157
TERMOLOGÍA Y ONDAS MECÁNICAS FÍSICA POR: MIGUEL MOLINA RIVERA Área de Física de Preparatoria Agrícola | Universidad Autónoma Chapingo

Termología y Ondas Magneticas 1

Embed Size (px)

DESCRIPTION

Profesor responsable de la publicación: Miguel Molina RiveraÁrea de Física de Preparatoria Agrícola de la Universidad Autónoma Chapingo, México.

Citation preview

Page 1: Termología y Ondas Magneticas 1

TERMOLOGÍA

Y

ONDAS

MECÁNICAS

FÍSICA

POR: MIGUEL MOLINA RIVERA

Área de Física de Preparatoria Agrícola | Universidad Autónoma Chapingo

Page 2: Termología y Ondas Magneticas 1

INTRODUCCIÓN

I. TERMOLOGIA

II. ONDAS MECANICAS

Page 3: Termología y Ondas Magneticas 1

TERMOLOGIA

Parte de la física que estudia a la temperatura y el calor.

TEMPERATURA

Es una magnitud física que indica que tan frio o caliente esta una sustancia, se mide con un

termómetro y sus unidades son el grado.

CALOR

Es una energía en movimiento que fluye de los cuerpos a mayor temperatura a los de menor

temperatura y sus unidades en Joules en calorías.

CALÓRICO

Fluido invisible sin sabor, olor ni peso; es el nombre con el que se conocía el calor en el siglo

XVIII. Los cuerpos ya tenían un contenido de ese calor y fluía del que tenía más al que tenía

menos.

BENJAMIN THOMPSON

Descubrió que al barrenar un cañón se producía calor, es decir la fricción produce calor.

JOULE

El calor no lo tienen los cuerpos, sino que es una forma de energía que puede transformarse

en energía mecánica, energía eléctrica, o a cualquier otro tipo de energía.

I. ONDAS MECÁNICAS

Son perturbaciones que se propagan en forma de oscilaciones periódicas y para transmitirse

requieren de un medio material como las ondas y el sonido.

ONDAS ELECTROMAGNÉTICAS

Son ondas que pueden viajar en el vacío como la luz, el calor, y las ondas de radio.

FOCO O EMISOR DE LAS ONDAS

Es el punto donde se genera la perturbación inicial.

FUERZA DE RESTITUCIÓN

Son fuerzas que producen que las partículas separadas recuperen su posición inicial en los

particulares de una onda.

Page 4: Termología y Ondas Magneticas 1

GRAFICA DE UNA ONDA

Amplitud Cresta Cresta

Valle

Antinodo Antinodo

Longitud de Onda

Y

X

Page 5: Termología y Ondas Magneticas 1

I.- TERMOLOGÍA

1.- Dilatación Térmica.

2.- Calorimetría.

3.- Transferencia de Energía Calorífica.

4.- Gases Ideales.

5.- Teoría Cinética.

6.- Primera Ley de la Termodinámica.

7.- Entropía y Segunda Ley.

Page 6: Termología y Ondas Magneticas 1

1.1.- Dilatación Térmica

LA TEMPERATURA: Variable física que nos da la sensación de que cuerpo está más frío que

otro.

ESCALA CELSIUS: Es el punto de congelación del agua es 0°C y el de ebullición es 100°C.

ESCALA KELVIN: Es el punto de congelación del agua, es 273.15°K y el de ebullición es de

373.15°K

ESCALA FAHRENHEIT: Se relaciona con la Celsius por la fórmula:

𝑇𝐹 =9

5𝑇𝐶 + 32

Escala Rankine: Se relaciona con la Kelvin por la fórmula:

𝑇𝑅 = ( 𝐾 − 275.15 ) ∗ 1.8 + 491.67

Dilatación lineal de un sólido: Cuándo un sólido sufre un cambio de temperatura ∆𝐿 =

𝑇𝐹 − 𝑇𝑂 , experimenta una variación en su longitud ∆𝐿 = 𝐿𝐹 − 𝐿𝑂 ,dada por la fórmula:

∆𝐿 = 𝛼𝐿 . 𝛥𝑇

Donde:

𝛼: Es el llamado coeficiente de dilatación lineal,

𝐿𝑂 : Es la longitud inicial.

𝑇𝐹 : Es la temperatura final.

𝑇𝑂 : Es la temperatura inicial.

𝐿𝐹 : Es la longitud inicial.

Dilatación superficial: Si un sólido sufre un cambio de temperatura ∆𝑇 = 𝑇𝐹 − 𝑇𝑂 ,

experimenta una variación en su superficie ∆𝐴 = 𝐴𝐹 − 𝐴𝑂 , dada por la fórmula:

∆𝐿 = 𝛿𝐴 . 𝛥𝑇

Dónde:

𝛿: Es el llamado coeficiente de dilatación.

𝐴𝑂 :Es el área inicial.

Page 7: Termología y Ondas Magneticas 1

𝑇𝐹 : Es la temperatura final.

𝑇𝑂: Es la temperatura inicial.

𝐴𝐹 :Es el área final.

Dilatación volumétrica: Si un sólido sufre un cambio de temperatura ∆𝑇 = 𝑇𝐹 − 𝑇𝑂 ,

experimenta una variación en su volumen ∆𝑉 = 𝑉𝐹 − 𝑉𝑂 , dado por la fórmula:

∆𝑉 = 𝛽𝑉𝑂𝑇

Dónde:

𝛽: Es el coeficiente de dilatación volumétrica.

𝑉𝑂 : Es el volumen inicial.

𝑇𝐹 : Es la temperatura final.

𝑇𝑂 : Es la temperatura inicial.

𝑉𝐹 : Es el volumen final.

𝛽 = 3 𝛼

Densidad de un sólido: Si un sólido sufre un cambio de temperatura ∆𝑇 = 𝑇𝐹 − 𝑇𝑂 ,

experimenta una variación en su densidad ∆𝐷 = 𝐷𝐹 −𝐷𝑂 , dada por:

∆𝐷 = − 𝛽𝐷𝐹𝛥𝑇

Dónde:

𝛽 ∶ Es el coeficiente de dilatación volumétrica.

𝐷𝑂 : Es la densidad inicial.

𝐷𝐹: Es la densidad final.

𝑇𝑂: Es la temperatura inicial.

𝑇𝐹 : Es la temperatura final.

Observe que:

𝐷𝑂 =𝑚

𝑉𝑂 y 𝐷𝐹 =

𝑚

𝑉𝐹

Dónde

Page 8: Termología y Ondas Magneticas 1

𝑚: Es la masa del sólido.

𝑉𝑂: Es el volumen inicial.

𝑉𝐹 : Es el volumen final.

FORMULARIO

1.- RELACIONES ENTRE LAS ESCALAS:

𝑇𝐶 = 𝑇𝐾 + 273

𝑇𝐾 = 𝑇𝐶 − 273

𝑇𝐹 =9

5𝑇𝐶 + 32

𝑇𝐶 =5

9(𝑇𝐹 − 32)

𝑇𝑅 = 𝑇𝐹 + 460

𝑇𝐹 = 𝑇𝑅 − 460

2.- RELACIONES DE DILATACIÓN

∆𝐿 = ∝ 𝐿𝑂( 𝑇𝐹 − 𝑇𝑂 )

𝐷𝐹 − 𝐷𝑂 = ∝ 𝐷𝑂 ( 𝑇𝐹 − 𝑇𝑂 )

𝐿𝐹 = 𝐿𝑂+∝ 𝐿𝑂∆𝑇

∆𝑉 = 𝛽𝑉𝑂𝛥𝑇

∆𝑇 = 𝑇𝐹 − 𝑇𝑂

𝑃𝐹 =𝑃𝑂

1+∆𝑉

𝑉𝑂

=𝑃𝑂

1+𝛽∆𝑇

𝐹

𝐴=

∆𝐿

𝐿𝑂

∆𝐷 = 𝐷𝐹 − 𝐷𝑂

𝐷𝐹 = 𝐷𝑂[1+∝ (𝑇𝐹 − 𝑇𝑂)]

Page 9: Termología y Ondas Magneticas 1

𝐼𝑂𝑊𝑂 = 𝐼𝐹𝑊𝐹

𝐼 =2

5𝑚𝑏2

(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2

𝑃𝐹 =𝑃𝑂

1+𝛽∆𝑇

𝐹 = 𝐸 ∝ 𝐴∆𝑇

Page 10: Termología y Ondas Magneticas 1

1.1 Los puntos de fusión y ebullición, a la presión atmosférica, del alcohol etílico son -179°f

y 173°f. Convertir estas temperaturas a la escala Celsius.

DATOS:

𝑇1 = −179°𝐹

𝑇2 = −173°𝐹

INCÓGNITAS:

a) 𝑇1𝐶 =?

b) 𝑇2𝐶 =?

FÓRMULA:

𝑇𝐶 =𝑇𝐹−32

1.8

DESARROLLO:

a) 𝑇1𝐶 =−179−32

1.8

𝑇1𝐶 = −117°𝐶

b) T2C =173−32

1.8

T2C = 78.5°C

Page 11: Termología y Ondas Magneticas 1

1.2 Los puntos de ebullición y fusión, a la presión atmosférica, del mercurio son 357 °C y

−38.9°𝐶. Expresar dichas temperaturas en unidades de la escala Fahrenheit.

DATOS:

𝑇1 = 357°𝐶

𝑇2 = −38°𝐶

INCÓGNITAS:

a) 𝑇1𝐹 =?

b) 𝑇2𝐹 =?

FÓRMULA:

𝑇𝐹 = 1.8 𝑇𝐶 + 32

DESARROLLO:

a) 𝑇1𝐹 = (1.8)(357) + 32

𝑇1𝐹 = 675°𝐹

b) 𝑇2𝐹 = (1.8)(−38.9) + 32

𝑇2𝐹 = −38.0°𝐹

Page 12: Termología y Ondas Magneticas 1

1.3 Una barra de cobre a 15°c, experimenta una variación en su longitud de 2.72mm, al

calentarla hasta 35°c, si el coeficiente de dilatación lineal del cobre vale 17 ×

10−6 °𝐶−1.hallar la longitud inicial de la barra.

DATOS:

𝑇𝒾 = 15°𝐶

𝑇𝑓 = 35°𝐶

∆𝐿 = 2.72mm = 2.72𝑥10−3m

∝= 17 × 10−6 °C−1

INCÓGNITA:

𝐿𝒾 =?

FÓRMULA:

∆L =∝ 𝐿𝒾(Tf − 𝑇𝒾)

DESARROLLO:

∆𝐿

∝(𝑇𝑓−𝑇𝒾)= 𝐿𝒾

𝐿𝑖 =∆𝐿

∝(𝑇𝑓−𝑇𝑖)

𝐿𝑖 =2.72 𝑋 10−3 𝑚

(17 × 10−6°𝐶−1)(35°𝐶−15°𝐶)

𝐿𝑖 = 8 𝑚

Page 13: Termología y Ondas Magneticas 1

1.4 Un eje de acero tiene un diámetro de 10,000cm, la temperatura a la que finalmente

se tiene es de 2.7°c y el diámetro de la rueda en que se colocó el eje fue de 9,997cm, si el

coeficiente de la dilatación lineal del acero vale 11 x 10-6 °c-1. Determine la temperatura

inicial a la que se encontraba el eje.

DATOS:

𝐷𝑖 = 10,000𝑐𝑚

𝑇𝑓 = 2.7°𝐶

𝐷𝑓 = 9.997𝑐𝑚

∝ = 11 𝑥 10−6°𝐶−1

INCÓGNITA:

𝑇𝑖 = ?

FORMULA:

𝐿𝑓 = 𝐿𝑖 (1+∝ (𝑇𝑓 − 𝑇𝑖))

DESARROLLO:

𝐷𝑓 = 𝐷𝑖 (1+∝ (𝑇𝑓 − 𝑇𝑖))

𝐷𝑓

𝐷𝑖= 1+∝ (𝑇𝑓 − 𝑇𝑖)

𝐷𝑓

𝐷𝑖− 1 = ∝ (𝑇𝑓 − 𝑇𝑖)

𝐷𝑓

𝐷𝑖−1

∝= 𝑇𝐹 − 𝑇𝑖

𝐷𝑓

𝐷𝑖−1

∝+ 𝑇𝑖 = 𝑇𝑓

𝑇𝑖 = 𝑇𝑓 −

𝐷𝑓

𝐷𝑖−1

𝑇𝑖 = 2.7 − (9.997𝑐𝑚10,000𝑐𝑚

11 × 10−6°𝐶−1

− 1) = 30°𝐶

Page 14: Termología y Ondas Magneticas 1

1.5 Con una cinta métrica de acero se mide una varilla de cobre y resulta el valor 90.00cm

a 10°c. La lectura que se obtiene es de 90.01cm a 30°c. El coeficiente de dilatación del cobre

es de 17 × 10−6°𝐶−1.

Si se supone que la cinta métrica del acero mide correctamente a 10°c. Determine el

coeficiente de dilatación lineal del acero.

DATOS:

𝐿𝑖 = 90.00𝑐𝑚

𝑇𝑖 = 10°𝐶

𝐿𝑓 = 90.01𝑐𝑚

𝑇𝑓 = 30°𝐶

∝ 𝐶𝑢 = 17 × 10−6°𝐶−1

INCÓGNITA:

∝𝐴= ?

FÓRMULAS:

∆𝐿𝑇𝑂𝑇𝐴𝐿 = ∆𝐿𝐶𝑈 − ∆𝐿𝐴

∆𝐿 =∝ 𝐿𝑖(𝑇𝑓 − 𝑇𝑖)

∆𝐿𝑇𝑂𝑇𝐴𝐿 = 𝐿𝑓 − 𝐿𝑖

DESARROLLO:

∆𝐿𝑇𝑂𝑇𝐴𝐿 + ∆𝐿𝐴 = ∆𝐿𝐶𝑈

∆𝐿𝐴 = ∆𝐿𝐶𝑈 − ∆𝐿𝑇𝑂𝑇𝐴𝐿

∝𝐴 𝐿𝑖(𝑇𝑓 − 𝑇𝑖) =∝𝐶𝑈 𝐿𝑖(𝑇𝑓 − 𝑇𝑖) − ∆𝐿𝑇𝑂𝑇𝐴𝐿

∝𝐴=∝𝐶𝑈𝐿𝑖(𝑇𝑓−𝑇𝑖)−(𝐿𝑓−𝐿𝑖)

𝐿𝑖(𝑇𝑓−𝑇𝑖)

∝𝐴=(17× 10−6°𝐶−1)(90.00𝑐𝑚)(30° 𝐶−10° 𝐶)−(90.01𝑐𝑚−90𝑐𝑚)

(90.00𝑐𝑚)(30° 𝐶−10°𝐶)

∝𝐴= 11 𝑋 10−6°𝐶−1

Page 15: Termología y Ondas Magneticas 1

1.6 Un bulbo de vidrio lleno con mercurio a 18°c, se vacía con 0.15cm3 de mercurio si se

eleva la temperatura a 38°c.

El coeficiente de dilatación lineal del vidrio es 9 × 10−6°𝐶−1, y el del mercurio es de 60 ×

10−6°𝐶−1. Obtenga el volumen inicial del bulbo.

DATOS:

𝑇𝑖 = 18°𝐶

∆𝑉𝐻𝑔 − ∆𝑉𝑉 = 0.15𝑐𝑚3

𝑇𝑓 = 38°𝐶

∝𝐻𝑔= 60 × 10−6°𝐶−1

INCÓGNITA:

𝑉𝑖 = ?

FÓRMULAS:

∆𝛽 = 𝛽𝑉𝑖(𝑇𝑓 − 𝑇𝑖)

𝛽 = 3 ∝

DESARROLLO:

∆𝑉𝐻𝑔 − ∆𝑉𝑉 = 𝛽𝐻𝑔𝑉𝑖(𝑇𝑓 − 𝑇𝑖) − 𝛽𝑉𝑉𝑖(𝑇𝑓𝑇𝑖)

∆𝑉𝐻𝑔 − ∆𝑉𝑉 = (𝛽𝐻𝑔 − 𝛽𝑉)𝑉𝑖(𝑇𝑓 − 𝑇𝑖)

∆𝑉𝐻𝑔−∆𝑉𝑉

(𝛽𝐻𝑔−𝛽𝑉)(𝑇𝑓𝑇𝑖)= 𝑉𝑖

𝑉𝑖 =∆𝑉𝐻𝑔−∆𝑉𝑉

(3∝𝐻𝑔−3∝𝑉)(𝑇𝑓−𝑇𝑖)

𝑉𝑖 =0.15𝑐𝑚3

((3)(60×10−6°𝐶−1)−(3)(9×10−6°𝐶−1))(38°𝐶−18°𝐶)

𝑉𝑖 = 50.00𝑐𝑚3

Page 16: Termología y Ondas Magneticas 1

1.7 La densidad del mercurio a 50°c es de 13.48g/cm3; obtenga la densidad correspondiente

a 0°c, si el coeficiente de dilatación cúbica del mercurio es de 1.82 × 10−4°𝐶−1.

DATOS:

𝑇𝑖 = 50°𝐶

𝜌𝑖 = 13.48𝑔/𝑐𝑚3

𝑇𝑓 = 0°𝐶

𝛽 = 1.82 × 10−4°𝐶−1

INCÓGNITA:

𝜌𝑖 = ?

FÓRMULA:

𝜌𝑖 = 𝜌𝑖

1+𝛽(𝑇𝑓−𝑇𝑖)

DESARROLLO:

𝜌𝐹 =13.48𝑔/𝑐𝑚3

1+(1.82×10−4°𝐶−1)(00𝐶−50°𝐶)

𝜌𝐹 = 13.60𝑔/𝑐𝑚3

Page 17: Termología y Ondas Magneticas 1

1.8 Los extremos de una varilla de acero de 1𝑐𝑚2 de sección recta se mantienen

rígidamente entre dos puntos fijos a una temperatura de 30°C.

Si la varilla se somete a una fuerza de 253N al disminuir la temperatura hasta 20°C. El

módulo de Young del acero es de 2.3 × 10−6𝑁/𝑐𝑚2. Obtenga el coeficiente de dilatación

lineal del acero.

DATOS:

𝐴 = 1𝑐𝑚2

𝑇𝑖 = 30°𝐶

𝐹 = 253𝑁

𝑇𝑓 = 20°𝐶

𝑌 = 2.3 × 106 𝑁/𝑐𝑚2

INCÓGNITA:

∝= ?

FORMULA:

F= Y∝ 𝐴|𝑇𝑓 − 𝑇𝑖|

DESARROLLO:

𝐹

𝑌𝐴|𝑇𝑓−𝑇𝑖|=∝

∝=𝐹

𝑌𝐴|𝑇𝑓−𝑇𝑖|

∝=253𝑁

(2.3×10−6𝑁/𝑐𝑚2)(1𝑐𝑚2)|20°𝐶−30°𝐶|

∝= 11𝑋10−6°𝐶−1

Page 18: Termología y Ondas Magneticas 1

Transformar 50°C a °F

DATOS:

𝑇𝐶 = 50°𝐶

INCÓGNITA:

𝑇𝐹 = ?

FORMULA:

𝑇𝐹 =9

5𝑇𝐶 + 32

DESARROLLO:

𝑇𝐹 = (9

5) (50) + 32

𝑇𝐹 = 122°𝐹

Transformar 90°F a °C

DATOS:

𝑇𝐹 = 90°𝐹

INCÓGNITA:

𝑇𝐶 = ?

FORMULA:

𝑇𝐶 =5

9(𝑇𝐹 − 32)

DESARROLLO:

𝑇𝐶 = (5

9) (90 − 32)

𝑇𝐶 = 32.22°𝐶

Transformar 97°F a °R

DATOS:

𝑇𝑅 = 97°𝐹

Page 19: Termología y Ondas Magneticas 1

INCÓGNITA:

𝑇𝑅 = ?

FORMULA:

DESARROLLO:

𝑇𝑅 = 557°𝑅

Transformar 40°C a °K

DATOS:

𝑇𝐶 = 40°𝐶

INCÓGNITA:

𝑇𝐾 =?

FÓRMULA:

𝑇𝐾 = 𝑇𝐶 − 273

DESARROLLO:

𝑇𝐾 = 40 − 273

𝑇𝐾 = −273°𝐾

Transformar 80°R a °F

DATOS:

𝑇𝑅 = 80°𝑅

INCÓGNITA:

𝑇𝑅 =?

FÓRMULA:

DESARROLLO:

𝑇𝑅 = 380°𝐾

Page 20: Termología y Ondas Magneticas 1

1.- El coeficiente de dilatación lineal del cobre es 1.7 x 10-5 °C-1. Si una barra de cobre tiene

una longitud de 80cm a 15°C y sufre un cambio de temperatura, teniendo una variación de

2.7x10-4m en su longitud. Obtenga su temperatura final.

DATOS:

∝= 1.7 × 10−5°𝐶−1

𝐿𝑂 = 80𝑐𝑚 = 0.8 𝑚

𝑇𝑂 = 15°𝐶

∆𝐿 = 2.7 × 10−4 𝑚

INCÓGNITA:

𝑇𝐹 = ?

FORMULA:

∆𝐿 =∝ 𝐿𝑂(𝑇𝐹 − 𝑇𝑂)

DESARROLLO:

∆𝐿

∝𝐿𝑂= 𝑇𝐹 − 𝑇𝑂

∆𝐿

∝𝐿𝑂+ 𝑇𝑂 = 𝑇𝐹

𝑇𝐹 =∆𝐿

∝𝐿𝑂+ 𝑇𝑂

𝑇𝐹 =2.7𝑋10−4𝑚

(1.7×10−5°𝐶−1)(0.8𝑚)+ 15°𝐶

𝑇𝐹 = 35°𝐶

Page 21: Termología y Ondas Magneticas 1

2.- Para el acero ∝= 1.1 × 10−5°𝐶−1, un cilindro de 1cm de diámetro se tiene que deslizar

por un agujero que tienen una placa de acero. El agujero a 30°C es de 0.9997cm. Diga que

temperatura debe tener la placa para lograr el objetivo.

DATOS:

∝= 1.1 × 10−5°𝐶−1

𝐷𝐹 = 1𝑐𝑚

𝐷𝑂 = 0.9997𝑐𝑚

𝑇𝑂 = 30°𝐶

INCÓGNITA:

𝑇𝐹 = ?

FORMULA:

𝐷𝐹 − 𝐷𝑂 =∝ 𝐷𝑂(𝑇𝐹 − 𝑇𝑂)

DESARROLLO:

𝐷𝐹−𝐷𝑂

∝𝐷𝑂= 𝑇𝐹 − 𝑇𝑂

𝐷𝐹−𝐷𝑂

∝𝐷𝑂+ 𝑇𝑂 = 𝑇𝐹

𝑇𝐹 =𝐷𝐹−𝐷𝑂

∝𝐷𝑂+ 𝑇𝑂

𝑇𝐹 =(1𝑐𝑚−0.9997𝑐𝑚)

(1.1 𝑋10−5°𝐶−1)(0.9997𝑐𝑚)+ 30°𝐶

𝑇𝐹 = 57°𝐶

Page 22: Termología y Ondas Magneticas 1

3. La longitud de una barra de cobre se encuentra que debe ser de 0.88m para que la

diferencia de longitudes entre ella y una barra de aluminio sea igual independientemente

de la temperatura, si se sabe que la barra de cobre debe de ser 20cm más larga que la de

aluminio. Determine ∝ 𝐶𝑈 ∗∝ 𝐴ℓ = 2.2 × 10−5°𝐶−1.

