308
UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL VILLA MARÍA 1

Tesis Grua Torre Hugo Cattoni

Embed Size (px)

Citation preview

Page 1: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

1

Page 2: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

2

Villa María 05 de Junio de 2013

En la mesa de examen del día de la fecha, el alumno Hugo Cattoni Donadio presentó el

trabajo de grado correspondiente a la carrera de Ingeniería Mecánica. El Tribunal

Examinador estuvo compuesto por el Profesor Titular de la cátedra Proyecto Final,

Ingeniero Américo Di Cola, el Profesor Jefe de Trabajos Prácticos Ingeniero Marcelo

Costamagna y por el Jefe del Departamento de Ingeniería Mecánica Ingeniero Huber

Fernández.

El Tribunal examinador, determinó que el alumno aprobó el examen con la siguiente

calificación…………………………………………………………………………….......

------------------------ -------------------------- ----------------------- Ing. Américo Di Cola Ing. Marcelo Costamanga Ing. Huber Fernández Profesor Titular Profesor Jefe de T.P. Jefe de Depto de Mecánica

Page 3: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL

VILLA MARÍA

PROYECTO FINAL

“GRÚA TORRE”

Cátedra : Proyecto Final

Docentes : Ingeniero Costamagna Marcelo Ingeniero Di Cola Américo

Alumno : Cattoni Donadio Hugo

Fecha : 05-06-2013

Page 4: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

4

Page 5: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

5

Mi agradecimiento a la U.T.N. (Universidad Tecnológica Nacional), Facultad

Regional Villa María y, en especial, al Departamento de Ingeniería Mecánica por

haberme formado académica y profesionalmente

También mi reconocimiento a mi familia y a mis compañeros de estudio quienes

me acompañaron y me ayudaron en este recorrido universitario.

Por último, quiero expresar mi gratitud al Ing. Civil Germán Sarboraria por su

colaboración desinteresada.

