Tene

Embed Size (px)

Citation preview

  • 8/11/2019 Tene

    1/20

    An Mixed Integer Approach for

    Optimizing Production Planning

    Stefan Emet

    Department of Mathematics

    University of Turku

    Finland

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    2/20

    Outline of the talk

    Introduction

    Some notes on Mathematical ProgrammingChromatographic separation the process behind the modelMINLP model for the separation problem

    Objective - Maximizing profit under cyclic operationPDA constraints

    Numerical solution approachesMINLP methods and solvers

    Solution principlesSome advantages and disadvantages

    Some example problemsSolution results - Some different separation sequences

    SummaryConclusions and some comments on future research issues

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    3/20

    Optimization problems are usually classified as follows;

    Variables Functions

    continuous:

    masses,volumes, flowes

    prices, costs etc.

    discrete:

    binary {0, 1}

    integer {-2,-1,0,1,2}

    discrete values{0.2, 0.4, 0.6}

    linear non-linear

    non-convex

    quasi-convex

    pseudo-convex

    convex

    Classification of optimization problems...

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    4/20

    variables

    continuous integer mixed

    linear

    nonlinear

    LP ILP MILP

    NLP INLP MINLP

    On the classification...

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    5/20

    The separationproblem...

    H2OC1

    C2

    C2C1

    Column 1

    A one-column-system:

    dttc )(1 dttc )(2

    2

    2

    zcD

    zcu

    tqF

    tc kjjkjkjkj

    Goal: Maximize the profitsduring a cycle, i.e.

    max 1/T*(incomes-costs)

    1

    1 1

    ),(1

    max iiT

    i

    t

    t H ttydtztcy

    i

    i

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    6/20

    A two-column-system with three components:

    H2O

    Column 1 Column 2

    waste

    H2O

    C1 C2 C3 C1 C2 C3

    C3C2

    C1

    Waste

    (Note 2*3 PDEs)

    In general CPDEs/Column, i.e.

    tot. K*Cx1i2x1i1 x2i1 x2i2

    yin

    1iy

    in

    2i

    y1i1 y1i2 y1i3 y2i1 y2i2 y2i3

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    7/20

    K

    k

    T

    iii

    in

    ki

    C

    j

    t

    t Hkjkijj ttwydtztcyp

    i

    i1 11

    1 1),(

    1max

    Price of productsCycle length

    Raw-material costs

    ykijand ykiinare binary decision variables while tiand are continuous ones.

    pjand ware price parameters. K = number of columns,T = number of timeintervals,C =number of components to be separated.

    MINLP model for the SMB process...

    Objective function:

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    8/20

    MINLP model for the SMB process...

    PDEs for the SMB process:

    2

    2

    11

    1z

    cD

    z

    cu

    t

    cFc

    t

    ccFF

    kj

    j

    kjC

    l

    kljlkj

    kjC

    l

    kljlj

    data)fromestimated(e.g.parametersareand,,,

    ,,1,,,1for

    jjlj DuF

    KkCj

    ),(),0(

    )0,0(

    ),()()()0,(

    1

    1

    zczc

    cc

    ztctxctytc

    kjkj

    in

    jj

    K

    lHljlk

    in

    j

    in

    kkj

    otherwise.,0

    ,1,,if,1)(

    )()(

    )()(

    1

    1

    1

    Titttt

    txtx

    tyty

    ii

    i

    T

    i

    iliklk

    T

    i

    i

    in

    ki

    in

    k

    Logical functions:

    Boundary and initialconditions:

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    9/20

    MINLP model for the SMB process...

    Integral constraints for the pure and unpure components;

    )1(),(

    1

    kij

    t

    t

    Hkjkij yMdtztcmi

    i

    Pure components:

    i

    i

    t

    t

    Hkjkij dtztcm

    1

    ),(Equality constraints:

    Unpure components: )1(),(1

    1

    C

    jl

    l

    kil

    t

    t

    Hkjkij yMdtztcmi

    i

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    10/20

    MINLP-formulation summary...

    Linearconstraints

    Non-linearconstraints

    Boundary valueproblem

    Objective

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    11/20

    MINLP-methods..

    Branch and Bound M ethodsDakin R. J. (1965). Computer Journal, 8, 250-255.

    Gupta O. K. and Ravindran A. (1985).Management Science, 31, 1533-1546.

    Leyffer S. (2001). Computational Optimization and Applications,18, 295-309.

    Cutti ng Plane MethodsWesterlund T. and Pettersson F. (1995). An Extended Cutting Plane Method for Solving Convex MINLP

    Problems. Computers Chem. Engng. Sup., 19, 131-136.