DATOS:

𝐿𝑂𝐶𝑢 = 0.88𝑚

𝐿𝑂𝐴ℓ = 0.68𝑚

∝𝐴ℓ= 2.2 × 10−5°𝐶−1

∆𝐿𝐶𝑢 = ∆𝐿𝐴ℓ = ∆𝐿

∆𝑇𝐶𝑢 = ∆𝑇𝐴ℓ = ∆𝑇

INCÓGNITA:

∝𝐶𝑢

FÓRMULA:

∆𝐿 =∝ 𝐿𝑂∆𝑇

DESARROLLO:

∆𝐿𝐶𝑢 =∝𝐶𝑢 𝐿𝑜𝐶𝑢∆𝑇𝐶𝑢

∆𝐿𝐴ℓ =∝𝐴ℓ 𝐿𝑜𝐴ℓ∆𝑇𝐴ℓ

∝𝐶𝑢 𝐿𝑜𝐶𝑢∆T =∝𝐴ℓ 𝐿𝑜𝐴ℓ∆𝑇

∝𝐶𝑢 𝐿𝑜𝐶𝑢 =∝𝐴ℓ 𝐿𝑜𝐴ℓ

∝𝐶𝑢=∝𝐴ℓ𝐿𝑂𝐴ℓ

𝐿𝑂𝐶𝑢

∝𝐶𝑢=(2.2 × 10−5°𝐶−1)(0.68𝑚)

0.88𝑚

∝𝐶𝑢= 1.7 𝑋 10−5°𝐶−1

Page 23: Termología y Ondas Magneticas 1

4. Obtenga el diámetro que debe tener una esfera de acero (𝛼 = 1.1 𝑋10−5°𝐶−1) a 20°C

para que al aumentar 101°C una placa de aluminio (𝛼 = 2.2 𝑋10−5°𝐶−1) que tiene un

orificio de 0.899cm también a 20°C, se obtiene que la esfera pose exactamente por el

orificio.

DATOS:

∝𝑎𝑐𝑒𝑟𝑜= 1.1𝑋10−5°𝐶−1 𝐿𝑓𝑎𝑐𝑒𝑟𝑜 = 𝐿𝑓𝐴ℓ

𝑇𝑂𝑎𝑐𝑒𝑟𝑜 = 20°𝐶

∆𝑇 = 101°𝐶

∝𝐴ℓ= 2.2 𝑋 10−5°𝐶−1

𝐿𝑂𝐴ℓ = 0.899𝑐𝑚

INCÓGNITA:

𝐿𝑂𝑎𝑐𝑒𝑟𝑜 =?

FÓRMULA:

𝐿𝑓 = 𝐿𝑂+∝ 𝐿𝑂∆𝑇

DESARROLLO:

𝐿𝑓𝑎𝑐𝑒𝑟𝑜 = 𝐿𝑜𝑎𝑐𝑒𝑟𝑜 +∝𝑎𝑐𝑒𝑟𝑜 𝐿𝑂𝑎𝑐𝑒𝑟𝑜∆𝑇

𝐿𝐴𝑙 = 𝐿𝑜 𝐴𝑙 + 𝛼𝐴𝑙 𝐿𝑜 𝐴𝑙 ∆𝑇

𝐿𝑜𝑎𝑐𝑒𝑟𝑜 +∝𝑎𝑐𝑒𝑟𝑜 𝐿𝑂𝑎𝑐𝑒𝑟𝑜∆𝑇 = 𝐿𝑜 𝐴𝑙 + 𝛼𝐴𝑙 𝐿𝑜 𝐴𝑙 ∆𝑇

𝐿𝑜𝑎𝑐𝑒𝑟𝑜[1 +∝𝑎𝑐𝑒𝑟𝑜 ∆𝑇] = 𝐿𝑜 𝐴𝑙 + 𝛼𝐴𝑙 𝐿𝑜 𝐴𝑙 ∆𝑇

𝐿𝑜𝑎𝑐𝑒𝑟𝑜 =𝐿𝑜 𝐴𝑙 + 𝛼𝐴𝑙 𝐿𝑜 𝐴𝑙 ∆𝑇

1 +∝𝑎𝑐𝑒𝑟𝑜 ∆𝑇

𝐿𝑜𝑎𝑐𝑒𝑟𝑜 =0.899𝑐𝑚 + (2.2 × 10−5℃−1)(0.899𝑐𝑚)(101℃)

1 + (1.1 × 10−5℃−1)(101℃)

𝐿𝑜𝑎𝑐𝑒𝑟𝑜 = 0.9 𝑐𝑚

Page 24: Termología y Ondas Magneticas 1

5. Obtenga el volumen inicial que tenía un vaso de precipitado lleno de mercurio a 18°C si

al calentar hasta 38° se derrama 0.15cm3 de mercurio.

𝛼𝑉𝑖𝑑𝑟𝑖𝑜 = 9 × 10−6℃−1

𝛽𝐻𝑔 = 182 × 10−6℃−1

DATOS

𝑇𝑂 𝑉𝑖𝑑𝑟𝑖𝑜 = 𝑇𝑂 𝐻𝑔 = 18°𝐶

𝑇𝐹 𝑉𝑖𝑑𝑟𝑖𝑜 = 𝑇𝐹 𝐻𝑔 = 38°𝐶

∆𝑉𝐻𝑔 − ∆𝑉𝑉𝑖𝑑𝑖𝑟𝑜 = 0.15𝑐𝑚3

𝛽𝑉𝑖𝑑𝑟𝑖𝑜 = 3𝛼𝑉𝑖𝑑𝑟𝑖𝑜

INCÓGNITA

𝑉𝑂 =?

FORMULAS

∆𝑉 = 𝛽 𝑉𝑂 ∆𝑇

∆𝑇 = 𝑇𝐹 − 𝑇𝑂

DESARROLLO:

∆𝑉𝐻𝑔 − ∆𝑉𝑉𝑖𝑑𝑟𝑖𝑜 = 𝛽𝐻𝑔 𝑉𝑂 ∆𝑇 − 𝛽𝑉𝑖𝑑𝑟𝑖𝑜 𝑉𝑂 ∆𝑇

∆𝑉𝐻𝑔 − ∆𝑉𝑉𝑖𝑑𝑟𝑖𝑜 = (𝛽𝐻𝑔 − 𝛽𝑉𝑖𝑑𝑟𝑖𝑜)𝑉𝑂 ∆𝑇

𝑉𝑂 =∆𝑉𝐻𝑔−∆𝑉𝑉𝑖𝑑𝑟𝑖𝑜

(𝛽𝐻𝑔−𝛽𝑉𝑖𝑑𝑟𝑖𝑜) ∆𝑇

𝑉𝑖 =∆𝑉𝐻𝑔−∆𝑉𝑉

(3∝𝐻𝑔−3∝𝑉)∆𝑇

𝑉𝑖 =0.15𝑐𝑚3

((3)(60𝑥10−6°𝐶−1)−(3)(9𝑥10−6°𝐶−1))(38°𝐶−18°𝐶)

𝑉𝑖 = 50.00𝑐𝑚3

Page 25: Termología y Ondas Magneticas 1

6. obtenga la densidad del mercurio a 0°C si su coeficiente de dilatación volumétrica es de

1.82 × 10−4℃−1 y su densidad a 50°C es de 13.5 × 103𝑘𝑔

𝑚3⁄ si el error porcentual es de

0.0091.

Datos

𝑇𝑂 = 0°𝐶

𝛽 = 1.82 × 10−4℃−1

𝑇𝐹 = 50°𝐶

𝜌50°𝐶 = 13.5 × 103𝑘𝑔

𝑚3⁄

Incógnita

𝜌𝑂 =?

Formula

𝜌𝐹 =𝜌𝑂

1 +∆𝑉𝑉𝑂

Desarrollo

𝜌𝑂 = (1 +∆𝑉

𝑉𝑂) 𝜌𝐹

𝜌𝑂 = (1 + 0.0091)(13.5 × 103𝑘𝑔

𝑚3⁄ )

𝜌𝑂 = 13.5 × 103𝑘𝑔

𝑚3⁄

Page 26: Termología y Ondas Magneticas 1

7. al aumentar la temperatura de una barra de acero en 35°C ejerce en sus extremos una

fuerza debido a su dilatación de 3.5 × 105𝑁, obtenga cual es el área de la barra.

𝛼𝐴𝑐𝑒𝑟𝑜 = 1.1 × 10−5℃−1

𝛾𝐴𝑐𝑒𝑟𝑜 = 2 × 1011𝑁 𝑚2⁄

Datos

∆𝑇 = 35°𝐶

𝐹 = 3.5 × 105𝑁

Incógnita

𝐴 =?

Formulas

𝐹

𝐴= 𝛾

∆𝐿

𝐿𝑂

∆𝐿 = 𝛼 𝐿𝑂 ∆𝑇

Desarrollo

𝐹 = 𝐴 𝛾 ∆𝐿

𝐿𝑂

𝐴 =𝐹

𝛾 ∆𝐿𝐿𝑂

∆𝐿

𝐿𝑂= 𝛼 ∆𝑇

𝐴 =𝐹

𝛾 𝛼 ∆𝑇

𝐴 =3.5 × 105𝑁

(2 × 1011𝑁 𝑚2⁄ ) (1.1 × 10−5℃−1)(35°𝐶)

𝐴 = 45.0 × 10−4𝑚

Page 27: Termología y Ondas Magneticas 1

CALORIMETRÍA

Energía Térmica: Es la energía cinética de las partículas que componen a un gas, aun líquido

o a un sólido.

Calor: Es la energía térmica que viaja de un cuerpo hacia otro que se encuentra en contacto

con él.

Calor Específico: Es la cantidad de calor necesaria para elevar la temperatura de una cierta

masa de un cuerpo en un grado Celsius.

Calor ganado (o perdido): La relación siempre será que:

𝐶𝑎𝑙𝑜𝑟 𝐺𝑎𝑛𝑎𝑑𝑜 = −𝐶𝑎𝑙𝑜𝑟 𝑃𝑒𝑟𝑑𝑖𝑑𝑜

Calor de Fusión 𝑯𝑭: Es la cantidad de calor necesario para fundir una masa de un sólido

estando este a una temperatura constante.

Calor de Vaporización 𝑯𝑽: Para un líquido, es la cantidad de calor necesario para vaporizar

al líquido estando este a una temperatura constante.

Calor de Sublimación: Para un sólido, es la cantidad de calor necesaria para convertir al

sólido en gas, estando este a una temperatura constante.

FORMULARIO

𝑄 = 𝑚 𝑔 ℎ

𝑔 = 9.8 𝑚 𝑠𝑒𝑔2⁄

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

𝑄𝑡𝑑𝑡

=𝑄

𝑑

𝐶𝑎𝑙𝑜𝑟 𝐺𝑎𝑛𝑎𝑑𝑜 = −𝐶𝑎𝑙𝑜𝑟 𝑃𝑒𝑟𝑑𝑖𝑑𝑜

𝑄𝐹 = 𝑚 𝐻𝐹

𝑄𝑉 = 𝑚 𝐻𝑉

𝑃 =𝐾 𝑇

4√2 𝜋 𝑏2ℓ

Page 28: Termología y Ondas Magneticas 1

𝑉𝑖𝑚𝑠 = √3𝑃

𝐷

ℓ =𝑉

4√2 𝜋 𝑏2𝑁𝐴

𝑉 =4

3 𝜋 𝑟3

𝐸𝐶 =3

4 𝐾 𝑇

𝐸𝑃 = 𝑚 𝑔 ℎ

𝐸𝑃 = 𝐸𝐶

𝑉𝑖𝑚𝑠 = √3𝐾 𝑁𝐴 𝑇

𝑀

𝑇𝐾 = 𝑇𝐶 + 273

Page 29: Termología y Ondas Magneticas 1

RELACIONES

∆𝑄 = 𝑚 𝐶 ∆𝑇

∆𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

𝑄𝐺𝑎𝑛𝑎𝑑𝑜 = 𝑄𝑃𝑒𝑟𝑑𝑖𝑑𝑜

𝑄 = 𝑚 𝐻𝐹

𝑄 = 𝑚 𝐻𝑣

𝐸𝐶 =1

2 𝑚 𝑉2

% 𝐻. 𝑅 =

𝑚𝑎𝑠𝑎 𝑑𝑒 𝑎𝑔𝑢𝑎𝑚3⁄

𝑚𝑎𝑠𝑎 𝑑𝑒 𝑎𝑔𝑢𝑎𝑚3 𝑑𝑒 𝑎𝑖𝑟𝑒 𝑠𝑎𝑡𝑢𝑟𝑎𝑑𝑜⁄

× 100

𝐻.𝑅 =

𝑚𝑎𝑠𝑎 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑚3⁄

𝑚𝑎𝑠𝑎𝑚3 𝑑𝑒 𝑎𝑖𝑟𝑒 𝑠𝑎𝑡𝑢𝑟𝑎𝑑𝑜⁄

× 100

1 𝐶𝑎𝑙

𝑔 ∙ ℃= 4186

𝐽

𝑘𝑔 ∙ ℃

𝐶𝑎𝑙𝑜𝑟 𝑑𝑒 𝑓𝑢𝑠𝑖ó𝑛 𝑑𝑒𝑙 𝑎𝑔𝑢𝑎 = 335𝑘𝐽

𝑘𝑔= 80

𝐶𝑎𝑙

𝑔

1 𝐵𝑇𝑈 = 1054 𝐽

1 𝐶𝑎𝑙𝑜𝑟𝑖𝑎 = 4.184 𝐽

𝐻𝑉 𝑝𝑎𝑟𝑎 𝑒𝑙 𝑎𝑔𝑢𝑎 = 2.26 𝑘𝐽

𝑘𝑔= 540

𝐶𝑎𝑙

𝑔

Page 30: Termología y Ondas Magneticas 1

1. Una persona se sobrepasó un día con pastel y helado, consumió 500 calorías de más,

desea compensarlo subiendo escaleras; suponiendo que tiene una masa de 60 kg,

¿Qué altura deberá subir?

Datos

𝑄 = 500 𝐶𝑎𝑙

𝑚 = 60 𝑘𝑔

𝑔 = 9.8 𝑚 𝑠𝑒𝑔2⁄

1 𝐶𝑎𝑙 = 4.186 𝐽

1 𝐽 = 𝑘𝑔 ∙ 𝑚2

𝑠𝑒𝑔2⁄

Incógnita

ℎ =?

Formula

𝐸𝑃 = 𝑄

𝐸𝑃 = 𝑚 𝑔 ℎ

Desarrollo

𝑚 𝑔 ℎ = 𝑄

ℎ =𝑄

𝑚 𝑔

ℎ =(500 𝐶𝑎𝑙) (4.186

𝑘𝑔 ∙ 𝑚2

𝑠𝑒𝑔2⁄ )

(60𝑘𝑔)(9.8𝑚 𝑠𝑒𝑔2⁄ )

ℎ = 3.55𝑚

Page 31: Termología y Ondas Magneticas 1

2. Al caminar un adulto, consume unas 3000𝑘𝐶𝑎𝑙 𝑑í𝑎⁄ . Suponiendo que camina 3 km.

¿Cuánto vale su consumo de calor por kilómetro?

Datos

𝑄

𝑡= 3000 𝑘𝐶𝑎𝑙 𝑑í𝑎⁄

𝑑

𝑡= 3𝑘𝑚 𝑑í𝑎⁄

Incógnita

𝑄

𝑑=?

Formula

𝑄𝑡𝑑𝑡

=𝑄𝑡

𝑑𝑡=𝑄

𝑑

Desarrollo

𝑄

𝑑=3000 𝑘𝐶𝑎𝑙 𝑑í𝑎⁄

3 𝑘𝑚 𝑑í𝑎⁄

𝑄

𝑑= 1000 𝑘𝐶𝑎𝑙 𝑘𝑚⁄

Page 32: Termología y Ondas Magneticas 1

3. ¿Cuánto calor se necesita para elevar la temperatura de 0.8 kg de alcohol etílico

desde 15°C hasta su punto de ebullición que es de 78.3°C? Considere que el calor

específico para esta sustancia es de 3500 𝐽 𝑘𝑔 ∙ ℃⁄

Datos

𝑚 = 0.8 𝑘𝑔

𝑇𝑂 = 15℃

𝑇𝐹 = 78.3℃

𝐶 = 3500 𝐽 𝑘𝑔 ∙ ℃⁄

Incógnita

𝑄 =?

Formula

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

𝑄 = (0.8 𝑘𝑔) (3500 𝐽 𝑘𝑔 ∙ ℃⁄ ) (78.3℃− 15℃)

𝑄 = 123 600 𝐽

Page 33: Termología y Ondas Magneticas 1

4. Determine el calor específico de una muestra metálica de 100g que necesita 868

calorías para elevar su temperatura de 50°C hasta 90°C.

Datos

𝑚 = 100 𝑔

𝑄 = 868 𝐶𝑎𝑙

𝑇𝑂 = 50 ℃

𝑇𝐹 = 90 ℃

Incógnita

𝐶 =?

Formula

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

𝐶 =𝑄

𝑚 (𝑇𝐹 − 𝑇𝑂)

𝐶 =868 𝐶𝑎𝑙

(100 𝑔)(90℃− 50℃)

𝐶 = 0.217 𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Page 34: Termología y Ondas Magneticas 1

5. Se calienta un tubo de cobre hasta 90°C, se coloca en 80g de agua a 10°C, la

temperatura final de los dos es de 18°C. ¿Cuál es la masa del cobre? Suponiendo que

el calor especifico del agua es de 1 𝐶𝑎𝑙 𝑔 ∙ ℃⁄ , y el del cobre es de 0.093 𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Datos

𝑇𝑂 𝐶𝑜𝑏𝑟𝑒 = 90℃

𝑇𝑂 𝐻2𝑂 = 10°𝐶

𝑇𝐹 𝐶𝑜𝑏𝑟𝑒 = 𝑇𝐹 𝐻2𝑂 = 18℃

𝐶𝐻2𝑂 = 1 𝐶𝑎𝑙 𝑔 ∙ ℃⁄

𝐶𝐶𝑜𝑏𝑟𝑒 = 0.093 𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Incógnita

𝑚𝐶𝑜𝑏𝑟𝑒 =?

Formula

𝐶𝑎𝑙𝑜𝑟 𝑃𝑒𝑟𝑑𝑖𝑑𝑜 = −𝐶𝑎𝑙𝑜𝑟 𝑔𝑎𝑛𝑎𝑑𝑜

𝑚𝐶𝑜𝑏𝑟𝑒 𝐶𝐶𝑜𝑏𝑟𝑒 (𝑇𝐹 𝐶𝑜𝑏𝑟𝑒 − 𝑇𝑂 𝐶𝑜𝑏𝑟𝑒) = −𝑚𝐻2𝑂 𝐶𝐻2𝑂(𝑇𝐹 𝐻2𝑂 − 𝑇𝑂 𝐻2𝑂)

𝑚𝐶𝑜𝑏𝑟𝑒 =−𝑚𝐻2𝑂 𝐶𝐻2𝑂(𝑇𝐹 𝐻2𝑂 − 𝑇𝑂 𝐻2𝑂)

𝐶𝐶𝑜𝑏𝑟𝑒 (𝑇𝐹 𝐶𝑜𝑏𝑟𝑒 − 𝑇𝑂 𝐶𝑜𝑏𝑟𝑒)

𝑚𝐶𝑜𝑏𝑟𝑒 =−(80𝑔)(1 𝐶𝑎𝑙 𝑔 ∙ ℃⁄ ) (18℃− 10℃)

(0.093 𝐶𝑎𝑙 𝑔 ∙ ℃⁄ ) (19℃− 90℃)

𝑚𝐶𝑜𝑏𝑟𝑒 = 95.69𝑔

Page 35: Termología y Ondas Magneticas 1

6. Calcular la cantidad de calor que se necesita para cambiar 0.5kg de hielo a -10°C a

vapor a 130°C.

Datos

𝑚𝐻𝑖𝑒𝑙𝑜 = 0.5𝑘𝑔

𝑇𝑂 𝐻𝑖𝑒𝑙𝑜 = −10 ℃

𝑇𝐹 𝐻𝑖𝑒𝑙𝑜 = 0 ℃

𝐶𝐻𝑖𝑒𝑙𝑜 = 2090 𝐽 𝑘𝑔 ∙ ℃⁄

𝐻𝐹 𝐻𝑖𝑒𝑙𝑜 = 335 000 𝐽 𝑘𝑔⁄

𝑇𝑂 𝐴𝑔𝑢𝑎 = 0 ℃

𝑇𝐹 𝐴𝑔𝑢𝑎 = 100℃

𝐶𝐴𝑔𝑢𝑎 = 4180 𝐽 𝑘𝑔 ∙ ℃⁄

𝐻𝑉 𝐴𝑔𝑢𝑎 = 2260 000 𝐽 𝑘𝑔⁄

𝑇𝑂 𝑉𝑎𝑝𝑜𝑟 = 100 ℃

𝑇𝐹 𝑉𝑎𝑝𝑜𝑟 = 130 ℃

𝐶𝑉𝑎𝑝𝑜𝑟 = 2090 𝐽 𝑘𝑔 ∙ ℃⁄

𝑚𝐻𝑖𝑒𝑙𝑜 = 𝑚𝐴𝑔𝑢𝑎 = 𝑚𝑉𝑎𝑝𝑜𝑟 = 𝑚

Incógnita

𝑄𝑇𝑜𝑡𝑎𝑙 =?

Formulas

𝑄1 = 𝑚𝐻𝑖𝑒𝑙𝑜 𝐶𝐻𝑖𝑒𝑙𝑜(𝑇𝐹 𝐻𝑖𝑒𝑙𝑜 − 𝑇𝑂 𝐻𝑖𝑒𝑙𝑜)

𝑄2 = 𝑚𝐻𝑖𝑒𝑙𝑜 𝐻𝐹 𝐻𝑖𝑒𝑙𝑜

𝑄3 = 𝑚𝐴𝑔𝑢𝑎 𝐶𝐴𝑔𝑢𝑎(𝑇𝐹 𝐴𝑔𝑢𝑎 − 𝑇𝑂 𝐴𝑔𝑢𝑎)

𝑄4 = 𝑚𝐴𝑔𝑢𝑎 𝐻𝑉 𝐴𝑔𝑢𝑎

Page 36: Termología y Ondas Magneticas 1

𝑄5 = 𝑚𝑉𝑎𝑝𝑜𝑟 𝐶𝑉𝑎𝑝𝑜𝑟(𝑇𝐹 𝑉𝑎𝑝𝑜𝑟 − 𝑇𝑂 𝑉𝑎𝑝𝑜𝑟)

𝑄𝑇𝑜𝑡𝑎𝑙 = 𝑄1 + 𝑄2 + 𝑄3 + 𝑄4 + 𝑄5

Desarrollo

𝑄1 = (0.5 𝑘𝑔) (2090 𝐽 𝑘𝑔 ∙ ℃⁄ ) (0℃ − (−10℃)) = 10450 𝐽

𝑄2 = (0.5 𝑘𝑔) (335 000 𝐽 𝑘𝑔⁄ ) = 167 500 𝐽

𝑄3 = (0.5 𝑘𝑔) (4180 𝐽 𝑘𝑔 ∙ ℃⁄ ) (100℃− 0℃) = 209 000 𝐽

𝑄4 = (0.5 𝑘𝑔) (2260 000 𝐽 𝑘𝑔⁄ ) = 1130 000 𝐽

𝑄5 = (0.5 𝑘𝑔) (2090 𝐽 𝑘𝑔 ∙ ℃⁄ ) (130℃− 100℃) = 31350 𝐽

𝑄𝑇𝑜𝑡𝑎𝑙 = 10450 𝐽 + 167500 𝐽 + 209000 𝐽 + 1130 000 𝐽 + 31350 𝐽

𝑄𝑇𝑜𝑡𝑎𝑙 = 1 548 300 𝐽

Page 37: Termología y Ondas Magneticas 1

7. ¿Cuánto calor se necesita para elevar la temperatura de 500 g de plata de 30°C a

110°C?