Page 6: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

6

ÍNDICE INTRODUCCIÓN 16

ABSTRACT 18

ORÍGENES DE LA GRÚA TORRE 20

CAPÍTULO 1: DESCRIPCIÓN DE UNA GRÚA TORRE

1.1. CLASIFICACIÓN DE LAS GRÚAS TORRES 21

1.2. COMPONENTES DE LAS GRÚAS TORRES 23

1.2.1 PLUMA 24

1.2.2. CARRO DE PLUMA 24

1.2.3. CONTRAPLUMA 24

1.2.4. CONTRAPESO AÉREO 25

1.2.5. CONJUNTO CORONA-PLATAFORMA GIRATORIA 25

1.2.6. CORONA DE GIRO 26

1.2.7. TORRE 26

1.2.8. BASE 26

1.2.9. LASTRE 26

1.2.10. ÓRGANO DE APREHENSIÓN 27

1.2.11. CABEZA DE TORRE 27

1.2.12. CABLES DE TRABAJO 28

1.2.13 MOTORES 28

1.3. CARACTERÍSTICAS ELEMENTALES DE UNA GRÚA TORRE 29

1.4. DIAGRAMA DE CARGAS Y ALCANCES 31

1.5. MOVIMIENTOS DE UNA GRÚA TORRE 33

1.6. INSTALACIÓN DE UNA GRÚA TORRE 34

1.6.1. BASE 34

1.6.2. TORRE 35

1.6.3. CONTRAPLUMA 36

1.6.4. PRIMER CONTRAPESO 37

1.6.5. PLUMA 38

1.6.5.1. MONTAJE DE LA PLUMA EN EL SUELO 38

Page 7: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

7

1.6.5.2. COLOCACIÓN DE LA PLUMA 38

1.6.6. RESTO DEL CONTRAPESO 39

1.7. RIESGOS Y MEDIDAS PREVENTIVAS EN LA GRÚA TORRE 40

1.7.1. RIESGOS DIRECTOS 40

1.7.2. RIESGOS INDIRECTOS 42

1.8. DISPOSITIVOS DE SEGURIDAD (LIMITADORES) 42

1.9. SEGURIDAD EN EL EMPLEO DE LOS ELEMENTOS DE

TENSIÓN ELÉCTRICA 43

1.10. ELECCIÓN DEL GRUISTA 44

1.11. PROHIBICIONES DEL GRUISTA 45

1.12. ESTROBADORES (SEÑALISTAS) 48

CAPÍTULO 2: CARACTERÍSTICAS GENERALES DEL PROYECTO

2.1. GENERALIDADES 49

2.2. DIAGRAMA DE CARGAS Y ALCANCES 52

CAPÍTULO 3: ESTRUCTURA DE LA GRÚA TORRE

3.1. GENERALIDADES 53

3.1.1. DETERMINACIÓN DE SOLICITACIONES 54

3.2. CLASIFICACIÓN DEL APARATO EN FUNCIÓN DEL SERVI CIO 54

3.2.1. NÚMERO DE CICLOS DE MANIOBRA 54

3.2.2. ESTADO DE CARGA 55

3.3. CLASIFICACIÓN DEL APARATO COMPLETO 56

3.3.1. COEFICIENTE DE MAYORACIÓN 57

3.4. TIPOS DE SOLICITACIONES A TENER EN CUENTA 58

3.4.1. SOLICITACIONES PRINCIPALES 58

3.4.2. SOLICITACIONES POR MOVIMIENTOS VERTICALES 59

3.4.3. SOLICITACIONES POR MOVIMIENTOS HORIZONTALES 60

3.4.3.1. EFECTOS HORIZONTALES POR MOVIMIENTOS DE

DIRECCIÓN 60

3.4.3.2. EFECTOS HORIZONTALES POR MOV. DE ORIENTACI ÓN 61

Page 8: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

8

3.4.3.3. EFECTOS DE LA FUERZA CENTRÍFUGA 61

3.4.3.4. EFECTOS TRANSVERSALES DEBIDOS A LA RODADURA 61

3.4.3.5. EFECTOS DE CHOQUES DE TOPES 62

3.4.4. SOLICITACIONES DEBIDAS A EFECTOS CLIMÁTICOS 62

3.4.4.1. ACCIÓN DEL VIENTO 62

3.4.4.2. SOBRECARGA DE NIEVE 68

3.4.4.3. VARIACIONES DE TEMPERATURA 68

3.5. DETERMINACIÓN DE COMBINACIONES DE SOLICITACION ES 69

3.5.1. CASO I: APARATO EN SERVICIO SIN VIENTO 69

3.5.2. CASO II: APARATO EN SERVICIO CON VIENTO 69

3.5.3. CASO III: APARATO FUERA DE SERVICIO CON VIEN TO EN

TEMPESTAD 69

3.5.4. CASO IV: APARATO FUERA DE SERVICIO SIN VIENT O 69

3.6. DISEÑO Y CÁLCULO DE LOS ELEM. ESTRUCTURALES DE

GRÚA 70

3.6.1. MATERIAL ESTRUCTURAL 70

3.6.2. TENSIÓN ADMISIBLE EN LA RESISTENCIA A LA FLU ENCIA 71

3.7. SOLICITACIONES PRINCIPALES 72

3.7.1. PESO PROPIO DE LOS ELEMENTOS QUE COMPONEN LAS

ESTRUCTURAS DE LA GRÚA 73

3.7.1.1. PLUMA 73

3.7.1.2. CONTRAPLUMA 74

3.7.1.3. CABEZA DE TORRE 74

3.7.1.4. TORRE 75

3.7.1.5. BASE 76

3.7.1.6. CONTRAPESO AÉREO 76

3.7.1.7. PESOS VARIOS 76

3.7.2. PESO DE LA CARGA ÚTIL Y DE LOS ELEM. ACCESORIOS 76

3.7.3. SOLICITACIONES DEBIDAS A MOVIMIENTOS VERTICA LES 77

3.7.4. SOLICITACIONES POR MOVIMIENTOS HORIZONTALES 77

Page 9: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

9

3.7.4.1. EFECTOS HORIZONTALES DEBIDOS A MOV. ORIENT ACIÓN

Y RECUPERACIÓN DE FLECHA PLANO YZ 77

3.7.4.2. EFECTOS DE LA FUERZA CENTRÍFUGA PLANO YZ 77

3.8. CÁLCULO DE LOS ELEMENTOS DE LA TORRE 77

3.8.1. CORDONES 77

3.8.1.1. CASO I: APARATO EN SERVICIO SIN VIENTO 78

3.8.1.2. CASO II: APARATO EN SERVICIO CON VIENTO 89

3.8.1.2.1. PLUMA PERPENDICULAR A LA DIRECCIÓN DEL

VIENTO 89

3.8.1.2.2. PLUMA ORIENTADA EN LA DIRECCIÓN DEL VIEN TO 103

3.8.1.3. CASO III: APARATO FUERA DE SERVICIO CON VI ENTO

EN TEMPESTAD 108

3.8.1.4. CASO IV: APARATO FUERA DE SERVICIO SIN VIE NTO 113

3.8.1.5. RESUMEN GENERAL DE LOS CASOS I,II,III Y IV 117

3.8.2. PANDEO GLOBAL DE LA TORRE POR TORSIÓN 118

3.8.3. TEORÍA DE LA ENERGÍA DE DISTORSIÓN MÁXIMA 120

3.8.4. DIAGONALES 121

3.8.5. MONTANTES 124

3.8.6 CÁLCULO DE LOS PERNOS DE LA TORRE 125

3.8.7. VERIFICACIÓN DE LA SECCIÓN DEL CORDÓN

(En la base) 125

3.8.8. VERIFICACIÓN DE LA SECCIÓN DEL CORDÓN

(A 8 metros de la base) 126

3.9. CÁLCULO DE LOS ELEMENTOS DE LA PLUMA 127

3.9.1. GENERALIDADES 127

3.9.2. PESO PROPIO 127

3.9.3. CASO I: CARGA MÁXIMA DE SERVICIO EN PUNTA PL UMA 128

3.9.3.1. CORDONES 132

3.9.3.1.1. CORDÓN SUPERIOR 133

3.9.3.1.2. CORDONES INFERIORES (RESISTENCIA) 133

3.9.3.1.3. CORDONES INFERIORES (PANDEO GLOBAL) 136

Page 10: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

10

3.9.3.1.4. CORDONES INFERIORES (PANDEO LOCAL) 138

3.9.3.2. DIAGONALES LATERALES 139

3.9.3.3. DIAGONALES INFERIORES 140

3.9.4. CASO II: CARGA MÁXIMA DE SERVICIO EN ANCLAJE 3 141

3.9.4.1. CORDONES 143

3.9.4.1.1. CORDÓN SUPERIOR (RESISTENCIA) 144

3.9.4.1.2. CORDONES INFERIORES (RESISTENCIA) 145

3.9.4.1.3. CORDÓN SUPERIOR (PANDEO GLOBAL) 148

3.9.4.1.4. CORDONES INFERIORES (PANDEO GLOBAL) 148

3.9.4.1.5. CORDÓN SUPERIOR (PANDEO LOCAL) 149

3.9.4.1.6. CORDONES INFERIORES (PANDEO LOCAL) 149

3.9.4.2. DIAGONALES LATERALES 150

3.9.4.3. DIAGONALES INFERIORES 151

3.9.5. CASO III: CARGA MÁXIMA DE SERVICIO A 10 M 152

3.9.5.1. CORDONES 154

3.9.5.1.1. CORDÓN SUPERIOR (RESISTENCIA) 155

3.9.5.1.2. CORDONES INFERIORES (RESISTENCIA) 156

3.9.5.1.3. CORDÓN SUPERIOR (PANDEO GLOBAL) 158

3.9.5.1.4. CORDÓN SUPERIOR (PANDEO LOCAL) 158

3.9.5.2. DIAGONALES LATERALES 159

3.9.5.3. DIAGONALES INFERIORES 160

3.9.6. CASO IV: CARGA MÁXIMA DE SERVICIO A 10M 161

3.9.6.1. CORDONES 161

3.9.6.1.1. CORDÓN SUPERIOR (RESISTENCIA) 162

3.9.6.1.2. CORDONES INFERIORES 162

3.9.6.1.3. CORDÓN SUPERIOR (PANDEO GLOBAL) 165

3.9.6.1.4. CORDONES INFERIORES (PANDEO GLOBAL) 165

3.9.6.1.5. CORDÓN SUPERIOR (PANDEO LOCAL) 166

3.9.6.1.6. CORDONES INFERIORES (PANDEO LOCAL) 166

3.9.6.2. DIAGONALES LATERALES 167

3.9.6.3. DIAGONALES INFERIORES 167

Page 11: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

11

3.10. CÁLCULO DE LOS ELEMENTOS DE LA CONTRAPLUMA 168

3.10.1. ÚNICO CASO 168

3.10.1.1. CORDONES 170

3.10.1.2. DIAGONALES 174

3.10.1.3. CÁLCULO DE LOS PERNOS DE UNIÓN DE LOS TRAMOS

DE LA PLUMA 175

3.10.1.3.1. CASO I: CARGA MÁXIMA DE SERVICIO EN PUNTA

DE PLUMA 175

3.10.1.3.2. CASO II: CARGA MÁXIMA DE SERVICIO A 10 M 176

3.11. CÁLCULO DE LOS ELEMENTOS DE LA CABEZA DE

LA TORRE 178

3.11.1. CORDONES 178

3.11.1. 1. TEORÍA DE LA DISTORSIÓN MÁXIMA (VON MIS EN) 182

3.11.2. DIAGONALES 183

3.12. CÁLCULO DE LOS ELEMENTOS DE LA BASE 186

3.12.1. VIGA A-B 187

3.12.2. VIGA C-D 188

3.13. CÁLCULO DEL CONTRAPESO DE LA BASE 190

3.13.1. FUNDACIÓN DE HORMIGÓN 191

3.13.2. BLOQUES DE HORMIGÓN (LASTRES) 192

3.14. CÁLCULO DEL PIE DE LA BASE 193

3.15. CÁLCULO DE LAS BARRAS ROSCADAS PARA FIJAR

AL PIE DE BASE 194

3.16. CÁLCULO DEL CONTRAPESO AÉREO 195

CAPÍTULO 4: SELECCIÓN DEL RODAMIENTO DE GIRO

4.1. GENERALIDADES 197

4.1.1. FACTOR DE CAPACIDAD DE CARGA ESTÁTICA 198

4.1.2. FACTOR DE VIDA ÚTIL DEL RODAMIENTO 198

4.2. CÁLCULO DE LA SELECCIÓN DEL RODAMIENTO 198

4.2.1. CAPACIDAD DE CARGA ESTÁTICA 199

Page 12: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

12

4.2.2. VIDA ÚTIL DEL RODAMIENTO 200

4.2.3. SELECCIÓN DEL RODAMIENTO 202

4.3. TORNILLOS DE FIJACIÓN 204

4.3.1. DETERMINACIÓN DE LA FUERZA DE TENSADO 205

4.3.2. PAR DE APRIETE T 207

4.3.3. ALARGAMIENTO LONGITUDINAL 207

4.4. CÁLCULO DEL PARA ROZAMIENTO DE ARRANQUE MR 20 8

CAPÍTULO 5: MECANISMOS DE LA GRÚA TORRE

5.1. GENERALIDADES 210

5.2. MECANISMOS DE ORIENTACIÓN 211

5.2.1. CÁLCULO DEL MOTOR –REDUCTOR DE ORIENTACIÓN 2 12

5.2.1.1. SELECCIÓN DEL REDUCTOR EPICÍCLICO O PLANET ARIO 212

5.2.1.2. RELACIÓN DE VELOCIDAD DE REDUCCIÓN 213

5.2.1.3. PAR RESISTENTE Y PAR REQUERIDO SALIDA

DEL REDUCTOR 214

5.2.1.4. PAR DE CÁLCULO DEL REDUCTOR 215

5.2.1.5. FACTOR DE DURACIÓN 217

5.2.1.6. DIMENSIONES GENERALES DEL REDUCTOR

EPICICLOIDAL 219

5.2.1.7. SELECCIÓN DEL MOTOR ELÉCTRICO 220

5.2.1.8. POTENCIA DE GIRO A RÉGIMEN PERMANENTE

REQUERIDO A LA ENTRADA DEL REDUCTOR 223

5.2.1.9. POTENCIA DE ARRANQUE 226

5.2.1.10. COMPROBACIÓN DEL PAR DE ARRANQUE 227

5.2.1.11. DIMENSIONES GENERALES DEL MOTOR TRIFÁSICO 228

5.2.1.12. SELECCIÓN DEL ACOPLAMIENTO FLEXIBLE 229

5.3. MECANISMOS DE ELEVACIÓN 231

5.3.1. CÁLCULO DEL MOTOR-REDUCTOR DE ELEVACIÓN 232

5.3.1.1. SELECCIÓN DEL REDUCTOR COAXIAL HELICOIDAL 232

5.3.1.2. RELACIÓN DE LA VELOCIDAD DE REDUCCIÓN 23 3

Page 13: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

13

5.3.1.3. PAR REQUERIDO A LA SALIDA DEL REDUCTOR 233

5.3.1.4. PAR DE CÁLCULO DEL REDUCTOR 234

5.3.1.5. DIMENSIONES GENERALES REDUCTOR COAXIAL

HELICOIDAL 236

5.3.1.6. SELECCIÓN DEL MOTOR ELÉCTRICO 237

5.3.1.7. POTENCIA REQUERIDA A LA ENTRADA DEL REDUCT OR 238

5.3.1.8. COMPROBACIÓN DEL PAR DE ARRANQUE 240

5.3.1.9. DIMENSIONES GENERALES DEL MOTOR TRIFÁSICO 241

5.3.1.10. CÁLCULO DEL TAMBOR DE ARROLLAMIENTO 242

5.3.1.11. SELECCIÓN DEL ACOPLAMIENTO FLEXIBLE 247

5.4. MECANISMO DE DISTRIBUCIÓN 248

5.4.1. CÁLCULO DEL MOTOR-REDUCTOR DE DISTRIBUCIÓN 249

5.4.1.1. SELECCIÓN DEL REDUCTOR EPICÍCLICO O PLANET ARIO 249

5.4.1.2. RELACIÓN DE VELOCIDAD DE REDUCCIÓN 249

5.4.1.3. PAR REQUERIDO A LA SALIDA DEL REDUCTOR 250

5.4.1.4. PAR DE CÁLCULO REDUCTOR 250

5.4.1.5. FACTOR DE DURACIÓN 250

5.4.1.6. DIMENSIONES GENERALES DEL REDUCTOR

EPICICLOIDAL 252

5.4.1.7. SELECCIÓN DEL MOTOR ELÉCTRICO 253

5.4.1.8. POTENCIA REQUERIDA A LA ENTRADA DEL REDUCT OR 254

5.4.1.9. COMPROBACIÓN DEL PAR DE ARRANQUE 256

CAPÍTULO 6: TIRANTES Y CABLES

6.1. TIRANTES 257

6.1.1. CÁLCULO Y SELECCIÓN DE LOS TIRANTES DE LA P LUMA

Y CONTRAPLUMA 257

6.1.1.1. RESISTENCIA A LA ROTURA EN CABLES 257

6.1.1.2. FACTOR DE SEGURIDAD Y RESISTENCIA ADMISIBL E 257

6.1.2. TIRANTE DE PLUMA T3 259

6.1.3. TIRANTE DE PLUMA T2 261

Page 14: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

14

6.1.4. TIRANTES DE CONTRAPLUMA T5 262

6.1.5. TIRANTES DE CONTRAPLUMA T6 263

6.2. CABLES 264

6.2.1. GENERALIDADES 264

6.2.2. ESTRUCTURA TRANSVERSAL DE LOS CORDONES 265

6.2.3. ESTRUCTURA TRANSVERSAL DE LOS CABLES 265

6.2.4. SISTEMA DE TRENZADOS DE LOS ALAMBRES Y CORDONES 266

6.2.5. CABLES PREFORMADOS 267

6.2.6. NOTACIÓN DE CABLES 267

6.2.7. DIMENSIONADO Y SELECCIÓN DEL CABLE DE ELEVAC IÓN 268

6.2.7.1. CÁLCULO DEL DIÁMETRO DEL CABLE 268

6.2.7.2. CÁLCULO DE LAS FATIGAS DEL CABLE 270

6.2.7.3. DURACIÓN DEL CABLE 270

6.2.8. DIMENSIONADO Y SELECCIÓN DEL CABLE DE

DISTRIBUCIÓN 271

6.2.8.1. CÁLCULO DEL DIÁMETRO DEL CABLE 271

6.2.8.2. CÁLCULO DE LAS FATIGAS DEL CABLE 273

6.2.8.3. DURACIÓN DEL CABLE 273

CAPÍTULO 7: POLEAS

7.1. GENERALIDADES 274

7.1.1. SELECCIÓN DE POLEAS DE ACERO 277

7.2. POLEAS DEL MECANISMO DE ELEVACIÓN 278

7.3. POLEAS DEL MECANISMO DE DISTRIBUCIÓN 280

CAPÍTULO 8: APAREJO Y GANCHO

8.1. APAREJO 282

8.1.1. GENERALIDADES 282

8.1.2. SELECCIÓN DEL TAMAÑO DEL APAREJO 283

8.2. GANCHO 285

8.2.1. GENERALIDADES 285

Page 15: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

15

8.2.2. DIMENSIONES DE GANCHOS SEGÚN NORMATIVA 286

8.2.3. SELECCIÓN DEL TAMAÑO DEL GANCHO DE CARGA 28 7

CAPÍTULO 9: VERIFICACIÓN POR SOFTWARE SAP2000

9.1. GENERALIDADES 290

9.2. SOLICITACIONES PRINCIPALES 291

9.3. COMBINACIÓN DE LAS SOLICITACIONES PRINCIPALES 301

9.4. ANÁLISIS DE LA COMB 17 Y COMB 18 (CASO II PLUM A

PERPENDICULAR A LA DIRECCIÓN DEL VIENTO) 302

9.5. ANÁLISIS DE LA COMB 21 (CASO III VIENTO EN TEM PESTAD) 303

9.6. ANÁLISIS DE TODAS LAS COMBINACIONES 304

CONCLUSIONES 305

BIBLIOGRAFÍA 307

CATÁLOGO 307

PÁGINAS DE INTERNET 307

ÍNDICE DE PLANOS 309

PLANOS 313

´

Page 16: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

16

INTRODUCCIÓN

El presente proyecto expone los resultados de una investigación realizada con el

3objeto de diseñar y calcular una grúa torre para ser utilizada, especialmente, en la

construcción de edificaciones a grandes alturas y adaptada al contexto urbano de nuestra

región.

El proyecto se sustenta desde distintas disciplinas que aportan el marco teórico y

conceptual necesario para su diseño y cálculo. A partir de la Física se comprenden los

conceptos mecánicos de funcionamiento de las máquinas simples que componen una

grúa; la Estabilidad y la Resistencia de Materiales aportan la base principal para el

cálculo de la estructura y cómo se comporta en diferentes estados de carga; la

Informática se constituye en el recurso para el diseño y para la comprobación de los

cálculos.

La grúa es una herramienta básica que se sigue utilizando en el transporte vertical de

cargas. Si bien hay diferentes tipos de grúas, la que se elige para este proyecto es la grúa

torre que tiene como función elevar los materiales de construcción en las obras de

edificación.

Esta grúa torre está diseñada considerando la demanda actual de la construcción de esta

región, cuyas edificaciones pueden variar en alturas desde los 36 a 45 m

aproximadamente.

Se define y se calcula en base a dos grandes grupo: el primero, representa la estructura

destinada a soportar los esfuerzos generados por acciones externas y el segundo, lo

constituyen los mecanismos encargados de darle el dinamismo a la máquina. Para ello,

se describen los subgrupos principales de su estructura que son: la base que es un

conjunto estructural sobre el que se instala la torre, así como el lastre para la estabilidad

de la grúa; la torre que es una estructura vertical apoyada en la base cuya función

fundamental es de servir de soporte para otras estructuras; la pluma que es una celosía

de sección triangular que sirve como camino de rodadura del carro de pluma; la

contrapluma destinada a compensar el peso de la pluma y de las cargas suspendidas en

la misma; el último subgrupo es la cabeza de torre, de forma troncopiramidal, ubicada

en la parte más alta de la grúa mediante la cual se fijan los tirantes de la pluma y

contrapluma para reducir sus flechas.

Page 17: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

17

Por otro lado, se seleccionan los mecanismos que constituyen un conjunto de

dispositivos dinámicos y los accesorios que completan el funcionamiento de la presente

grúa.

Finalmente, el objetivo fundamental de este proyecto era el de resolver un conjunto de

obstáculos técnicos a fin de viabilizar esta propuesta de diseño y cálculo de una grúa

torre.

Page 18: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

18

ABSTRACT

This project sets forth the findings of an investigation carried out for the purpose of

designing and calculating a tower crane for use, in particular, in the construction of

high-rise buildings and suited to our region’s urban landscape.

The project is supported by various disciplines which provide the theoretical and

conceptual framework required for the design and calculation of the crane. Physics

helps understand the mechanical operating principles of the simple machines which

make up a crane; Stability and Strength of Materials constitute the main basis for the

calculation of the structure and the way it behaves under different load conditions;

Information Technology is the resource used for the design and for confirmation of the

calculations.

The crane is a basic tool which continues to be used for the vertical transport of loads.

Even though there are different types of crane, the one chosen for this project is the

tower crane, whose function is to hoist construction materials on building sites.

This particular tower crane has been designed taking into account the current building

demand in our region, in which the height of constructions varies from 36 to 45 m.

approximately.

It has been defined and calculated on the basis of two main groups: the first group is

represented by the structure whose function is to bear the stress generated by external

actions, and the second one consists of the mechanisms which operate the crane. To that

effect, the main subgroups of the structure are described, namely: the base, a structural

complex on which the tower as well as the ballast which gives stability to the crane are

installed; the tower (mast), a vertical structure mounted on the base and whose main

function is to support the other structures; the jib, a triangle truss which serves as

runway for the jib trolley; the counter-jib the purpose of which is to compensate for the

weight of the jib and loads suspended from it; and the final sub-group is the pyramid-

shaped cat head placed at the top of the crane to which the jib and counter-jib ties are

fixed to reduce deflection. On the other hand, the author has selected the mechanisms,

which consist of a series of dynamic devices, as well as the accessories which complete

the operation of this crane.

Page 19: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

19

Finally, the main aim of this project was to solve a series of technical obstacles in order

to make the proposed design and calculation of a tower crane viable.

Page 20: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

20

ORÍGENES DE LA GRÚA TORRE

Los primeros medios para transportar y elevar cargas, que requerían un gran número de

personas, fueron las palancas, rodillos y planos inclinados.

Los primeros elevadores de palanca fueron utilizados en China e India en el siglo XXII

a.C. para elevar agua.

La aparición de la polea representó un hito fundacional en la historia de la grúa datada

en el siglo VII a.C. y se cree que fue en Grecia para el uso de la navegación,

construcción de templos o mecanismos de elevación en el teatro.

Asimismo, en la misma época hizo su aparición el tambor de arrollamiento o torno.

Aproximadamente en el siglo V a.C. se realizaron las primeras instalaciones de

elevación.

La introducción del torno y la polea pronto conduce a un reemplazo extenso de rampas

como los medios principales del movimiento vertical y esto está documentado en la

obra MECÁNICA de Aristóteles.

En el siglo III a.C. Arquímedes utilizó las combinaciones de varias poleas y sistemas

complejos de triple polea cuyo uso se extendió rápidamente.

El cabrestante fue utilizado en el siglo II a.C. por Marco Vitruvio quien fue un

conocedor de las técnicas antiguas de elevación de cargas pesadas y explicó cómo es

posible elevarlas sin la realización de esfuerzo directo manual debido al conocimiento

de engranajes y tornillos sin fin.

Hero en el siglo I d.C. escribió en el segundo tomo de su libro MECÁNICA diversas

técnicas de elevación de pesadas cargas mostrando visibles mejoras con respecto a las

enseñanzas de Marco Vitruvio. Introdujo elementos pasadores que mantenían una

determinada carga sin necesidad de mantener tensión de tracción en las sogas.

Después de Hero, se abre un paréntesis en la historia de la grúa, en el que se aplican los

principios ya conocidos pero no se realizan aportaciones importantes. No obstante se

habían trazado las líneas maestras de la elevación, faltaba sólo su desarrollo y

perfeccionamiento.

Page 21: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

21

CAPÍTULO 1: DESCRIPCIÓN DE UNA GRÚA TORRE

En este capítulo se describe una grúa torre, identificando cada uno de los elementos que

la componen.

1.1. CLASIFICACIÓN DE LAS GRÚAS TORRE

Las grúas torre se pueden clasificar en función de diversos parámetros:

• Según su movilidad:

Fijas.

a) Apoyadas

- Sobre losa de hormigón, zapata corrida, muretes.

- Sobre carriles.

b) Empotradas en una zapata de hormigón.

Móviles.

a) Sobre carriles por medio de rodamientos.

b) Trepadoras: apoyándose en la estructura de la obra, crecen con ella.

Figura 1.1. Clasificación de grúas según movilidad

Page 22: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

22

• Según su pluma:

- De pluma horizontal: grúa torre y grúa torre autodesplegable.

- De pluma abatible: grúa torre de pluma abatible.

Figura 1.2. Representación de grúas

• Según su forma de montaje:

- Automontantes o autodesplegables: se despliegan por sí mismas sin

ayuda de elementos auxiliares (por ejemplo, la autogrúa).

- Desplegables: montaje mecánico y/o hidráulico por medio de reenvíos.

- Montaje con autogrúa: el equipo de montadores se ayuda de una grúa

autopropulsada para el montaje de la grúa torre.

Page 23: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

23

1.2. COMPONENTES DE UNA GRÚA TORRE

Una grúa torre, en esencia, está compuesta por los mismos componentes, lógicamente

cada fabricante construirá su modelo de grúa con alguna variante para intentar

diferenciarla de las demás.

Figura 1.3. Componentes de una grúa torre

Los componentes básicos de una grúa torre son:

Page 24: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

24

1.2.1. PLUMA La pluma es un reticulado de sección triangular constituida por perfiles metálicos o

estructura tubular, según el modelo de grúa que se trate.

La base de esta estructura triangular sirve de camino de rodadura para el carro de pluma.

En la parte superior se encuentra el anclaje del punto de articulación del tirante de

pluma, que se sujeta, por el otro extremo, en la punta de torre.

La pluma está constituida por un conjunto de tramos unidos mediante bulones. Estos

tramos se pueden clasificar en tres tipos:

Pie de pluma: es el primer tramo, está unido a la plataforma giratoria y lleva alojado el

mecanismo del carro distribuidor de la carga.

Tramos intermedios: son los que van a determinar la longitud de la pluma en función

del número que instalemos.

Punta de pluma: este es el tramo más alejado de la torre. En él puede estar colocado el

punto giratorio de amarre del cable de elevación.

1.2.2. CARRO DE PLUMA Está constituido por un bastidor en forma de carrito con ruedas que se desplaza a lo

largo de la pluma por medio de la acción tractora de un cable. Este carro incorpora las

poleas por las que circula el cable de elevación del que pende el gancho o cualquier otro

órgano de aprehensión que se quiera poner.

1.2.3. CONTRAPLUMA La contrapluma es una estructura reticulada de forma plana o triangular que está

destinada a soportar el contrapeso aéreo; es, por tanto, el elemento encargado de

compensar el peso de la pluma, más el de las cargas suspendidas en la misma,

reduciendo así los esfuerzos del mecanismo de giro.

Está unida a la plataforma giratoria mediante bulones y, a la vez, sujeta por tirantes a la

punta de torre. En su extremo más alejado está sujeto el contrapeso, cuya forma y

cantidad varían según el modelo de grúa.

Page 25: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

25

1.2.4. CONTRAPESO AÉREO El contrapeso es la masa que se coloca en la contrapluma de una grúa torre para

equilibrar las acciones de la carga y/o esfuerzos de la grúa durante su funcionamiento.

El contrapeso puede estar formado por:

Bloques de hormigón armado, cuyas formas y dimensiones vienen definidas por el

fabricante. Estos bloques tienen que tener grabada de forma indeleble la indicación de

su peso.

Un cajón metálico, en el que se echarán materiales a granel, tales como grava, arena,

etc. Este cajón tiene que ser estanco para evitar la entrada de agua de lluvia o las

posibles pérdidas de material. Asimismo, queda terminantemente prohibida la

utilización de líquidos o arena con un contenido de humedad superior al 10%.

Los contrapesos tienen que cumplir con una serie de condiciones:

No pueden existir holguras entre ellos, ya que si chocan entre sí se pueden fragmentar y

desprenderse material; en consecuencia, los bloques han de estar bien fijados e

inmovilizados.

El sistema de fijación debe ser revisado periódicamente, ya que la caída total o parcial

del contrapeso o de sus elementos constituyentes pondría en peligro el equilibrio de la

grúa, además del riesgo propio de la caída de un elemento desde una altura

considerable.

1.2.5. CONJUNTO CORONA-PLATAFORMA GIRATORIA El conjunto formado por la corona y la plataforma giratoria es una de las partes más

delicadas de la grúa ya que, además de hacer posible el giro de la pluma, contrapluma y

punta de torre, ha de ser capaz de soportar su peso.

Para ello, este conjunto funciona como un gran rodamiento en el que la parte que está

fija (unida a la torre) es la corona de orientación y la parte móvil es la plataforma

giratoria.

Page 26: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

26

1.2.6. CORONA DE GIRO La corona se fija mediante una serie de tornillos, en los que se consigue el mismo par de

apriete para todos ellos mediante la utilización de una llave dinamométrica. Las grúas

ya salen con este apriete realizado por el fabricante y, aunque no es frecuente que se

aflojen los tornillos, sí pueden romperse, por lo que es conveniente una revisión

periódica.

1.2.7. TORRE La torre es una estructura vertical apoyada en la base cuyo cometido fundamental es

servir de soporte para otras estructuras acopladas a su parte superior. Dicha estructura

puede ser la plataforma giratoria.

La torre está constituida generalmente por una serie de tramos reticulados de sección

cuadrada, redonda o en forma de perfiles normalizados.

La característica de estos tramos, así como el número de ellos a colocar, dependerán

tanto del fabricante como de la altura de montaje que se quiera lograr con ella.

En la gran mayoría de las grúas torre se colocan unos tirantes que conectan el primer

tramo de torre con la base, a fin de aumentar la estabilidad de la torre.

1.2.8. BASE La base es el conjunto estructural sobre el que se instala la torre, así como el lastre

necesario para la estabilidad de la grúa torre.

La base adopta diferentes configuraciones en función de los distintos tipos de grúa torre:

apoyada, móvil, etc. En las grúas empotradas la base es una fundación de hormigón

armado.

1.2.9. LASTRE El lastre es la masa situada sobre la base de la grúa torre para asegurar la estabilidad de

la grúa tanto en servicio como fuera de servicio. La cantidad de bloques de lastre

dependerá fundamentalmente de la altura de la torre.

Page 27: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

27

El lastre puede estar construido por bloques de hormigón armado o por unos cajones

metálicos en los que se introducen áridos, principalmente grava, hasta conseguir el peso

necesario. Tanto los bloques de hormigón como los cajones metálicos se dispondrán

uniformemente sobre la base, de esta manera se reparten simétricamente los pesos sobre

ella.

La normativa sobre grúas obliga a que figure marcado o grabado en forma indeleble en

cada uno de los bloques de lastre su peso, a fin de verificar, en cada montaje o

desmontaje, la correcta instalación del lastre correspondiente.

Para una determinada altura de la torre, una vez colocado el lastre adecuado, se dice que

la grúa es autoestable, es decir, que se mantiene en equilibrio por sí misma, sin

necesidad de arriostramiento.

1.2.10. ÓRGANO DE APREHENSIÓN El órgano de aprehensión es el dispositivo que sirve para suspender, soportar la carga.

Puede adoptar muchas formas, tales como una cuchara, un electroimán, un gancho, etc.

Lo más habitual, y haciendo referencia a las grúas torre para la construcción, es que esté

constituido por una mufla portapoleas o polipasto por el cual se discurre el cable de

elevación y del cual pende el gancho de sujeción de las cargas, que es articulado y

giratorio. Asimismo el gancho debe llevar un pestillo de seguridad para evitar que se

salgan las eslingas, cadenas, etc.