    Westerlund T., Skrifvars H., Harjunkoski I. and Porn R. (1998). An Extended Cutting Plane Method for

    Solving a Class of Non-Convex MINLP Problems. Computers Chem. Engng., 22, 357-365.

    Westerlund T. and Prn R. (2002). Solving Pseudo-Convex Mixed Integer Optimization Problems by

    Cutting Plane Techniques. Optimization and Engineering, 3,253-280.

    Decomposition MethodsGeneralized Benders Decomposition

    Geoffrion A. M. (1972).Journal of Optimization Theory and Appl., 10, 237-260.

    Outer Approximation

    Duran M. A. and Grossmann I. E. (1986).Mathematical Programming, 36, 307-339.

    Viswanathan J. and Grossmann I. E. (1990). Computers Chem. Engng, 14, 769-782.Generalized Outer Approximation

    Yuan X., Piboulenau L. and Domenech S. (1989). Chem. Eng. Process, 25, 99-116.

    Linear Outer Approximation

    Fletcher R. and Leyffer S. (1994).Mathematical Programming, 66, 327-349.

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    12/20

    NLP-subproblems:

    + relative fast convergengeif each node can be solvedfast.

    - dependent of the NLPs

    MINLP-methods (solvers)...

    Branch&Bound

    minlpbb, GAMS/SBB

    Outer Approximation

    DICOPT

    ECP

    Alpha-ECP

    MILP

    MILP

    NLP

    NLPNLP

    NLP NLP

    NLP

    MILP and NLP-subproblems:

    + good approach if the NLPscan be solved fast, and theproblem is convex.

    - non-convexities impliessevere troubles

    MILP-subproblems:

    + good approach if the

    nonlinear functions arecomplex, and e.g. if gradientsare approximated

    - might converge slowly ifoptimum is an interior point offeasible domain.

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    13/20

    SMB example problems...

    (separation of a fructose/glucose mixture)

    Problem characteristics:

    Columns 1 2 3

    Variables

    Continuous 34 63 92Binary 14 27 71

    Constraints

    Linear 42 78 114

    Non-linear 16 32 48

    PDE:s involved 2 4 6

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    14/20

  • 8/11/2019 Tene

    15/20

    Water

    Mixture

    Fructose

    Recycle 1

    Glucose

    114,9 m

    t=57-124.8 min t=43.5 - 57 min

    t=57-116 min t= 0- 43.5 min

    116-124.8 min

    t=0-43.5 min

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    16/20

    Workload balancing problem...

    Decision variables:

    yikm=1, if component i is in machine k feeder m.

    zikm= # of comp. i that is assembled from machine k and feeder m.

    Feeders:

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    17/20

    Optimize the profits during a period :

    Objective...

    where is the assembly time of the slowestmachine:

    KkzttsM

    m

    I

    i

    ikmik ,...,1,..1 1

    K

    k

    kkYc

    1max

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    18/20

    constraints...

    (slot capacity)km

    M

    m

    ikmik Sys 1

    i

    K

    k

    M

    mikm dz 1 1

    (component to place)

    (all components set)

    0

    ikmiikm ydz

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    19/20

    PCB example problems...

    Problem characteristics:

    Machines 3 3 3 3 6 6 6 6

    Components 10 20 40 100 100 140 160 180

    Tot. # comp. 404 808 1616 4040 4040 5656 6464 7272

    Variables

    Binary 90 180 360 900 1800 2520 2880 3240

    Integer 90 180 360 900 1800 2520 2880 3240

    Constraints

    Linear 172 332 652 1612 3424 4784 5464 6144

    cpu [sec] 0.11 0.03 3.33 2.72 5.47 6.44 11.47 121.7

    WSEAS Puerto de la Cruz 15-17.12.2008

  • 8/11/2019 Tene

    20/20

    Summary...

    Though the results are encouraging there are issues to be tackled and/or

    improved in a future research (in order to enable the solving of larger problemsin a finite time);

    - refinement of the models

    - further development of the numerical methods

    Some references

    Emet S. and Westerlund T. (2007). Solving a dynamic separation problem using MINLP

    techniques.Applied Numerical Matematics.

    Emet S. (2004).A Comparative Study of Solving Some Nonconvex MINLP Problems, Ph.D. Thesis,bo Akademi University.

    Westerlund T. and Prn R. (2002). Solving Pseudo-Convex Mixed Integer Optimization Problemsby Cutting Plane Techniques. Optimization and Engineering, 3, 253-280.

    WSEAS Puerto de la Cruz 15-17.12.2008