Datos

𝐶 = 230 𝐽 𝑘𝑔 ∙ ℃⁄

𝑚 = 500 𝑔 = 500 × 10−3𝑘𝑔

𝑇𝑂 = 30℃

𝑇𝐹 = 110℃

Incógnita

𝑄 =?

Formula

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

𝑄 = (500 × 10−3𝑘𝑔)(230 𝐽 𝑘𝑔 ∙ ℃⁄ ) (110℃− 30℃)

𝑄 = 9200 𝐽

Page 38: Termología y Ondas Magneticas 1

8. Se calienta un lingote de acero a 100°C y luego se coloca en 150g de agua a 20°C. La

temperatura final es de 28°C. ¿Cuál será la masa del acero? El calor especifico del

agua es de 1 𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Datos

𝐶𝐴𝑐𝑒𝑟𝑜 = 0.114𝐶𝑎𝑙 𝑔 ∙ ℃⁄

𝑇𝑂1 = 100℃

𝑚2 = 𝑚𝐴𝑔𝑢𝑎 = 150𝑔

𝑇𝑂2 = 20℃

𝑇𝐹1 = 𝑇𝐹2 = 𝑇 = 28℃

𝐶𝐴𝑔𝑢𝑎 = 1𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Incógnita

𝑚𝐴𝑐𝑒𝑟𝑜 =?

Formulas

𝐶𝑎𝑙𝑜𝑟 𝑃𝑒𝑟𝑑𝑖𝑑𝑜 = −𝐶𝑎𝑙𝑜𝑟 𝑔𝑎𝑛𝑎𝑑𝑜

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

𝑚𝐴𝑐𝑒𝑟𝑜 𝐶𝐴𝑐𝑒𝑟𝑜 (𝑇𝐹 𝐴𝑐𝑒𝑟𝑜 − 𝑇𝑂 𝐴𝑐𝑒𝑟𝑜) = −𝑚𝐻2𝑂 𝐶𝐻2𝑂(𝑇𝐹 𝐻2𝑂 − 𝑇𝑂 𝐻2𝑂)

𝑚𝐴𝑐𝑒𝑟𝑜 =−𝑚𝐻2𝑂 𝐶𝐻2𝑂(𝑇𝐹 𝐻2𝑂 − 𝑇𝑂 𝐻2𝑂)

𝐶𝐴𝑐𝑒𝑟𝑜 (𝑇𝐹 𝐴𝑐𝑒𝑟𝑜 − 𝑇𝑂 𝐴𝑐𝑒𝑟𝑜)

𝑚𝐴𝑐𝑒𝑟𝑜 =−(150𝑔)(1 𝐶𝑎𝑙 𝑔 ∙ ℃⁄ ) (28℃− 20℃)

(0.114 𝐶𝑎𝑙 𝑔 ∙ ℃⁄ ) (28℃− 110℃)

𝑚𝐴𝑐𝑒𝑟𝑜 = 146.2 𝑔

Page 39: Termología y Ondas Magneticas 1

9. Se aplican 45696 calorías de calor a una barra de Aluminio de 12000 g que se

encontraban inicialmente a 22°C, que temperatura alcanzo la barra.

Datos

𝑄 = 45 696 𝐶𝑎𝑙

𝐶 = 0.217𝐶𝑎𝑙 𝑔 ∙ ℃⁄

𝑇𝑂 = 22°𝐶

𝑚 = 12000 𝑔

Incógnita

𝑇𝐹 =?

Formula

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

𝑄

𝑚 𝐶= (𝑇𝐹 − 𝑇𝑂)

𝑇𝐹 =𝑄

𝑚 𝐶+ 𝑇𝑂

𝑇𝐹 =45 696 𝐶𝑎𝑙

(12000𝑔)(0.217𝐶𝑎𝑙 𝑔 ∙ ℃⁄ )+ 22℃

𝑇𝐹 = 40 ℃

Page 40: Termología y Ondas Magneticas 1

10. A 500 g de plata se le suministran 8000 calorías, si su temperatura final fue de 150

°C. ¿Cuál era su temperatura inicial de la plata? Si el calor específico para la plata es

de 0.056𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Datos

𝑚 = 500 𝑔

𝑄 = 8000 𝐶𝑎𝑙

𝑇𝐹 = 150 ℃

𝐶 = 0.056 𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Incógnita

𝑇𝑂 =?

Formula

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

𝑄

𝑚 𝐶= (𝑇𝐹 − 𝑇𝑂)

𝑇𝐹 =𝑄

𝑚 𝐶+ 𝑇𝑂

𝑇𝑂 = 𝑇𝐹 −𝑄

𝑚 𝐶

𝑇𝑂 = 150 ℃ −8000 𝐶𝑎𝑙

(500𝑔)(0.056𝐶𝑎𝑙 𝑔 ∙ ℃⁄ )

𝑇𝐹 = −135.7 ℃

Page 41: Termología y Ondas Magneticas 1

11. Un trozo de hierro absorbe 2712 Calorías, para elevar su temperatura de 40 °C a

120°C. ¿Cuál es la masa del hierro?

Datos

𝐶𝐻𝑖𝑒𝑟𝑟𝑜 = 0.113 𝐶𝑎𝑙 𝑔 ∙ ℃⁄

𝑄 = 2712 𝐶𝑎𝑙

𝑇𝑂 = 40 ℃

𝑇𝐹 = 120 ℃

Incógnita

𝑚 =?

Formula

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

𝑚 =𝑄

𝐶 (𝑇𝐹 − 𝑇𝑂)

𝑚 =2712 𝐶𝑎𝑙

(0.113 𝐶𝑎𝑙 𝑔 ∙ ℃⁄ ) (120 ℃ − 40℃)

𝑚 = 300 𝑔

Page 42: Termología y Ondas Magneticas 1

12. Obtenga el calor específico de una varilla que requiere 1000 calorías para elevar su

temperatura de 30°C a 70°C. La masa correspondiente es de 150 gramos.

Datos

𝑄 = 1000 𝐶𝑎𝑙

𝑇𝑂 = 30 ℃

𝑇𝐹 = 70 ℃

𝑚 = 150 𝑔

Incógnita

𝐶 =?

Formula

𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

𝐶 =𝑄

𝑚(𝑇𝐹 − 𝑇𝑂)

𝐶 =1000 𝐶𝑎𝑙

(150 𝑔)(70 ℃ − 30℃)

𝐶 = 0.1666𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Page 43: Termología y Ondas Magneticas 1

13. De cuantos grados es la variación que registra una muestra de plomo, que teniendo

una masa de 300 g absorbe 2500 calorías.

Datos

𝐶 = 0.031𝐶𝑎𝑙 𝑔 ∙ ℃⁄

𝑚 = 300 𝑔

𝑄 = 2500 𝐶𝑎𝑙

Incógnita

∆𝑇 =?

Formula

𝑄 = 𝑚 𝐶 ∆𝑇

Desarrollo

∆𝑇 =𝑄

𝑚 𝐶

∆𝑇 =2500 𝐶𝑎𝑙

(300𝑔)(0.031𝐶𝑎𝑙 𝑔 ∙ ℃⁄ )

∆𝑇 = 268.82 ℃

Page 44: Termología y Ondas Magneticas 1

14. Una bala en movimiento lleva una energía cinética de 50 J, penetra en un bloque de

madera y se detiene. ¿Cuál es el calor específico? si el cambio en su temperatura al

frenarse es de 130°C y su masa es de 5gramos.

Datos

𝐸𝐶 = 50 𝐽

∆𝑇 = 130 ℃

𝑚 = 5𝑔 = 5 × 10−3𝑘𝑔

Incógnita

𝐶 =?

Formula

𝐸𝐶 = 𝑄

𝑄 = 𝑚 𝐶 ∆𝑇

Desarrollo

𝐸𝐶 = 𝑚 𝐶 ∆𝑇

𝐸𝐶

𝑚 ∆𝑇= 𝐶

𝐶 =𝐸𝐶

𝑚 ∆𝑇

𝐶 =50 𝐽

(5 × 10−3𝑘𝑔)(130 ℃)

𝐶 = 76.92 𝐽 𝑘𝑔 ∙ ℃⁄

Page 45: Termología y Ondas Magneticas 1

15. En un día se registra una temperatura de 25°C y la presión de vapor de agua en el

aire es de 20 mmHg ¿Cuál es la humedad relativa?

Datos

𝑎 = 23 ℃, 𝑃2 = 23.8 𝑚𝑚𝐻𝑔

𝑃1 = 20 𝑚𝑚𝐻𝑔

Incógnita

𝐻𝑅 =?

Formula

𝐻𝑅 = (𝑃1𝑃2) × 100 %

Desarrollo

𝐻𝑅 = (23.8 𝑚𝑚𝐻𝑔

20 𝑚𝑚𝐻𝑔)× 100 %

𝐻𝑅 = 84.03 %

Page 46: Termología y Ondas Magneticas 1

16. ¿Cuánto variaría la temperatura de una persona de 90 kg si absorbe 37350 calorías

en un alimento, si sabemos que C para el ser humano es igual a 830 𝐶𝑎𝑙 𝑔 ∙ ℃⁄ ?

Datos

𝑚 = 90 𝑘𝑔

𝑄 = 37 350 𝐶𝑎𝑙

𝐶 = 830 𝐶𝑎𝑙 𝑔 ∙ ℃⁄

Incógnita

∆𝑇 =?

Formula

𝑄 = 𝑚 𝐶 ∆𝑇

Desarrollo

𝑄

𝑚 𝐶= ∆𝑇

∆𝑇 =𝑄

𝑚 𝐶

∆𝑇 =37 350 𝐶𝑎𝑙

(90 𝑘𝑔) (830 𝐶𝑎𝑙 𝑔 ∙ ℃⁄ )

∆𝑇 = 0.5 ℃

Page 47: Termología y Ondas Magneticas 1

TRANSFERENCIA DE ENERGÍA CALORÍFICA

RELACIONES

𝑄

𝜏= 𝐾 𝐴

𝑇> − 𝑇<𝐿

𝑇𝐾 = 𝑇𝐶 + 273

𝑆𝑒𝑔 =𝑚𝑖𝑛

60

𝑄𝐹 = 𝑚 𝐿𝐹

𝑄𝑉 = 𝑚 𝐿𝑉

𝑃 = 𝑒 𝜎 𝐴 𝑇4

𝐴 = 4𝜋 𝑟2

𝑟 =𝑑

2

𝑃 = 𝑒 𝜎 𝐴 𝑇>4 − 𝑒 𝜎 𝐴 𝑇<

4

𝑃 = 𝑒 𝐴 𝑅

𝜎 = 5.67 × 10−8 𝑤 𝑚2 °𝐾4⁄

𝑖𝑛 =𝑓𝑡

12

𝑚𝑚 = 10−3𝑚

𝑐𝑚 = 10−2𝑚

1 ℎ𝑟 = 3600 𝑠𝑒𝑔

𝑘𝐶𝑎𝑙 = 103 𝐶𝑎𝑙

𝐶𝑎𝑙 = 4.186 𝐽

𝑤 = 𝐽𝑠𝑒𝑔⁄

𝐴 = 𝑙 × 𝑎

Page 48: Termología y Ondas Magneticas 1

1. Una placa de hierro de 2 cm de espesor tiene un área de 5000cm2 en su sección

transversal. Una de las caras está a 150°C y la otra a 140°C. ¿Cuánto calor fluye a

través de la placa en cada segundo? 𝐾 = 80𝑤 𝑚⁄ °𝐾

Datos

𝐿 = 2𝑐𝑚 = 2 × 10−2𝑚

𝐴 = 5000 𝑐𝑚2 = 5000 × 10−4𝑚2

𝑇> = 150 ℃ = 150 + 273 = 423° 𝐾

𝑇< = 140 ℃ = 140 + 273 = 413 °𝐾

𝐾 = 80𝑤 𝑚⁄ °𝐾

𝑤 = 𝐽𝑠𝑒𝑔⁄

Incógnita

𝑄

𝜏=?

Formula

𝑄

𝜏= 𝐾 𝐴

𝑇> − 𝑇<𝐿

Desarrollo

𝑄

𝜏= (80

𝐽𝑠𝑒𝑔⁄

𝑚 °𝐾) (5000 × 10−4𝑚2)

(423 °𝐾 − 413°𝐾)

2 × 10−2𝑚

𝑄

𝜏= 20 × 103 𝐽 𝑠𝑒𝑔⁄

Page 49: Termología y Ondas Magneticas 1

2. Una placa de metal de 4mm de espesor tiene una diferencia de temperatura entre

sus dos caras de 32° K. Transmite una energía calorífica de 200𝑘𝐶𝑎𝑙 ℎ⁄ a través de

un áre3a de 5 cm2. Obtenga la conductividad térmica.

Datos

𝐿 = 4𝑚𝑚 = 4 × 10−3𝑚

𝑇> − 𝑇< = 32 °𝐾

𝑄

𝜏= 200𝑘𝐶𝑎𝑙 ℎ⁄ = 200 × 103

(4.186 𝐽)3600 𝑠𝑒𝑔⁄

𝐴 = 5𝑐𝑚2 = 5 × 10−4𝑚2

Incógnita

𝐾 =?

Formula

𝑄

𝜏= 𝐾 𝐴

𝑇> − 𝑇<𝐿

Desarrollo

𝐾 =

𝑄𝜏

𝐴 𝑇> − 𝑇<

𝐿

𝐾 =

𝑄𝜏 𝐿

𝐴 𝑇> − 𝑇<

𝐾 =(200 × 103

(4.186 𝐽)3600 𝑠𝑒𝑔⁄ )(4 × 10−3𝑚)

(5 × 10−4𝑚2)(32 °𝐾)

𝐾 = 58.5 (𝐽 𝑠𝑒𝑔⁄ ) (𝑚)

𝑚2 °𝐾

𝐾 = 58.5𝑤

𝑚 °𝐾

Page 50: Termología y Ondas Magneticas 1

3. Dos placas de metal están soldadas una a la otra cara con cara. Se sabe que 𝐴 =

80𝑐𝑚2, 𝐿1 = 𝐿2 = 3𝑚𝑚, 𝑇+1 = 100 ℃, 𝑇−2 = 0 ℃, para la placa 1 𝐾1 =

48.1𝑤 𝑚 °𝐾⁄ , y para la placa 2 𝐾2 = 68.2 𝑤 𝑚 °𝐾⁄ . Obtenga la temperatura en la

unión de las placas y la cantidad de calor transmitida en un tiempo ∆𝑡

Datos

𝐴 = 80𝑐𝑚2 = 80 × 10−4𝑚2

𝐿1 = 𝐿2 = 3𝑚𝑚 = 3 × 10−3𝑚 = 𝐿

𝑇>1 = 100 ℃

𝑇<2 = 0 ℃

𝐾1 = 48.1𝑤 𝑚 °𝐾⁄

𝐾2 = 68.2 𝑤 𝑚 °𝐾⁄

Incógnita

𝑇 =?

𝑄

𝜏=?

(𝑄

𝜏)1= (

𝑄

𝜏)2

Formulas

(𝑄

𝜏)1= 𝐾1 𝐴

𝑇>1 − 𝑇<1𝐿

(𝑄

𝜏)2= 𝐾2 𝐴

𝑇>2 − 𝑇<2𝐿

𝑇<2 𝑇>2 𝑇<1 𝑇>1

Page 51: Termología y Ondas Magneticas 1

𝐾1 𝐴 𝑇>1 − 𝑇

𝐿= 𝐾2 𝐴

𝑇 − 𝑇<2𝐿

𝐾1 𝐴

𝐾2 𝐴 𝐿

𝐿(𝑇>1 − 𝑇) = 𝑇 − 𝑇<2

𝐾1𝐾2(𝑇>1 − 𝑇) = 𝑇 − 𝑇<2

𝐾1𝐾2 𝑇>1 −

𝐾1𝐾2 𝑇 = 𝑇 − 𝑇<2

𝐾1𝐾2 𝑇>1 + 𝑇<2 = 𝑇 +

𝐾1𝐾2 𝑇

𝐾1𝐾2 𝑇>1 + 𝑇<2 = (1 +

𝐾1𝐾2) 𝑇

𝑇 =

𝐾1𝐾2 𝑇>1 + 𝑇<2

1 +𝐾1𝐾2

𝑇 =

48.1𝑤 𝑚 °𝐾⁄

68.2𝑤 𝑚 °𝐾⁄ (100 + 273) + (0 + 273)

1 +48.1𝑤 𝑚 °𝐾⁄

68.2𝑤 𝑚 °𝐾⁄

𝑇 = 41.4 + 273 °𝐾

𝑄

𝜏= (48.1 𝑤 𝑚 °𝐾⁄ )(80 × 10−4𝑚2)

(100 + 273) − (41.4 + 273)

3 × 10−3𝑚

𝑄

𝜏= 7.5 × 103 𝑤

Page 52: Termología y Ondas Magneticas 1

4. Un refrigerador para refrescos tiene la forma de un cubo de 42 cm de longitud en

cada arista, sus paredes son de un espesor de 3cm y están hechas de plástico 𝐾 =

0.05 𝑤 𝑚 °𝐾⁄ . Cuando la temperatura exterior es de 20°C ¿Cuánto hielo se derrite

dentro del refrigerador cada hora?

Datos

ℓ = 42𝑐𝑚 = 42 × 10−2 𝑚

𝐿 = 3 𝑐𝑚 = 3 × 10−2 𝑚

𝐾 = 0.05 𝑤 𝑚 °𝐾⁄

𝑇> = 20 ℃

𝑇< = 0 ℃

𝐿𝐹 = 80 𝑐𝑎𝑙 𝑔⁄

Incógnita

𝑚

∆𝑡=?

Formula

∆𝑄

∆𝑡= 𝐾 𝐴

𝑇> − 𝑇<𝐿

∆𝑄 = 𝑚 𝐿𝐹

𝐴 = ℓ × ℓ

𝑇𝐾 = 𝑇𝐶 + 273

Desarrollo

∆𝑄

∆𝑡= (0.05 𝑤 𝑚 °𝐾⁄ )(42 × 10−2 𝑚)(42 × 10−2 𝑚)

[(20+ 273) − (0 + 273)]

3 × 10−2 𝑚

∆𝑄

∆𝑡= 35.3𝑤 = 35.3 𝐽 𝑠𝑒𝑔⁄

∆𝑄

∆𝑡= 35.3 (

14.186𝑐𝑎𝑙

ℎ3600

) = 30350 𝐶𝑎𝑙

Page 53: Termología y Ondas Magneticas 1

𝑚 𝐿𝐹∆𝑡

= 30 350 𝑐𝑎𝑙

𝑚

∆𝑡=30 350

𝑐𝑎𝑙ℎ

80 𝑐𝑎𝑙 𝑔⁄

𝑚

∆𝑡= 380 𝑔

Page 54: Termología y Ondas Magneticas 1

5. Un tubo de cobre para el que podemos suponer de un área de 1500 cm2 por la cual

transmite calor, se encuentra en un estanque por el que circula agua rápidamente y

que se mantiene a una temperatura de 20 ° C. Por el interior del tubo circula vapor

de agua a 100°C.

a) ¿Cuál es la razón de flujo de calor desde el vapor hasta el tanque? El espesor del

tubo es de 0.1 cm

b) ¿Cuánto vapor se condensa por minuto?

Para el cobre 𝐾 = 1 𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑐𝑚 ∙ ℃⁄ y para el hielo 𝐿𝑉 = 540 𝐶𝑎𝑙 𝑔⁄

Datos

𝐴 = 1500 𝑐𝑚2

𝑇< = 20 ℃

𝑇> = 100 ℃

𝐿𝑉 = 540 𝐶𝑎𝑙 𝑔⁄

𝐿 = 0.1 𝑐𝑚

𝐾 = 1 𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑐𝑚 ∙ ℃⁄

Incógnita

∆𝑄

∆𝑡=?

𝑚

∆𝑡=?

Formulas

∆𝑄

∆𝑡= 𝐾 𝐴

𝑇> − 𝑇<𝐿

∆𝑄 = 𝑚 𝐿𝑉

Desarrollo

∆𝑄

∆𝑡= (1 𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑐𝑚 ∙ ℃⁄ ) (1500 𝑐𝑚2)

(100 ℃− 20 ℃)

0.1 𝑐𝑚

∆𝑄

∆𝑡= 1.2 × 106 𝐶𝑎𝑙 𝑠𝑒𝑔⁄

Page 55: Termología y Ondas Magneticas 1

𝑚 𝐿𝑉∆𝑡

= 1.2 × 106 𝐶𝑎𝑙 𝑠𝑒𝑔⁄

𝑚

∆𝑡=1.2 × 106

𝐶𝑎𝑙𝑠𝑒𝑔

540 𝐶𝑎𝑙𝑔

𝑚

∆𝑡=(1.2 × 106

𝐶𝑎𝑙𝑠𝑒𝑔) (60

𝑠𝑒𝑔𝑚𝑖𝑛)

540 𝐶𝑎𝑙𝑔

𝑚

∆𝑡= 1330

𝑔

𝑚𝑖𝑛

Page 56: Termología y Ondas Magneticas 1

6. Un cuerpo esférico de 2cm de diámetro se mantiene a 600 °C. suponiendo que emite

radiación como si fuera un cuerpo negro. ¿Con que rapidez es radiada la energía

desde la esfera?

Datos

𝑑 = 2𝑐𝑚, 𝑑 = 2 × 10−2𝑚

𝑇 = 600 ℃ = 600 + 273 = 873 °𝑘

𝑒 = 1

𝜎 = 5.67 × 10−8𝑤 𝑚2 °𝑘4⁄

Incógnita

𝑃 =?

Formula

𝑃 = 𝑒 𝜎 𝐴 𝑇4

𝐴 = 4𝜋 𝑟2

𝑟 =𝑑

2

Desarrollo

𝑃 = 𝑒 𝜎 4𝜋 (𝑑

2)2

𝑇4

𝑃 = (1) (5.67 × 10−8𝑤 𝑚2 °𝑘4⁄ ) (4𝜋)(2 × 10−2𝑚

2)

2

(873 °𝐾)4

𝑃 = 41.4 𝑤

Page 57: Termología y Ondas Magneticas 1

7. Una persona desnuda cuyo cuerpo tiene un área superficial de 1.5 m2 con una

luminosidad de 0.7 tiene una temperatura en la piel de 34°C y está de pie en una

habitación en donde hay una temperatura de 15°C. ¿Cuánto calor pierde la persona

por segundo?

Datos

𝐴 = 1.5𝑚2

𝑒 = 0.7

𝑇> = 34 ℃ = 34 + 273 = 307 °𝑘

𝑇< = 15 ℃ = 15 + 273 = 288 °𝑘

𝜎 = 5.67 × 10−8𝑤 𝑚2 °𝑘4⁄

Incógnita

𝑃 =?

Formula

𝑃 = 𝑒 𝜎 𝐴 𝑇>4 − 𝑒 𝜎 𝐴 𝑇<

4

Desarrollo

𝑃 = (0.7) (5.67 × 10−8𝑤 𝑚2 °𝑘4⁄ ) (1.5𝑚2)(307°𝑘)4

− (0.7) (5.67 × 10−8𝑤 𝑚2 °𝑘4⁄ ) (1.5𝑚2)(288°𝑘)4

𝑃 = 119.5 𝑤

Page 58: Termología y Ondas Magneticas 1

8. Con que rapidez absorbe la energía solar una persona en un día claro. Suponga que

𝑒 = 0.7 y que el área del cuerpo expuesta es de 0.8 𝑚2 y que la absorción de es

1000 𝑤 𝑚2⁄

Datos

𝑒 = 0.7

𝐴 = 0.8 𝑚2

𝑅 = 1000 𝑤 𝑚2⁄

Incógnita

𝑃 =?