1.2.11. CABEZA DE TORRE

Es la parte más alta de la grúa y está constituida por una estructura reticulada en forma

troncopiramidal, que en su parte superior y por medio de articulaciones (bulones), lleva

fijados los tirantes de pluma y contrapluma.

La punta de torre va fijada sobre la plataforma giratoria y en ella lleva colocadas las

plataformas de acceso al mecanismo de giro y a la cabina (en caso de tenerla).

En este elemento va también situado uno de los limitadores más importantes de la grúa,

el limitador de par.

Page 28: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

28

1.2.12. CABLES DE TRABAJO En la grúa torre existen dos cables de trabajo: por un lado está el cable de elevación,

que arrollándose en un tambor eleva y desciende la carga; y, por otro lado, está el cable

de distribución, que mueve el carro de pluma a lo largo de la misma.

Los tirantes articulados que sujetan la pluma y contrapluma a punta de torre y que

transmiten los esfuerzos de las cargas y los contrapesos a la torre y, por consiguiente, a

la base, no reciben el nombre de cables de trabajo, puesto que son elementos intrínsecos

de la grúa. Pueden ser rígidos (pletinas de acero) o flexibles (cables de acero), pero su

unión en los extremos siempre será articulada.

1.2.13. MOTORES

La grúa más genérica cuenta con cuatro motores eléctricos:

Motor de elevación: permite el movimiento vertical de la carga.

Motor de distribución: da el movimiento del carro a lo largo de la pluma.

Motor de orientación: permite el giro de 360º, en el plano horizontal, de la estructura

superior de la grúa.

Motor de translación: desplazamiento de la grúa, en su conjunto, sobre carriles. Para

realizar este movimiento es necesario que la grúa este en reposo.

Page 29: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

29

1.3. CARACTERÍSTICAS ELEMENTALES DE UNA GRÚA TORRE

Figura 1.4. Características elementales

En una grúa torre existen una serie de parámetros fundamentales que la definen. Por

ejemplo:

Alcance: el alcance de pluma es la distancia horizontal existente entre el eje de

orientación de la parte giratoria (es decir, la perpendicular que pasa por el centro de la

base) y el eje vertical que pasa por el órgano de aprehensión en su máximo

desplazamiento.

Esta medida del alcance de pluma no tiene que confundirse con la longitud de pluma,

que es la distancia entre el eje de orientación y el extremo final de la pluma. Conocer

este dato es útil a la hora de respetar las distancias de seguridad.

Altura bajo gancho: es la distancia vertical existente entre la base de la grúa y el

gancho cuando este se encuentre en la posición más elevada de trabajo. Algunos

fabricantes indican otra altura, denominada bajo pluma, que indica la distancia existente

entre la base de la grúa y la parte baja de la pluma.

Altura autoestable: es la máxima altura bajo gancho a la que se puede instalar una grúa

para que se mantenga estable (equilibrada) tanto en servicio como fuera de servicio. Es

Page 30: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

30

decir, la máxima altura que puede alcanzar la grúa sin necesidad de anclajes o

arriostramientos.

Carga en máxima: es el valor máximo que es posible elevar en un tramo del

desplazamiento del carro comprendido entre el punto más próximo a la torre y un punto

situado a una distancia que varía con cada modelo de grúa.

Carga en punta: es la carga máxima que se puede elevar cuando estamos trabajando a

una distancia correspondiente al alcance máximo. Lógicamente, es un valor más

pequeño que la carga máxima, ya que produce mayores esfuerzos sobre la grúa al actuar

a mayor distancia de la torre.

Diagramas de cargas y alcances: es un gráfico en el que vienen reflejadas las cargas

que admite la grúa en cada posición del gancho. Estos valores no pueden superar los de

estabilidad de la grúa.

Carga con doble reenvío: en algunas situaciones, se dispone de un carro de pluma más

complejo de lo habitual, el cual envía cuatro cables hacia el polipasto y gancho, lo que

permite doblar la carga máxima a elevar. No obstante, la carga en punta disminuye en

relación con el simple reenvío, ya que hay más peso del polipasto y cables, por lo que

hay que reducir la carga a elevar para compensar este exceso de peso.

Además, la velocidad de elevación se reduce a la mitad.

Potencia eléctrica de acometida: es la potencia mínima que se necesita contratar para

el correcto funcionamiento de la grúa. Este dato, facilitado por el fabricante, viene

claramente reflejado tanto en el proyecto de instalación como en la ficha técnica de la

grúa.

Otras características: en la pluma se colocarán placas que indiquen las distancias al

eje de giro de la grúa. Dichas distancias deberán ir colocadas cada diez metros y serán

legibles desde el puesto de conducción.

Además, se fijará sobre la grúa, en un lugar visible, una placa en la que figurarán, en

caracteres indelebles y legibles desde el suelo, los datos correspondientes a alcances,

cargas en punta y cargas máximas correspondientes a los distintos montajes.

Page 31: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

1.4. DIAGRAMA DE CARGAS Y ALCANCES

Figura 1.5. Diagrama cargas y alcances

El diagrama de cargas se define como una correlación de cargas y alcances para cada

longitud de pluma y cada dispositivo de aprehensión expresada gráficamente.

El diagrama de cargas está constituido por un sistema de ejes coordenados, en el eje

horizontal se representan las distintas distancias (alcances) de la pluma medidas en

metros; y en el eje vertical, las cargas a elevar medidas en newton.

Dentro de esos ejes aparecerá una figur

MANUAL PARA LA FORMACIÓN DE OPERADORES DE GRÚA TORRE de M. A.

MENÉNDEZ GONZÁLEZ.

Figura 1.6.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

31

DIAGRAMA DE CARGAS Y ALCANCES

Figura 1.5. Diagrama cargas y alcances

El diagrama de cargas se define como una correlación de cargas y alcances para cada

de pluma y cada dispositivo de aprehensión expresada gráficamente.

está constituido por un sistema de ejes coordenados, en el eje

horizontal se representan las distintas distancias (alcances) de la pluma medidas en

metros; y en el eje vertical, las cargas a elevar medidas en newton.

Dentro de esos ejes aparecerá una figura similar a la siguiente extraída del libro

MANUAL PARA LA FORMACIÓN DE OPERADORES DE GRÚA TORRE de M. A.

Figura 1.6. Diagrama cargas y alcances

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

El diagrama de cargas se define como una correlación de cargas y alcances para cada

de pluma y cada dispositivo de aprehensión expresada gráficamente.

está constituido por un sistema de ejes coordenados, en el eje

horizontal se representan las distintas distancias (alcances) de la pluma medidas en

a similar a la siguiente extraída del libro

MANUAL PARA LA FORMACIÓN DE OPERADORES DE GRÚA TORRE de M. A.

Page 32: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

32

El área encerrada dentro de esa figura representa todas las combinaciones posibles de

carga a elevar y la distancia a la que poder llevar esa carga. Todos los puntos fuera del

diagrama serían valores prohibidos ya que representarían un peligro para la estabilidad

y/o resistencia de la grúa y sus elementos.

Para saber la carga que podemos elevar con la grúa a una determinada distancia

seguimos los siguientes pasos:

1- Localizar en el diagrama la distancia dada.

2- Levantar una perpendicular al eje de distancias hasta cortar el diagrama de

cargas.

3- Trazar una paralela al eje de distancias hasta llegar al eje de las cargas y ver los

newtons que indica el diagrama.

Figura 1.7. Diagrama cargas y alcances

En caso contrario (saber cuál es la distancia a la que podemos llevar una carga)

operamos en el diagrama en forma inversa.

También es común encontrarse con diagramas superpuestos.

Los diagramas que tienen la misma carga máxima y acaban en distintos alcances, eso

nos dice que están superpuestas dos configuraciones de pluma.

Figura 1.8. Diagrama cargas y alcances

Page 33: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

33

Los diagramas que tienen el mismo alcance pero máximas cargas diferentes, es que se

trata de la misma configuración de la grúa pero para los casos de simple y doble

reenvío.

Figura 1.9. Diagrama cargas y alcances

1.5. MOVIMIENTOS DE UNA GRÚA TORRE

Figura 1.10. Movimientos de una grúa torre

Para conseguir este objetivo, las grúas torre tienen la posibilidad de realizar cuatro

movimientos, cuyos nombres son los siguientes:

Elevación, que corresponde al movimiento de izado y descenso de las cargas.

Page 34: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Distribución, que es el movimiento que

Orientación o giro, que es el movimiento realizado alrededor del eje vertical de la grúa,

el cual pasa por el centro de la base de esta.

Traslación, que es el movimiento que realiza la grúa al desplazarse a lo largo de u

vía.

Es importante destacar que todos los movimientos de la grúa tienen doble sentido: es

decir, con el movimiento de elevación podemos subir o bajar una carga, con el de

orientación girar a la izquierda o derecha, etc.

Se tiene que tener presente que,

hacer un máximo de tres movimientos simultáneamente: la elevación, la distribución y

la orientación. Igualmente, cuando la grúa esté trasladándose, está prohibido cualquier

otro movimiento.

1.6. INSTALACIÓN DE UNA GRÚA TORRE

El usuario es responsable de la ejecución de los apoyos. El montaje de la grúa se

realizará por personal cualificado, guiándose para ello de las instrucciones.

de una orden de trabajo, donde vendrán indicados los da

del montaje. Dicho personal dependerá de un técnico titulado, quien planificará y se

responsabilizará del trabajo a realizar, extendiendo al finalizar el montaje el certificado

correspondiente.

Se contará con la ayuda de un

1.6.1. BASE

La preparación de la base corre a cuenta del

con la base ya construida; en

comprobará la nivelación de la zapata de apoyo.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

34

que es el movimiento que se realiza a lo largo de la pluma.

que es el movimiento realizado alrededor del eje vertical de la grúa,

el cual pasa por el centro de la base de esta.

que es el movimiento que realiza la grúa al desplazarse a lo largo de u

Es importante destacar que todos los movimientos de la grúa tienen doble sentido: es

decir, con el movimiento de elevación podemos subir o bajar una carga, con el de

orientación girar a la izquierda o derecha, etc.

Se tiene que tener presente que, por razones técnicas y de seguridad, solo se pueden

hacer un máximo de tres movimientos simultáneamente: la elevación, la distribución y

la orientación. Igualmente, cuando la grúa esté trasladándose, está prohibido cualquier

INSTALACIÓN DE UNA GRÚA TORRE

El usuario es responsable de la ejecución de los apoyos. El montaje de la grúa se

realizará por personal cualificado, guiándose para ello de las instrucciones.

de una orden de trabajo, donde vendrán indicados los datos de la grúa y características

Dicho personal dependerá de un técnico titulado, quien planificará y se

responsabilizará del trabajo a realizar, extendiendo al finalizar el montaje el certificado

Se contará con la ayuda de una grúa móvil con las siguientes características:

La preparación de la base corre a cuenta del cliente, por tanto el montador se encuentra

con la base ya construida; en todo caso, antes de empezar el montaje de la grúa se

comprobará la nivelación de la zapata de apoyo.

Figura 1.11. Base

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

se realiza a lo largo de la pluma.

que es el movimiento realizado alrededor del eje vertical de la grúa,

que es el movimiento que realiza la grúa al desplazarse a lo largo de una

Es importante destacar que todos los movimientos de la grúa tienen doble sentido: es

decir, con el movimiento de elevación podemos subir o bajar una carga, con el de

por razones técnicas y de seguridad, solo se pueden

hacer un máximo de tres movimientos simultáneamente: la elevación, la distribución y

la orientación. Igualmente, cuando la grúa esté trasladándose, está prohibido cualquier

El usuario es responsable de la ejecución de los apoyos. El montaje de la grúa se

realizará por personal cualificado, guiándose para ello de las instrucciones. Dispondrá

tos de la grúa y características

Dicho personal dependerá de un técnico titulado, quien planificará y se

responsabilizará del trabajo a realizar, extendiendo al finalizar el montaje el certificado

a grúa móvil con las siguientes características:

, por tanto el montador se encuentra

todo caso, antes de empezar el montaje de la grúa se

Page 35: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

1.6.2. TORRE

Montar la torre inferior.

Montar la torre con los tramos requeridos

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

35

Figura 1.12. Torre inferior

con los tramos requeridos.

Figura 1.13. Torre superior

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Page 36: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Montar el conjunto superior

Figura 1.14. Plataforma giratoria, cabeza de torre

1.6.3. CONTRAPLUMA

Con la estructura de la pluma en el suelo, montar la barandilla.

Elevar todo el conjunto con la ayuda del autogrúa y a

lado correspondiente.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

36

Montar el conjunto superior (plataforma giratoria, cabeza de torre, mecanismos, etc.).

Figura 1.14. Plataforma giratoria, cabeza de torre

Con la estructura de la pluma en el suelo, montar la barandilla.

con la ayuda del autogrúa y abulonar a la cabeza de torre

Figura 1.15. Contrapluma

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

(plataforma giratoria, cabeza de torre, mecanismos, etc.).

cabeza de torre en su

Page 37: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Una vez abulonada, elevarla un poco más inclinándola de tal forma que se pueda

sujetar los dos tirantes que cuelgan de la

cuelga de la cabeza de torre

contrapesos.

Dejar descender el conjunto.

1.6.4. PRIMER CONTRAPESO

Para mantener la grúa equilibrada al colocar la pluma, se coloca con el autogrúa el

primer contrapeso en el hueco más próximo a las orejetas de atado del cable sostén de

contrapluma, por ser éste el hueco que más se cierra.

Figura 1.16. Primer contrapes

Al colocar el contrapeso, debido a la inclinación

tienden a cerrar el hueco donde irá colocado.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

37

bulonada, elevarla un poco más inclinándola de tal forma que se pueda

los dos tirantes que cuelgan de la cabeza de torre. Tomar el cable sostén que

cabeza de torre y atarlo a las orejas dispuestas para tal fin en la zona de los

Dejar descender el conjunto.

1.6.4. PRIMER CONTRAPESO

Para mantener la grúa equilibrada al colocar la pluma, se coloca con el autogrúa el

primer contrapeso en el hueco más próximo a las orejetas de atado del cable sostén de

contrapluma, por ser éste el hueco que más se cierra.

Figura 1.16. Primer contrapeso aéreo

Al colocar el contrapeso, debido a la inclinación del tirante, aparecen fuerzas F

tienden a cerrar el hueco donde irá colocado.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

bulonada, elevarla un poco más inclinándola de tal forma que se puedan

. Tomar el cable sostén que

y atarlo a las orejas dispuestas para tal fin en la zona de los

Para mantener la grúa equilibrada al colocar la pluma, se coloca con el autogrúa el

primer contrapeso en el hueco más próximo a las orejetas de atado del cable sostén de

del tirante, aparecen fuerzas F que

Page 38: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

1.6.5. PLUMA

1.6.5.1. MONTAJE DE LA PLUMA EN EL SUELO

Introducir el carro de pluma

Abulonar en el suelo los tramos de pluma. Situando el conjunto d

posible a la torre y colocando los apoyos sobre uno

torre se puede depositar sobre un tablón transversal, sin embargo es conveniente c

las dos esquinas de la punta de pluma sobre unos tablones longitudinales a fin de que

dichos extremos puedan deslizar sobre ellos.

Figura 1.17. Montaje de la pluma en el suelo

Atornillar el tirante sostén pluma. Atar el extremo libre del tirante

de la pluma mediante un alambre.

Montar el cable de seguridad de montadores. Amarrar un extremo al tramo final de

pluma, pasar el cable a través de las anillas y atar el otro extremo al primer tramo de la

pluma.

Montar el cable de traslación de carro de pluma.

1.6.5.2. COLOCACIÓN DE LA PLUMA

Colocar el carro en el extremo más próximo a la

Comprobar los reenvíos de la polea de distribución

Elevar la pluma en posición horizontal

Abulonar la pluma a la cabeza de torre

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

38

1.6.5.1. MONTAJE DE LA PLUMA EN EL SUELO

de pluma en el primer tramo de pluma.

ulonar en el suelo los tramos de pluma. Situando el conjunto de pluma lo más cerca

y colocando los apoyos sobre unos tablones. El extremo que se

se puede depositar sobre un tablón transversal, sin embargo es conveniente c

las dos esquinas de la punta de pluma sobre unos tablones longitudinales a fin de que

dichos extremos puedan deslizar sobre ellos.

Figura 1.17. Montaje de la pluma en el suelo

el tirante sostén pluma. Atar el extremo libre del tirante al larguero superior

de la pluma mediante un alambre.

Montar el cable de seguridad de montadores. Amarrar un extremo al tramo final de

pluma, pasar el cable a través de las anillas y atar el otro extremo al primer tramo de la

raslación de carro de pluma.

1.6.5.2. COLOCACIÓN DE LA PLUMA

Colocar el carro en el extremo más próximo a la torre y atarlo.

robar los reenvíos de la polea de distribución, rehacerlos en caso necesario.

Elevar la pluma en posición horizontal.

cabeza de torre.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

e pluma lo más cerca

s tablones. El extremo que se fija a la

se puede depositar sobre un tablón transversal, sin embargo es conveniente colocar

las dos esquinas de la punta de pluma sobre unos tablones longitudinales a fin de que

al larguero superior

Montar el cable de seguridad de montadores. Amarrar un extremo al tramo final de

pluma, pasar el cable a través de las anillas y atar el otro extremo al primer tramo de la

, rehacerlos en caso necesario.

Page 39: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Figura 1.18. Colocación de la pluma

Soltar el bulón de unión de la polea

Atornillar el tirante sostén

Mediante el mecanismo de elevación recoger la pasteca para acercar los tirantes a la

cabeza de torre, ayudando con el autogrúa si es necesario inclinando la pluma hacia

arriba.

Colocar el bulón de unión de la pasteca.

Atar el extremo del cable de segurid

torre con dos grapas.

Devolver la pluma a su posición horizontal.

1.6.6. RESTO DEL CONTRAPESO

Colocar el resto del contrapeso y el cable de elevación. Regular los

las pruebas de puesta en marcha.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

39

Figura 1.18. Colocación de la pluma

ltar el bulón de unión de la polea para separar sus dos extremos.

de la pluma al extremo libre de la pasteca.

Mediante el mecanismo de elevación recoger la pasteca para acercar los tirantes a la

, ayudando con el autogrúa si es necesario inclinando la pluma hacia

Colocar el bulón de unión de la pasteca.

