3 ATG5 MAP1LC3

A

SUPT5H

ATG14 ATG7 NBR1 WAC

ATG12 PSEN1 TP53INP2

ATG16L1 WDR45 TRIM13

WDR45L

WIPI1

WIPI2

TP53INP2

TBC1D25

KIAA1324

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

8

Figure 1: Analysis of datasets: Each point in the graph represents one gene of the

autophagy pathway which was analyzed . The X axis represents the expression fold-change

values (preeclamptic samples vs. control samples). The Y axis represents the level of

significance for gene expression. The horizontal line marks statistical significance (p=0.05).

Graph A – Winn, 2009. Graph B – Tsai, 2011. Graph C – Founds, 2009. Graph D – Sitras, 2009.

Graph E – Herse, 2012.

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

1

Figure 2: Immunohistochemistry of KIAA1324

Expression of KIAA1324 in the glandular epithelium of secretory phase endometrium

(A 200X) magnification and inset 400X magnification, negative control third trimester

placenta (B 400X), third trimester placenta with faint positive staining surrounding fetal

blood vessels (C 400X), preeclampsia placenta with positive staining of smooth muscle cells

surrounding large fetal vessels (D 200X), preeclampsia placenta negative for KIAA1324 (E

400X).

Discussion

Although it is tantalizing to suggest that autophagy plays a role in normal placental function

and that the preeclamptic placenta would have defects in the autophagic pathway, our

initial analysis does not support this hypothesis. We investigated this notion through

microarray data and publicly available data from the NCBI Gene Expression Omnibus (GEO)

platform of preeclamptic as compared to normal placenta, as well as first trimester CVS

samples in pregnancies that later did or did not develop preeclampsia. We did not observe

major statistically significant differences between the RNAs expressed by the preeclamptic

and normal placentas.

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

01

This was a surprising result as autophagy not only plays a role in normal cellular homeostasis

but plays a role during nutrient starvation, which could help explain placental function

during nutritional variability in maternal blood. Furthermore, considering the known

contributions of autophagy to processes such as aging, immunity, inflammation, and cell

survival, it seemed reasonable to suspect an association between defects in autophagy and

preeclampsia.

However, our findings are not without caveats. Among the possible mechanisms that may

diminish the need for autophagy in the placenta is placental reserve. Placental reserve is

essential for fetal survival as fluctuations in nutrient availability are to be expected.

Placental reserve is highly dependent on transport efficiency and placental size. Along with

the placental capacity of adaptability of active transport, placental reserve could offer a way

to meet fetal nutritional demands in times of limited nutrient availability (17).

Another possibility that may explain our negative results is that while not rising to statistical

significance, the small differences observed for some of the genes (less than 1.5 fold) may be

enough to trigger the autophagy pathway and perhaps to sustain it. These small RNA

differences could reflect larger differences if the data could be analyzed in protein arrays or

by western blot. In other words, the significance of defective autophagy in preeclampsia

may be revealed on the level of protein expression but not on RNA (4). In addition, marked

differences in gene expression may be observed according to the number of samples

collected per placenta, whether they were pooled or not, or the quality of the RNA: all of

these factors, as well as the anatomical site where the placental sample was taken, may

impact the results(18).

The placental samples used in this current investigation were from samples (either third

trimester or chorionic villous sampling) where the number of extravillous trophoblasts

would constitute only a minor fraction of the cell types. Therefore, if the defect in autophagy

in preeclampsia was to be found in extravillous trophoblasts then it would not be observed

by this methodology. Furthermore, since the basis for development of preeclampsia is

thought to be in the first trimester of pregnancy, with defective remodeling by extravillous

trophoblast of uteroplacental spiral arteries then perhaps a defect in autophagy expression

would not be detectable in the third trimester samples evaluated from four of five sources

used here for the array data (19).