Formula

𝑃 = 𝑒 𝐴 𝑅

Desarrollo

𝑃 = (0.7)(0.8 𝑚2) (1000 𝑤 𝑚2⁄ )

𝑃 = 560 𝑤

Page 59: Termología y Ondas Magneticas 1

9. La rapidez con que radia energía un filamento de cinta de tungsteno de 2cm de largo

y 1cm de ancho es de 63.2𝑤. Si la temperatura se mantiene constante y la

emisividad del tungsteno es de 0.35. Determine la temperatura del filamento.

Datos

ℓ = 2𝑐𝑚

𝑎 = 1 𝑐𝑚

𝐴 = 𝑎 × ℓ = 2𝑐𝑚 × 1𝑐𝑚 = 2𝑐𝑚2 = 2 × 10−4𝑚2

𝑃 = 63.2 𝑤

𝑒 = 0.35

𝜎 = 5.67 × 10−8𝑤 𝑚2 °𝑘4⁄

Incógnita

𝑇 =?

Formulas

𝑃 = 𝑒 𝜎 𝐴 𝑇4

𝐴 = 𝑎 × ℓ

Desarrollo

𝑇4 =𝑃

𝑒 𝜎 𝐴

𝑇 = √𝑃

𝑒 𝜎 𝐴

4

𝑇 = √63.2 𝑤

(0.35) (5.67 × 10−8𝑤 𝑚2 °𝑘4⁄ ) (2 × 10−4𝑚2)

4

𝑇 = 2375.6 °𝑘

Page 60: Termología y Ondas Magneticas 1

10. Obtenga el flujo de calor que se registra a lo largo de una longitud de 20 cm y un

área transversal de 4 cm2, si se mantiene a una diferencia de temperatura de 50 °k

entre las caras opuestas. 𝐾 = 0.48 𝐶𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ °𝑘⁄

Datos

𝐿 = 20𝑐𝑚

𝐴 = 4 𝑐𝑚2

𝑇> − 𝑇< = 50 °𝑘

𝐾 = 0.48 𝐶𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ °𝑘⁄

Incógnita

𝑄

𝜏=?

Formula

∆𝑄

∆𝑡= 𝐾 𝐴

𝑇> − 𝑇<𝐿

Desarrollo

𝑄

𝜏= (0.48 𝐶𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ °𝑘⁄ ) (4 𝑐𝑚2)

(50 °𝑘)

20 𝑐𝑚

𝑄

𝜏= 4.8 𝐶𝑎𝑙 𝑠𝑒𝑔⁄

Page 61: Termología y Ondas Magneticas 1

11. Se solda un extremo de una barra de acero de 10cm de longitud al extremo de otra

de cobre de 20cm de longitud. Cada barra tiene una sección transversal cuadrada

de 2cm de lado. El extremo libre de la barra de acero se pone en contacto con vapor

a 100°C y el extremo libre de la de cobre con hielo a 0°C. Obtener la temperatura en

la soldadura al alcanzar las condiciones de estado estacionario.

𝐾1 𝐴𝑐𝑒𝑟𝑜 = 50.2 𝐽 𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄ , 𝐾2 𝐶𝑜𝑏𝑟𝑒 = 385 𝐽 𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄

Datos

𝐿1 𝐴𝑐𝑒𝑟𝑜 = 10𝑐𝑚 = 10 × 10−2𝑚

𝐿2 𝐶𝑜𝑏𝑟𝑒 = 20𝑐𝑚 = 20 × 10−2𝑚

𝐴 = 𝐴1 = 𝐴2 = 2𝑐𝑚 × 2𝑐𝑚 = 4 × 10−4𝑚2

𝑇1 = 𝑇>𝐴𝑐𝑒𝑟𝑜 = 100℃

𝑇2 = 𝑇<𝐶𝑜𝑏𝑟𝑒 = 0 ℃

𝐾1 𝐴𝑐𝑒𝑟𝑜 = 50.2 𝐽𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄

𝐾2 𝐶𝑜𝑏𝑟𝑒 = 385 𝐽 𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄

Incógnita

𝑇 = 𝑇< 𝐴𝑐𝑒𝑟𝑜 = 𝑇> 𝐶𝑜𝑏𝑟𝑒 =?

Formulas

𝑄

𝜏= 𝐾1 𝐴1

(𝑇1 − 𝑇)

𝐿1

𝑄

𝜏= 𝐾2 𝐴2

(𝑇 − 𝑇2)

𝐿2

Desarrollo

𝐾1 𝐴1 (𝑇1 − 𝑇)

𝐿1= 𝐾2 𝐴2

(𝑇 − 𝑇2)

𝐿2

(𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2) (𝑇1 − 𝑇) = (𝑇 − 𝑇2)

Page 62: Termología y Ondas Magneticas 1

(𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2) 𝑇1 − (

𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2) 𝑇 = 𝑇 − 𝑇2

(𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2) 𝑇1 = 𝑇 − 𝑇2 + (

𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2) 𝑇

(𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2) 𝑇1 + 𝑇2 = 𝑇 + (

𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2) 𝑇

(𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2) 𝑇1 + 𝑇2 = [1 + (

𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2)] 𝑇

(𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2)𝑇1 + 𝑇2

1 + (𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2)

= 𝑇

𝑇 =(𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2)𝑇1 + 𝑇2

1 + (𝐾1 𝐴1𝐿1

) (𝐿2

𝐾2 𝐴2)

𝑇

=

[(50.2 𝐽 𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄ ) (4 × 10−4𝑚2)

10 × 10−2𝑚] [

20 × 10−2𝑚

(385 𝐽 𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄ ) (4 × 10−4𝑚2)] (100℃) + 0℃

1 + [(50.2 𝐽 𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄ ) (4 × 10−4𝑚2)

10 × 10−2𝑚] [

20 × 10−2𝑚

(385 𝐽 𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄ ) (4 × 10−4𝑚2)]

𝑇 = 20.7 ℃

Page 63: Termología y Ondas Magneticas 1

12. El aire de una habitación está a 25 °C de temperatura, y el aire exterior a -15°C. ¿Qué

cantidad de calor se transmite por segundo y por unidad de área a través del cristal

de una ventana de conductividad térmica de 2.5 × 103 𝑐𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄ y espesor

de 2mm.

Datos

𝑇> = 25 ℃

𝑇< = −15℃

𝐾 = 2.5 × 103 𝑐𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄

𝐿 = 2𝑚𝑚 = 2 × 10−1𝑐𝑚

Incógnita

𝑄

𝜏 𝐴=?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

𝑄

𝜏 𝐴= 𝐾

(𝑇> − 𝑇<)

𝐿

𝑄

𝜏 𝐴= (2.5 × 103 𝑐𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄ )

(25 ℃ − (−15℃))

2 × 10−1𝑐𝑚

𝑄

𝜏 𝐴= 5 × 105 𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑐𝑚2⁄

Page 64: Termología y Ondas Magneticas 1

13. Una placa delgada de acero cuadrada de 10cm de lado, se calienta en una forja de

hierro hasta una temperatura de 800 °C. Si la emisividad es de 1. ¿Cuál es la cantidad

de energía emitida por unidad de tiempo?

Datos

𝐴 = 10𝑐𝑚 × 10𝑐𝑚 = 100 × 10−4𝑚2

𝑇 = 800 ℃ = 800 + 273 = 1073 °𝑘

𝑒 = 1

𝜎 = 5.67 × 10−8𝑤 𝑚2 °𝑘4⁄

Incógnita

𝑃 =?

Formula

𝑃 = 𝑒 𝜎 𝐴 𝑇4

Desarrollo

𝑃 = (1) (5.67 × 10−8𝑤 𝑚2 °𝑘4⁄ ) (100 × 10−4𝑚2)(1073 °𝑘)4

𝑃 = 1503 𝑤

Page 65: Termología y Ondas Magneticas 1

14. Una plancha se calienta a 160°C. Su área superficial es de 300cm2 y la emisividad es

de 0.3. ¿Qué potencia radia la plancha?

Datos

𝑇 = 160 ℃ = 160 + 273 = 433 °𝑘

𝐴 = 300 𝑐𝑚2 = 300 × 10−4𝑚2

𝑒 = 0.3

𝜎 = 5.67 × 10−8𝑤 𝑚2 °𝑘4⁄

Incógnita

𝑃 =?

Formula

𝑃 = 𝑒 𝜎 𝐴 𝑇4

Desarrollo

𝑃 = (0.3) (5.67 × 10−8𝑤 𝑚2 °𝑘4⁄ ) (300 × 10−4𝑚2)(433 °𝑘)4

𝑃 = 17.9 𝑤

Page 66: Termología y Ondas Magneticas 1

15. Obtenga el flujo de calor por segundo que transporta un bloque de plomo de una

longitud de 30cm y un área de 70cm2. Si se mantiene a una diferencia de

temperatura de 50 °k entre sus caras opuestas. 𝐾 = 0.08 𝑐𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ °𝑘⁄

Datos

𝐿 = 30𝑐𝑚

𝐴 = 70𝑐𝑚2

𝑇> − 𝑇< = 50 °𝑘

𝐾 = 0.08𝑐𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ °𝑘⁄

Incógnita

𝑄

𝜏=?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

𝑄

𝜏 𝐴= 𝐾

(𝑇> − 𝑇<)

𝐿

𝑄

𝜏 = (0.08 × 103 𝑐𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄ ) (70𝑐𝑚2)

(50 °𝑘)

30 𝑐𝑚

𝑄

𝜏 = 9,333.3 𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑐𝑚2⁄

Page 67: Termología y Ondas Magneticas 1

16. Las ventanas de una casa son una fuente principal de pérdidas de calor. Obtenga el

flujo de calor a través de una ventana de vidrio de 2m x 1.5 m de área y 3.2 mm de

espesor y si la temperatura de la superficie interna y externa son de 15°C y 14°C

respectivamente y para el vidrio 𝐾 = 0.84 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

Datos

𝐴 = 2𝑚 × 1.5𝑚 = 3𝑚2

𝐿 = 3.2𝑚𝑚 = 3.2 × 10−3𝑚

𝑇> = 15°𝐶

𝑇< = 14°𝐶

𝐾 = 0.84 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

Incógnita

𝑄

𝜏=?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

𝑄

𝜏 = 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

𝑄

𝜏 = (0.84

𝐽𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄ ) (3 𝑚2)

(15℃− 14℃)

3.2 × 10−3𝑚

𝑄

𝜏 = 787.5 𝐽 𝑠𝑒𝑔⁄

Page 68: Termología y Ondas Magneticas 1

17. Una placa de hierro de 2cm de espesor tiene un área de 5000cm2 en su sección

transversal una de las caras está a 140°C y la otra está a 150°C. ¿Cuánto calor fluye

a través de la placa en cada segundo? Para el hierro. 𝐾 = 80 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ °𝑘⁄

Datos

𝐿 = 2𝑐𝑚 = 2 × 10−2𝑚

𝐴 = 5000𝑐𝑚2 = 5000 × 10−4𝑚2

𝑇< = 140℃ = 140 + 273 = 413 °𝑘

𝑇> = 150℃ = 150 + 273 = 423 °𝑘

𝐾 = 80 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ °𝑘⁄

Incógnita

𝑄

𝜏=?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

𝑄

𝜏= (80 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ °𝑘⁄ ) (5000 × 10−4𝑚2)

(423°𝑘 − 413°𝑘)

2 × 10−2𝑚

𝑄

𝜏= 2000 𝐽 𝑠𝑒𝑔⁄

Page 69: Termología y Ondas Magneticas 1

18. Una placa de níquel de 4cm de espesor tiene una diferencia de 32°C entre sus

cargas opuestas. De una a otra se transmiten 55.56 𝐶𝑎𝑙 𝑠𝑒𝑔⁄ a través de 5cm2 de

superficie. Hallar la conductividad térmica de níquel.

Datos

𝐿 = 4𝑐𝑚

𝑇> − 𝑇< = 32 ℃

𝑄

𝜏= 55.56 𝐶𝑎𝑙 𝑠𝑒𝑔⁄

𝐴 = 5𝑐𝑚2

Incógnita

𝐾 =?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

(𝑄

𝜏) 𝐿 = 𝐾 𝐴 (𝑇> − 𝑇<)

𝐾 =(𝑄𝜏) 𝐿

𝐴 (𝑇> − 𝑇<)

𝐾 =(55.56 𝐶𝑎𝑙 𝑠𝑒𝑔⁄ )(4𝑐𝑚)

(5𝑐𝑚2)(32 ℃)

𝐾 = 0.14 𝐶𝑎𝑙 𝑐𝑚 ∙ 𝑠𝑒𝑔 ∙ ℃⁄

Page 70: Termología y Ondas Magneticas 1

19. Calcular la conductividad térmica de una pared de 6 pulgadas de espesor y 16 ft2

de área. Si las dos caras están a la temperatura de 450°F y 150°F, y la rapidez con

que fluye el calor a través de ella es de 1440 𝐵𝑇𝑈 ℎ⁄ .

Datos

𝐿 = 6 𝑖𝑛 = (6)𝑓𝑡

12

𝐴 = 16 𝑓𝑡2

𝑇> = 450 °𝐹

𝑇< = 150 °𝐹

𝑄

𝜏= 1440 𝐵𝑇𝑈 ℎ⁄

Incógnita

𝐾 =?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

(𝑄

𝜏) 𝐿 = 𝐾 𝐴 (𝑇> − 𝑇<)

𝐾 =(𝑄𝜏) 𝐿

𝐴 (𝑇> − 𝑇<)

𝐾 =

(1440 𝐵𝑇𝑈 ℎ⁄ )((6)𝑓𝑡12)

(16 𝑓𝑡2)(450 °𝐹 − 150 °𝐹)

𝐾 = 0.15 𝐵𝑇𝑈 𝑓𝑡 ∙ ℎ ∙ °𝐹⁄

Page 71: Termología y Ondas Magneticas 1

20. Una placa de metal de 4mm de espesor tiene una diferencia de temperatura entre

sus dos caras es de 32°C, transmite una energía por hora de 200 𝑘𝐶𝑎𝑙 ℎ⁄ a través

de un área de 5cm2, calcular la conductividad térmica del metal.

Datos

𝐿 = 4𝑚𝑚

𝑇> − 𝑇< = 32 °𝐶 = 32 + 273 = 305 °𝑘

𝐾 = 200 𝑘𝐶𝑎𝑙 ℎ⁄ =(200)(1000)

3600 𝑠𝑒𝑔

1 𝐶𝑎𝑙 = 4.186 𝐽

𝐴 = 5 𝑐𝑚2 = 5 × 10−4𝑚2

Incógnita

𝐾 =?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

(𝑄

𝜏) 𝐿 = 𝐾 𝐴 (𝑇> − 𝑇<)

𝐾 =(𝑄𝜏) 𝐿

𝐴 (𝑇> − 𝑇<)

𝐾 =((200)(1000)(4.186 𝐽)

3600 𝑠𝑒𝑔) (4 × 10−3𝑚)

(5 × 10−4𝑚2)(305 °𝑘)

𝐾 = 58.8 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ °𝑘⁄

Page 72: Termología y Ondas Magneticas 1

21. Una varilla de plata 𝐾 = 99 𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄ tiene un extremo sumergido en vapor

de agua y el otro extremo en hielo a 0 °C. La distancia entre los extremos es de 6cm.

Obtenga el valor del área transversal de la varilla si condujo 140 calorías en 2 min.

Datos

𝐾 = 99 𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

𝑇> = 100 ℃

𝑇< = 0 ℃

𝐿 = 6 𝑐𝑚 = 6 × 10−2𝑚

𝑄 = 140 𝑐𝑎𝑙

𝜏 = 2 𝑚𝑖𝑛 = 2 × 60𝑠𝑒𝑔 = 120𝑠𝑒𝑔

Incógnita

𝐴 =?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

(𝑄

𝜏) 𝐿 = 𝐾 𝐴 (𝑇> − 𝑇<)

𝐴 =(𝑄𝜏) 𝐿

𝐾 (𝑇> − 𝑇<)

𝐴 =(140 𝑐𝑎𝑙120 𝑠𝑒𝑔)

(6 × 10−2𝑚)

(99 𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄ ) (100 ℃ − 0℃)

𝐴 = 7.1 × 10−6𝑚2

Page 73: Termología y Ondas Magneticas 1

22. La pared exterior de un horno de ladrillos tiene un espesor de 6cm. La superficie

exterior se encuentra a 150°C y la superficie exterior está a 30°C. ¿Cuánto calor

pierde a través de un área de 1m2 durante una hora? Para el ladrillo 𝐾 =

0.7 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ °𝑘⁄

Datos

𝐿 = 6𝑐𝑚 = 6 × 10−2𝑚

𝑇> = 150 ℃ = 150 + 273 = 423 °𝑘

𝑇< = 30 ℃ = 30 + 273 = 303 °𝑘

𝐴 = 1𝑚2

𝜏 = 1 ℎ𝑟 = 3600 𝑠𝑒𝑔

Incógnita

𝑄 =?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

𝑄 = 𝜏 𝐾 𝐴 (𝑇> − 𝑇<)

𝐿

𝑄 = (3600 𝑠𝑒𝑔) (0.7 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ °𝑘⁄ ) (1𝑚2)(423 °𝑘 − 303°𝑘)

6 × 10−2𝑚

𝑄 = 5 040 000 𝐽

Page 74: Termología y Ondas Magneticas 1

23. Para mantener una bebida fría se utiliza una caja de espuma de polietileno. La

superficie total de las paredes incluyendo la tapa es de 0.8 m2 y el espesor de la

misma es de 2cm. La conductividad térmica de la espuma de polietileno es de

0.01 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄ aproximadamente, se llena de hielo a 0°C. ¿Cuál es la cantidad

de calor que penetra en un día a la caja? La temperatura exterior es de 30°C

Datos

𝐴 = 0.8 𝑚2

𝐿 = 2 𝑐𝑚 = 2 × 10−2𝑚

𝐾 = 0.01 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

𝑇< = 0℃

𝜏 = 1 𝑑𝑖𝑎 = 86 400 𝑠𝑒𝑔

𝑇> = 30 ℃

Incógnita

𝑄 =?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

𝑄 = 𝜏 𝐾 𝐴 (𝑇> − 𝑇<)

𝐿

𝑄 = (86400 𝑠𝑒𝑔) (0.01 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ °𝑘⁄ ) (0.8𝑚2)(30 ℃− 0℃)

2 × 10−2𝑚

𝑄 = 1 036 800 𝐽

Page 75: Termología y Ondas Magneticas 1

24. Una plancha de corcho transmite 1.5 𝑘𝐶𝑎𝑙 𝑑í𝑎⁄ a través de 0.1 m2, cuando el

gradiente de temperatura vale 0.5 ℃ 𝑐𝑚⁄ . Hallar la cantidad de calor transmitida

por día que tiene lugar en la plancha de corcho de 1𝑚 × 2𝑚 de área transversal y

0.5 cm de espesor en sus caras, si una de sus caras está a 0°C y la otra a 15°C.

Datos

(𝑄

𝜏)1= 1.5 𝑘𝐶𝑎𝑙 𝑑í𝑎⁄

𝐴1 = 0.1 𝑚2

(𝑇> − 𝑇<)1𝐿

= 0.5 ℃ 𝑐𝑚⁄ = 0.5 ℃ 10−2𝑚⁄

𝐴 = 1𝑚 × 2𝑚

𝐿 = 0.5 𝑐𝑚 = 0.5 × 10−2𝑚

𝑇< = 0 ℃

𝑇> = 15 ℃

Incógnita

𝑄

𝜏=?

Formula

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

(𝑄

𝜏)1= 𝐾 𝐴1

(𝑇> − 𝑇<)1𝐿

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

𝑄𝜏

(𝑄𝜏)1

=𝐾 𝐴

(𝑇> − 𝑇<)𝐿

𝐾 𝐴1(𝑇> − 𝑇<)1

𝐿

Page 76: Termología y Ondas Magneticas 1

𝑄

𝜏= (𝑄𝜏)1

𝐴 (𝑇> − 𝑇<)

𝐿

𝐴1(𝑇> − 𝑇<)1

𝐿

𝑄

𝜏=(1.5 𝑘𝐶𝑎𝑙 𝑑í𝑎⁄ ) (1𝑚 × 2𝑚) (

15 ℃− 0 ℃0.5 × 10−2𝑚

)

(0.1 𝑚2) (0.5 ℃ 10−2𝑚⁄ )

𝑄

𝜏= 1800 𝑘𝐶𝑎𝑙 𝑑í𝑎⁄

Page 77: Termología y Ondas Magneticas 1

25. Dos barras una de acero y otra de cobre, la de acero es de 10cm de longitud y la de

cobre de 20cm, cada una con una sección transversal cuadrada de 2cm por lado,

están separados, un extremo de cada barra se pone en contacto con vapor a 100 °C

y los otros con hielo a 0°C. ¿Cuál es el flujo calorífico por unidad de tiempo total en

barras?

𝐾𝐴𝑐𝑒𝑟𝑜 = 502 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

𝐾𝑐𝑜𝑏𝑟𝑒 = 385 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

Datos

𝐿1 = 10 𝑐𝑚 = 10 × 10−2𝑚

𝐿2 = 20 𝑐𝑚 = 20 × 10−2𝑚

𝐴 = 2𝑐𝑚 × 2𝑐𝑚 = (2 × 10−2𝑚)(2 × 10−2𝑚)

𝑇> = 100 ℃

𝑇< = 0 ℃

Incógnita

𝑄

𝜏=?

Formula

𝑄

𝜏= 𝐾1 𝐴

(𝑇> − 𝑇<)

𝐿1+𝐾2 𝐴

(𝑇> − 𝑇<)

𝐿2

Desarrollo

𝑄

𝜏= (502 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄ ) (4 × 10−4𝑚2)

(100 ℃− 0℃)

10 × 10−2𝑚

+ (385 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄ ) (4 × 10−4𝑚2)(100 ℃− 0℃)

20 × 10−2𝑚

𝑄

𝜏= 97.1 𝐽 𝑠𝑒𝑔⁄

Page 78: Termología y Ondas Magneticas 1

26. Considérese una loza compuesta formada por aluminio y acero que tienen espesor

de 14 cm y 20cm. Si las temperaturas exteriores son 30°C y 17°C. Encontrar la

rapidez de propagación del calor a través de la loza compuesta, el área es de 2m x

3m.

Datos

𝐾𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑜 = 4.9 × 10−2 𝑘𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

𝐾𝐴𝑐𝑒𝑟𝑜 = 1.1 × 10−2 𝑘𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

𝐿1 = 14 𝑐𝑚 = 14 × 10−2𝑚

𝐿2 = 20 𝑐𝑚 = 20 × 10−2𝑚

𝑇> = 30 ℃

𝑇< = 17 ℃

𝐴 = 2𝑚 × 3𝑚

Incógnita

𝑄

𝜏=?

Formula

(𝑄

𝜏)1= (

𝑄

𝜏)2

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

𝐾1 𝐴 (𝑇> − 𝑇)

𝐿1= 𝐾2 𝐴

(𝑇 − 𝑇<)

𝐿2

𝐾1𝐿1 (𝑇> − 𝑇) =

𝐾2𝐿2 𝐴

𝐴 (𝑇 − 𝑇<)

𝐾1𝐿1 𝑇> −

𝐾1𝐿1 𝑇 =

𝐾2𝐿2 𝑇 −

𝐾2𝐿2𝑇<

Page 79: Termología y Ondas Magneticas 1

𝐾1𝐿1 𝑇> +

𝐾2𝐿2𝑇< =

𝐾2𝐿2 𝑇 +

𝐾1𝐿1 𝑇

𝐾1𝐿1 𝑇> +

𝐾2𝐿2𝑇< = (

𝐾2𝐿2+𝐾1𝐿1) 𝑇

𝑇 =

𝐾1𝐿1 𝑇> +

𝐾2𝐿2𝑇<

𝐾2𝐿2+𝐾1𝐿1

𝑇 =

(4.9 × 10−2 𝑘𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

14 × 10−2𝑚) (30 ℃) + (

1.1 × 10−2 𝑘𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

20 × 10−2𝑚)(17℃)

4.9 × 10−2 𝑘𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

14 × 10−2𝑚+1.1 × 10−2 𝑘𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

20 × 10−2𝑚

𝑇 = 28.23 ℃

𝑄

𝜏= (4.9 × 10−2 𝑘𝐶𝑎𝑙 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄ ) (2𝑚 × 3𝑚) (

30 ℃− 28.23℃

14 × 10−2𝑚)

𝑄

𝜏= 3.717 𝑘𝐶𝑎𝑙 𝑠𝑒𝑔⁄

Page 80: Termología y Ondas Magneticas 1

27. Se solda un extremo de una barra de acero de 10cm de longitud al extremo de otra

de cobre de 20cm de longitud. Cada barra tiene una sección de 2 cm de lado. El

extremo libre de la barra de acero se pone en contacto con vapor a 100°C y el

extremo libre de la de cobre con hielo a 0°C, hallar la temperatura en la soldadura.