Atar el extremo del cable de seguridad de montadores a un montante de la

Devolver la pluma a su posición horizontal.

1.6.6. RESTO DEL CONTRAPESO

Colocar el resto del contrapeso y el cable de elevación. Regular los limitadores

marcha.

Figura 1.19. Resto del contrapeso

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Mediante el mecanismo de elevación recoger la pasteca para acercar los tirantes a la

, ayudando con el autogrúa si es necesario inclinando la pluma hacia

ad de montadores a un montante de la cabeza de

limitadores y hacer

Page 40: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

40

Las operaciones de montaje y desmontaje de la grúa no son admisibles a partir de una

velocidad de viento de 50 Km/h. En caso de vientos superiores deberá detenerse

inmediatamente el trabajo.

1.7. RIESGOS Y MEDIDAS PREVENTIVAS EN LA GRÚA TORRE

A continuación se analizarán en forma detallada las diferentes funciones que se realizan

con la grúa así como sus riesgos y medidas preventivas.

1.7.1. RIESGOS DIRECTOS

• Trabajos de montaje, desmontaje y mantenimiento.

Page 41: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

41

• En la utilización

Page 42: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

42

1.7.2. RIESGOS INDIRECTOS

• Durante la utilización

1.8. DISPOSITIVOS DE SEGURIDAD (LIMITADORES)

Aparte de los sistemas mecánicos de seguridad, existen en la grúa limitadores

electromecánicos, los cuales estarán siempre reglados y constantemente vigilados.

Son los siguientes:

Limitador de par máximo o de momento: corta el avance del carro y la subida del

gancho cuando se eleva una carga superior a la prevista para cada alcance. Permite bajar

el gancho y retroceder el carro.

Page 43: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Limitador de carga máxima:

carga que sobrepasa la máxima en un 10%. Permite bajar el gancho.

Limitadores en recorrido en altura del gancho:

inferior, de los movimientos de elevación y des

tanto en la subida como en la bajada, pudiendo efectuar el movimiento contrario.

Limitador de traslación del carro:

llegar a los topes de goma, en los extremos de la f

Limitador del número de giros de la pluma:

y limita el número de vueltas, dos o tres, de la parte giratoria en uno y otro sentido, con

el fin de no dañar cables

colector de anillos.

1.9. SEGURIDAD EN EL EMPLEO DE ELEMENTOS DE TENSIÓN

ELÉCTRICA

La grúa debe de estar provista de dispositivos que impidan a toda persona no autorizada

acceder a las piezas bajo tensión y a los órganos cuyo reglaje afecte a la seguridad; en

particular, los armarios de contactores deberán estar bajo llave y las cajas que

las resistencias protegidas, de manera que impidan la introducción de las manos.

En caso de tener mando a distancia, todos lo

baja tensión.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

43

Limitador de carga máxima: corta la subida del gancho cuando se intenta levantar una

carga que sobrepasa la máxima en un 10%. Permite bajar el gancho.

Limitadores en recorrido en altura del gancho: son dos fines de carrera superior e

inferior, de los movimientos de elevación y descenso, que actúan sobre el mecanismo

tanto en la subida como en la bajada, pudiendo efectuar el movimiento contrario.

Limitador de traslación del carro: corta el avance del carro de distribución, antes de

llegar a los topes de goma, en los extremos de la flecha.

Limitador del número de giros de la pluma: actúa sobre el mecanismo de orientación

y limita el número de vueltas, dos o tres, de la parte giratoria en uno y otro sentido, con

eléctricos. Puede sustituirse este dispositivo c

Figura 1.20. Limitadores

SEGURIDAD EN EL EMPLEO DE ELEMENTOS DE TENSIÓN

a grúa debe de estar provista de dispositivos que impidan a toda persona no autorizada

acceder a las piezas bajo tensión y a los órganos cuyo reglaje afecte a la seguridad; en

particular, los armarios de contactores deberán estar bajo llave y las cajas que

protegidas, de manera que impidan la introducción de las manos.

En caso de tener mando a distancia, todos los circuitos de mando y control serán de muy

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

corta la subida del gancho cuando se intenta levantar una

son dos fines de carrera superior e

censo, que actúan sobre el mecanismo

tanto en la subida como en la bajada, pudiendo efectuar el movimiento contrario.

corta el avance del carro de distribución, antes de

actúa sobre el mecanismo de orientación

y limita el número de vueltas, dos o tres, de la parte giratoria en uno y otro sentido, con

. Puede sustituirse este dispositivo colocando un

SEGURIDAD EN EL EMPLEO DE ELEMENTOS DE TENSIÓN

a grúa debe de estar provista de dispositivos que impidan a toda persona no autorizada

acceder a las piezas bajo tensión y a los órganos cuyo reglaje afecte a la seguridad; en

particular, los armarios de contactores deberán estar bajo llave y las cajas que contienen

protegidas, de manera que impidan la introducción de las manos.

de mando y control serán de muy

Page 44: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

44

1.10. ELECCIÓN DEL GRUISTA

La grúa es, seguramente, la máquina más importante de la obra. Por este motivo, deberá

ser confiada a una persona responsable y capacitada, ya que del gruista va a depender la

marcha de la obra y, en una parte importante la seguridad de todos los operarios que en

ella trabajan. Por tanto, la conducción de la grúa se hará exclusivamente especialmente

designada para ello.

Para regular esta situación, se establece los requisitos para la obtención del título de

gruista, que es exigible para manejar grúas torre desmontables de obras.

Actitudes ergonómicas del gruista.

El operario deberá reposar periódicamente dado que los reflejos son muy importantes

para manejar adecuadamente la grúa.

Obligaciones del gruista.

Existirá un libro de obligaciones del gruista a pie de obra.

Obligaciones diarias del gruista:

a) Comprobar el funcionamiento de los frenos.

b) Observar la normalidad de funcionamiento de la grúa, solo si se perciben ruidos

o calentamientos anormales.

c) Verificar el comportamiento del lastre.

d) Colocar la carga de nivelación para evitar que el cable de elevación quede

destensado y enrolle mal en el tambor de elevación.

e) Al terminar el trabajo subir el gancho hasta el carrito, amarrar la grúa a los

carriles, dejar la pluma en dirección al viento, con el freno desenclavado y cortar

la corriente.

Obligaciones semanales del gruista:

a) Reapretar todos los tornillos y principalmente los de la torre, pluma y corona

giratoria.

b) Verificar la tensión del cable del carro, así como el cable de carga y su engrase.

Page 45: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

c) Comprobar el buen funcionamiento del pestillo de seguridad del gancho.

d) Se deben probar las protecciones contra sobrecargas, interruptores fin de carrera,

mecanismo de elevación, izado y descenso de la pluma y traslación en los dos

movimientos.

e) Vigilar las partes sujetas a desgaste, como cojinetes, superficies de los rodillos,

engranajes, zapatas de freno, etc., debiendo avisar para su

necesario.

1.11. PROHIBICIONES DEL GRUISTA

El gruista efectuará solamente operaciones correctas, debiendo conocer aquellas que

están terminantemente prohibidas.

• Utilizar los elementos de elevación para hacer tracciones oblicuas de cualquier

tipo.

Figura 1.21. Prohibición de

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

45

Comprobar el buen funcionamiento del pestillo de seguridad del gancho.

Se deben probar las protecciones contra sobrecargas, interruptores fin de carrera,

mecanismo de elevación, izado y descenso de la pluma y traslación en los dos

s partes sujetas a desgaste, como cojinetes, superficies de los rodillos,

engranajes, zapatas de freno, etc., debiendo avisar para su cambio

CIONES DEL GRUISTA

El gruista efectuará solamente operaciones correctas, debiendo conocer aquellas que

están terminantemente prohibidas.

Utilizar los elementos de elevación para hacer tracciones oblicuas de cualquier

Figura 1.21. Prohibición de tracciones oblicuas

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Comprobar el buen funcionamiento del pestillo de seguridad del gancho.

Se deben probar las protecciones contra sobrecargas, interruptores fin de carrera,

mecanismo de elevación, izado y descenso de la pluma y traslación en los dos

s partes sujetas a desgaste, como cojinetes, superficies de los rodillos,

cambio caso de ser

El gruista efectuará solamente operaciones correctas, debiendo conocer aquellas que

Utilizar los elementos de elevación para hacer tracciones oblicuas de cualquier

Page 46: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Arrastrar o arrancar objetos fijos del suelo o paredes, así como cualquier otra

operación extraña a las propias

Figura 1.22. Prohibición arrancar objetos

• Elevar una carga superior a las indicadas en las e

• Prohibido pasar cargas por encima del personal.

• Transportar cargas por zonas transitadas por viandantes o vehículos si no se ha

cortado el paso y señalizado anteriormente.

Figura 1.23. Prohibición pasar cargas encima de

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

46

Arrastrar o arrancar objetos fijos del suelo o paredes, así como cualquier otra

operación extraña a las propias de manutención de cargas.

Figura 1.22. Prohibición arrancar objetos

Elevar una carga superior a las indicadas en las especificaciones de la grúa.

Prohibido pasar cargas por encima del personal.

Transportar cargas por zonas transitadas por viandantes o vehículos si no se ha

cortado el paso y señalizado anteriormente.

Figura 1.23. Prohibición pasar cargas encima de personal

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Arrastrar o arrancar objetos fijos del suelo o paredes, así como cualquier otra

specificaciones de la grúa.

Transportar cargas por zonas transitadas por viandantes o vehículos si no se ha

personal

Page 47: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Balancear las cargas para depositarlas en puntos donde no llega normalmente el

aparejo de elevación.

Figura 1.24. Prohibición de balancear cargas

• Trabajar con una velocidad del viento superior a 72 K

por su forma y tama

viento sea menor.

Figura 1.25. Prohibición de trabajar con vientos fuertes

• Trabajar con tormenta eléctrica cerca; se interrumpirá el trabajo (desconectar

corriente de acometida).

• Apoyar el gancho en el suelo o cualquier otro lugar, de modo que el cable pueda

quedar flojo con peligro de que se salga de

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

47

Balancear las cargas para depositarlas en puntos donde no llega normalmente el

aparejo de elevación.

Figura 1.24. Prohibición de balancear cargas

velocidad del viento superior a 72 Km/h., o cuando las cargas

por su forma y tamaño fuesen difíciles de controlar aunque l

Figura 1.25. Prohibición de trabajar con vientos fuertes

Trabajar con tormenta eléctrica cerca; se interrumpirá el trabajo (desconectar

corriente de acometida).

en el suelo o cualquier otro lugar, de modo que el cable pueda

quedar flojo con peligro de que se salga de poleas y tambores.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Balancear las cargas para depositarlas en puntos donde no llega normalmente el

m/h., o cuando las cargas

ño fuesen difíciles de controlar aunque la velocidad del

Trabajar con tormenta eléctrica cerca; se interrumpirá el trabajo (desconectar

en el suelo o cualquier otro lugar, de modo que el cable pueda

Page 48: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

48

1.12. ESTROBADORES (SEÑALISTAS)

Las cargas deben ser enganchadas por un estrobador que ha de tener formación e

instrucciones precisas sobre los métodos de enganche y la utilización de los elementos

de izado (estrobos, cables, ganchos, cadenas, etc.)

El estrobador y el gruista forman un equipo y por tanto la compenetración entre ambos

será imprescindible, sobre todo cuando sea preciso utilizar señales.

El estrobador será la única persona autorizada para hacer señales al gruista.

Para ello será muy útil disponer de un código de señales que ha de ser sencillo y

conocido por los dos.

Siempre se utilizaran las mismas señales para que no existan confusiones.

A modo de ejemplo, en los siguientes dibujos pueden verse algunas de las señales más

comunes que pueden integrar un código de señales.

Figura 1.26. Código de señales

Page 49: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

49

CAPÍTULO 2: CARACTERÍSTICAS GENERALES DEL

PROYECTO

2.1. GENERALIDADES

En el presente capítulo se presentan las características generales del proyecto en

cuestión y se indica el por qué de la elección del modelo de la máquina.

Como se señaló en la Introducción, este tipo de máquina consta de dos grandes grupos y

de accesorios. El primer grupo constituido por la estructura y el segundo, por los

mecanismos dinámicos. Las dimensiones generales son: 46000 mm de altura por 4000

mm de longitud de pluma con 10500 mm de longitud de contrapluma.

Sus capacidades de carga de elevación son: 10000 N como carga máxima en punta de

pluma con alcance máximo y 25000 N como carga máxima dentro de la distancia

permitida.

La estructura está formada en su totalidad por perfiles ángulo normalizados de distintas

designaciones.

Esta grúa torre, según su movilidad, es una grúa fija porque está apoyada sobre una

losa de hormigón. Pero, a diferencia de las bases de las grúas tradicionales, aquí la base

es una combinación entre una base apoyada y una empotrada. Esa combinación radica

en que existen contrapesos de base y contrapesos de fundación unidos mediante bulones

a los pies de la base. Esta proporción de combinación puede ser variable de acuerdo con

la mecánica del suelo. En un suelo rocoso y firme, como por ejemplo en las sierras

cordobesas, se prefieren las bases apoyadas mientras que en suelos arcillosos se

recomienda una base empotrada porque si cede la misma en escasos centímetros por la

altura de la grúa, ese desplazamiento es mucho mayor en punta de torre, pudiendo

generar el colapso de la grúa. Por eso, es sumamente importante al comenzar la

instalación de una grúa torre tomar las tensiones de suelo y en base a ellas, planificar el

emplazamiento a utilizar.

La base está formada por dos vigas normalizadas IPB 450 perfil H (tipo americano)

Es una grúa torre, según su pluma, dado que la misma es fija y horizontal. Es

hiperestática por poseer dos anclajes que se vinculan a la punta de torre por medio de

cables tensores Está compuesta por cuatro secciones de 10.000 mm de longitud cada

Page 50: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

50

una por 1000 mm de ancho y 1300 mm de altura y su forma es triangular con perfiles

ángulo de distintas designaciones. Dentro de la pluma se distinguen dos cordones

inferiores, que sirven de pista de rodadura para el carro de pluma, un cordón superior,

conectados mediante diagonales inferiores y diagonales laterales.

Según su forma de montaje es de montaje con autogrúa. Es decir, que el equipo de

armadores se ayuda de una grúa autopropulsada para el montaje de la grúa torre.

La torre está formada por diez tramos de celosía de 4000 mm de altura por 1200 mm de

base. La misma está compuesta por cuatro cordones principales unidos entre sí por

montantes y diagonales. También ésta utiliza perfiles ángulo de diferentes

designaciones. En los dos primeros tramos de torre, los cordones están reforzados por

planchuelas debido a la necesidad de una mayor área para cumplir con las exigencias

que imponen las normas F.E.M.

La contrapluma posee una dimensión de 10500 mm de largo por 1400 mm de ancho

compuesta por cordones y diagonales inferiores. En la misma se ubican los contrapesos

aéreos formados por tres bloques de hormigón de 46720 N cada uno, también está

compuesta por cuatro cordones principales, montantes y diagonales, con perfiles ángulo

de distintas designaciones.

La cabeza de torre tiene una forma troncopiramidal y mide 5000 mm de longitud por

1200 mm de base

Lo antes descripto hace referencia a la estructura de la grúa torre, es decir, a lo que

constituye el primer grupo. Con respecto al segundo grupo, se señalan los mecanismos

que son alimentados por red eléctrica de 380 V alterna y 60 ciclos de frecuencia.

En esta grúa existen tres tipos de mecanismos: el principal es el mecanismo de

elevación compuesto por un motor eléctrico con freno electromagnético incluido

acoplado a una caja reductora coaxial unida por medio de un acoplamiento flexible de

dientes abombados al tambor de elevación por el cual se enrolla el cable de elevación

que eleva la carga.

En relación al mecanismo de orientación de la carga, también está accionado por un

motor eléctrico con freno vinculado a un reductor epicicloidal de cuatro etapas de

reducción conectado a un piñón de ataque por intermedio de otro acoplamiento flexible

de dientes abombados, éste último está engranado con un gran rodamiento del tipo rothe

Page 51: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

51

erde de 1462 mm de diámetro con dentado exterior y 36 taladros por círculo para su

fijación.

Finalmente, se encuentra el mecanismo de distribución, asimismo, compuesto por un

motor eléctrico con freno conectado a un reductor epicicloidal de dos etapas de

reducción unido a una polea de fricción por la cual se desplaza el cable de distribución

que se vincula al carro de pluma generando el movimiento pertinente.

Esta grúa cuenta con limitadores de esfuerzo, para evitar excesos de carga y de par,

limitadores de recorridos para impedir salirse de los límites en la elevación, orientación

y distribución.

Como accesorios se señalan: el órgano de aprehensión, los cables de trabajo, las poleas

para el cable de distribución y para el cable de elevación.

Esta máquina de elevación se maneja por un operario en la cabina ayudado por

operarios de seguridad, en tierra, dando instrucciones mediante señas normalizadas para

el manejo correcto y seguro de la misma.

El propósito de su utilización es, principalmente, la elevación de hormigón y elementos

(ladrillos, sanitarios, aberturas, porcelanatos, etc.) para la construcción de edificaciones

de altura.

La misma se transporta en forma desmantelada por semirremolque de dimensiones

estándar al lugar de emplazamiento.

La elección de este modelo de grúa obedece a que es la máquina de elevación más

difundida y que se adapta mejor a requerimientos técnicos convencionales ya sean de

fabricación, de uso, de reparación y/o mantenimiento y de posibilidades económicas de

uso. Las dimensiones generales de la misma están adecuadas al tipo de construcción

que se presenta en esta región. Asimismo, la perfilería normalizada propuesta para

formar las estructuras es la más disponible en el mercado en todas sus designaciones.

Page 52: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

52

2.2. DIAGRAMA DE CARGAS Y ALCANCES

Para el proyecto el diagrama de cargas y alcances es:

metros

10 20 30 40

Newton

25000 20000 15000 10000

Figura 2.1. Diagrama de cargas y alcances

Page 53: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

53

CAPÍTULO 3: ESTRUCTURA DE LA GRÚA TORRE

3.1. GENERALIDADES

Se entiende por estructura de un aparato de elevación, el conjunto de elementos

resistentes del mismo, que tienen por objeto absorber los esfuerzos generados por las

diferentes solicitaciones y transmitirlos a la estructura fija.