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

00

Summary:

Autophagy, a mechanism of cell survival during times of stress, may be involved in normal

placental maintenance, and in addition to its role in normal cellular homeostasis, defects in

autophagy are implicated in pathologies such as neurodegeneration, cancer, inflammation

and aging (3-5). Characteristics often associated with preeclampsia, an hypertensive disorder

of pregnancy, including an excessive inflammatory response (2), premature placental aging

(Tenney-Parker change), metabolic syndrome, hypoxia and placental insufficiency are

reminiscent of features of impaired autophagy. Thus, the disruption of autophagy might

contribute to the pathophysiology of preeclampsia. However, studies of autophagy in the

placenta are still lagging.

To elucidate a possible association between autophagy and the clinical syndrome of

preeclampsia we undertook an expression profile analysis with a directed focus of

autophagy associated genes from placentas of preeclamptic pregnancies as compared to

controls. We used microarray data including publicly available data through the NCBI Gene

Expression Omnibus (GEO) platform, to analyze over 40 genes known to be regulated in

autophagy. We compared datasets from 106 normal and 78 preeclamptic placental samples

to determine whether they display statistically significant differential expression of these

genes.

Of the five datasets, very few autophagy genes differed significantly between the two

groups, and only three of these (KIAA1324, WDR45L and NPC1) had a fold change higher

than 1.5 (in preeclamptic samples vs. control).

To investigate KIAA1324 protein expression in placenta we performed

immunohistochemistry on normal third trimester and first pregnancy severe preeclampsia

placental sections. Overall however, the preeclamptic placental staining appeared less

intense than the staining intensity observed in the normal sections.

Although preeclampsia displays many of the features suggestive of altered autophagy,

including premature placental aging and placental insufficiency, defective placental

autophagy as a cause of preeclampsia is not supported by whole placental tissue microarray

differential expression profiling. We suggest that further investigations and alternate

approaches be taken to unveil the role that autophagy may play in normal placental function

and possible dysfunction in preeclampsia.

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

03

:סיכום

אוטופגיה הינו מנגנון של שרידות תאים בעתות עקה ורעב, וייתכן ומהווה חלק מיכולת השליה

התקינה להזנת העובר ברחם. תהליך אוטופאגיה פגום, הוכח כמעורב בפתולוגיות כגון סרטן, דלקת,

. בנוסף, מאפיינים רבים של רעלת הריון, ביניהם תהליך (3-5) נוירודגנרטיביים הזדקנות ותהליכים

תית, הינם מצבים דלקתי מוגבר, הזדקנות שלייתית מוקדמת, היפוקסיה ומצב של אי ספיקה שליי

. על כן, הועלתה ההשערה כי לתהליך (7 ,6)בהם ישנן עדויות לכך שתהליך האוטופגיה לקוי

האוטופגיה תפקיד בפתוגנזה של רעלת הריון.

כדי לחקור השערה זו, ולמצוא קשר בין תהליך האוטופאגיה לבין תסמונת רעלת ההריון, ביצענו

, על מנת NCBI Gene Expression Omnibus (GEO) platform -בו השתמשנו במידע המופיע ב מחקר

גנים, הידועים כשייכים לתהליך האוטופאגיה. במחקר ביצענו השוואה בין 41לנתח ביטויים של מעל

דגימות משליות של נשים שחלו ברעלת הריון, זאת על 78 -דגימות משליות תקינות ו 012 -נתונים מ

מנת לבדוק האם יהיה הבדל סטטיסטי מובהק בין ביטוי הגנים הללו בין שתי הקבוצות.

באנליזה נמצא כי מעט מאוד גנים היו שונים בצורה מובהקת בין שתי הקבוצות, ורק שלושה מהם

(KIAA1324, WDR45L ו- NPC1( היו בעלי השתנות )fold changeהגבוהה מ )- בשליות 0.5(

, אך לא היה מובהק 3הראה ביטוי הגבוה פי mTOR (FRAP1)ה"חולות" אל מול אלה הביקורת(. הגן

סטטיסטית.

על חתכים בשליה, ביצענו צביעה אימונוהיסטוכימית KIAA1324 -על מנת לחקור את ביטוי חלבון ה

משליות "תקינות" מטרימסטר שלישי, ומשליות של נשים שחלו ברעלת הריון חמורה. הצביעה

בשליות ה"חולות" הייתה חלשה מאשר זו שנצפתה בחתכים התקינים.