Datos

𝐾𝐴𝑐𝑒𝑟𝑜 = 502 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

𝐾𝑐𝑜𝑏𝑟𝑒 = 385 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

𝐿1 = 10 𝑐𝑚 = 10 × 10−2𝑚

𝐿2 = 20 𝑐𝑚 = 20 × 10−2𝑚

𝐴 = 2𝑐𝑚 × 2𝑐𝑚

𝑇> = 100 ℃

𝑇< = 0 ℃

Incógnita

𝑇 =?

Formula

(𝑄

𝜏)1= (

𝑄

𝜏)2

𝑄

𝜏= 𝐾 𝐴

(𝑇> − 𝑇<)

𝐿

Desarrollo

𝐾1 𝐴 (𝑇> − 𝑇)

𝐿1= 𝐾2 𝐴

(𝑇 − 𝑇<)

𝐿2

𝐾1𝐿1 (𝑇> − 𝑇) =

𝐾2𝐿2 𝐴

𝐴 (𝑇 − 𝑇<)

𝐾1𝐿1 𝑇> −

𝐾1𝐿1 𝑇 =

𝐾2𝐿2 𝑇 −

𝐾2𝐿2𝑇<

𝐾1𝐿1 𝑇> +

𝐾2𝐿2𝑇< =

𝐾2𝐿2 𝑇 +

𝐾1𝐿1 𝑇

Page 81: Termología y Ondas Magneticas 1

𝐾1𝐿1 𝑇> +

𝐾2𝐿2𝑇< = (

𝐾2𝐿2+𝐾1𝐿1) 𝑇

𝑇 =

𝐾1𝐿1 𝑇> +

𝐾2𝐿2𝑇<

𝐾2𝐿2+𝐾1𝐿1

𝑇 =

(502 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

10 × 10−2𝑚)(100 ℃) + (

385 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

20 × 10−2𝑚)(0℃)

502 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

10 × 10−2𝑚+1385 𝐽 𝑠𝑒𝑔 ∙ 𝑚 ∙ ℃⁄

20 × 10−2𝑚

𝑇 = 20.7 ℃

Page 82: Termología y Ondas Magneticas 1

28. Una persona pierde calor por radiación a una rapidez de 110w. Obtenga la

temperatura de su piel si se encuentra dentro de una habitación a 15 °C. Suponga

que el área de la piel es de 1.3 m2 y tiene una emisividad de 0.6.

Datos

𝑃 = 110 𝑤

𝑇< = 15 ℃ = 15 + 273 = 288 °𝑘

𝐴 = 1.3 𝑚2

𝑒 = 0.6

𝜎 = 5.67 × 10−8𝑤 𝑚2 ∙ °𝑘4⁄

Incógnita

𝑇> =?

Formula

𝑃 = 𝑒 𝜎 𝐴 𝑇>4 − 𝑒 𝜎 𝐴 𝑇<

4

𝑃 + 𝑒 𝜎 𝐴 𝑇<4 = 𝑒 𝜎 𝐴 𝑇>

4

𝑃 + 𝑒 𝜎 𝐴 𝑇<4

𝑒 𝜎 𝐴= 𝑇>

4

𝑇> = √𝑃 + 𝑒 𝜎 𝐴 𝑇<

4

𝑒 𝜎 𝐴

4

𝑇> = √110 𝑤 + (0.6) (5.67 × 10−8𝑤 𝑚2 ∙ °𝑘4⁄ ) (1.3𝑚2)(288 °𝑘)

(0.6) (5.67 × 10−8𝑤 𝑚2 ∙ °𝑘4⁄ ) (1.3𝑚2)

4

𝑇> = 305.6 °𝑘

Page 83: Termología y Ondas Magneticas 1

Cap. II. GASES IDEALES

Un gas ideal es aquel que obedece la Ley de los gases ideales.

Una mol: Es la cantidad de materia que contiene tantas partículas como átomos que hay en

exactamente 12 gramos.

Ley del Gas Ideal: La presión absoluta de n kilomoles de un gas contenido en un volumen V

se relaciona con la temperatura por:

𝑃 𝑉 = 𝑛 𝑅 𝑇

En donde,

𝑅 = 8314 𝐽 𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Y se conoce como la constante universal de los gases.

Número de moléculas: es el cociente entre la masa m de un gas y su masa molecular M del

mismo gas.

𝑛 =𝑚

𝑀

Ley del gas de Boyle:

𝑃1 𝑉1 = 𝑃2 𝑉2

Ley de Charles:

𝑉1𝑇1=𝑉2𝑇2

Ley de Gas-Lussac:

𝑃1𝑇1=𝑃2𝑇2

𝑃1 𝑉1𝑇1

= 𝑃2 𝑉2𝑇2

𝑃1𝜌1 𝑇1

=𝑃2𝜌2 𝑇2

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

Page 84: Termología y Ondas Magneticas 1

𝑃𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑎 = 𝑃𝑀𝑎𝑛𝑜𝑚é𝑡𝑟𝑖𝑐𝑎 + 𝑃𝐴𝑡𝑚𝑜𝑠𝑓é𝑟𝑖𝑐𝑎

𝑃𝐴 = 1.013 × 105 𝑃𝑎 = 1 𝑎𝑡𝑚 = 760 𝑚𝑚𝐻𝑔

𝑃𝑎 =𝑁

𝑚2

Masa Molecular: es el número de gramos de un gas en un mol del mismo

𝑀 =# 𝑔𝑟𝑎𝑚𝑜𝑠

𝑚𝑜𝑙=

𝑘𝑔

𝑘𝑚𝑜𝑙

Page 85: Termología y Ondas Magneticas 1

1. Una masa de oxígeno a 5°C ocupa 0.02m3 a la presión atmosférica y tiene 101kPa.

Obtenga su volumen si su presión se incrementa hasta 108kPa, mientras su

temperatura cambia a 30°C.

Datos

𝑇1 = 5 ℃ = 5 + 273 = 278 °𝑘

𝑉1 = 0.02 𝑚3

𝑃1 = 101 𝑘𝑃𝑎

𝑃2 = 108 𝑘𝑃𝑎

𝑇2 = 30 ℃ = 30 + 273 = 303 °𝑘

Incógnita

𝑉2 =?

Formula

𝑃1 𝑉1𝑇1

= 𝑃2 𝑉2𝑇2

Desarrollo

𝑃1 𝑉1 𝑇2𝑇1 𝑃2

= 𝑉2

𝑉2 =(101 𝑘𝑃𝑎)(0.02 𝑚3)(303 °𝑘)

(108 𝑘𝑃𝑎)(278 °𝑘)

𝑉2 = 0.0204 𝑚3

Page 86: Termología y Ondas Magneticas 1

2. Un día en que la presión atmosférica es de 76 cm Hg el manómetro de un tanque

marca la lectura de la presión interna del mismo en 400 cm Hg. El gas en el tanque

tiene una temperatura de 90°C. Si en el depósito la temperatura aumenta a 31°C

debido a la energía solar y además no existen escapes para el gas en el tanque.

¿Cuál será la lectura de la presión en el manómetro?

Datos

𝑃1 = 76 𝑐𝑚𝐻𝑔 + 400𝑐𝑚𝐻𝑔 = 476𝑐𝑚𝐻𝑔

𝑇1 = 9 ℃ = 9 + 273 = 282 °𝑘

𝑇2 = 31 ℃ = 31 + 273 = 304 °𝑘

𝑃𝐴𝑡𝑚 = 76 𝑐𝑚𝐻𝑔

Incógnita

𝑃𝑀𝑎𝑛𝑜𝑛 =?

Formulas

𝑃1𝑇1=𝑃2𝑇2

𝑃𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑎 = 𝑃𝑀𝑎𝑛𝑜𝑚é𝑡𝑟𝑖𝑐𝑎 + 𝑃𝐴𝑡𝑚𝑜𝑠𝑓é𝑟𝑖𝑐𝑎

Desarrollo

𝑃2 =𝑃1 𝑇2𝑇1

𝑃2 =(476 𝑐𝑚𝐻𝑔)(304 °𝑘)

282 °𝑘= 513 𝑐𝑚𝐻𝑔

𝑃2 = 𝑃2 𝑀𝑎𝑛𝑜𝑛 + 𝑃𝐴𝑡𝑚

𝑃2 𝑀𝑎𝑛𝑜𝑛 = 𝑃2 − 𝑃𝐴𝑡𝑚

𝑃2 𝑀𝑎𝑛𝑜𝑛 = 513 𝑐𝑚𝐻𝑔 − 76𝑐𝑚𝐻𝑔

𝑃2 𝑀𝑎𝑛𝑜𝑛 = 437 𝑐𝑚𝐻𝑔

Page 87: Termología y Ondas Magneticas 1

3. La presión manométrica en la llanta de un automóvil es de 305 kPa cuando la

temperatura es de 15 °C. Después de correr a alta velocidad, el neumático se

calentó y su presión subió a 360 kPa. ¿Cuál es entonces la temperatura del gas de

la llanta? Considere la presión atmosférica de 101 kPa.

Datos

𝑃1 = 305 𝑘𝑃𝑎 + 101 𝑘𝑃𝑎 = 406 𝑘𝑃𝑎

𝑇1 = 15 ℃ = 15 + 273 = 288 °𝑘

𝑃2 = 360 𝑘𝑃𝑎 + 101 𝑘𝑃𝑎 = 461 𝑘𝑃𝑎

Incógnita

𝑇2 =?

Formula

𝑃1𝑇1=𝑃2𝑇2

Desarrollo

𝑃2 =𝑃1 𝑇2𝑇1

𝑇2 =𝑃2 𝑇1𝑃1

𝑇2 =(461 𝑘𝑃𝑎)(288 °𝑘)

406 𝑘𝑃𝑎

𝑇2 = 327 °𝑘

Page 88: Termología y Ondas Magneticas 1

4. Un gas a temperatura y presión ambiente está contenido en un cilindro por medio

de un pistón. Este es empujado de modo que el volumen se reduce a una octava

parte de su valor inicial. Después de que la temperatura del gas ha vuelto a ser

igual a la del ambiente. ¿Cuál será la presión manométrica del gas? La presión

atmosférica local es de 740mmHg.

Datos

𝑉1𝑉2=1

8 𝑉1

𝑇2 = 𝑇1 = 𝑇

𝑃𝐴𝑡𝑚 = 740 𝑚𝑚𝐻𝑔

Incógnita

𝑃𝑀𝑎𝑛𝑜𝑚 =?

Formula

𝑃1 𝑉1𝑇1

=𝑃2 𝑉2𝑇2

Desarrollo

𝑃1 𝑉1 𝑇

𝑇= 𝑃2 𝑉2

𝑃1 𝑉1 = 𝑃2 𝑉2

𝑃2 =𝑃1 𝑉1𝑉2

𝑃2 =𝑃1 𝑉118𝑉1

𝑃2 = 8 𝑃1

Page 89: Termología y Ondas Magneticas 1

5. Un gas ideal tiene un volumen de 1 litro a 1 atm y a -20°C. ¿A cuántas atmosferas

de presión se debe someter para comprimirlo a 0.5 litros cuando su temperatura

es de 40°C?

Datos

𝑉1 = 1 𝑙𝑡

𝑃1 = 1 𝑎𝑡𝑚

𝑇1 = −20 ℃ = −20 + 273 = 253 °𝑘

𝑉2 = 0.5 𝑙𝑡

𝑇2 = 40 ℃ = 40 + 273 = 313 °𝑘

Incógnita

𝑃2 =?

Formula

𝑃1 𝑉1𝑇1

=𝑃2 𝑉2𝑇2

Desarrollo

𝑃1 𝑉1 𝑇2𝑇1

= 𝑃2 𝑉2

𝑃2 =𝑃1 𝑉1 𝑇2𝑉2 𝑇1

𝑃2 =(1 𝑎𝑡𝑚)(1 𝑙𝑡)(313 °𝑘)

(0.5 𝑙𝑡)(253 °𝑘)

𝑃2 = 2.47 𝑎𝑡𝑚

Page 90: Termología y Ondas Magneticas 1

6. Cierta masa de gas hidrógeno ocupa 370 ml a 16 °C y 150 kPa. Determine su

volumen a -21 °C y 420 kPa.

Datos

𝑉1 = 370 𝑚𝑙

𝑇1 = 16 ℃ = 16 + 273 = 289 °𝑘

𝑃1 = 150 𝑘𝑃𝑎

𝑇2 = −21 ℃ = −21 + 273 = 252 °𝑘

𝑃2 = 420 𝑘𝑃𝑎

Incógnita

𝑉2 =?

Formula

𝑃1 𝑉1𝑇1

=𝑃2 𝑉2𝑇2

Desarrollo

𝑃1 𝑉1 𝑇2𝑇1

= 𝑃2 𝑉2

𝑉2 =𝑃1 𝑉1 𝑇2𝑃2 𝑇1

𝑉2 =(150 𝑘𝑃𝑎)(370 𝑚𝑙)(252 °𝑘)

(420 𝑘𝑃𝑎)(289 °𝑘)

𝑉2 = 115 𝑚𝑙

Page 91: Termología y Ondas Magneticas 1

7. La densidad del nitrógeno en condiciones de temperatura y presión estándar es de

1.25 𝑘𝑔

𝑚3⁄ . Determine su densidad a 42 °C y 730 mmHg.

Datos

𝑇1 = 273 °𝑘

𝑃1 = 760 𝑚𝑚𝐻𝑔

𝜌1 = 1.25 𝑘𝑔

𝑚3⁄

𝑇2 = 42 ℃ = 42 + 273 = 315 °𝑘

𝑃2 = 730 𝑚𝑚𝐻𝑔

Incógnita

𝜌2 =?

Formula

𝑃1𝜌1 𝑇1

=𝑃2𝜌2 𝑇2

𝑃1 𝜌2 𝑇2 = 𝑃2 𝜌1 𝑇1

𝜌2 =𝑃2 𝜌1 𝑇1𝑃1 𝑇2

𝜌2 =(730 𝑚𝑚𝐻𝑔)(1.25

𝑘𝑔𝑚3⁄ ) (273 °𝑘)

(730 𝑚𝑚𝐻𝑔)(315 °𝑘)

𝜌2 = 1.04 𝑘𝑔

𝑚3⁄

Page 92: Termología y Ondas Magneticas 1

8. Un tanque de 3 litros contiene oxígeno a 20°C y a una presión manométrica de

25 × 105 𝑃𝑎. ¿Cuál es la masa del gas almacenado en el tanque? La masa

molecular del oxígeno es de 32 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ . Considere que la presión atmosférica es

de 105𝑃𝑎.

Datos

𝑉 = 3 𝑙𝑡 = 3 × 10−3𝑚3

𝑇 = 20℃ = 20 + 273 = 293 °𝑘

𝑃𝑀 = 25 × 105 𝑃𝑎

𝑀 = 32 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑃𝐴 = 105𝑃𝑎

𝑅 = 8314 𝐽 𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

𝑚 =?

Formula

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

𝑃𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑎 = 𝑃𝑀𝑎𝑛𝑜𝑚é𝑡𝑟𝑖𝑐𝑎 + 𝑃𝐴𝑡𝑚𝑜𝑠𝑓é𝑟𝑖𝑐𝑎

𝑃𝑎 =𝑁

𝑚2

Desarrollo

𝑚 =𝑃 𝑉 𝑀

𝑅 𝑇

𝑚 =(25 × 105 𝑁 𝑚⁄ + 105𝑁 𝑚⁄ )(3 × 10−3𝑚3) (32

𝑘𝑔𝑘𝑚𝑜𝑙⁄ )

(8314 𝑁𝑚⁄𝑘𝑚𝑜𝑙 ∙ °𝑘⁄ ) (293 °𝑘)

𝑚 = 0.1 𝑘𝑔

Page 93: Termología y Ondas Magneticas 1

9. Determine el volumen ocupado por 4 gramos de oxígeno si su masa molecular es

de 32 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ a temperatura y presión estándar.

Datos

𝑚 = 4 𝑔 = 4 × 10−3𝑘𝑔

𝑀 = 32 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑃 = 1 𝑎𝑡𝑚 = 1.01 × 10−5𝑁 𝑚2⁄

𝑇 = 273 °𝑘

𝑅 = 8314 𝐽𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

𝑉 =?

Formula

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

𝑃𝑎 =𝑁

𝑚2

𝐽 = 𝑁 ∙ 𝑚

Desarrollo

𝑉 =𝑚

𝑀 𝑅 𝑇

𝑃

𝑉 =(4 × 10−3𝑘𝑔)(8314 𝑁 ∙ 𝑚

𝑘𝑚𝑜𝑙 ∙ °𝑘⁄ )(273 °𝑘)

(32 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ ) (1.01 × 10−5𝑁 𝑚2⁄ )

𝑉 = 0.0028 𝑚3

Page 94: Termología y Ondas Magneticas 1

10. Una gotita de nitrógeno líquido de 2 miligramos está presente en un tubo de 30 ml

al sellarse a muy baja temperatura. ¿Cuál será la presión del nitrógeno en el tubo

cuando éste se encuentre a 20°C? Exprese la respuesta en atmosferas y considere

la masa molecular del nitrógeno es de 28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

Datos.

𝑚 = 2 𝑚𝑔 = 2 × 10−6 𝑘𝑔

𝑉 = 30 𝑚𝑙 = 30 × 10−6 𝑚3

𝑇 = 20°𝐶 = 20 + 273 = 293 °𝑘

𝑀 = 28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑅 = 8314 𝐽 𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

𝑃 =?

Formula

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

𝑃𝑎 =𝑁

𝑚2= 10−5 𝑎𝑡𝑚

𝐽 = 𝑁 ∙ 𝑚

Desarrollo

𝑃 =𝑚 𝑅 𝑇

𝑀 𝑉

𝑃 =(2 × 10−6 𝑘𝑔)(8314 𝑁 ∙ 𝑚

𝑘𝑚𝑜𝑙 ∙ °𝑘⁄ )(293 °𝑘)

(28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ ) (30 × 10−6 𝑚3)

𝑃 = 5800 𝑁 ∙ 𝑚𝑚3⁄ = 5800 𝑁 𝑚2⁄

𝑃 = 5800 × 10−5 𝑎𝑡𝑚

Page 95: Termología y Ondas Magneticas 1

11. Un tanque de 590 litros de volumen contiene oxígeno a 20°C y 5 atm de presión.

Calcúlese la masa del gas almacenado en el depósito. Considere que la masa

molecular del oxígeno es de 32 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

Datos

𝑉 = 590 𝑙𝑡 = 59 × 10−3 𝑚3

𝑇 = 20 °𝐶 = 20 + 273 = 293 °𝑘

𝑃 = 5 𝑎𝑡𝑚 = 5 × 1.01−5 𝑁 𝑚2⁄

𝑀 = 32 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑅 = 8314 𝐽 𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

𝑚 =?

Formula

Formula

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

Desarrollo

𝑚 =𝑃 𝑉 𝑀

𝑅 𝑇

𝑚 =(5 × 1.01−5 𝑁 𝑚2⁄ ) (59 × 10−3 𝑚3) (32

𝑘𝑔𝑘𝑚𝑜𝑙⁄ )

(8314 𝑁𝑚⁄𝑘𝑚𝑜𝑙 ∙ °𝑘⁄ ) (293 °𝑘)

𝑚 = 3.9 𝑘𝑔

Page 96: Termología y Ondas Magneticas 1

12. A 18 °C y 765 mmHg, 1.29 litros de un gas ideal pesan 2.71 g. determine la masa

molecular.

Datos

𝑇 = 18 ℃ = 18 + 273 = 291 °𝑘

𝑃 = 765 𝑚𝑚𝐻𝑔

𝑉 = 1.29 𝑙𝑡 = 1.29 × 10−3 𝑚3

𝑚 = 2.71 𝑔 = 2.71 × 10−3 𝑘𝑔

𝑅 = 8314 𝐽 𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

𝑀 =?

Formula

Formula

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

Desarrollo

𝑀 =𝑚 𝑅 𝑇

𝑃 𝑉

𝑚 =

(2.71 × 10−3 𝑘𝑔)(8314 𝑁𝑚⁄𝑘𝑚𝑜𝑙 ∙ °𝑘⁄ ) (291 °𝑘)

(765) (1.01 × 10−5 𝑁 ∙ 𝑚2

760 ) (1.29 × 10−3 𝑚3)

𝑚 = 50 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

Page 97: Termología y Ondas Magneticas 1

13. Determine el volumen de 8 gramos de helio, sabiendo que su masa molecular es

de 4 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ a 15 °C y 480 mmHg.

Datos

𝑚 = 8 𝑔 = 8 × 10−3 𝑘𝑔

𝑀 = 4 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑇 = 15 ℃ = 15 + 273 = 288 °𝑘

𝑃 = 480 𝑚𝑚𝐻𝑔 = 480(1.01 × 10−5 𝑁 𝑚2⁄

760)

𝑅 = 8314 𝐽 𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

𝑉 =?

Formula

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

Desarrollo

𝑉 =𝑚 𝑅 𝑇

𝑀 𝑃

𝑚 =

(8 × 10−3 𝑘𝑔)(8314 𝑁𝑚⁄𝑘𝑚𝑜𝑙 ∙ °𝑘⁄ ) (288 °𝑘)

(4 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ )480(

1.01 × 10−5 𝑁 𝑚2⁄

760)

𝑚 = 0.075 𝑚3

Page 98: Termología y Ondas Magneticas 1

14. Encuentre la densidad del metano sabiendo que su masa molecular es de

16 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ , que se encuentra a 20°C y 5 atm.

Datos

𝑀 = 16 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑇 = 20 ℃ = 20 + 273 = 293 °𝑘

𝑃 = 5 𝑎𝑡𝑚 = 5 × (1.01 × 10−5 𝑁 𝑚2⁄ )

𝑅 = 8314 𝐽 𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

𝜌 =?

Formula

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

𝑚

𝑉= 𝜌

Desarrollo

𝑀 𝑃 𝑉 = 𝑚 𝑅 𝑇

𝑚

𝑉=𝑀 𝑃

𝑅 𝑇

𝜌 =(16

𝑘𝑔𝑘𝑚𝑜𝑙⁄ ) (5 × (1.01 × 10−5 𝑁 𝑚2⁄ ))

(8314 𝑁 ∙ 𝑚𝑘𝑚𝑜𝑙 ∙ °𝑘⁄ )(293 °𝑘)

𝜌 = 3.3 𝑘𝑔

𝑚3⁄

Page 99: Termología y Ondas Magneticas 1

15. En un lago un pez emite burbujas de 2mm3 a una profundidad de 15m. Obtenga el

volumen de la burbuja cuando ésta llega a la superficie del lago. Considere que la

temperatura no cambia y que la presión atmosférica es de 100 kPa.