Las principales solicitaciones que determinan las características de la grúa torre a

instalar son la altura útil, el alcance y la carga a elevar.

La grúa se compone de una cabeza de torre con brazos (pluma y contrapluma), torre

desmontable y base. De estas tres partes, la primera, cabeza de torre con brazos, esta

dimensionada de acuerdo a la influencia de las características de cargas y alcances. La

segunda, torre, esta dimensionada principalmente por la influencia de la característica

de altura. La tercera, base, está afectada por la influencia de las tres y tiene como misión

principal la estabilidad del conjunto.

Estos elementos son de cálculo independiente, dentro del marco global del aparato,

enumerándolos son:

• Torre

• Pluma

• Contrapluma

• Cabeza de torre

• Base

La técnica de cálculo de una estructura de un aparato de elevación se compone de varias

fases:

a) Determinación de solicitaciones y combinaciones de ellas que actúan sobre la

estructura.

b) Obtención de desplazamientos, esfuerzos, tensiones y reacciones existentes en

cada uno de los elementos resistentes mediante el proceso de cálculo

correspondiente.

c) Comprobación de los valores obtenidos con los valores admisibles de

elasticidad, resistencia y estabilidad.

Page 54: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

54

3.1.1. DETERMINACIÓN DE SOLICITACIONES

Las solicitaciones existentes sobre la estructura del aparato de elevación se van a

calcular mediante la normativa de la Federación Europea de la Manutención (F.E.M.),

tensiones admisibles D.I.N. 1050, pandeo D.I.N. 4114, viento C.I.R.S.O.C. 102.

3.2. CLASIFICACIÓN DEL APARATO EN FUNCIÓN DEL SERVI CIO

La clasificación de grúas y aparatos de elevación es el sistema que permite establecer

el diseño de las estructuras y de los mecanismos sobre bases racionales, sirviendo de

cuadro de referencia a los fabricantes y compradores en cuanto que permite adecuar un

aparato dado a las condiciones de servicio para las cuales es requerido.

La normativa F.E.M. establece una clasificación general de los aparatos de elevación en

base al número de ciclos de maniobra efectuados durante la vida prevista del aparato y

de un coeficiente del espectro de cargas que representa un estado de carga nominal.

3.2.1. NÚMERO DE CICLOS DE MANIOBRA (VIDA DEL MECANISMO)

Un ciclo de maniobras comienza en el momento en que la carga está dispuesta para ser

izada y acaba cuando el aparato está dispuesto para izar la carga siguiente.

El número total de ciclos de maniobra es la suma de todos los ciclos de maniobra

efectuados durante la vida especificada del aparato de elevación.

El número total de ciclos de maniobra está ligado al factor de utilización.

Figura 3.1. Tabla clase de utilización

Page 55: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

55

Calculando aproximadamente 30 ciclos por día, al mes (20 días) obtendríamos 600

ciclos mensuales o 7200 ciclos anuales, proponiendo una vida útil de 20 años nos da

como resultado final 1,44 x 105 ciclos.

Observando la tabla elegimos una Clase de utilización: U4, Número máximo de ciclos

de maniobra: 2,5 x 105, que corresponde a Utilización regular en servicio ligero.

3.2.2. ESTADO DE CARGA

El estado de carga representa el número de veces que es elevada una carga, de un orden

de magnitud determinado correspondiente a la capacidad del aparato, en resumen es en

qué medida, el aparato levanta la carga máxima o solamente una carga reducida.

Esta idea está caracterizada por un espectro de cargas elevadas, indicando el número de

ciclos para los cuales el aparato es capaz de levantar una cierta fracción de la carga

máxima.

Se consideran en la práctica, cuatro estados convencionales de carga, caracterizadas por

el Kp, representado la frecuencia de la carga máxima, durante el servicio en un número

de ciclos determinado.

Figura 3.2. Tabla estado de carga

Page 56: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

56

Refiriéndonos a la tabla, estimamos un Estado de carga: Q2 – Moderado con un

coeficiente del espectro de cargas Kp de 0,25, correspondiente a Aparato que

levanta con bastante frecuencia la carga máxima de servicio y corrientemente

cargas pequeñas.

3.3. CLASIFICACIÓN DEL APARATO COMPLETO

A partir del número de ciclos de maniobra (vida del mecanismo) y del estado de cargas,

los aparatos se clasifican en ocho grupos según F.E.M.

Figura 3.3. Tabla clasificación del aparato completo

Figura 3.4. Tabla de ejemplos de aparatos completos

Page 57: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

57

Con la clase de utilización U4, y el estado de carga Q2 – Moderado, ingresamos a la

tabla observando que para estos dos valores corresponde una clasificación del

aparato completo A4, la cual pertenece a la categoría de grúa 2 (grúa torre de

obra de montaje por elementos).

3.3.1. COEFICIENTE DE MAYORACIÓN γC

Figura 3.5. Tabla de coeficiente de mayoración

Por último con la clasificación A4, conseguimos el valor del coeficiente de

mayoración γγγγc = 1,08, el cual es variable como vemos de acuerdo al grupo que

pertenece el aparato.

Este valor será utilizado más adelante en ecuaciones próximas, el cual ira

multiplicando a las diferentes solicitaciones.

Page 58: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

58

3.4. TIPOS DE SOLICITACIONES A TENER EN CUENTA

Los tipos de solicitaciones a tener en cuenta se describen a continuación:

a) Solicitaciones principales que se ejercen sobre la estructura del aparato supuesto

inmóvil, en el estado de carga más desfavorable.

b) Solicitaciones debidas a movimientos verticales.

c) Solicitaciones debidas a movimientos horizontales.

d) Solicitaciones debidas a efectos climáticos.

e) Solicitaciones diversas.

3.4.1. SOLICITACIONES PRINCIPALES (S G, SL)

Son las siguientes:

• SG Solicitaciones debidas al peso propio, o peso de todos los elementos que

componen la grúa a excepción de la carga de servicio.

• SL Solicitaciones debidas a la carga de servicio, o peso de la carga útil más el

peso de los elementos accesorios: ganchos, cucharas, etc.

Figura 3.6. Cargas y peso propio

Page 59: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

59

3.4.2. SOLICITACIONES DEBIDAS A MOVIMIENTOS VERTICALES ( Ψ)

Estas solicitaciones provienen de manipulación de la carga se servicio, aceleraciones o

deceleraciones sobre el movimiento de elevación y choques verticales debidos al

rodamiento sobre las vías.

Se tienen en cuenta, multiplicando la carga de servicio por un factor denominado

“coeficiente dinámico”, Ψ.

El coeficiente está definido por la expresión:

Ψ = 1 + ξ * VL

Donde:

VL = Velocidad de elevación (m/s), tomando como valor máximo de velocidad de

elevación 1 m/s.

ξ = Coeficiente experimental, resultado de multitud de mediciones realizadas en

diferentes tipos de aparatos.

El coeficiente dinámico Ψ tiene en cuenta la manipulación de la carga de servicio, que

constituye el choque más importante. Las solicitaciones debidas a aceleraciones o

deceleraciones sobre el movimiento vertical son despreciables.

Figura 3.7. Tabla coeficiente dinámico

Calculando el coeficiente dinámico Ψ para este proyecto, observamos en la grafica que

el coeficiente experimental toma el valor de ξ = 0,3 y sabiendo que la máxima

velocidad del motor de elevación es de VL = 0,83 m/s, introducimos estos valores en la

ecuación dando como resultado el coeficiente dinámico

Ψ = 1 + 0,3 * 0,83 = 1,25

Page 60: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

60

3.4.3. SOLICITACIONES DEBIDAS A MOVIMIENTOS HORIZONTALES

(SH)

Son las siguientes:

• Efectos horizontales debidos a movimientos de dirección.

• Efectos de inercia debidos a aceleraciones o deceleraciones de movimientos de

dirección, translación, orientación y recuperación de flecha.

• Efectos de la fuerza centrífuga.

• Efectos horizontales transversales provocados por la rodadura.

• Efectos de choque.

3.4.3.1. EFECTOS HORIZONTALES DEBIDOS A MOVIMIENTOS DE

DIRECCIÓN

Se calcula el esfuerzo horizontal aplicado en las ruedas motoras paralelamente al raíl de

rodadura.

El valor de la aceleración o deceleración es función de la velocidad a obtener, del

tiempo de aceleración o deceleración y de las condiciones de explotación de aparato.

V*ga

HS =

Donde:

a = Aceleración en m/s2 y su valor depende del grado de velocidad seleccionado para su

uso y el tiempo de aceleración y desaceleración.

g = Aceleración de la gravedad.

Debido a que la grúa no posee ruedas motoras para su desplazamiento este efecto

horizontal no será tenido en cuenta.

Page 61: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.4.3.2. EFECTOS HORIZONTALES DEBIDOS A MOVIMIENTOS DE

ORIENTACIÓN Y RECUPERACIÓN DE FLECHA

Para este tipo de movimientos, se debe considerar el momento de aceleración o

deceleración que se ejerce sobre el eje motor.

La aceleración que el motor de orienta

0,3 m/s2.

3.4.3.3. EFECTOS DE LA FUERZA CENTRIFUGA

Para grúas, se tiene en cuenta el esfuerzo horizontal en cabeza de flecha resultante de la

inclinación del cable portante de la carga.

3.4.3.4. EFECTOS TRANSVERSALES DEBIDAS A LA RODADURA

Cuando dos rodillos circulan por un raíl, se debe tener en consideración el momento

formado por las fuerzas horizontales perpendiculares al raíl.

Nuevamente, se hace referencia que este efecto no será tenido en

razón que el efecto de movimiento de dirección.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

61

EFECTOS HORIZONTALES DEBIDOS A MOVIMIENTOS DE

ORIENTACIÓN Y RECUPERACIÓN DE FLECHA

Para este tipo de movimientos, se debe considerar el momento de aceleración o

deceleración que se ejerce sobre el eje motor.

La aceleración que el motor de orientación ejerce en su máxima capacidad es de

EFECTOS DE LA FUERZA CENTRIFUGA

Para grúas, se tiene en cuenta el esfuerzo horizontal en cabeza de flecha resultante de la

inclinación del cable portante de la carga.

Figura 3.8. Fuerza centrifuga

EFECTOS TRANSVERSALES DEBIDAS A LA RODADURA

Cuando dos rodillos circulan por un raíl, se debe tener en consideración el momento

formado por las fuerzas horizontales perpendiculares al raíl.

Nuevamente, se hace referencia que este efecto no será tenido en cuenta por la misma

razón que el efecto de movimiento de dirección.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

EFECTOS HORIZONTALES DEBIDOS A MOVIMIENTOS DE

Para este tipo de movimientos, se debe considerar el momento de aceleración o

ción ejerce en su máxima capacidad es de

Para grúas, se tiene en cuenta el esfuerzo horizontal en cabeza de flecha resultante de la

EFECTOS TRANSVERSALES DEBIDAS A LA RODADURA

Cuando dos rodillos circulan por un raíl, se debe tener en consideración el momento

cuenta por la misma

Page 62: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

62

3.4.3.5. EFECTOS DE CHOQUES DE TOPES

Estos efectos están generados por las fuerzas de inercia que se producen debidas al

movimiento de carro sobre la pluma. Sólo se considera cuando el choque se produce

sobre la estructura, o cuando se produce sobre la carga suspendida.

Para el caso de choque sobre la estructura, éste se tiene en consideración cuando la

velocidad de distribución es superior a 0,7 m/s. Los esfuerzos resultantes sobre la

estructura se calculan en función de la deceleración que el tope impone al aparato. Se

admite que el tope es capaz de absorber la energía cinética del aparato correspondiente a

0,7 m/s de distribución.

Para el caso de choque de la carga suspendida, se consideran las solicitaciones debidas

al choque de carga, cuando ésta está rígidamente guiada.

10LS

aTS *=

Este efecto no será considerado por la razón de que la grúa no posee una velocidad de

distribución superior a 0,7 m/s.

3.4.4. SOLICITACIONES DEBIDAS A EFECTOS CLIMÁTICOS

Las solicitaciones debidas a los efectos climáticos son las resultantes de la acción del

viento, sobrecarga de nieve y variaciones de temperatura.

3.4.4.1. ACCIÓN DEL VIENTO (SW)

Se debe resaltar que todos los cálculos relacionados con el viento son aproximados,

debido a su propia naturaleza. Sin embargo es necesario tenerlos en cuenta y si se le da

un tratamiento matemático adecuado, los resultados que se obtienen serán mucho más

aproximados y útiles.

Para calcular las solicitaciones debidas al viento, debemos conocer la fuerza F que esta

realiza sobre las estructuras mediante la utilización de la formula.

F = A * p * C f

Donde:

Page 63: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

63

A = Superficie neta en m2, es decir, la proyección de la superficie solida sobre un plano

perpendicular a la dirección del viento.

p = Presión estática a la altura h del objeto en N/ m2.

Cf = Coeficiente de forma en la dirección del viento del elemento considerado.

El contacto del viento con la superficie de la tierra ejerce un efecto de arrastre similar al

rozamiento. Es evidente que este efecto de arrastre es diferente en zonas abiertas como

llanuras que en zonas cerradas o con obstáculos como zonas de bosques, o concentradas

en núcleos urbanos. Esta variación en el arrastre causa que la velocidad del viento varíe

en función de la altura y del tipo del terreno, según la ecuación:

c)0h

h(*w0V2

wV =

Donde:

c = 7

1Terreno abierto y zonas costeras.

c = 4.5

1 Zonas boscosas, ciudades, extrarradios de ciudades y zonas costeras abruptas.

c = 3

1Centros o núcleos de grandes ciudades.

Vw0 = Velocidad de referencia a la altura estándar de 10 metros.

h = Altura a la que se quiere conocer la velocidad del viento.

h0 = Altura de referencia (10 metros).

Estas variaciones en la velocidad del viento generan variaciones en la presión del

mismo, las cuales quedan expresadas en la ecuación:

2wV*ρ*

21

p =

El aire a nivel de mar ejerce una presión uniforme 98 N/m2. Cuando el aire está en

movimiento sin embargo esta presión se modifica. La fuerza del viento ejerce sobre una

superficie en su camino una presión y una fuerza negativa o succión en la superficie

opuesta debido a los cambios de presión locales.

Al aumentar la altura sobre el suelo, el efecto de arrastre del viento sobre el suelo llega a

ser menos pronunciado, hasta llegar a una altura en la cual el viento es libre de arrastre.

Pero las alturas a las que desaparece el efecto de arrastre (de 250 a 460 metros) son más

Page 64: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

64

grandes que las alturas de instalaciones de grúas, por ello se asume que las grúas están

situadas en las zonas de arrastre.

La expresión anterior da la presión del viento sobre objetos de formas indefinidas,

evidentemente un objeto cortante originará menores perturbaciones o cambios de

presión en la corriente de viento que la que ocasionará una gran superficie plana. A

través de ensayos e investigaciones se han obtenido datos que relacionan la forma de los

objetos con la resistencia que ellos inducen.

La acción del viento sobre la carga se calcula teniendo en cuenta la mayor superficie

posible de exposición al viento y tomando como valor del coeficiente aerodinámico

Cf=1.

Consideramos la acción del viento en los casos de:

• Acción del viento cuando la grúa está en servicio.

• Acción del viento cuando la grúa está fuera de servicio.

Según la normativa F.E.M. podemos considerar la presión del viento constante en cada

intervalo de 10 metros aproximadamente, además para la acción del viento estando la

grúa fuera de servicio considera las siguientes alturas sobre el suelo de 0 a 20 metros y

de 20 a 100 metros por lo que es razonable considerar la acción del viento por tramos a

lo largo de la altura.

• Acción del viento cuando la grúa está en servicio.

Se trata de la velocidad del viento que la grúa debe soportar en servicio. Se tomará en la

dirección más desfavorable.

Para conocer el valor de la fuerza que se ejerce sobre la estructura, obtenemos los datos

de la presión del viento:

Velocidad viento = 20 m/s

De 0 a 20 metros p = 245 N/m2

Velocidad viento = 28 m/s

De 20 metros hasta h total p = 490 N/m2

Page 65: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

65

Figura 3.9. Acciones debidas al viento

Las normas F.E.M. establecen una velocidad máxima del viento en servicio de 28 m/s

desde los 20 m de altura, superando este valor es obligatoria la detención del trabajo con

la grúa y la puesta en veleta de la misma.

Observando las gráficas de la velocidad de referencia para las capitales provinciales y

otras ciudades del país según la norma C.I.R.S.O.C. 102, se puede comprobar que

muchas ciudades de la República Argentina están por debajo del valor de la velocidad

máxima del viento en servicio propuesta por la norma F.E.M., eso nos indica que la

probabilidad de la detención de la grúa por la acción del viento es mínima.

Cabe aclarar que dentro del grupo de ciudades que superan la velocidad del viento en

servicio, la utilización de estas grúas no sea factible como en las ciudades del sur ya que

los edificios no alcanzan grandes alturas debido a que se utilizan otras formas de

construcción.

Page 66: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

66

En casos puntuales como por ejemplo Mar del Plata o Rosario en donde proliferan

edificios de gran altura, hay una mayor probabilidad de detención de la grúa por la

acción del viento.

Figura 3.10. Tabla de velocidad de referencia del viento

Page 67: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

67

Figura 3.11. Mapa de distribución

Page 68: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

68

• Acción del viento cuando la grúa está fuera de servicio.

Para su cálculo se tiene en cuenta el viento máximo soplando en la dirección más

desfavorable de que una grúa puede resistir.

Velocidad viento = 36 m/s

De 0 a 20 metros p = 784 N/m2

Velocidad viento = 42 m/s

De 20 metros hasta h total p = 1078 N/m2

En este caso la norma específica que con viento en tempestad, no se puede utilizar este

tipo de aparatos elevadores, por lo que la dirección de cálculo del área neta de la grúa es

la misma que la dirección del viento.

Figura 3.12. Acciones debidas al viento fuera de servicio

3.4.4.2. SOBRECARGA DE NIEVE

No se tienen en cuenta sobrecargas de nieve en el cálculo de puentes grúa, pórticos o

grúas.