על כן, על אף שרעלת הריון מבטאת הרבה מן המאפיינים המתאימים לאיבר בו תהליך האוטופאגיה

וקדמת ואי ספיקה שלייתית, ההשערה לפיה פגם בתהליך האוטופגיה , כגון הזדקנות מהינו פגוע

בשליה הינו סיבה להתפתחות של רעלת הריון, לא נתמך על ידי מחקרנו.

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

02

References:

1. Redman CW, Sargent IL. Placental stress and pre-eclampsia: a revised view.

Placenta. 2009;30 Suppl A:S38-42.

2. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod

Immunol.63(6):534-43.

3. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and

inflammation. Nature. 2011;469(7330):323-35.

4. Mizushima N, Levine B. Autophagy in mammalian development and

differentiation. Nat Cell Biol. 2010;12(9):823-30.

5. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell.

2011;146(5):682-95.

6. Bildirici I, Longtine MS, Chen B, Nelson DM. Survival by self-destruction: A

role for autophagy in the placenta? Placenta.33(8):591-8.

7. Saito S, Nakashima A. Review: The role of autophagy in extravillous

trophoblast function under hypoxia. Placenta .2112.

8. Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-related

proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by

preeclampsia. Reprod Sci. 2008;15(9):912-20.

9. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, et al. Soluble

endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med.

2006;355(10):992-1005.

11. Winn VD, Gormley M, Paquet AC, Kjaer-Sorensen K, Kramer A, Rumer KK,

et al. Severe preeclampsia-related changes in gene expression at the maternal-fetal

interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2.

Endocrinology. 2009;150(1):452-62.

11. Sitras V, Paulssen RH, Gronaas H, Leirvik J, Hanssen TA, Vartun A, et al.

Differential placental gene expression in severe preeclampsia. Placenta.

2009;30(5):424-33.

12. Herse F, Lamarca B, Hubel CA, Kaartokallio T, Lokki AI, Ekholm E, et al.

Cytochrome P450 subfamily 2J polypeptide 2 expression and circulating

epoxyeicosatrienoic metabolites in preeclampsia. Circulation. 2012;126(25):2990-9.

13. Tsai S, Hardison NE, James AH, Motsinger-Reif AA, Bischoff SR, Thames

BH, et al. Transcriptional profiling of human placentas from pregnancies complicated

by preeclampsia reveals disregulation of sialic acid acetylesterase and immune

signalling pathways. Placenta. 2011;32(2):175-82.

14. Founds SA, Conley YP, Lyons-Weiler JF, Jeyabalan A, Hogge WA, Conrad

KP. Altered global gene expression in first trimester placentas of women destined to

develop preeclampsia. Placenta .2119;31(1:)15-24.

15. Deng L, Broaddus RR, McCampbell A, Shipley GL, Loose DS, Stancel GM,

et al. Identification of a novel estrogen-regulated gene, EIG121, induced by hormone

replacement therapy and differentially expressed in type I and type II endometrial

cancer. Clin Cancer Res. 2005;11(23):8258-64.

16. Deng L, Feng J, Broaddus RR. The novel estrogen-induced gene EIG121

regulates autophagy and promotes cell survival under stress. Cell Death Dis.1:e32.

17. Fowden AL, Ward JW, Wooding FP, Forhead AJ, Constancia M.

Programming placental nutrient transport capacity. J Physiol. 2006;572(Pt 1):5-15.

18. Wyatt SM, Kraus FT, Roh CR, Elchalal U, Nelson DM, Sadovsky Y. The

correlation between sampling site and gene expression in the term human placenta.

Placenta. 2005;26(5):372-9.

T.cesla - Autophagy in the placenta as part of the pathogenesis of preeclampsia

04

19. Goldman-Wohl D, Yagel S. Preeclampsia--a placenta developmental biology

perspective. J Reprod Immunol. 2009;82(2):96-9.