Datos

𝑉1 = 2 𝑚𝑚3

ℎ = 15 𝑚

𝜌𝐻2𝑂 = 1000 𝑘𝑔

𝑚3⁄

𝑇1 = 𝑇2 = 𝑇

𝑔 = 9.8 𝑚 𝑠𝑒𝑔2⁄

𝑃1 = 𝜌 𝑔 ℎ + 𝑃𝐴𝑡𝑚

𝑃2 = 𝑃𝐴𝑡𝑚 = 100 𝑘𝑃𝑎

𝑘𝑃𝑎 = 1000 𝑁 𝑚2⁄

Incógnita

𝑉2 =?

Formula

𝑃1 𝑉1𝑇1

=𝑃2 𝑉2𝑇2

Desarrollo

𝑃1 𝑉1 𝑇

𝑇= 𝑃2 𝑉2

𝑉2 =𝑃1 𝑉1 𝑃2

𝑉2 =[(1000

𝑘𝑔𝑚3⁄ ) (9.8 𝑚 𝑠𝑒𝑔2⁄ ) (15 𝑚) + (100)(1000 𝑁 𝑚2⁄ )] (2 𝑚𝑚3)

(100) (1000 𝑁 𝑚2⁄ )

𝑉2 = 4.9 𝑚𝑚3

Page 100: Termología y Ondas Magneticas 1

16. Un tubo de ensaye vacío y con un extremo abierto hacia abajo, es sumergido en un

lago, la longitud del tubo es de 15 cm. ¿A qué profundidad debe sumergirse al tubo

para que el volumen de aire en él sea de un tercio de cuando fue introducido al

agua? Considere que la temperatura se mantiene constante.

Datos

𝑉2 =2

3 𝑉1

𝜌𝐻2𝑂 = 1000 𝑘𝑔

𝑚3⁄

𝑇1 = 𝑇2 = 𝑇

𝑔 = 9.8 𝑚 𝑠𝑒𝑔2⁄

𝑃1 = 𝑃𝐴𝑡𝑚 = 1.01 × 10−5 𝑁 𝑚2⁄

𝑃2 = 𝜌 𝑔 ℎ + 𝑃𝐴𝑡𝑚

Incógnita

ℎ =?

Formula

𝑃1 𝑉1𝑇1

=𝑃2 𝑉2𝑇2

Desarrollo

𝑃1 𝑉1 𝑇

𝑇= 𝑃2 𝑉2

𝑃2 𝑉2 = 𝑃1 𝑉1

𝑃2 =𝑃1 𝑉1 𝑉2

𝜌 𝑔 ℎ + 𝑃𝐴𝑡𝑚 = 𝑃𝐴𝑡𝑚 𝑉1 𝑉2

𝜌 𝑔 ℎ = 𝑃𝐴𝑡𝑚 𝑉1 23 𝑉1

− 𝑃𝐴𝑡𝑚

Page 101: Termología y Ondas Magneticas 1

𝜌 𝑔 ℎ = 𝑃𝐴𝑡𝑚23

− 𝑃𝐴𝑡𝑚

𝜌 𝑔 ℎ =3

2𝑃𝐴𝑡𝑚 − 𝑃𝐴𝑡𝑚

ℎ =

32𝑃𝐴𝑡𝑚 − 𝑃𝐴𝑡𝑚

𝜌 𝑔

ℎ =

32𝑃𝐴𝑡𝑚 −

22𝑃𝐴𝑡𝑚

𝜌 𝑔

ℎ =

12𝑃𝐴𝑡𝑚

𝜌 𝑔

ℎ =

12 (1.01 × 10

−5 𝑁 𝑚2⁄ )

(1000 𝑘𝑔

𝑚3⁄ ) (9.8 𝑚 𝑠𝑒𝑔2⁄ )

ℎ = 5.1 𝑚

Page 102: Termología y Ondas Magneticas 1

17. Un tanque contiene 18 kg de gas nitrógeno cuya masa molecular es de

28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ a una presión de 4.5 atmosferas. ¿Qué presión de gas hidrógeno que

tienen una masa molecular de 2 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ a 3.5 atmosferas contendrá el mismo

depósito? Consideré que la temperatura es la misma para los dos casos.

Datos

𝑚𝑁 = 18 𝑘𝑔

𝑀𝑁 = 28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑃𝑁 = 4.5 𝑎𝑡𝑚

𝑀𝐻 = 2 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑃𝐻 = 3.5 𝑎𝑡𝑚

𝑉𝑁 = 𝑉𝐻 = 𝑉

𝑇𝑁 = 𝑇𝐻 = 𝑇

Incógnita

𝑚𝐻 =?

Formulas

𝑃𝑁 𝑉𝑁 =𝑚𝑁 𝑅 𝑇𝑁𝑀𝑁

𝑃𝐻 𝑉𝐻 =𝑚𝐻 𝑅 𝑇𝐻𝑀𝐻

Desarrollo

𝑃𝐻 𝑉𝐻𝑃𝑁 𝑉𝑁

=

𝑚𝐻 𝑀𝐻

𝑅 𝑇𝐻

𝑚𝑁 𝑀𝑁

𝑅 𝑇𝑁

𝑃𝐻 𝑉

𝑃𝑁 𝑉=

𝑚𝐻 𝑀𝐻

𝑅 𝑇

𝑚𝑁 𝑀𝑁

𝑅 𝑇

Page 103: Termología y Ondas Magneticas 1

𝑃𝐻𝑃𝑁

=

𝑚𝐻 𝑀𝐻𝑚𝑁 𝑀𝑁

𝑃𝐻𝑃𝑁 𝑚𝑁

𝑀𝑁=𝑚𝐻

𝑀𝐻

𝑚𝐻 = 𝑃𝐻𝑃𝑁 𝑚𝑁

𝑀𝑁 𝑀𝐻

𝑚𝐻 = (3.5 𝑎𝑡𝑚

4.5 𝑎𝑡𝑚)(

18 𝑘𝑔

28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

)(2𝑘𝑔

𝑘𝑚𝑜𝑙⁄ )

𝑚𝐻 = 1 𝑘𝑔

Page 104: Termología y Ondas Magneticas 1

18. En una mezcla gaseosa a 20°C las presiones son:

𝐻𝑖𝑑𝑟ó𝑔𝑒𝑛𝑜 = 200 𝑚𝑚𝐻𝑔

𝐷𝑖ó𝑥𝑖𝑑𝑜 𝑑𝑒 𝑐𝑎𝑟𝑏𝑜𝑛𝑜 = 150 𝑚𝑚𝐻𝑔

𝑀𝑒𝑡𝑎𝑛𝑜 = 320 𝑚𝑚𝐻𝑔

𝐸𝑡𝑖𝑙𝑒𝑛𝑜 = 105 𝑚𝑚𝐻𝑔

Determine:

a) La presión total de la mezcla

b) La fracción de masa de hidrógeno

Considere:

𝑀𝐻 = 2 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑀𝐶𝑂2 = 44 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑀𝑀𝑒𝑡𝑎𝑛𝑜 = 16 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑀𝐸𝑡𝑖𝑙𝑒𝑛𝑜 = 30 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑉𝐻 = 𝑉𝐶𝑂2 = 𝑉𝑀𝑒𝑡𝑎𝑛𝑜 = 𝑉𝐸𝑡𝑖𝑙𝑒𝑛𝑜

𝑇𝐻 = 𝑇𝐶𝑂2 = 𝑇𝑀𝑒𝑡𝑎𝑛𝑜 = 𝑇𝐸𝑡𝑖𝑙𝑒𝑛𝑜

Datos

𝑃𝐻 = 200 𝑚𝑚𝐻𝑔

𝑃𝐶𝑂2 = 150 𝑚𝑚𝐻𝑔

𝑃𝑀𝑒𝑡𝑎𝑛𝑜 = 320 𝑚𝑚𝐻𝑔

𝑃𝐸𝑡𝑖𝑙𝑒𝑛𝑜 = 105 𝑚𝑚𝐻𝑔

Incógnita

𝑃𝑇𝑜𝑡𝑎𝑙 =?

𝑚𝐻

𝑚𝑇𝑜𝑡𝑎𝑙=?

Formulas

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐻 + 𝑃𝐶𝑂2 + 𝑃𝑀𝑒𝑡𝑎𝑛𝑜 + 𝑃𝐸𝑡𝑖𝑙𝑒𝑛𝑜

Page 105: Termología y Ondas Magneticas 1

𝑃𝐻 𝑉𝐻 =𝑚𝐻 𝑅 𝑇𝐻𝑀𝐻

𝑃𝐶𝑂2 𝑉𝐶𝑂2 =𝑚𝐶𝑂2 𝑅 𝑇𝐶𝑂2

𝑀𝐶𝑂2

𝑃𝑀𝑒𝑡𝑎𝑛𝑜 𝑉𝑀𝑒𝑡𝑎𝑛𝑜 =𝑚𝑀𝑒𝑡𝑎𝑛𝑜 𝑅 𝑇𝑀𝑒𝑡𝑎𝑛𝑜

𝑀𝑀𝑒𝑡𝑎𝑛𝑜

𝑃𝐸𝑡𝑖𝑙𝑒𝑛𝑜 𝑉𝐸𝑡𝑖𝑙𝑒𝑛𝑜 =𝑚𝐸𝑡𝑖𝑙𝑒𝑛𝑜 𝑅 𝑇𝐸𝑡𝑖𝑙𝑒𝑛𝑜

𝑀𝐸𝑡𝑖𝑙𝑒𝑛𝑜

𝑚𝑇𝑜𝑡𝑎𝑙 = 𝑚𝐻 +𝑚𝐶𝑂2 +𝑚𝑀𝑒𝑡𝑎𝑛𝑜 +𝑚𝐸𝑡𝑖𝑙𝑒𝑛𝑜

Desarrollo

𝑃𝑇𝑜𝑡𝑎𝑙 = 200 𝑚𝑚𝐻𝑔 + 150 𝑚𝑚𝐻𝑔 + 320 𝑚𝑚𝐻𝑔 + 105 𝑚𝑚𝐻𝑔

𝑃𝑇𝑜𝑡𝑎𝑙 = 775 𝑚𝑚𝐻𝑔

𝑚𝐻 =𝑀𝐻 𝑃𝐻 𝑉

𝑅 𝑇

𝑚𝐶𝑂2 =𝑀𝐶𝑂2 𝑃𝐶𝑂2 𝑉

𝑅 𝑇

𝑚𝑀𝑒𝑡𝑎𝑛𝑜 =𝑀𝑀𝑒𝑡𝑎𝑛𝑜 𝑃𝑀𝑒𝑡𝑎𝑛𝑜 𝑉

𝑅 𝑇

𝑚𝐸𝑡𝑖𝑙𝑒𝑛𝑜 =𝑀𝐸𝑡𝑖𝑙𝑒𝑛𝑜 𝑃𝐸𝑡𝑖𝑙𝑒𝑛𝑜𝑉

𝑅 𝑇

𝑚𝑇𝑜𝑡𝑎𝑙 = [𝑀𝐻 𝑃𝐻 +𝑀𝐶𝑂2 𝑃𝐶𝑂2 +𝑀𝑀𝑒𝑡𝑎𝑛𝑜 𝑃𝑀𝑒𝑡𝑎𝑛𝑜 +𝑀𝐸𝑡𝑖𝑙𝑒𝑛𝑜 𝑃𝐸𝑡𝑖𝑙𝑒𝑛𝑜]𝑉

𝑅 𝑇

𝑚𝐻

𝑚𝑇𝑜𝑡𝑎𝑙=

𝑀𝐻 𝑃𝐻 𝑉𝑅 𝑇

[𝑀𝐻 𝑃𝐻 +𝑀𝐶𝑂2 𝑃𝐶𝑂2 +𝑀𝑀𝑒𝑡𝑎𝑛𝑜 𝑃𝑀𝑒𝑡𝑎𝑛𝑜 +𝑀𝐸𝑡𝑖𝑙𝑒𝑛𝑜 𝑃𝐸𝑡𝑖𝑙𝑒𝑛𝑜]𝑉𝑅 𝑇

𝑚𝐻

𝑚𝑇𝑜𝑡𝑎𝑙=

(2 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ ) (200 𝑚𝑚𝐻𝑔)

[(2

𝑘𝑔𝑘𝑚𝑜𝑙⁄ )(200 𝑚𝑚𝐻𝑔) + (44

𝑘𝑔𝑘𝑚𝑜𝑙⁄ )(150 𝑚𝑚𝐻𝑔)

+ (16 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ ) (320 𝑚𝑚𝐻𝑔) + (30

𝑘𝑔𝑘𝑚𝑜𝑙⁄ ) (105 𝑚𝑚𝐻𝑔)

]

= 0.026

Page 106: Termología y Ondas Magneticas 1

II. Teoría Cinética

Parte de la Física que considera que la materia está compuesta por partículas o moléculas en

movimiento continuo.

En un gas el movimiento continuo de las moléculas se encuentran en movimientos al azar con

velocidades desde cero hasta valores muy grandes.

El número de Avogadro: Es el número de partículas, moléculas o átomos en un kilomol de

sustancia, tiene un valor de 𝑁𝐴 = 6.022 × 1026 𝑝𝑎𝑟𝑡í𝑐𝑢𝑙𝑎𝑠

𝑘𝑚𝑜𝑙⁄

La masa de una molécula o átomo se puede calcular por la fórmula:

𝑚 =𝑀

𝑁𝐴

Donde m es la masa de la partícula, M la masa molecular o atómica de la sustancia y NA es el

número de Avogadro.

La energía cinética promedio de una molécula es:

3

2 𝐾 𝑇

Donde 𝐾 = 1.381 × 10−23 𝐽°𝑘⁄ , es la constante de Boltzmann y T es la temperatura absoluta del

gas.

La raíz cuadrada media de la rapidez.

Para una molécula de gas, para un tiempo muy grande es la raíz cuadrada de el cociente del doble

de la energía cinética promedio entre la masa de una molécula o átomo.

La temperatura absoluta para un gas ideal es válido que:

𝑇 = (2

3 𝐾)(1

2 𝑚 𝑉𝑟𝑚𝑠

2)

La presión para un gas con N moléculas en un volumen V se tiene:

𝑃 =1

3 𝑁 𝑚

𝑉 𝑉𝑟𝑚𝑠

2

Pero se sabe que:

𝐷 =𝑁 𝑚

𝑉

Por lo que:

Page 107: Termología y Ondas Magneticas 1

𝑃 =1

3 𝐷 𝑉𝑟𝑚𝑠

2

El camino libre medio.

Para una molécula de gas es la distancia promedio en que la molécula puede moverse sin chocar

contra otra molécula.

𝐶. 𝑙.𝑚 =4 𝜋 √2 𝑏2 (𝑁 𝑉⁄ )

Con:

b: es el radio de una molécula considerándola como una esfera.

Consideraciones principales de la Teoría cinética.

1. Los gases están formados por moléculas de igual tamaño y masa para un mismo gas y

serán diferentes para distintos gases.

2. Las moléculas de un gas se encuentran en movimiento constante y en un recipiente estas

chocan entre si y contra las paredes del recipiente.

3. Las fuerzas entre moléculas son muy pequeñas por las dimensiones de las moléculas.

4. El volumen que ocupan las moléculas de un gas es muy pequeña en comparación con el

volumen que ocupa todo el gas.

Page 108: Termología y Ondas Magneticas 1

1. Calcular la masa de una molécula de nitrógeno, su masa molecular es de 28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

Datos

𝑀 = 28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑁𝐴 = 6.022 × 1026 𝑘𝑚𝑜𝑙−1

Incógnita

𝑚 =?

Formula

𝑚 =𝑀

𝑁𝐴

Desarrollo

𝑚 =28

𝑘𝑔𝑘𝑚𝑜𝑙⁄

6.022 × 1026 𝑘𝑚𝑜𝑙−1

𝑚 = 4.7 × 10−26𝑘𝑔

2. El gas helio consta de átomos separados de He, en lugar de moléculas. ¿Cuántos átomos

hay en 2g de He?

Datos

𝑚 = 2𝑔 = 2 × 10−3𝑘𝑔

𝑀 = 4𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑁𝐴 = 6.022 × 1026 𝑘𝑚𝑜𝑙−1

Formula

𝑁 =𝑚 𝑁𝐴

𝑀

Desarrollo

𝑁 =2 × 10−3𝑘𝑔 (6.022 × 1026 𝑘𝑚𝑜𝑙−1)

4 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑁 = 3 × 1023

Page 109: Termología y Ondas Magneticas 1

3. Una gotita de mercurio tiene un radio de 0.5mm. ¿Cuántos átomos de mercurio hay en la

gotita? Para el Hg, 𝑀 = 202 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ y 𝜌 = 13600

𝑘𝑔𝑚3⁄

Datos

𝑟 = 0.5 𝑚𝑚 = 5 × 10−4 𝑚

𝑀 = 202 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝜌 = 13600 𝑘𝑔

𝑚3⁄

𝑁𝐴 = 6.022 × 1026 𝑘𝑚𝑜𝑙−1

Incógnita

𝑁 =?

Formula

𝑁 =𝑚 𝑁𝐴

𝑀

𝐷 =𝑚

𝑉

𝑉 =4

3 𝜋 𝑟3

Desarrollo

𝑚 = 𝐷 𝑉

𝑁 =𝐷 𝑉 𝑁𝐴𝑀

𝑁 =𝐷 43 𝜋 𝑟

3 𝑁𝐴

𝑀

𝑁 =(13600

𝑘𝑔𝑚3⁄ ) (

34 𝜋

) (5 × 10−4 𝑚)3 (6.022 × 1026 𝑘𝑚𝑜𝑙−1)

202 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑁 = 2.1 × 1019

Page 110: Termología y Ondas Magneticas 1

4. ¿Cuántas moléculas hay en 70 ml de benceno? Para el benceno 𝑀 = 78 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ y 𝜌 =

0.88 𝑔𝑐𝑚3⁄

Datos

𝑉 = 70 𝑚𝑙 = 70 × 10−6 𝑚3

𝐷 = 0.88 𝑔𝑐𝑚3⁄ = 8.8 × 102

𝑘𝑔𝑚3⁄

𝑀 = 78 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑁𝐴 = 6.022 × 1026 𝑘𝑚𝑜𝑙−1

Incógnito

𝑁 =?

Formula

𝑁 =𝑚 𝑁𝐴

𝑀

𝐷 =𝑚

𝑉

Desarrollo

𝑚 = 𝐷 𝑉

𝑁 =𝐷 𝑉 𝑁𝐴𝑀

𝑁 =(8.8 × 102

𝑘𝑔𝑚3⁄ ) (70 × 10−6 𝑚3)(6.022 × 1026 𝑘𝑚𝑜𝑙−1)

78 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑁 = 4.6 × 1023

Page 111: Termología y Ondas Magneticas 1

5. Calcular la rapidez 𝑟𝑚𝑠 de una molécula de nitrógeno en el aire a 0°C.

Datos

𝑀 = 28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑇 = 0 ℃ = 0 + 273 = 273 °𝑘

𝐾 = 1.381 × 10−23 𝐽°𝑘⁄

𝑁𝐴 = 6.022 × 1026 𝑘𝑚𝑜𝑙−1

Incógnita

𝑉𝑟𝑚𝑠 =?

Formulas

𝑉𝑟𝑚𝑠 = √3 𝐾 𝑇

𝑚

𝑚 =𝑀

𝑁𝐴

Desarrollo

𝑉𝑟𝑚𝑠 = √3 𝐾 𝑇

𝑀𝑁𝐴

𝑉𝑟𝑚𝑠 = √3 (1.381 × 10−23 𝐽 °𝑘

⁄ ) (273 °𝑘)(6.022 × 1026 𝑘𝑚𝑜𝑙−1)

28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑉𝑟𝑚𝑠 = 490 𝑚 𝑠𝑒𝑔⁄

Page 112: Termología y Ondas Magneticas 1

6. Una molécula de gas de nitrógeno en la superficie de la tierra tiene una rapidez 𝑟𝑚𝑠 igual

a la que posee un gas a 0°C. Si pudiera moverse virtualmente hacia arriba sin chocar con

otras moléculas, ¿Qué tan alto llegaría?

Datos

𝑚 = 4.65 × 10−26 𝑘𝑔

𝐾𝐵 = 1.38 × 10−23 𝐽°𝑘⁄

𝑇 = 0 = 0 + 273 = 273°𝑘

𝑔 = 9.8 𝑚 𝑠𝑒𝑔2⁄

Incógnita

ℎ =?

Formulas

1

2 𝑚 𝑉𝑟𝑚𝑠

2 =3

2 𝐾 𝑇

3

2 𝐾 𝑇 = 𝑚 𝑔 ℎ

Desarrollo

3 𝐾 𝑇

2 𝑚 𝑔= ℎ

ℎ = (3

2)

(1.38 × 10−23

𝑘𝑔 ∙ 𝑚2

𝑠𝑒𝑔2⁄

°𝑘⁄ ) (273°𝑘)

(9.8 𝑚 𝑠𝑒𝑔2⁄ ) (4.65 × 10−26 𝑘𝑔)

ℎ = 12 400 𝑚

Page 113: Termología y Ondas Magneticas 1

7. El aire a temperatura ambiente tiene una densidad aproximada de 1.29 𝑘𝑔

𝑚3⁄ .

Suponiendo que está compuesta de un solo gas, calcular para sus moléculas la 𝑉𝑟𝑚𝑠 a

𝑃 = 100 𝑘𝑃𝑎

Datos

𝑃 = 100 𝑘𝑃𝑎 = 100 × 103 𝑃𝑎 = 100 × 103 𝑁 𝑚2⁄

𝐷 = 1.29 𝑘𝑔

𝑚3⁄

Incógnita

𝑉𝑟𝑚𝑠 =?

Formula

𝑃 =1

3 𝐷 𝑉𝑟𝑚𝑠2

Desarrollo

3 𝑃 = 𝐷 𝑉𝑟𝑚𝑠2

𝑉𝑟𝑚𝑠2 =3 𝑃

𝐷

𝑉𝑟𝑚𝑠 = √3 𝑃

𝐷

𝑉𝑟𝑚𝑠 =

3 (100 × 103

𝑘𝑔 𝑚𝑠𝑒𝑔2⁄

𝑚2⁄ )

1.29 𝑘𝑔

𝑚3⁄

𝑉𝑟𝑚𝑠 = 480 𝑚 𝑠𝑒𝑔⁄

Page 114: Termología y Ondas Magneticas 1

8. Encuentre la energía cinética de una molécula para cualquier gas ideal a 0°C.

Datos

1 𝑚𝑜𝑙 = 𝑁𝐴 × 10−3 𝑚𝑜𝑙é𝑐𝑢𝑙𝑎𝑠

𝑇 = 0° = 0 + 273 = 273 °𝑘

𝑁𝐴 𝐾𝐵 = 𝑅 = 8314 𝐽𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

𝐸𝐶𝑚𝑜𝑙 =?

Formula

𝐸𝐶𝑚𝑜𝑙 = (1𝑚𝑜𝑙) 3

2 𝐾𝐵 𝑇

Desarrollo

𝐸𝐶𝑚𝑜𝑙 = (𝑁𝐴 × 10−3 𝑚𝑜𝑙é𝑐𝑢𝑙𝑎𝑠)

3

2 𝐾𝐵 𝑇

𝐸𝐶𝑚𝑜𝑙 =3

2 10−3 𝑁𝐴 𝐾 𝑇

𝐸𝐶𝑚𝑜𝑙 =3

2 (10−3) 𝑅 𝑇

𝐸𝐶𝑚𝑜𝑙 =3

2 (10−3) (8314

𝐽𝑚𝑜𝑙 ∙ °𝑘⁄ ) (273 °𝑘)

𝐸𝐶𝑚𝑜𝑙 = 3400 𝐽

Page 115: Termología y Ondas Magneticas 1

9. Calcular la rapidez 𝑉𝑟𝑚𝑠 de cada átomo para hidrógeno a 3.5 °k, 𝑀 = 1𝑘𝑔

𝑘𝑚𝑜𝑙⁄

Datos

𝑀 = 1𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑅 = 8314 𝐽𝑚𝑜𝑙 ∙ °𝑘⁄

𝑇 = 3.5 °𝑘

Incógnita

𝑉𝑟𝑚𝑠 =?