3.4.4.3.VARIACIONES DE TEMPERATURA

Las solicitaciones debidas a variación de temperatura no se consideran excepto en casos

particulares, por ejemplo, que los elementos no puedan dilatarse libremente.

Page 69: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

69

3.5. DETERMINACIÓN DE COMBINACIONES DE SOLICITACION ES

Se van a distinguir cuatro casos posibles:

3.5.1. CASO I. APARATO EN SERVICIO SIN VIENTO

Para este caso, la solicitación toma el siguiente valor:

[γγγγc (SG + Ψ*SL + SH)] * C s

Donde:

Cs, es el coeficiente de seguridad = 1,5

γc, es el coeficiente de mayoración = 1,08

3.5.2. CASO II. APARATO EN SERVICIO CON VIENTO

La solicitación toma el siguiente valor:

[γγγγc (SG + Ψ*SL + SH) + Sw] * C s

En este caso Cs = 1,33

γc, es el coeficiente de mayoración = 1,08

Se estudiaran dos casos, uno con la pluma orientada en dirección perpendicular al viento

y el otro con la pluma orientada en forma paralela al viento.

3.5.3. CASO III. APARATO FUERA DE SERVICIO CON VIENTO EN

TEMPESTAD

[γγγγc* (SG + Sw máximo)] * C s Cs = 1,1

γc = 1,08

3.5.4. CASO IV. APARATO FUERA DE SERVICIO SIN VIENTO

[γγγγc (SG )] * Cs

Cs = 1,1

γc = 1,08

Page 70: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.6. DISEÑO Y CÁLCULO DE LOS ELEMENTOS ESTRUCTURALES DE LA

GRÚA

En este proyecto de diseño y cálculo para la estructura de la grúa torre se propone y se

puede demostrar que haciendo uso de las ecuaciones correspondientes, como

van a ser utilizadas más adelante, un proyectista/calculista al aplicarlas puede resolver,

en un primer momento, el diseño y cálculo de la misma en forma tradicional esto

significa resolver cálculos en forma manual y, de este modo, evitar una exces

inicial de datos en el ordenador. Esto permite una mayor celeridad en el pre

obteniendo, de este modo, los primeros resultados.

En una segunda etapa, se procede a la carga de los resultados obtenidos manualmente

haciendo uso del softwar

Program), para comparar y verificar la autenticidad de los mismos y eventualmente

realizar las modificaciones pertinentes.

Para poder comprender de una forma ordenada el cálculo de cada elemento estruc

de la grúa seguiremos el siguiente esquema:

3.6.1. MATERIAL ESTRUCTURAL

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

70

DISEÑO Y CÁLCULO DE LOS ELEMENTOS ESTRUCTURALES DE LA

En este proyecto de diseño y cálculo para la estructura de la grúa torre se propone y se

puede demostrar que haciendo uso de las ecuaciones correspondientes, como

van a ser utilizadas más adelante, un proyectista/calculista al aplicarlas puede resolver,

en un primer momento, el diseño y cálculo de la misma en forma tradicional esto

significa resolver cálculos en forma manual y, de este modo, evitar una exces

inicial de datos en el ordenador. Esto permite una mayor celeridad en el pre

obteniendo, de este modo, los primeros resultados.

En una segunda etapa, se procede a la carga de los resultados obtenidos manualmente

haciendo uso del software de análisis estructural SAP2000 (Structural Analysis

Program), para comparar y verificar la autenticidad de los mismos y eventualmente

realizar las modificaciones pertinentes.

Para poder comprender de una forma ordenada el cálculo de cada elemento estruc

de la grúa seguiremos el siguiente esquema:

MATERIAL ESTRUCTURAL

Figura 3.13. Material estructural

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

DISEÑO Y CÁLCULO DE LOS ELEMENTOS ESTRUCTURALES DE LA

En este proyecto de diseño y cálculo para la estructura de la grúa torre se propone y se

puede demostrar que haciendo uso de las ecuaciones correspondientes, como las que

van a ser utilizadas más adelante, un proyectista/calculista al aplicarlas puede resolver,

en un primer momento, el diseño y cálculo de la misma en forma tradicional esto

significa resolver cálculos en forma manual y, de este modo, evitar una excesiva carga

inicial de datos en el ordenador. Esto permite una mayor celeridad en el pre-diseño,

En una segunda etapa, se procede a la carga de los resultados obtenidos manualmente

de análisis estructural SAP2000 (Structural Analysis

Program), para comparar y verificar la autenticidad de los mismos y eventualmente

Para poder comprender de una forma ordenada el cálculo de cada elemento estructural

Page 71: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

De acuerdo con las tablas expuestas, extraídas de

y de www.acerosevilla.com

resistencia a la rotura σr = 52000 N/cm

3.6.2. TENSIÓN ADMISIBLE (

FLUENCIA

Observando la tabla de coeficientes de seguridad del libro

DE MAQUINAS de V. M. FAIRES

CONSTRUCCIÓN se propone un coeficiente de cálculo basado en la resistencia a la

fluencia N = 2, por lo tanto la tensión admisible valdrá:

Figura 3.15. Coeficientes de seguridad

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

71

Figura 3.14. Composición química

De acuerdo con las tablas expuestas, extraídas de EL ACERO EN LA CONS

www.acerosevilla.com utilizaremos en el proyecto un Acero ST

= 52000 N/cm2 y resistencia a la fluencia σf = 35000 N/cm

TENSIÓN ADMISIBLE ( σadm) BASADA EN LA RESISTENCIA

Observando la tabla de coeficientes de seguridad del libro DISEÑO DE ELEMENTOS

V. M. FAIRES y las tensiones admisibles de EL ACERO EN LA

se propone un coeficiente de cálculo basado en la resistencia a la

N = 2, por lo tanto la tensión admisible valdrá:

Figura 3.15. Coeficientes de seguridad

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

EL ACERO EN LA CONSTRUCCIÓN

utilizaremos en el proyecto un Acero ST-52-3 con una

= 35000 N/cm2.

BASADA EN LA RESISTENCIA A LA

DISEÑO DE ELEMENTOS

EL ACERO EN LA

se propone un coeficiente de cálculo basado en la resistencia a la

Page 72: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

72

Figura 3.16. Tensiones admisibles

���� = ����� ��

���� = 35000 N/cm�2 = ����� �/���

3.7. SOLICITACIONES PRINCIPALES (S G, SL)

Para poder empezar con el cálculo realizamos un dimensionamiento de la estructura,

para luego ser verificada manualmente con las ecuaciones de resistencia, estabilidad

global y local, etc. que nos proponen las normas.

En el caso de la torre por ejemplo se obtendrá el área de los cordones solamente en

el caso que esté más solicitada, en los demás casos se compararán las tensiones

resultantes con las tensiones admisibles.

De esta forma comenzamos el dimensionamiento:

Page 73: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

73

3.7.1. SG PESO PROPIO DE LOS ELEMENTOS QUE COMPONEN LAS

ESTRUCTURAS DE LA GRÚA.

SG = Peso por metro * longitud * cantidad de barras

3.7.1.1. PLUMA

• Tramo 1 - 2

Cordones ángulos L 127 x 127 x 12,7 mm, peso = 184 N/m

SG1 = 184 N/m * 10 m * 3 unidades = 5520 N

SG2 = 184 N/m * 1,4 m * 4 unidades = 1030,4 N (Diagonales externas)

SG3 = 184 N/m * 1 m * 2 unidad= 368 N (Montantes inferiores externos)

Diagonales ángulos L 51 x 51 x 6,4 mm, peso = 48,4 Kg/m

SG1 = 48,4 N/m * 1,4 m * 40 unidades = 2710,4 N (Diagonales laterales)

SG2 = 48,4 N/m * 1,41 m * 10 unidades = 682,44 N (Diagonales inferiores)

SG3 = 48,4 N/m * 1 m * 9 unidades = 435,6 N (Montantes inferiores)

Unión diagonales planchuela ancho 76,2 mm espesor 6,35 mm, peso = 38 N/m

SG1 = 38 N/m * 0,2 m * 22 unidades = 167,2 N

SG Pluma tramo 1-2 = 10914,04 N * 2 tramos = 21828 N

SGq Pluma tramo 1-2 = 1092 N/m

• Tramo 3

Cordones ángulos L 127 x 127 x 9,5 mm, peso = 184 N/m

SG1 = 184 N/m * 10 m * 3 unidades = 5520 N

SG2 = 184 N/m * 1,4 m * 4 unidades = 1030,4 N (Diagonales externas)

SG3 = 184 N/m * 1 m * 2 unidad= 368 N (Montantes inferiores externos)

Diagonales ángulos L 51 x 51 x 4,8 mm, peso = 37 N/m

SG1 = 37 N/m * 1,4 m * 40 unidades = 2072 N (Diagonales laterales)

SG2 = 37 N/m * 1,41 m * 10 unidades = 521,7 N (Diagonales inferiores)

SG3 = 37 N/m * 1 m * 9 unidades = 333 N (Montantes inferiores)

Unión diagonales planchuela ancho 76,2 mm espesor 6,35 mm, peso = 38 N/m

SG1 = 38 N/m * 0,2 m * 22 unidades = 167,2 N

SG Pluma tramo 3 = 10012 N, SGq Pluma tramo 3 = 1001,2 N/m

Page 74: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

74

• Tramo 4

Cordones ángulos L 127 x 127 x 9,5 mm, peso = 184 N/m

SG1 = 184 N/m * 10 m * 3 unidades = 5520 N

SG2 = 184 N/m * 1,4 m * 4 unidades = 1030,4 N (Diagonales externas)

SG3 = 184 N/m * 1 m * 2 unidad= 368 N (Montantes inferiores externos)

Diagonales ángulos L 51 x 51 x 3,2 mm, peso = 25,2 N/m

SG1 = 25,2 N/m * 1,4 m * 40 unidades = 1411,2 N (Diagonales laterales)

SG2 = 25,2 N/m * 1,41 m * 10 unidades = 355,32 N (Diagonales inferiores)

SG3 = 25,2 N/m * 1 m * 9 unidades = 226,8 N (Montantes inferiores)

Unión diagonales planchuela ancho 76,2 mm espesor 6,35 mm, peso = 38 N/m

SG1 = 38 N/m * 0,2 m * 22 unidades = 167,2 N

SG Pluma tramo 4 = 9080 N

SGq Pluma tramo 4 = 908 N/m

SG Pluma = 21828 N + 10012 N + 9080 N= 40920 N

SGq Pluma = 1023 N/m

3.7.1.2. CONTRAPLUMA

Cordones ángulos L 152 x 152 x 12,7 mm, peso = 292,6 N/m

SG1 = 292,6 N/m * 10,5 m * 2 unidades = 6144,6 N

SG2 = 292,6 N/m * 1,4 m * 3 unidades = 1228,92 N (Montantes externos e internos)

Diagonales ángulos L 76 x 76 x 6,4 mm, peso = 74 N/m

SG1 = 74 N/m * 1,72 m * 7 unidades = 890,96 N (Diagonales inferiores)

SG2 = 74 N/m * 1,4 m * 6 unidades = 621,6 N (Montantes inferiores)

SG Contrapluma = 8886 N

SGq Contrapluma = 846 N/m

3.7.1.3. CABEZA DE TORRE

Cordones ángulos L 152 x 152 x 12,7 mm, peso = 292,6 N/m

SG1 = 292,6 N/m * 5,03 m * 4 unidades = 5887,11 N

SG2 = 292,6 N/m * 1,2 m * 4 unidades = 1404,48 N (Montantes inferiores externos)

Page 75: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

75

Montantes ángulos L 76 x 76 x 6,4 mm, peso = 74 N/m

SG1 = 74 N/m * 1,05 m * 4 unidades = 310,8 N

SG2 = 74 N/m * 0,9 m * 4 unidades = 266,4 N

SG3 = 74 N/m * 0,75 m * 4 unidades = 222 N

SG4 = 74 N/m * 0,6 m * 4 unidades = 177,6 N

SG5 = 74 N/m * 0,45 m * 4 unidades = 133,2 N

SG6 = 74 N/m * 0,3 m * 4 unidades = 88,8 N

SG7 = 74 N/m * 0,15 m * 4 unidades = 44,4 N

Diagonales ángulos L 76 x 76 x 6,4 mm, peso = 74 N/m

SG8 = 74 N/m * 1,03 m * 4 unidades = 306 N

SG9 = 74 N/m * 0,91 m * 4 unidades = 270 N

SG10 = 74 N/m * 0,81 m * 4 unidades = 240 N

SG11 = 74 N/m * 0,72 m * 4 unidades = 213 N

SG12 = 74 N/m * 0,66 m * 4 unidades = 195,36 N

SG Cabeza de torre = 9760 N

3.7.1.4. TORRE

• Tramo 1 - 2

Cordones ángulos L 152 x 152 x 12,7 mm, peso = 292,6 N/m

SG1 = 292,6 N/m * 4 m * 4 unidades = 4681,6 N

SG2 = 292,6 N/m * 1,2 m * 8 unidades = 2808,9 N (Montantes externas)

Diagonales ángulos L 76 x 76 x 6,4 mm, peso = 74 N/m

SG1 = 74 N/m * 1,56 m * 16 unidades = 1847,04 N

Montantes ángulos L 64 x 64 x 9,5 mm, peso = 89,1 N/m

SG1 = 89,1 N/m * 1,2 m * 12 unidades = 1283 N

Refuerzos cordones planchuela ancho 152,4 mm espesor 12,7 mm, peso = 152 N/m

SG1 = 152 N/m * 4 m * 4 unidades = 2432 N

SG Torre tramo 1-2 = 13050 N * 2 tramos = 26105 N

Page 76: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

76

• Tramo 3 - 10

Cordones ángulos L 152 x 152 x 12,7 mm, peso = 292,6 N/m

SG1 = 292,6 N/m * 4 m * 4 unidades = 4681,6 N

SG2 = 292,6 N/m * 1,2 m * 8 unidades = 2808,9 N (Montantes externas)

Diagonales ángulos L 76 x 76 x 6,4 mm, peso = 74 N/m

SG1 = 74 N/m * 1,56 m * 16 unidades = 1847,04 N

Montantes ángulos L 64 x 64 x 9,5 mm, peso = 89,1 N/m

SG1 = 89,1 N/m * 1,2 m * 12 unidades = 1283 N

SG Torre tramo 3-8 = 10620 N * 8 tramos = 84965 N

SG Torre = 24264 N + 77600 N = 111070 N

3.7.1.5. BASE

Cordones doble T serie IPB 450 (perfil H), peso = 1710 N/m

SG Base = 1710 N/m * 5,65 m * 2 unidades = 19323 N

3.7.1.6. CONTRAPESO AÉREO

Longitud = 3,5 m, Altura = 1,39 m, Anchura = 1,2 m

Volumen = 5,84 m3, δ hormigón = 24000 N/m3

SG Contrapeso = δ * V

SG Contrapeso = 24000 N/m3 * 5,84 m3 = 140160 N

3.7.1.7. PESOS VARIOS

SG Cabina = 6000 N, SG Plataforma de giro = 33100 N, SG Gancho y Carro = 1000 N

SG GRÚA TORRE = 350900 N

3.7.2. SL PESO DE LA CARGA ÚTIL Y DE LOS ELEMENTOS ACCESORIO S

SL = carga útil + peso gancho y carro

SL = 10000 N + 1000 N = 11000 N

Page 77: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

77

3.7.3. SOLICITACIONES DEBIDAS A MOVIMIENTOS VERTICALES ( Ψ)

Coeficiente dinámico Ψ = 1,25

3.7.4. SOLICITACIONES DEBIDAS A MOVIMIENTOS HORIZONTALES

(SH)

Dentro de las solicitaciones debidas a movimientos verticales tenemos: 3.7.4.1. SH1 EFECTOS HORIZONTALES DEBIDOS A MOVIMIENTOS DE

ORIENTACIÓN Y RECUPERACIÓN DE FLECHA PLANO YZ

SH1 = mcarga * a

SH1 = 1100 Kg * 0,3 m/s2 = 330 N

3.7.4.2. SH2 EFECTOS DE LA FUERZA CENTRIFUGA PLANO XZ

��� = ��� !�! ∗ # ∗ $�

ω = 1 rpm = 0,1048 rad/s

R = A * tg α

R = 1 m * tg 15º = 0,268 m

��� = 11000 N9,8 m/s� ∗ 0,268 m ∗ (0,1048 rads )� = 1, �1 �

3.8. CÁLCULO DE LOS ELEMENTOS DE LA TORRE

3.8.1. CORDONES

Los cordones de la torre trabajan a compresión y a flexión, calculamos las reacciones y

los momentos que se producen en base la torre y a los 8 m de esta (en forma vertical).

• Caso I peso propio, cargas útiles, cargas horizontales.

• Caso II con pluma perpendicular al viento y pluma orientada al viento.

• Caso III con pluma orientada al viento en tempestad.

• Caso IV peso propio.

Page 78: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

78

Como podemos ver, no se calcula el caso III con la pluma perpendicular al viento, ya

que según la norma no se trabaja con tempestad, por lo que la grúa se deja en veleta

(libre de movimiento en su articulación superior).

Se van a realizar una serie de verificaciones por resistencia y estabilidad en forma

global y por resistencia y estabilidad en forma local.

3.8.1.1. CASO I APARATO EN SERVICIO SIN VIENTO (CS = 1,5)

Figura 3.17. Cargas de peso propio y de servicio

• Verificación global

#2 23�� � � = 4�5 + �78 ∗ 5 ≤ �5��

En esta situación analizamos si los cordones que forman la torre, pueden presentar una

falla por esfuerzos excesivos, los cuales podrían generar la rotura de estos mismos.