Formulas

𝑉𝑟𝑚𝑠 = √3 𝑅 𝑇

𝑀

𝑚 =𝑀

𝑁𝐴

𝐷 =𝑚 𝑀

𝑉

𝑃 =1

3 𝐷 𝑉𝑟𝑚𝑠2

Desarrollo

𝑉𝑟𝑚𝑠 = √3 (8314 𝐽 𝑚𝑜𝑙 ∙ °𝑘⁄ ) (3.5 °𝑘)

1 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

= 295 𝑚 𝑠𝑒𝑔⁄

𝑃 =1

3 𝑚 𝑀

𝑉 𝑉𝑟𝑚𝑠2

𝑃 =1

3 (106 á𝑡𝑜𝑚𝑜𝑠

1 𝑚3) (

1 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

6.022 × 1026 𝑘𝑚𝑜𝑙−1) (295 𝑚 𝑠𝑒𝑔⁄ )

2

𝑃 = 5 × 10−17 𝑁 𝑚2⁄

Page 116: Termología y Ondas Magneticas 1

10. Obtenga los siguientes cocientes para los gases de hidrógeno 𝑀 = 2 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ y nitrógeno

𝑀 = 28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄ a la misma temperatura:

𝐸𝐶𝐻

𝐸𝐶𝑁 𝑉𝑟𝑚𝑠𝐻

𝑉𝑟𝑚𝑠𝑵

Datos

𝑚𝑁 = 4.7 × 10−26 𝑘𝑔

𝑚𝐻 = 2.0 𝑘𝑔

𝑚𝑜𝑙⁄ 𝑁𝐴⁄

𝑇𝐻 = 𝑇𝑁 = 𝑇

𝑀𝐻 = 2 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑀𝑁 = 28 𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑁𝐴 = 6.022 × 1026 𝑘𝑚𝑜𝑙−1

Incógnitas

𝐸𝐶𝐻𝐸𝐶𝑁

=?

𝑉𝑟𝑚𝑠𝐻𝑉𝑟𝑚𝑠𝑵

=?

Formulas

𝐸𝐶 =1

2 𝑉𝑟𝑚𝑠2 =

3

2 𝐾 𝑇

𝑚 =𝑀

𝑁𝐴

Desarrollo

𝐸𝐶𝐻𝐸𝐶𝑁

=

32 𝐾 𝑇

32 𝐾 𝑇

= 1

𝑚 𝑉𝑟𝑚𝑠2 = 2 (3

2) 𝐾 𝑇

𝑉𝑟𝑚𝑠2 = 3 𝑚 𝐾𝐵 𝑇

𝑉𝑟𝑚𝑠 = √3𝑚 𝐾 𝑇

Page 117: Termología y Ondas Magneticas 1

𝑉𝑟𝑚𝑠𝐻𝑉𝑟𝑚𝑠𝑵

=√3 𝑚𝐻 𝐾 𝑇

√3 𝑚𝑁 𝐾 𝑇

𝑉𝑟𝑚𝑠𝐻𝑉𝑟𝑚𝑠𝑵

=√ 𝑚𝐻

√ 𝑚𝑁

𝑉𝑟𝑚𝑠𝐻𝑉𝑟𝑚𝑠𝑵

=√2.0

𝑘𝑔𝑚𝑜𝑙⁄ (6.022 × 1026 𝑘𝑚𝑜𝑙−1)⁄

√4.7 × 10−26 𝑘𝑔

𝑉𝑟𝑚𝑠𝐻𝑉𝑟𝑚𝑠𝑵

= 0.2658

Page 118: Termología y Ondas Magneticas 1

11. Las moléculas de un gas ideal se comportan como esferas de radio 3 × 10−10𝑚. Obtenga el

camino libre medio para las moléculas en un volumen 22.4 𝑚3 y considere 𝑁 = 𝑁𝐴

Datos

𝑟 = 𝑏 = 3 × 10−10𝑚

𝑉 = 22.4 𝑚3

𝑁 = 𝑁𝐴 = 6.022 × 1026 𝑘𝑚𝑜𝑙−1

Incógnita

𝐶𝑎𝑚𝑖𝑛𝑜 𝑙𝑖𝑏𝑟𝑒 𝑚𝑒𝑑𝑖𝑜 =?

Formula

𝐶𝑎𝑚𝑖𝑛𝑜 𝑙𝑖𝑏𝑟𝑒 𝑚𝑒𝑑𝑖𝑜 =𝑉

4𝜋 √2 𝑏2 𝑁

Desarrollo

𝐶𝑎𝑚𝑖𝑛𝑜 𝑙𝑖𝑏𝑟𝑒 𝑚𝑒𝑑𝑖𝑜 =22.4 𝑚3

4𝜋 √2 (3 × 10−10𝑚)2 (6.022 × 1026 𝑘𝑚𝑜𝑙−1)

𝐶𝑎𝑚𝑖𝑛𝑜 𝑙𝑖𝑏𝑟𝑒 𝑚𝑒𝑑𝑖𝑜 = 2.4 × 10−8 𝑚

Page 119: Termología y Ondas Magneticas 1

12. A que presión una molécula esférica de radio 3 × 10−10𝑚 tendrá un camino libre medio de

50cm. Suponga un gas ideal a 20°C

Datos

𝑟 = 𝑏 = 3 × 10−10𝑚

𝐶. 𝑙.𝑚 = 50 𝑐𝑚 = 5 × 10−2𝑚

𝑇 = 20 ℃ = 20 + 273 = 293 °𝑘

𝐾 = 1.38 × 10−23 𝐽°𝑘⁄

Incógnita

𝑃 =?

Formula

𝐶𝑎𝑚𝑖𝑛𝑜 𝑙𝑖𝑏𝑟𝑒 𝑚𝑒𝑑𝑖𝑜 =1

4𝜋 √2 𝑏2 𝑁 𝑉⁄

𝑃 𝑉 = 𝑁 𝐾 𝑇

Desarrollo

𝑃

𝐾 𝑇=𝑁

𝑉

𝐶𝑎𝑚𝑖𝑛𝑜 𝑙𝑖𝑏𝑟𝑒 𝑚𝑒𝑑𝑖𝑜 =1

4𝜋 √2 𝑏2 𝑃𝐾 𝑇

𝐶𝑎𝑚𝑖𝑛𝑜 𝑙𝑖𝑏𝑟𝑒 𝑚𝑒𝑑𝑖𝑜 =𝐾 𝑇

4𝜋 √2 𝑏2 𝑃

𝑃 =𝐾 𝑇

4𝜋 √2 𝑏2 𝐶. 𝑙. 𝑚

𝑃 =(1.38 × 10−23 𝐽 °𝑘⁄ ) (293 °𝑘)

4𝜋 √2 (3 × 10−10𝑚)2 (5 × 10−2𝑚)

𝑃 = 5.1 × 10−3

𝑘 ∙ 𝑚𝑠𝑒𝑔2⁄

𝑚2

𝑃 = 5.1 × 10− 𝑁

𝑚2

Page 120: Termología y Ondas Magneticas 1

III. Primera Ley de la Termodinámica

1. Calcular el trabajo realizado al comprimir un gas que está a una presión de 2.5 atmosferas,

desde un volumen inicial de 800 cm3 hasta un volumen fina de 500 cm3.

Datos

𝑃 = 2.5 𝑎𝑡𝑚

𝑉1 = 800 𝑐𝑚3

𝑉2 = 500 𝑐𝑚3

1 𝑐𝑚3 = 10−6 𝑚3

𝑁 ∙ 𝑚 = 𝐽

1 𝑎𝑡𝑚 = 101300 𝑁 𝑚2⁄

Formula

∆𝑊 = 𝑃 (𝑉2 − 𝑉1)

Desarrollo

∆𝑊 = (2.5) (101300 𝑁 𝑚2⁄ ) (500 × 10−6 𝑚3 − 800 × 10−6 𝑚3)

∆𝑊 = −75.9 𝑁𝑚2⁄ ∙ 𝑚3

∆𝑊 = −75.9 𝐽

Page 121: Termología y Ondas Magneticas 1

2. Calcular la eficiencia de una máquina a la cual se le suministra 5.8 × 108 𝐶𝑎𝑙𝑜𝑟í𝑎𝑠 y realiza

un trabajo de 6.09 × 108 𝐽

Datos

𝑄𝐸𝑛𝑡 = 5.8 × 108 𝐶𝑎𝑙

𝑊𝑆𝑎𝑙 = 6.09 × 108 𝐽

1 𝐶𝑎𝑙 = 4186 𝐽

Incógnita

𝑒 =?

Formula

𝑒 =𝑊𝑆𝑎𝑙

𝑄𝐸𝑛𝑡

Desarrollo

𝑒 =6.09 × 108 𝐽

(5.8 × 108)(4186 𝐽)= 0.25

𝑒 = 25%

3. Cuál es la eficiencia de una máquina térmica a la que se le suministra 3.8 × 104 𝐶𝑎𝑙 de las

cuales se pierden 2.66 × 104 𝐶𝑎𝑙, se pierden por la transferencia de calor.

Datos

𝑄𝐸𝑛𝑡 = 3.8 × 104 𝐶𝑎𝑙

𝑄𝑆𝑎𝑙 = 2.66 × 104 𝐶𝑎𝑙

Incógnita

𝑒 =?

Formula y desarrollo

𝑒 = 1 −𝑄𝑆𝑎𝑙𝑄𝐸𝑛𝑡

𝑒 = 1 −2.66 × 104 𝐶𝑎𝑙

3.8 × 104 𝐶𝑎𝑙= 0.3

𝑒 = 30%

Page 122: Termología y Ondas Magneticas 1

4. Determinar la temperatura de la fuente fría de una máquina térmica cuya eficiencia es de

33% y la temperatura de la fuente caliente es de 560 °C.

Datos

𝑒 = 33% = 0.33

𝑇𝐶𝑎𝑙 = 560 ℃ = 560 + 273 = 833 °𝑘

Incógnita

𝑇𝐹𝑟𝑖𝑜 =?

Formula

𝑒 = 1 −𝑇𝐹𝑟𝑖𝑜𝑇𝐶𝑎𝑙

Desarrollo

𝑇𝐹𝑟𝑖𝑜 = (𝑒 − 1)(−𝑇𝐶𝑎𝑙)

𝑇𝐹𝑟𝑖𝑜 = (0.33 − 1)(−833 °𝑘) = 558.11 °𝑘

5. Si en un depósito de agua se establece una mega caloría por minuto. ¿Cuál es la potencia

de absorción?

Datos

𝑄𝐸𝑛𝑡 = 1 × 106 𝐶𝑎𝑙

𝑡 = 1 𝑚𝑖𝑛 = 60 𝑠𝑒𝑔

𝐶𝑎𝑙 = 4186 𝐽

Incógnita

𝑃𝐸𝑛𝑡 =?

Formula y desarrollo

𝑃𝐸𝑛𝑡 =𝑄𝐸𝑛𝑡𝑡

𝑃𝐸𝑛𝑡 =(1 × 106)(4186 𝐽)

60 𝑠𝑒𝑔

𝑃𝐸𝑛𝑡 = 69.77 × 106 𝐽𝑠𝑒𝑔⁄

Page 123: Termología y Ondas Magneticas 1

6. En un cierto proceso, el cambio en la energía interna se suministran 30 kJ, mientras que el

sistema realiza un trabajo de 6 kJ. ¿Cuánto calor se suministró al sistema?

Datos

∆𝑈 = 30 𝑘𝐽

∆𝑊 = 6 𝑘𝐽

Incógnita

∆𝑄 =?

Formula

∆𝑈 = ∆𝑄 − ∆𝑊

Desarrollo

∆𝑄 = ∆𝑄 + ∆𝑊

∆𝑄 = 30 𝑘𝐽 + 6 𝑘𝐽

∆𝑄 = 36 𝑘𝐽

Page 124: Termología y Ondas Magneticas 1

7. El calor especifico del agua es de 4184 𝐽𝑘𝑔 ∙ °𝑘⁄ , si la energía interna de 100g de agua

cambia en 4 kJ si el agua sufre una dilatación despreciable en el proceso. ¿A qué

temperatura llegara el agua si estaba a 20°C?

Datos

𝐶 = 4184 𝐽𝑘𝑔 ∙ °𝑘⁄

𝑚 = 100 𝑔 = 100 × 10−3 𝑘𝑔

∆𝑈 = 4 𝑘𝐽 = 4000 𝐽

𝑇𝑂 = 20 ℃ = 20 + 273 = 293 °𝑘

∆𝑊 = 0, 𝑛𝑜 𝑠𝑒 𝑟𝑒𝑎𝑙𝑖𝑧𝑎 𝑛𝑖𝑛𝑔ú𝑛 𝑡𝑟𝑎𝑏𝑎𝑗𝑜 𝑝𝑜𝑟 𝑒𝑙 𝑎𝑔𝑢𝑎

Incógnita

𝑇𝐹 =?

Formulas

∆𝑈 = ∆𝑄 − ∆𝑊

∆𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

∆𝑈 = ∆𝑄

∆𝑈

𝑚 𝐶= (𝑇𝐹 − 𝑇𝑂)

𝑇𝐹 =∆𝑈

𝑚 𝐶+ 𝑇𝑂

𝑇𝐹 =4000 𝐽

(100 × 10−3 𝑘𝑔) (4184 𝐽𝑘𝑔 ∙ °𝑘⁄ )

+ 293 °𝑘

𝑇𝐹 = 302 °𝑘 = 302 − 273 = 29 ℃

Page 125: Termología y Ondas Magneticas 1

8. Considerando que en el caso siguiente la presión de 105 𝑘𝑃𝑎, obtenga la variación de la

energía interna para un cubo de plomo de 10 cm de lado si se caliente de 50 °C hasta 330°C.

para el plomo 𝐶 = 130 𝐽𝑘𝑔 ∙ ℃⁄ y su coeficiente de dilatación es de 9 × 10−5℃−1 y la masa

del cubo es de 2 kg.

Datos

𝑃 = 105 𝑘𝑃𝑎 = 105 𝑁𝑚2⁄

ℓ = 10 𝑐𝑚 = 10 × 10−2𝑚

𝑇𝑂 = 50 ℃

𝑇𝐹 = 330 ℃

𝐶 = 130 𝐽𝑘𝑔 ∙ ℃⁄

𝛽 = 9 × 10−5℃−1

𝑚 = 2 𝑘𝑔

Incógnita

∆𝑈 =?

Formulas

∆𝑈 = ∆𝑄 − ∆𝑊

∆𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

∆𝑊 = 𝑃 ∆𝑉

∆𝑉 = 𝛽 𝑉 (𝑇𝐹 − 𝑇𝑂)

𝑉 = ℓ3

Desarrollo

∆𝑊 = 𝑃 𝛽 𝑉 (𝑇𝐹 − 𝑇𝑂)

∆𝑈 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂) − 𝑃 𝛽 ℓ3 (𝑇𝐹 − 𝑇𝑂)

∆𝑈 = (2 𝑘𝑔) (130 𝐽𝑘𝑔 ∙ ℃⁄ ) (330 ℃ − 50℃)

− (105 𝑁 𝑚2⁄ ) (9 × 10−5℃−1)(10 × 10−2𝑚)3(330 ℃ − 50℃)

∆𝑈 = 72797.48 𝐽

Page 126: Termología y Ondas Magneticas 1

9. Obtenga la temperatura de la fuente caliente para una máquina térmica con una eficiencia

máxima de 44.6% si la fuente fría está en una temperatura de 373 °k, exprese su resultado

en grados Celsius.

Datos

𝑒 = 44.6% = 0.446

𝑇𝐹𝑟𝑖𝑎 = 373 °𝑘

Incógnita

𝑇𝐶𝑎𝑙𝑖𝑒𝑛𝑡𝑒 =?

Formula

𝑒 = 1 −𝑇𝐹𝑟𝑖𝑜𝑇𝐶𝑎𝑙

𝑇𝑘 = 𝑇𝑐 + 273

Desarrollo

𝑇𝐶𝑎𝑙 =𝑇𝐹𝑟𝑖𝑜(𝑒 − 1)

𝑇𝐶𝑎𝑙 =373 °𝑘

(0.446 − 1)= 673.29 °𝑘

𝑇𝐶𝑎𝑙 = 400.29 ℃

Page 127: Termología y Ondas Magneticas 1

10. Se extraen 720 J del recipiente frío y el coeficiente re rendimiento es 4.0, obtenga la

cantidad de trabajo que realiza el compresor de un refrigerador.

Datos

𝑄𝑓𝑟𝑖𝑜 = 720 𝐽

𝐾 = 4.0

Incógnita

𝑄𝐶𝑎𝑙 =?

Formulas

𝐾 =𝑄𝐹𝑟𝑖𝑜

𝑄𝑐𝑎𝑙 − 𝑄𝐹𝑟𝑖𝑜

Desarrollo

𝐾 (𝑄𝑐𝑎𝑙 −𝑄𝐹𝑟𝑖𝑜) = 𝑄𝐹𝑟𝑖𝑜

𝑄𝐶𝑎𝑙 = 𝑄𝐹𝑟𝑖𝑜 +𝑄𝐹𝑟𝑖𝑜𝐾

𝑄𝐶𝑎𝑙 = 720 𝐽 +720 𝐽

4

𝑄𝐶𝑎𝑙 = 900 𝐽

Page 128: Termología y Ondas Magneticas 1

11. Obtenga la temperatura del recipiente frío si la temperatura del recipiente caliente es de

400 °k y el coeficiente de rendimiento es de 5.0 para un determinado refrigerador.

Datos

𝑇𝐶𝑎𝑙 = 400 °𝑘

𝐾 = 5

Incógnita

𝑇𝐹𝑟𝑖𝑜 =?

Formula

𝐾 =𝑇𝐹𝑟𝑖𝑜

𝑇𝑐𝑎𝑙 − 𝑇𝐹𝑟𝑖𝑜

Desarrollo

𝐾 (𝑇𝑐𝑎𝑙 − 𝑇𝐹𝑟𝑖𝑜) = 𝑇𝐹𝑟𝑖𝑜

𝐾 𝑇𝑐𝑎𝑙 −𝐾 𝑇𝐹𝑟𝑖𝑜 = 𝑇𝐹𝑟𝑖𝑜

𝐾 𝑇𝐶𝑎𝑙 = 𝐾 𝑇𝐹𝑟𝑖𝑜 + 𝑇𝐹𝑟𝑖𝑜

𝐾 𝑇𝐶𝑎𝑙 = 𝑇𝐹𝑟𝑖𝑜(𝐾 + 1)

𝑇𝐹𝑟𝑖𝑜 =𝐾 𝑇𝐶𝑎𝑙𝐾 + 1

𝑇𝐹𝑟𝑖𝑜 =5 (400 °𝑘)

5 + 1

𝑇𝐹𝑟𝑖𝑜 = 333.33 °𝑘

Page 129: Termología y Ondas Magneticas 1

12. Obtenga la eficiencia de Carnot si la eficiencia real de la máquina térmica es de 11.3% y es

del orden de 30% de la de Carnot.

Datos

𝐸𝑅 = 11.3% = 0.113

𝐾 = 30% = 0.3

Incógnita

𝐸𝐶 =?

Formula

𝐸𝐶 =𝐸𝑅

𝐾

Desarrollo

𝐸𝐶 =0.113

0.3

𝐸𝐶 = 0.38 = 38%

Page 130: Termología y Ondas Magneticas 1

IV. Entropía y Segunda Ley

Formulario

∆𝑄 =𝑃 𝑉

𝑇

∆𝑄 = ∆𝑊

∆𝑊 = 𝑃𝑂 𝑉𝑂 ln (𝑉𝐹𝑉𝑂)

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

𝑅 = 8314 𝐽𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

∆𝑆 =∆𝑄

𝑇

∆𝑄 = 𝑚 𝐿𝐹

∆𝑆 = ∆𝑄 [1

𝑇<−1

𝑇>]

∆𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

∆𝑄 = 𝑛 𝑅 𝑇 ln (𝑉𝐹𝑉𝑂)

𝑅 = 1.99 𝐶𝑎𝑙 𝑚𝑜𝑙 ∙ °𝑘⁄

∆𝑄 = 𝑚 𝐿𝑉

∆𝑈 = ∆𝑄 − ∆𝑊

𝑆 = 𝐾𝐵 ln Ω

𝐾𝐵 = 1.38 × 10−23 𝐽°𝑘⁄

𝑇𝑘 = 𝑇𝐶 + 273

Page 131: Termología y Ondas Magneticas 1

1. Un gas inicialmente está en el estado 𝑃1, 𝑉1 𝑦 𝑇1, este se expande lentamente a

temperatura constante, al permitir que el pistón se eleve, sus condiciones finales son

𝑃2, 𝑉2 𝑦 𝑇2, donde 𝑉2 = 3 𝑉1. Calcular el cambio de entropía del gas durante la expansión,

la masa del gas es de 1.5 g y la masa molecular es de

𝑀 = 28𝑘𝑔

𝑘𝑚𝑜𝑙⁄

Datos

𝑉2 = 3 𝑉1

𝑚 = 1.5 𝑔 = 1.5 × 10−3 𝑘𝑔

𝑀 = 28𝑘𝑔

𝑘𝑚𝑜𝑙⁄

𝑅 = 8314 𝐽𝑘𝑚𝑜𝑙 ∙ °𝑘⁄

Incógnita

∆𝑆 =?

Formula

∆𝑆 =∆𝑄

𝑇

∆𝑄 = ∆𝑊

∆𝑊 = 𝑃𝑂 𝑉𝑂 ln (𝑉𝐹𝑉𝑂)

𝑃 𝑉 =𝑚

𝑀 𝑅 𝑇

Desarrollo

∆𝑆 =𝑃1 𝑉1 ln (

𝑉𝐹𝑉1)

𝑇1

∆𝑆 =𝑃1 𝑉1𝑇1

ln3 𝑉1𝑉1

𝑃 𝑉

𝑇=𝑚

𝑀 𝑅

∆𝑆 =𝑚

𝑀 𝑅 ln 3

∆𝑆 =1.5 × 10−3 𝑘𝑔

28𝑘𝑔

𝑘𝑚𝑜𝑙⁄

(8314 𝐽𝑘𝑚𝑜𝑙 ∙ °𝑘⁄ ) ln 3

∆𝑆 = 0.49 𝐽°𝑘⁄

Page 132: Termología y Ondas Magneticas 1

2. Se funde un kilogramo de hielo a 0°C y se convierte en agua a 0°C. Obtenga su variación de

entropía.

Datos

𝑚 = 1 𝑘𝑔

𝑇 = 0 ℃ = 0 + 273 = 273 °𝑘

𝐿𝐹 = 334 × 103 𝐽𝑘𝑔⁄

Incógnita

∆𝑆 =?

Formulas

∆𝑆 =∆𝑄

𝑇

∆𝑄 = 𝑚 𝐿𝐹

Desarrollo

∆𝑆 =𝑚 𝐿𝐹𝑇

∆𝑆 =(1 𝑘𝑔) (334 × 103

𝐽𝑘𝑔⁄ )

273 °𝑘

∆𝑆 = 1223 𝐽°𝑘⁄

Page 133: Termología y Ondas Magneticas 1

3. Un kilogramo de agua a 0°C se calienta hasta 100°C. Obtenga su vaporación en entropía.

Datos

𝑚 = 1 𝑘𝑔 = 1000 𝑔

𝑇𝑂 = 𝑇< = 0 ℃ = 0 + 273 = 273 °𝑘

𝑇𝐹 = 𝑇> = 100 ℃ = 100 + 273 = 373 °𝑘

𝐶 = 4.19 𝐽𝑔𝑟 ∙ °𝑘⁄

Incógnita

∆𝑆 =?

Formulas

∆𝑆 = ∆𝑄 [1

𝑇<−1

𝑇>]

∆𝑄 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂)

Desarrollo

∆𝑆 = 𝑚 𝐶 (𝑇𝐹 − 𝑇𝑂) [1

𝑇<−1

𝑇>]

∆𝑆 = (1000 𝑔) (4.19 𝐽𝑔𝑟 ∙ °𝑘⁄ ) (373°𝑘 − 273°𝑘) [

1

273°𝑘−

1

373°𝑘]

∆𝑆 = 1308 𝐽°𝑘⁄

Page 134: Termología y Ondas Magneticas 1

4. ¿Cuál es el cambio de entropía de 0.5 moles de helio gaseoso si pasa por un proceso

isotérmico a 77°K y aumenta su volumen al doble?

Datos

𝑛 = 0.5 𝑚𝑜𝑙

𝑅 = 1.99 𝐶𝑎𝑙 𝑚𝑜𝑙 ∙ °𝑘⁄

𝑇 = 77 °𝑘

𝑉𝑂 = 𝑉

𝑉𝐹 = 2 𝑉

Incógnita

∆𝑆 =?

Formulas

∆𝑆 =∆𝑄

𝑇

∆𝑄 = 𝑛 𝑅 𝑇 ln𝑉𝐹𝑉𝑂

Desarrollo

∆𝑆 =𝑛 𝑅 𝑇 ln

𝑉𝐹𝑉𝑂

𝑇

∆𝑆 = 𝑛 𝑅 ln𝑉𝐹𝑉𝑂

∆𝑆 = (0.5 𝑚𝑜𝑙)(1.99 𝐶𝑎𝑙 𝑚𝑜𝑙 ∙ °𝑘⁄ ) ln 2

∆𝑆 = 0.69 𝐶𝑎𝑙 °𝑘⁄

Page 135: Termología y Ondas Magneticas 1

5. Calcúlese el cambio de entropía que se obtiene en el punto de ebullición de 5 gramos de

agua (a 100 °C) si el agua se convierte en vapor a la misma temperatura.

Datos

𝐿𝑉 = 540 𝑐𝑎𝑙 𝑔⁄

𝑚 = 5 𝑔

𝑇 = 100 ℃ = 100 + 273 = 373 °𝑘

Incógnita

∆𝑆 =?

Formulas

∆𝑆 =∆𝑄

𝑇

∆𝑄 = 𝑚 𝐿𝑉

Desarrollo

∆𝑆 =𝑚 𝐿𝑉𝑇

∆𝑆 =(5 𝑔)(540 𝑐𝑎𝑙 𝑔⁄ )

373 °𝑘

∆𝑆 = 7.2 𝑐𝑎𝑙 °𝑘⁄

Page 136: Termología y Ondas Magneticas 1

6. Un gas confinado en un pistón realiza un trabajo de 730 J mientras que la temperatura

permanece a 20 °C. Calcular el cambio de la entropía del gas si la variación en la energía

interna es cero.

Datos

∆𝑊 = 730 𝐽

𝑇 = 20 ℃ = 20 + 273 = 293 °𝑘

∆𝑈 = 0

Incógnita

∆𝑆 =?

Formulas

∆𝑆 =∆𝑄

𝑇

∆𝑈 = ∆𝑄 − ∆𝑊

Desarrollo

∆𝑈 = 0

∴ ∆𝑄 = ∆𝑊

∆𝑆 =∆𝑊

𝑇

∆𝑆 =730 𝐽

293 °𝑘= 2.49

𝐽°𝑘⁄

Page 137: Termología y Ondas Magneticas 1

7. Un sistema consiste en 3 monedas en las que cada una puede salir águila o sol. Calcular la

entropía del sistema de las 3 monedas si dos monedas tienen que ser águila.

Datos

El conjunto de resultados es:

{𝐴𝐴𝐴, 𝐴𝐴𝑆, 𝐴𝑆𝑆, 𝑆𝐴𝐴, 𝐴𝑆𝑆, 𝑆𝐴𝑆, 𝑆𝑆𝐴, 𝑆𝑆𝑆}

Ω = 3

𝐾𝐵 = 1.38 × 10−23 𝐽°𝑘⁄

Incógnita

𝑆 =?

Formula

𝑆 = 𝐾𝐵 ln Ω

Desarrollo

𝑆 = (1.38 × 10−23 𝐽°𝑘⁄ ) ln 3

𝑆 = 1.52 × 10−23 𝐽°𝑘⁄

Page 138: Termología y Ondas Magneticas 1

V. Ondas Mecánicas

1. Ondas

2. Sonido

Page 139: Termología y Ondas Magneticas 1

1. Un submarino emite una señal ultrasónica detectando un obstáculo en el camino a 1453

m, si la velocidad del sonido en el agua es de 1453 𝑚 𝑠𝑒𝑔⁄ , obtenga el tiempo que tarda la

señal en salir del submarino y detectar el obstáculo.

Datos

𝑑 = 1453 𝑚

𝑉 = 1453 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝑡 =?

Formula

𝑉 =𝑑

𝑡

Desarrollo

𝑡 =𝑑

𝑉

𝑡 =1453 𝑚

1453 𝑚 𝑠𝑒𝑔⁄= 1 𝑠𝑒𝑔

Page 140: Termología y Ondas Magneticas 1

2. Una persona en el bordo de un muelle cuenta las ondas del agua que golpean a unos

postes que soportan a la estructura. Si una cresta determinada recorre 20m en 8 seg y

conto 80 ondas en un minuto. ¿Cuál es la longitud de onda?

Datos

𝑑 = 20𝑚

𝑡1 = 8 𝑠𝑒𝑔

# 𝑑𝑒 𝑜𝑛𝑑𝑎𝑠 = 80

𝑡2 = 1 𝑚𝑖𝑛 = 60 𝑠𝑒𝑔

Incógnita

𝜆 =?

Formula

𝑉 = 𝜆 𝑓

𝑓 =# 𝑑𝑒 𝑜𝑛𝑑𝑎𝑠

𝑡2

𝑉 =𝑑

𝑡1

Desarrollo

𝜆 =

𝑑𝑡1

# 𝑑𝑒 𝑜𝑛𝑑𝑎𝑠𝑡2

𝜆 =𝑑 𝑡2

# 𝑑𝑒 𝑜𝑛𝑑𝑎𝑠 𝑡1

𝜆 =(20 𝑚)(8 𝑠𝑒𝑔)

(80)(60 𝑠𝑒𝑔)= 1.88 𝑚

Page 141: Termología y Ondas Magneticas 1

3. La longitud de onda característica de una oscilación estacionaria es de 20 cm y la longitud

de la cuerda que la transmite es de 30 cm. Obtenga de que sobretono se trata.

Datos

𝜆 = 20 𝑐𝑚

ℓ = 30 𝑐𝑚

Incógnita

𝑛 =?

Formula

𝜆𝑛 =2ℓ

𝑛

Desarrollo

𝑛 =2ℓ

𝜆𝑛

𝑛 =2 (30 𝑐𝑚)

20 𝑐𝑚

𝑛 = 3

∴ 𝑒𝑠 𝑒𝑙 𝑠𝑒𝑔𝑢𝑛𝑑𝑜 𝑠𝑜𝑏𝑟𝑒𝑡𝑜𝑛𝑜

Page 142: Termología y Ondas Magneticas 1

4. La potencia de una onda periódica es de W, su frecuencia de oscilación en una cuerda de

300 Hz, la densidad longitudinal es de 1.5 × 10−4 𝑘𝑔

𝑚⁄ , la velocidad con la que viaja es

de 370 𝑚 𝑠𝑒𝑔⁄ . Obtenga la amplitud de la oscilación.

Datos

𝑃 = 𝑊

𝑓 = 300 𝐻𝑧 = 300 1 𝑠𝑒𝑔⁄

𝜇 = 1.5 × 10−4 𝑘𝑔

𝑚⁄

𝑉 = 370 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝐴 =?

Formula

𝑃 = 2𝜋2 𝐴2 𝜇 𝑉

Desarrollo

𝐴2 =𝑃

2𝜋2 𝜇 𝑉

𝐴 = √𝑃

2𝜋2 𝜇 𝑉

𝐴 = √( 𝑘𝑔 ∙ 𝑚2

𝑠𝑒𝑔⁄ )

2𝜋2 (1.5 × 10−4 𝑘𝑔

𝑚⁄ ) (370 𝑚 𝑠𝑒𝑔⁄ )

𝐴 = 0.12 𝑚

Page 143: Termología y Ondas Magneticas 1

5. La energía total transmitida por una onda periódica es de , si la masa de la cuerda de 5

gramos, la amplitud de la circulación es de 2 cm, obtenga la frecuencia con que oscila cada

partícula de la cuerda.

Datos

𝐸 = 𝐽

𝑚 = 5 𝑔 = 5 × 10−3 𝑘𝑔

𝐴 = 2 𝑐𝑚 = 2 × 10−2 𝑚

Incógnita

𝑓 =?

Formula

𝐸 = 2𝜋2 𝑓2 𝐴2 𝑚

Desarrollo

𝐸

2𝜋2 𝐴2 𝑚= 𝑓2

𝑓 = √𝐸

2𝜋2 𝐴2 𝑚

𝑓 = √(

𝑘𝑔 ∙ 𝑚2

𝑠𝑒𝑔2⁄ )

2𝜋2 (2 × 10−2 𝑚)2(5 × 10−3 𝑘𝑔)

𝑓 = 200 𝐻𝑧

Page 144: Termología y Ondas Magneticas 1

6. Hallar la masa de un alambre de 0.3m de longitud si una onda viaja a través de el a una

velocidad de 140 𝑚 𝑠𝑒𝑔⁄ bajo una tensión de 980 × 103𝑁

Datos

ℓ = 0.3 𝑚

𝑉 = 140 𝑚 𝑠𝑒𝑔⁄

𝐹 = 980 × 103𝑁

Incógnita

𝑚 =?

Formulas

𝑉 = √𝐹 ℓ

𝑚

𝑁 =𝑘𝑔 𝑚

𝑠𝑒𝑔2⁄

Desarrollo

𝑉2 =𝐹 ℓ

𝑚

𝑚 =𝐹 ℓ

𝑉2

𝑚 =(980 × 103𝑁)(0.3 𝑚)

(140 𝑚 𝑠𝑒𝑔⁄ )2

𝑚 = 15 𝑘𝑔

Page 145: Termología y Ondas Magneticas 1

7. Si una cuerda tiene una masa por unidad de longitud igual a 0.03 𝑘𝑔

𝑚⁄ y está sometida a

una tensión de 6 × 104𝑁. Calcular la velocidad de propagación de ondas transversales

Datos

𝜇 = 0.03 𝑘𝑔

𝑚⁄

𝐹 = 6 × 104𝑁

Incógnita

𝑉 =?

Formula

𝑉 = √𝐹

𝜇

𝑁 =𝑘𝑔 𝑚

𝑠𝑒𝑔2⁄

Desarrollo

𝑉 = √6 × 104𝑁

0.03 𝑘𝑔

𝑚⁄

𝑉 = 1414.21 𝑚 𝑠𝑒𝑔⁄

Page 146: Termología y Ondas Magneticas 1

8. Una onda viaja por un alambre de 300m de longitud y su masa es de 15kg y la velocidad de

la onda es de 140𝑚 𝑠𝑒𝑔⁄ . Calcular la tensión a la que se encuentra sometido el alambre.

Datos

ℓ = 300𝑚

𝑚 = 15 𝑘𝑔

𝑉 = 140 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝐹 =?

Formulas

𝑉 = √𝐹

𝜇

𝑁 =𝑘𝑔 𝑚

𝑠𝑒𝑔2⁄

Desarrollo

𝑉2 =𝐹 ℓ

𝑚

𝐹 =𝑉2 𝑚

𝐹 =(140 𝑚 𝑠𝑒𝑔⁄ )

2(15 𝑘𝑔)

300 𝑚

𝐹 = 1000 𝑁

Page 147: Termología y Ondas Magneticas 1

9. Obtenga la velocidad con que avanza una onda producida en la superficie libre de un

líquido, si tiene una longitud de onda de 6 × 10−3 𝑚 y su frecuencia es de 66 Hz.

Datos

𝜆 = 6 × 10−3 𝑚

𝑓 = 66 𝐻𝑧

Incógnita

𝑉 =?

Formulas

𝑉 = 𝜆 𝑓

𝐻𝑧 =1

𝑠𝑒𝑔

Desarrollo

𝑉 = (6 × 10−3 𝑚)(66 𝐻𝑧)

𝑉 = 0.4 𝑚 𝑠𝑒𝑔⁄

10. La velocidad con que se propaga una onda longitudinal es de 1200 𝑚 𝑠𝑒𝑔⁄ . Calcular la

frecuencia correspondiente si su longitud de onda es de 10m.

Datos

𝜆 = 10 𝑚

𝑉 = 1200 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝑓 =?

Formulas

𝑉 = 𝜆 𝑓

Desarrollo

𝑓 =1200 𝑚 𝑠𝑒𝑔⁄

10 𝑚

𝑓 = 120 𝐻𝑧

Page 148: Termología y Ondas Magneticas 1

11. Una lancha sube y baja por el paso de las olas cada 3.2 seg. La velocidad con que se

mueven las olas es de 7.6 𝑚 𝑠𝑒𝑔⁄ . ¿Cuál es la distancia entre cresta y cresta?

Datos

𝑡 = 3.2 𝑠𝑒𝑔

𝑉 = 7.6 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝜆 =?

Formula

𝑓 =1

𝑡

𝑉 = 𝜆 𝑓

Desarrollo

𝑉 = 𝜆 1

𝑡 , 𝜆 = 𝑉 𝑡

𝜆 = (7.6 𝑚 𝑠𝑒𝑔⁄ )(3.2 𝑠𝑒𝑔) = 24.5 𝑚

12. Por una cuerda tensa se propagan ondas con una frecuencia de 200 Hz con una longitud

de onda de 0.65 m. ¿Cuál es la velocidad de propagación?

Datos

𝑓 = 200 𝐻𝑧

𝜆 = 0.65 𝑚

Incógnita

𝑉 =?

Formula

𝑉 = 𝜆 𝑓

Desarrollo

𝑉 = (0.65 𝑚)(200 𝐻𝑧)

𝑉 = 130 𝑚 𝑠𝑒𝑔⁄

Page 149: Termología y Ondas Magneticas 1

13. Calcular el periodo de las ondas producidas en una cuerda de guitarra si su velocidad de

propagación es de 140 𝑚 𝑠𝑒𝑔⁄ y su longitud de onda es de 0.35 m.

Datos

𝑉 = 140 𝑚 𝑠𝑒𝑔⁄

𝜆 = 0.35 𝑚

Incógnita

𝑡 =?

Formula

𝑉 = 𝜆 𝑓

𝑓 =1

𝑠𝑒𝑔

Desarrollo

𝑉 = 𝜆 1

𝑡

𝑡 =𝜆

𝑉

𝑡 =0.35 𝑚

140 𝑚 𝑠𝑒𝑔⁄

𝑡 = 2.5 × 10−3 𝑠𝑒𝑔

Page 150: Termología y Ondas Magneticas 1

14. Una cuerda de acero para piano de 50 cm de longitud tiene una masa de 5 gramos, la

frecuencia de su segundo sobretono es de 600 HZ, hallar la tensión a la que se halla

sometida.

Datos

𝑙 = 50 𝑐𝑚 = 50 × 10−2 𝑚

𝑚 = 5 𝑔 = 5 × 10−3 𝑘𝑔

𝑓3 = 600 𝐻𝑧

Incógnita

𝐹 =?

Formulas

𝑓3 =3

2 𝑙 √𝐹 𝑙

𝑚

𝐻𝑧 =1

𝑠𝑒𝑔

𝑁 =𝑘𝑔 𝑚

𝑠𝑒𝑔2⁄

Desarrollo

𝑓32 =

9

4 𝑙2 (𝐹 𝑙

𝑚)

𝐹 =4 𝑓3

2 𝑙2 𝑚

9 𝑙

𝐹 =4 (600 𝐻𝑧)2 (50 × 10−2 𝑚)(5 × 10−3 𝑘𝑔)

9

𝐹 = 4 𝑁

Page 151: Termología y Ondas Magneticas 1

SONIDO

1. Calcular la velocidad del sonido en el agua si el módulo de compresibilidad del agua es de

2.1 × 109 𝑁 𝑚2⁄ y la densidad del agua es de 1000 𝑘𝑔

𝑚3⁄ .

Datos

𝐵 = 2.1 × 109 𝑁 𝑚2⁄

𝐷 = 1000 𝑘𝑔

𝑚3⁄

Incógnita

𝑉 =?

Formula

𝑉 = √𝐵

𝐷

Desarrollo

𝑉 = √2.1 × 109 𝑁 𝑚2⁄

1000 𝑘𝑔

𝑚3⁄

𝑉 = 1450 𝑚 𝑠𝑒𝑔⁄

Page 152: Termología y Ondas Magneticas 1

2. A cuantas revoluciones por segundo gira un disco de sirena de 15 agujeros si emite un

sonido con una frecuencia de 300 Hz.

Datos

# 𝑎𝑔𝑢𝑗𝑒𝑟𝑜𝑠 = 15

𝑓 = 300 𝐻𝑧

Incógnita

𝑅. 𝑃. 𝑆. =?

Formula

𝑓 = (# 𝑎𝑔𝑢𝑗𝑒𝑟𝑜𝑠)(𝑅. 𝑃. 𝑆. )

Desarrollo

𝑅. 𝑃. 𝑆 =𝑓

# 𝑎𝑔𝑢𝑗𝑒𝑟𝑜𝑠

𝑅. 𝑃. 𝑆. =300 1 𝑠𝑒𝑔⁄

15

𝑅. 𝑃. 𝑆 = 20 1 𝑠𝑒𝑔⁄

3. Un diapasón que vibra a 300 Hz se coloca en un tanque con agua, la velocidad del sonido

en el agua es de 1500 𝑚 𝑠𝑒𝑔⁄ . Calcular la longitud de onda sonora en el agua.

Datos

𝑓 = 300 𝐻𝑧

𝑉 = 1500 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝜆 =?

Formula

𝑉 = 𝜆 𝑓

Desarrollo

𝜆 =1500 𝑚 𝑠𝑒𝑔⁄

300 1 𝑠𝑒𝑔⁄= 5 𝑚

Page 153: Termología y Ondas Magneticas 1

4. Hallar la velocidad de una ambulancia si su sirena suena con una frecuencia de 830 Hz y la

frecuencia con la que la escucha un observador es de 880 Hz. Considere la velocidad del

sonido igual a 340 𝑚 𝑠𝑒𝑔⁄ y que la ambulancia se acerca al observador.

Datos

𝑓𝐹 = 830 𝐻𝑧

𝑓𝑂 = 880 𝐻𝑧

𝑉 = 340 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝑉𝐹 =?

Formula

𝑓𝑂 =𝑓𝐹 𝑉

𝑉 − 𝑉𝐹

Desarrollo

𝑓𝑂(𝑉 − 𝑉𝐹) = 𝑓𝐹 𝑉

(𝑉 − 𝑉𝐹) =𝑓𝐹 𝑉

𝑓𝑂

−𝑉𝐹 =𝑓𝐹 𝑉

𝑓𝑂− 𝑉

𝑉𝐹 = −(𝑓𝐹 𝑉

𝑓𝑂− 𝑉)

𝑉𝐹 = −[(830 𝐻𝑧)(340 𝑚 𝑠𝑒𝑔⁄ )

880 𝐻𝑧− 340 𝑚 𝑠𝑒𝑔⁄ ]

𝑉𝐹 = 19.32 𝑚 𝑠𝑒𝑔⁄

Page 154: Termología y Ondas Magneticas 1

5. Hallar la velocidad a la que se aproxima un automóvil hacia la sirena de una fábrica que

tiene una frecuencia de 500 Hz, suponiendo que la velocidad del sonido en el aire es de

340 𝑚 𝑠𝑒𝑔⁄ y la frecuencia aparente escuchada por el conductor es de 544 Hz.

Datos

𝑓𝐹 = 500 𝐻𝑧

𝑓𝑂 = 544 𝐻𝑧

𝑉 = 340 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝑉𝑂 =?

Formula

𝑓𝑂 =𝑓𝐹 (𝑉 + 𝑉𝑂)

𝑉

Desarrollo

𝑓𝑂 𝑉 = 𝑓𝐹 (𝑉 + 𝑉𝑂)

𝑓𝑂 𝑉

𝑓𝐹= (𝑉 + 𝑉𝑂)

𝑓𝑂 𝑉

𝑓𝐹− 𝑉 = 𝑉𝑂

𝑉𝑂 =(544 𝐻𝑧)(340 𝑚 𝑠𝑒𝑔⁄ )

500 𝐻𝑧− 340 𝑚 𝑠𝑒𝑔⁄

𝑉𝑂 = 30 𝑚 𝑠𝑒𝑔⁄

Page 155: Termología y Ondas Magneticas 1

6. Si la relación entre las intensidades de dos sonidos es de 6.3, obtenga los decibeles que es

más intenso uno que el otro.

Datos

𝐼1𝐼2= 6.3

Incógnita

𝐷𝐵 =?

Formula

𝐷𝐵 = 10 log𝐼1𝐼2

Desarrollo

𝐷𝐵 = 10 log 6.3 = 8 𝑑𝑏

7. La intensidad sonora que transmite una onda sonora es de 10−8 𝑤𝑚2⁄ si se registra en un

área normal a la dirección de propagación de 4m2, obtenga la potencia de la onda.

Datos

𝐼 = 10−8 𝑤𝑚2⁄

𝐴 = 4𝑚2

Incógnita

𝑃 =?

Formula

𝐼 =𝑃

𝐴

Desarrollo

𝑃 = 𝐼 𝐴

𝑃 = (10−8 𝑤 𝑚2⁄ ) (4𝑚2)

𝑃 = 4 × 10−8 𝑤

Page 156: Termología y Ondas Magneticas 1

8. Hallar la relación entre las intensidades de dos sonidos, sabiendo que uno de ellos es 17db

más intenso que el otro.

Datos

𝐷𝐵 = 17 𝑑𝑏

Incógnita

𝐼1𝐼2=?

Formula

𝐷𝐵 = 10 log𝐼1𝐼2

Desarrollo

𝐷𝐵

10= log

𝐼1𝐼2

10𝐷𝐵10 =

𝐼1𝐼2

𝐼1𝐼2= 10

1710

𝐼1𝐼2= 101.7

𝐼1𝐼2= 50.12

Page 157: Termología y Ondas Magneticas 1

9. La intensidad de una onda sonora en el aire a 0° y 1atm, es de 5.4 × 10−6 𝑤𝑚2⁄ , si su

amplitud es de 0.001 cm y la densidad del aire en tales condiciones es de

0.001293 𝑔𝑐𝑚3⁄ . Hallar la frecuencia correspondiente a tal onda, suponga que la

velocidad del sonido es de 331 𝑚 𝑠𝑒𝑔⁄ .

Datos

𝐼 = 5.4 × 10−6 𝑤 𝑚2⁄

𝐴 = 0.001 𝑐𝑚 = 0.001 × 10−2𝑚

𝐷 = 0.001293 𝑔𝑐𝑚3⁄

𝑉 = 331 𝑚 𝑠𝑒𝑔⁄

Incógnita

𝑓 =?

Formula

𝐼 = 2𝜋2 𝑓2 𝐴2 𝑉 𝐷

Desarrollo

𝐼

2𝜋2 𝐴2 𝑉 𝐷= 𝑓2

𝑓 = √𝐼

2𝜋2 𝐴2 𝑉 𝐷

𝑓 = √5.4 × 10−6 𝑤 𝑚2⁄

2𝜋2 (0.001 × 10−2𝑚)2(331 𝑚 𝑠𝑒𝑔⁄ ) (0.001293 𝑔𝑐𝑚3⁄ )

𝑓 = 800 1 𝑠𝑒𝑔⁄

𝑓 = 800 𝐻𝑧