• Fuerza normal

SG = Cs * γγγγc * (SG GRÚA TORRE)

SG = 1,5 * 1,08 * (350900 N) = 568460 N

Page 79: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

79

• Momento flector con respecto al eje Y plano XZ

MY = Cs * [ γγγγc * (Ψ * SL * L P + SG Pluma tramo 1-2 * L 1-2 + SG Pluma tramo 3 * L 3 +

SG Pluma tramo 4 * L 4 + SH2 * H - SG Contrapluma * L 5 – SG Contrapeso * L 6)]

MY = 1,5 *[1,08 * (1,25 * 11000 N * 40,6 m + 21828 N * 10,6 m + 10012 N * 25,6 m +

9080 N * 35,6 m + 3,23 N *40 m - 8886 N *5,85 m - 140160 N *9,35 m)] = 11070 N m

• Fuerza normal flectora (ZXZ)

Figura 3.18. Fuerza normal flectora

: = 4 ∗ ; →→→→ 4 = :;

M = Momento flector; Z = Fuerza normal; h = Distancia entre centros de gravedad

4<4 = 11070 N m1,097 m = 10100 N

• Fuerza normal flectora por cordón (Z1XZ )

4� = 4�

4�<4 = 10100 N2 = 5050 N

Page 80: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

80

• Esfuerzo (σY)

�> = 5050 N 75,97 cm� + 568460 N4 ∗ 75,97 cm� = �?1� �/���

En la comprobación por resistencia se observa por comparación de esfuerzos que el

valor del esfuerzo obtenido en los cordones, σY = 1937 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Momento flector con respecto al eje X plano YZ

M x = Cs * γγγγc * (SH1 * H)

M x = 1,5 * 1,08 * (330 N * 40 m) = 21385 N m

• Fuerza normal flectora (ZYZ)

4>4 = 21385 N m1,097 m = 19500 N

• Fuerza normal flectora por cordón (Z1YZ)

4�>4 = 19500 N2 = 9750 N

• Esfuerzo (σX)

�< = 9750 N 75,97 cm� + 568460 N4 ∗ 75,97 cm� = ���� �/���

En la comprobación por resistencia se observa por comparación de esfuerzos que el

valor del esfuerzo obtenido en los cordones, σX = 2000 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano YZ.

Page 81: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

81

@23�A � ��� (B���C !�CA��) � = �, ? ∗ 4�5 + �78 ∗ 5 ∗ $7 ≤ �5��

En la torre además de la comprobación de resistencia hecha anteriormente, se sabe que

la misma puede fallar por estabilidad, el termino global hace referencia a toda la torre en

su conjunto, en la que se puede producir pandeo en los cordones, por tal motivo

calcularemos el pandeo global, entendiendo que en los cordones se produce una

flexocompresión para cada uno de los planos XZ e YZ.

Figura 3.19. Planos de momentos

• Coeficiente global de pandeo ωG

Conocidas las secciones de los perfiles, sus momentos de inercia, radios de giro, etc.

que forman la torre, calculamos la esbeltez mecánica global de la torre λG, para obtener

el coeficiente global de pandeo ωG, que junto con los momentos flectores y las fuerzas

de compresión a la que están sometidos los cordones comprobaremos la estabilidad en

forma global.

• Esbeltez mecánica global λG

D7 = ED�� + D��

Page 82: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

82

Observando la siguiente gráfica extraída de ESTRUCTURAS METÁLICAS de G. R.

TROGLIA y buscando la geometría de la torre encontramos el valor de esbeltez

mecánica λ1.

Figura 3.20. Tabla valor de esbeltez mecánica λ1.

Resultando ser para nuestro caso:

D� = F ∗ G 5! ∗ �1�C ∗ 5� ∗ � ∗ ;�

Donde:

Ag = Sección bruta total de la barra armada

Ad = Sección bruta de la diagonal de un solo plano

no = Número de planos de celosía

d = Distancia de la diagonal

a = Distancia entre nodos

h = Distancia entre barras

Page 83: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

D� = π ∗ G

Figura 3.21. H = Altura de la celosía.

iG = Radio de giro respecto a los ejes principales de inercia.

• Radio de giro global i

El radio de giro de un área con respecto a un eje particular es igual a la raíz cuadrada del

cociente del segundo momento de área

Donde iG es el radio de giro,

de la sección y A es el área

promedio de la sección resistente del centro de gravedad, dadas dos secciones de la

misma área la de menor radio de giro presentará menor

peor comportamiento frente a

• Momento de inercia I

El segundo momento de inercia

geométrica de la sección transversal de elementos estructurales. Físicamente el segundo

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

83

G 4 ∗ 75,97 cm� ∗ +156,2 cm0I 2 ∗ 9,43 cm� ∗ 100 cm ∗ +120cm0� � 20,D� � � ∗ � 7

Figura 3.21. Valor de esbeltez mecánica λ2.

= Radio de giro respecto a los ejes principales de inercia.

Radio de giro global iG

El radio de giro de un área con respecto a un eje particular es igual a la raíz cuadrada del

segundo momento de área dividido por el área:

7 � GJK5

es el radio de giro, I eje es el segundo momento de área o momento de inercia

área de la sección transversal. Es una medida del alejamiento

promedio de la sección resistente del centro de gravedad, dadas dos secciones de la

misma área la de menor radio de giro presentará menor rigidez torsional

peor comportamiento frente a pandeo.

Momento de inercia I

segundo momento de inercia o momento de inercia de área, es una propiedad

geométrica de la sección transversal de elementos estructurales. Físicamente el segundo

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

,5

El radio de giro de un área con respecto a un eje particular es igual a la raíz cuadrada del

o momento de inercia

de la sección transversal. Es una medida del alejamiento

promedio de la sección resistente del centro de gravedad, dadas dos secciones de la

rigidez torsional y también un

, es una propiedad

geométrica de la sección transversal de elementos estructurales. Físicamente el segundo

Page 84: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

84

momento de inercia está relacionado con las tensiones y deformaciones máximas que

aparecen por flexión en un elemento estructural y, por tanto, junto con las propiedades

del material determina la resistencia máxima de un elemento estructural bajo flexión.

Para poder obtener el momento de inercia de la torre, recurrimos al teorema de Steiner o

de ejes paralelos que nos permite, conocidos los momentos respecto a ejes que pasen

por el centro de gravedad, calcular muy fácilmente los momentos de inercia respecto a

ejes paralelos que no pasen por el centro de gravedad. Este traslado del segundo

momento de inercia, se hace mediante la fórmula:

JK � JK(L:) + 5 ∗ ��

Donde:

I eje = Segundo momento de inercia respecto al eje que no pasa por el centro de masa.

I(CM)eje = Segundo momento de inercia para el eje que pasa por el centro de gravedad.

A =Área de la sección transversal.

d = Distancia entre el nuevo eje y el eje que pasa por el centro de gravedad.

En este caso los perfiles que forman la torre están ubicados simétricamente, por esa

razón el momento de inercia de un eje es similar al otro.

Por Steiner:

I eje = 4 * (1872 cm4 + 75,97 cm2 * (54,87 cm)2) = 920340 cm4

El radio de giro global iG toma el valor:

7 = G 920340 cmM4 ∗ 75,97 cm� = 55 cm

λ2 pasa a valer:

D� = 2 ∗ 4000 cm55 cm = 145,5

Por último la esbeltez global de la torre λG es:

D7 = N20,5� + 145,5� = 147

Page 85: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Con la esbeltez mecánica global

DE LA CONSTRUCCIÓN,

Figura 3.22. Tabla de coeficientes de pandeo

El coeficiente global de pandeo

• Esfuerzo (σY)

�> � 0,9 ∗ 75

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones,

de la tensión admisible σadm

• Esfuerzo (σX)

�< � 0,9 ∗ 75

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones,

de la tensión admisible σadm

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

85

Con la esbeltez mecánica global λG, ingresamos a la siguiente tabla extraída del

para obtener el coeficiente global de pandeo ω

Figura 3.22. Tabla de coeficientes de pandeo

El coeficiente global de pandeo ωG = 5,47

5050 N75,97 cm� 6 568460 N4 ∗ 75,97 cm� ∗ 5,47 � ��1��estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones, σY = 10300 N/cm2, es menor que el valor

adm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

9750 N75,97 cm� 6 568460 N4 ∗ 75,97 cm� ∗ 5,47 � ��1��En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones, σX = 10350 N/cm2, es menor que el valor

adm = 17500 N/cm2, por lo tanto verifica para el plano YZ.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

, ingresamos a la siguiente tabla extraída del ACERO

para obtener el coeficiente global de pandeo ωG.

��1�� �/���

estabilidad global se observa por comparación de esfuerzos que

, es menor que el valor

, por lo tanto verifica para el plano XZ.

��1�� �/���

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

, es menor que el valor

, por lo tanto verifica para el plano YZ.

Page 86: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

86

• Verificación local

@23�A � ��� (B���C �C���) � = O ∗ $ 5 ≤ �5��

PC��(O = � Q� 3C3�� BC �C �ó�) → O = �78 + 4�

Por último también necesitamos hacer una verificación de estabilidad en forma local

esto significa que un cordón puede presentar un fallo de deformación entre dos nudos

consecutivos, por eso calcularemos el pandeo local de los cordones entre dos nudos de

la torre sabiendo también que los mismos están sometidos a flexocompresión por cada

uno de los planos XZ e YZ.

• Coeficiente local de pandeo ωe

Conocida la sección, la longitud del cordón entre los nudos, el radio de giro respecto a

los ejes secundarios de inercia, calculamos la esbeltez mecánica local de la torre λe para

obtener el coeficiente local de pandeo ωe que junto con los momentos flectores y las

fuerzas de compresión comprobaremos la estabilidad local del cordón.

• Esbeltez local λe

D = � T

Donde:

le = Longitud de la barra entre nodos.

iv = Radio de giro respecto a los ejes secundarios de inercia.

D = 100 cm3 cm = 33,3

Con la esbeltez mecánica local λe, ingresamos a la tabla de coeficientes de pandeo

utilizada anteriormente la cual fue extraída del ACERO DE LA CONSTRUCCIÓN, para

obtener el coeficiente local de pandeo ωe.

El coeficiente local de pandeo ωe = 1,13

Page 87: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

87

• Fuerza total por cordón FZ plano XZ

O4 � 568460 N4 + 5050 N = 147165 N

• Esfuerzo (σY)

�> = 147165 N ∗ 1,1375,97 cm� = ���� �/���

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón, σY = 2200 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Fuerza total por cordón FZ plano YZ

O4 = 568460 N4 + 9750 N = 151865 N

• Esfuerzo (σX)

�< = 151865 N ∗ 1,1375,97 cm� = ��U� �/���

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón, σX = 2260 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano YZ.

Page 88: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

88

• Esfuerzos restantes para la parte inferior del tercer tramo de la torre

(ubicado a 8 m de la base)

Para no extender los cálculos, solamente expondremos a continuación los valores

tensiónales que faltan del tercer tramo de la torre los siguientes son:

SG = 526170 N

Z1XZ = 4940 N

Z1YZ = 7665 N

A= 37,27 cm2

• Resistencia

σY = 3660 N/cm2

σX = 3800 N/cm2

• Estabilidad pandeo global

ωG = 2,8

σY = 10000 N/cm2

σX = 10070 N/cm2

• Estabilidad pandeo local

ωe = 1,14

σY = 4175 N/cm2

σX = 4260 N/cm2 Como se puede observar el mayor estado tensional tanto en resistencia como en pandeo

global y local se presenta en la parte inferior del tercer tramo y no como se podría

suponer en la base de la torre, esto se debe a que la misma presenta una mayor área,

mientras el tercer tramo una menor.

En el siguiente caso, los tres primeros tramos de la torre se desarrollaran en mayor

profundidad.

Page 89: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

89

3.8.1.2. CASO II APARATO EN SERVICIO CON VIENTO (C S = 1,33)

3.8.1.2.1. PLUMA PERPENDICULAR A LA DIRECCIÓN DEL VIENTO

Figura 3.23. Pluma perpendicular a la dirección de viento

• Acción del viento (Sw)

Como se menciono anteriormente la acción del viento sobre la estructura está dada por:

Sw = A * p * C f

Según el reglamento C.I.R.S.O.C. 102 Acción del viento sobre las construcciones

edición junio 1994, para obtener el coeficiente de forma Cf, necesitamos calcular la

relación de solidez φ, con este valor ingresamos a una tabla propuesta por dicho

reglamento, dándonos el coeficiente de forma buscado, una vez obtenido el mismo,

multiplicándolo por el área neta y la presión podemos calcular la fuerza del viento que

actúa para cada elemento que forma la estructura.

Page 90: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

90

• Relación de solidez φ

Relación entre el área neta del reticulado o panel normal a la dirección del viento,

descontando huecos y el área encerrada dentro del perímetro exterior del reticulado o

panel, incluyendo huecos.

Los elementos planos están caracterizados por su relación de solidez, que es el valor:

V � 553 Siendo:

A = Área neta del reticulado o panel normal a la dirección del viento, descontando

huecos.

At= Área encerrada dentro del perímetro exterior del reticulado o panel, incluyendo

huecos.

Figura 3.24. Tabla de coeficientes de forma

• Coeficiente de forma Cf (torre)

Procedemos como se explico anteriormente calculando la relación de solidez para

poder obtener el coeficiente de forma de la torre.

• Área neta de la torre (A)

A= Área expuesta de los cordones (L 152 x 152 x 12,7) + Área expuesta de las

diagonales (L 76 x 76 x 6,4) + Área expuesta de los montantes (L 51 x 51 x 3,2)

A= (0,1524 m * 4 m) * 2 unidades + (0,1524 m * 1,2 m) * 2 unidades + (0,0762 m *

1,55 m) * 4 unidades + (0,0508 m * 1,2 m) * 3 unidades = 2,24 m2

Page 91: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

91

• Área total torre (A t)

At= Base tramo torre * Altura tramo torre

At= 1,2 m * 4 m = 4,8 m2

Por lo tanto la relación de solidez φ toma el valor:

V � 2,24 m�4,8 m� = 0,466

Con el valor obtenido de la relación de solidez φ ingresamos en la tabla resultando para

piezas de aristas vivas, o poco redondeadas el coeficiente de forma Cf = 1,65.

En este punto se puede aplicar un criterio de la disminución del coeficiente de forma ya

que el valor obtenido de 1,65 será multiplicado por el coeficiente de seguridad Cs= 1,33

elevando este valor, esto significara una mayor área para los cordones de la torre

implicando mayores costos, por lo tanto se propone un valor muy razonable y muy

utilizado del coeficiente de forma de Cf = 1,2, en donde 0,8 de este valor actúa a

barlovento y 0,4 a sotavento.

• Fuerzas del viento (Sw Torre) sobre la torre

En este caso tendremos dos fuerzas del viento actuante sobre la torre, la primera será

dentro de los primeros 20 metros y la segunda entre los 20 metros y 40 metros.

Esto se debe a la variación de la velocidad del viento con la altura, lo cual afecta a la

presión del mismo, haciendo variar las fuerzas.

Por lo tanto las Fuerzas pasan a valer:

• De 0 a 20 metros (velocidad viento 20 m/s)

Sw Torre 20 m = (2,24 m2 * 245 N/m2 * 1,2) * 5 tramos = 3293 N

L� !� � T �3C BC �3 C � ��� �WX = �X�C�! 3�

�WX YC �� � = 3293 N20 m = 165 Nm

Page 92: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

92

• De 20 hasta 40 metros (velocidad viento 28 m/s)

Sw Torre > 20 m = (2,24 m2 * 490 N/m2 * 1,2) * 5 tramos = 6585 N

�WX YC Z �[ \ = 6585 N20 m = 330 Nm

• Coeficiente de forma Cf (pluma)

• Área neta de la pluma (A)

A= Área expuesta de los cordones (L 127 x 127 x 9,5) + Área expuesta de las

diagonales (L 51 x 51 x 6,4; 4,8; 3,2)

A= (0,127 m * 40 m) * 2 unidades + (0,127 m * 1,3 m) * 4 unidades + (0,0508 m * 1,39

m) * 80 unidades = 16,46 m2

• Área total pluma (At)

At= Largo pluma * Altura pluma

At= 40 m * 1,3 m = 52 m2

Con los siguientes valores calculados obtenemos la relación de solidez φ la cual pasa a

valer:

V = 16,46 m�52 m� = 0,31

Refiriéndonos al criterio expuesto anteriormente el coeficiente de forma es Cf = 1,2.

• Fuerza del viento (Sw Pluma) sobre la pluma

Sw Pluma = (16,46 m2 * 490 N/m2 * 1,2) = 9680 N

�WX ]��� = 9680 N40 m = 242 Nm

Page 93: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

93

• Coeficiente de forma Cf (cabeza de torre)

• Área neta de la cabeza de torre (A)

A= Área expuesta de los cordones (L 152 x 152 x 12,7) + Área expuesta de las

diagonales (L 76 x 76 x 6,4)

A= (0,1524 m * 5,035 m) * 2 unidades + (0,0762 m * 1,05 m) + (0,0762 m * 0,9 m) +

(0,0762 m * 0,75 m) + (0,0762 m * 0,6 m) + (0,0762 m * 0,45 m) + (0,0762 m * 0,3 m)

+ (0,0762 m * 0,15 m) + (0,0762 m * 0,66 m) + (0,0762 m * 0,72 m) + (0,0762 m *

0,81 m) + (0.0762 m * 0,91 m) + (0,0762 m * 1,035 m) = 2,17 m2

• Área total cabeza de torre (At)

53 = Base cabeza de torre ∗ Altura cabeza de torre 2

53 = 1,2 m ∗ 5 m 2 = 3 m�

Con lo cual la relación de solidez φ la cual pasa a valer:

V = 2,17 m�3 m� = 0,72

Entonces el coeficiente de forma es Cf = 1,2.

• Fuerza del viento (Sw Cabeza de torre) sobre la cabeza de torre

Sw Cabeza de torre = (2,17 m2 * 490 N/m2 * 1,2) = 1276 N

�WX L�AQ� � 3C = 1276 N5 m = 255 Nm

• Coeficiente de forma Cf (contrapeso y carga)

Como ya se menciono anteriormente coeficiente de forma Cf, sobre el contrapeso y la

carga vale Cf = 1.

Page 94: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Área neta del contrapeso (A)

A = Base contrapeso * Altura contrapeso

A = 3,5 m * 1,39 m = 4,8 m

• Fuerza del viento (

Sw Contrapeso

• Área neta aproximada de la carga (A)

A = Base carga * Altura carga

A = 1 m * 1 m = 1 m2

• Fuerza del viento (

Sw Carga

• Verificación global

• Fuerza normal

SG = 1,33 * 1,08 * (350900 N

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

94

Área neta del contrapeso (A)

Base contrapeso * Altura contrapeso

3,5 m * 1,39 m = 4,8 m2

l viento (Sw Contrapeso) actuando sobre el contrapeso

Contrapeso = (4,8 m2 * 490 N/m2 * 1) = 2385 N

Área neta aproximada de la carga (A)

tura carga

l viento (Sw Carga) actuando sobre la carga

w Carga = (1 m2 * 490 N/m2 * 1) = 490 N

Verificación global

Figura 3.25. Planos de momentos

#2 23�� � � � 4�5 6 �78 ∗ 5 9 �5��

1,33 * 1,08 * (350900 N) = 504000 N

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

5��

Page 95: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

95

• Momento flector con respecto al eje Y plano XZ

MY = 1,33 * 1,08 * (1,25 * 11000 N * 40,6 m + 21828 N * 10,6 m + 10012 N * 25,6 m

+ 9080 N * 35,6 m + 3,23 N * 40 m - 8886 N * 5,85 m - 140160 N * 9,35 m) =

9815 N m

• Fuerza normal flectora (ZXZ)

4<4 � 9815 N m1,097 m = 8950 N

• Fuerza normal flectora por cordón (Z1XZ)

4�<4 = 8950 N2 = 4475 N

• Esfuerzo (σY)

�> = 4475 N 75,97 cm� + 504000 N4 ∗ 75,97 cm� = ���� �/���

En la comprobación por resistencia se observa por comparación de esfuerzos que el

valor del esfuerzo obtenido en los cordones, σY = 1720 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Momento flector con respecto al eje X plano YZ

M x = Cs * [( γγγγc * SH1 * H) + Sw Torre 20 m * H 1 + Sw Torre > 20 m * H 2 + Sw Pluma * H 3 +

Sw Cabeza de torre * H 4 + Sw Contrapeso * H 5 + Sw Carga * H 6]

M x = 1,33 * [(1,08 * 330 N * 40 m) + 3293 N * 10 m + 6585 N * 30 m + 9680 N *

40,65 m + 1276 N * 42,5 m + 2385 N * 40,65 m + 490 N * 40 m] = 1076000 N m

• Fuerza normal flectora (ZYZ)

4>4 = 1076000 N m1,097 m = 980860 N

Page 96: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

96

• Fuerza normal flectora por cordón (Z1YZ)

4�>4 = 980860 N2 = 490430 N

• Esfuerzo (σX)

�< = 490430 N 75,97 cm� + 504000 N4 ∗ 75,97 cm� = g��� �/���

En la comprobación por resistencia se observa por comparación de esfuerzos que el

valor del esfuerzo obtenido en los cordones, σX = 8115 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano YZ.

Page 97: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

97

@23�A � ��� (B���C !�CA��) � = �, ? ∗ 4�5 + �78 ∗ 5 ∗ $7 ≤ �5��

• Esfuerzo (σY)

�> = 0,9 ∗ 4475 N75,97 cm� + 504000 N4 ∗ 75,97 cm� ∗ 5,47 = ?��� �/���

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones, σY = 9120 N/cm2, es menor que el valor

de la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Cálculo del área (A) perfil L según plano YZ

5 = 0,9 ∗ 490430 N 17500 N/cm� + 504000 N4 ∗ 17500 N/cm� 5,47 = U� ���

Utilizando la tabla de perfiles laminados C.I.R.S.O.C., buscamos el área del perfil L

normalizado.

El área más grande encontrada es 37,27 cm2 que corresponde al perfil L 152 x 152 x

12,7 mm, está misma es mucho menor que la calculada anteriormente (65 cm2), por lo

tanto no va a verificar, al no haber áreas más grandes necesitamos proponer una

solución dentro de todas la posibles.

La siguiente es:

Utilizando la tabla del libro ACINDAR seleccionamos un área de 19,35 cm2 que

corresponde a una planchuela de 152,4 mm de ancho por 12,7 mm de espesor.

Si sumamos el área del perfil ángulo L 152 x 152 x 12,7 mm más dos veces el área de la

planchuela de 152,4 mm de ancho por 12,7 mm de espesor obtenemos el área que va a

verificar la situación planteada.

A Total = 37,27 cm2 + 2 * (19,35 cm2) = 75,97 cm2

En la práctica esto sería unir mediante cordones de soldadura el perfil ángulo con las

planchuelas aumentando así en área, de este modo encontramos una solución muy

económica y factible de poder ser llevada a cabo.

Page 98: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

98

• Comprobación del esfuerzo (σX)

�< = 0,9 ∗ 490430 N75,97 cm� + 504000 N4 ∗ 75.97 cm� ∗ 5,47 = �8?�� �/���

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones, σX = 14900 N/cm2, es menor que el valor

de la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano YZ.

Después de la verificación cabe aclarar que esta área calculada va a ser utilizada en los

cordones de los dos primeros tramos de la torre, porque en la parte inferior de esta

misma es donde se encuentran los mayores esfuerzos, otro ítem a tener en cuenta es que

con esta decisión ahorramos material y peso en la estructura.

Para los demás tramos de la torre pasamos a continuación a calcular la nueva área de los

cordones, solamente las calcularemos en su mayor estado tensional que se da en el

plano YZ donde ejerce presión el viento tanto en pandeo global y local.

• Cálculo del área (A) perfil L según plano YZ (tercer tramo de torre y

tramos restantes, brazo de palanca ubicado a 8 m de la base)

• Fuerza normal

SG = 1,33 * 1,08 * (324800 N) = 466535 N

• Momento flector con respecto al eje X plano YZ

M x = Cs * [(γc * SH1 * H) + Sw Torre 12 m * H 1 + Sw Torre > 12 m * H 2 + Sw Pluma * H 3 +

Sw Cabeza de torre * H 4 + Sw Contrapeso * H 5 + Sw Carga * H 6]

M x = 1,33 * [(1,08 * 330 N * 32 m) + 1980 N * 6 m + 6585 N * 22 m + 9680 N * 32,65

m + 1276 N * 34,5 m + 2385 N * 32,65 m + 490 N * 32 m] = 827000 N m

• Fuerza normal flectora (ZYZ)

4>4 = 827000 N m1,116 m = 741050 N

Page 99: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

99

• Fuerza normal flectora por cordón (Z1YZ)

4�>4 = 741050 N2 = 370525 N

• Coeficiente global de pandeo ωG

El coeficiente global de pandeo ωG = 2,8 extraído del ACERO DE LA

CONSTRUCCIÓN.

5 = 0,9 ∗ 370525 N 17500 N/cm� + 466535 N4 ∗ 17500 N/cm� 2,8 = 37,7 cm�

Consultando nuevamente la tabla de perfiles angulares C.I.R.S.O.C. seleccionamos el

perfil L 152 x 152 x 12,7 mm con un área de 32,27 cm2.

• Comprobación del esfuerzo (σX) (tercer tramo de torre)

�< = 0,9 ∗ 370525 N37,27 cm� + 466535 N4 ∗ 37,27 cm� ∗ 2,8 = ����� �/���

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones, σX = 17710 N/cm2, es similar valor de la

tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano YZ.

(MAYOR ESTADO TENSIONAL DE ESTABILIDAD GLOBAL SOBRE LA

TORRE).

Por lo tanto podemos resumir que la torre en sus dos tramos inferiores, cada cordón

está formado por un perfil ángulo L 152 x 152 x 12,7 mm más dos planchuelas de 152,4

mm de ancho por 12,7 mm de espesor.

En los demás tramos (8 restantes) cada cordón está formado solamente por un perfil

ángulo L 152 x 152 x 12,7 mm.

Page 100: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Figura 3.26

• Verificación local

@23�A � ���PC��+O �

• Fuerza total por cordón F

• Esfuerzo (σY)

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón,

la tensión admisible σadm = 17500 N/cm

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

100

Figura 3.26. Cordones: tramos inferiores y superiores

@23�A � ��� +B���C �C���0 � � O ∗ $ 5 9 � � Q� 3C3�� BC �C �ó�0 → O �

Fuerza total por cordón FZ plano XZ

O4 � 504000 N4 6 4475 N � 130475 N

�> � 130475 N ∗ 1,1375,97 cm� � �?�� �/���

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón, σY = 1950 N/cm2, es menor que el valor de

= 17500 N/cm2, por lo tanto verifica para el plano XZ.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

�5��

�78 6 4�

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

, es menor que el valor de

, por lo tanto verifica para el plano XZ.

Page 101: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

101

• Fuerza total por cordón FZ plano YZ

O4 � 504000 N4 + 490430 N = 616430 N

• Esfuerzo (σX)

�< = 616430 N ∗ 1,1375,97 cm� = ?��� �/���

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón, σY = 9170 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano YZ.

• Fuerza total por cordón FZ plano YZ (tercer tramo de torre)

O4 = 466535 N4 + 370525 N = 487200 N

• Coeficiente local de pandeo ωe

El coeficiente local de pandeo ωe = 1,14

• Esfuerzo (σX)

�< = 487200 N ∗ 1,1437,27 cm� = �8?�� �/���

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón, σY = 14905 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano YZ.

((MAYOR ESTADO TENSIONAL DE ESTABILIDAD LOCAL SOBRE LA

TORRE).

Page 102: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

102

• Esfuerzos restantes para la parte inferior del tercer tramo de la torre

(ubicado a 8 m de la base)

Figura 3.27. Planos de momentos

Nuevamente expondremos los valores tensiónales que faltan del tercer tramo de la torre:

SG = 466535 N

Z1XZ = 4380 N

Z1YZ = 370525 N

A= 37,27 cm2

• Resistencia

σY = 3250 N/cm2

σX = 13070 N/cm2

(MAYOR ESTADO TENSIONAL DE RESISTENCIA SOBRE LA TOR RE).

• Estabilidad pandeo global

ωG = 2,8

σY = 8870 N/cm2

• Estabilidad pandeo local

ωe = 1,14

σY = 3700 N/cm2

En este caso también se puede comprobar que en la parte inferior del tercer tramo hay

un estado tensional más comprometido que en la base de la torre, sobre todo en la

verificación de pandeo global que iguala al valor de la tensión admisible.

Page 103: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

103

3.8.1.2.2. PLUMA ORIENTADA EN LA DIRECCIÓN DEL VIENTO

Figura 3.28. Pluma paralela a la dirección de viento

• Coeficiente de forma Cf (contrapeso y carga)

Como ya se menciono anteriormente coeficiente de forma Cf, sobre el contrapeso vale

Cf = 1.

• Área neta del contrapeso (A)

A = Base contrapeso * Altura contrapeso

A = 1,2 m * 1,39 m = 1,67 m2

• Fuerza del viento (Sw Contrapeso) actuando sobre el contrapeso

Sw Contrapeso = (1,67 m2 * 490 N/m2 * 1) = 820 N

Page 104: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Verificación global

• Momento flector con respecto al eje Y plano XZ

MY = Cs * [ γγγγc *(Ψ * SL * L

SG Pluma tramo 4 * L 4 + SH2 * H

+ Sw Torre > 20 m * H 2 + Sw Cabeza de torre

MY = 1,33 * [1,08 * (1,25 * 11000 N * 40,6 m

+ 9080 N * 35,6 m + 3,23 N * 40 m

* 10 m + 6585 N * 30 m + 1276 N * 42,5 m + 820

458900 N m

• Fuerza normal flectora (Z

4• Fuerza normal flectora por cordón

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

104

erificación global

Figura 3.29. Planos de momentos

#2 23�� � � � 4�5 6 �78 ∗ 5 9 �5��

Momento flector con respecto al eje Y plano XZ

* L P + SG Pluma tramo 1-2 * L 1-2 + SG Pluma tramo 3 * L

* H - SG Contrapluma * L 5 – SG Contrapeso * L 6) +

w Cabeza de torre * H4 + Sw Contrapeso * H 5 + Sw Carga

1,33 * [1,08 * (1,25 * 11000 N * 40,6 m + 21828 N * 10,6 m + 10012

+ 3,23 N * 40 m - 8886 N * 5,85 m - 140160 N * 9,35 m

85 N * 30 m + 1276 N * 42,5 m + 820 N * 40,65 m + 490 N * 40 m

Fuerza normal flectora (ZXZ)

4<4 � 458900 N m1,097 m � 418320 N

uerza normal flectora por cordón (Z1XZ)

4�<4 � 418320 N2 � 209160 N

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

5��

* L 3 +

+ Sw Torre 20 m * H 1

w Carga * H 6]

+ 21828 N * 10,6 m + 10012 N * 25,6 m

N * 9,35 m) + 3293 N

N * 40,65 m + 490 N * 40 m] =

Page 105: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

105

• Esfuerzo (σY)

�> = 209160 N 75,97 cm� + 504000 N4 ∗ 75,97 cm� = 88�� �/���

En la comprobación por resistencia se observa por comparación de esfuerzos que el

valor del esfuerzo obtenido en los cordones, σY = 4410 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Esfuerzo (σX)

�< = ���� �/��� ≤ ����� �/���

@23�A � ��� (B���C !�CA��)

� = �, ? ∗ 4�5 + �78 ∗ 5 ∗ $7 ≤ �5��

• Esfuerzo (σY)

�> = 0,9 ∗ 209160 N75,97 cm� + 504000 N4 ∗ 75,97 cm� ∗ 5,47 = ���8� �/���

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones, σY = 11545 N/cm2, es menor que el valor

de la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Esfuerzo (σX)

Z1YZ = 8645 N �< = ?�g� �/��� ≤ ����� �/���

Page 106: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

106

• Verificación local

@23�A � ��� (B���C �C���) � = O ∗ $ 5 ≤ �5��

PC��(O = � Q� 3C3�� BC �C �ó�) → O = �78 + 4�

• Fuerza total por cordón FZ plano XZ

O4 = 504000 N4 + 209160 N = 335160 N • Esfuerzo (σY)

�> = 335160 N ∗ 1,1375,97 cm� = ���� �/���

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón, σY = 5000 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Esfuerzo (σX)

�< = ���� �/��� ≤ ����� �/���

Page 107: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

107

• Esfuerzos restantes para la parte inferior del tercer tramo de la torre

(ubicado a 8 m de la base)

Figura 3.30. Planos de momentos

SG = 466535 N

Z1XZ = 149315 N

Z1YZ = 6800 N

A= 37,27 cm2

• Resistencia

σY = 7135 N/cm2

σX = 3310 N/cm2

• Estabilidad pandeo global

ωG = 2,8

σY = 12400 N/cm2

σX = 8950 N/cm2

• Estabilidad pandeo local

ωe = 1,14

σY = 8150 N/cm2

σX = 3775 N/cm2

Page 108: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

108

3.8.1.3. CASO III APARATO FUERA DE SERVICIO CON VI ENTO EN

TEMPESTAD (CS = 1,1)

Figura 3.31. Aparato fuera en servicio en tempestad

• Fuerzas del viento (Sw Torre) sobre la torre

Las Fuerzas pasan a valer:

• De 0 a 20 metros (velocidad viento 36 m/s)

Sw Torre 20 m = (2,24 m2 * 784 N/m2 * 1,2) * 5 tramos = 10540 N

L� !� � T �3C BC �3 C � ��� �WX = �X�C�! 3�

�WX YC �� � = 10540 N20 m = 530 Nm

Page 109: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• De 20 hasta 40 metros

Sw Torre > 20 m = (2,24 m

• Fuerza del viento (

Sw Cabeza de torre

�WX

• Fuerza del viento (

Sw Contrapeso

• Verificación global

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

109

De 20 hasta 40 metros (velocidad viento 42 m/s)

(2,24 m2 * 1078 N/m2 * 1,2) * 5 tramos = 14500

WX YC Z�[ \ � 6585 N20 m � 725 Nm

l viento (Sw Cabeza de torre) sobre la cabeza de torre

w Cabeza de torre = (2,17 m2 * 1078 N/m2 * 1,2) = 2810 N

WX L�AQ� � 3C � 2810 N5 m � 562 Nm

l viento (Sw Contrapeso) actuando sobre el contrapeso

Contrapeso = (1,67 m2 * 1078 N/m2 * 1) = 1800 N

Verificación global

Figura 3.32. Planos de momentos

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

* 1,2) * 5 tramos = 14500 N

N

Page 110: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

110

#2 23�� � � = 4�5 + �78 ∗ 5 ≤ �5��

• Fuerza normal

SG = 1,1 * 1,08 * (350900 N) = 417000 N

• Momento flector con respecto al eje Y plano XZ

MY = Cs *[ γγγγc * (SG Pluma tramo 1-2 * L 1-2 + SG Pluma tramo 3 * L 3 + SG Pluma tramo 4 * L 4 –

SG Contrapluma * L 5 – SG Contrapeso * L 6) + Sw Torre 20 m * H 1 + Sw Torre > 20 m * H 2 + Sw Cabeza

de torre * H4 + Sw Contrapeso * H 5]

MY = 1,1 * [ 1,08 * (21828 N * 10,6 m + 10012 N * 25,6 m + 9080 N * 35,6 m -

8886 N * 5,85 m - 140160 N * 9,35 m) + 10540 N * 10 m + 14500 * 30 m + 2810 N *

42,5 m + 1800 N * 40,65 m] = 151100 N m

• Fuerza normal flectora (ZXZ)

4<4 = 151100 N m1,097 m = 137750 N

• Fuerza normal flectora por cordón (Z1XZ)

4�<4 = 137750 N2 = 68875 N

• Esfuerzo (σY)

�> = 68875 N 75,97 cm� + 417000 N4 ∗ 75,97 cm� = ��g� �/���

En la comprobación por resistencia se observa por comparación de esfuerzos que el

valor del esfuerzo obtenido en los cordones, σY = 2280 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

Page 111: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

111

@23�A � ��� (B���C !�CA��) � = �, ? ∗ 4�5 + �78 ∗ 5 ∗ $7 ≤ �5��

• Esfuerzo (σY)

�> = 0,9 ∗ 68875 N75,97 cm� + 417000 N4 ∗ 75,97 cm� ∗ 5,47 = g1�� �/���

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones, σY = 8320 N/cm2, es menor que el valor

de la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Verificación local

@23�A � ��� (B���C �C���) � = O ∗ $ 5 ≤ �5��

PC��(O = � Q� 3C3�� BC �C �ó�) → O = �78 + 4�

• Fuerza total por cordón FZ plano XZ

O4 = 417000 N4 + 68875 N = 170400 N

• Esfuerzo (σY)

�> = 170400 N ∗ 1,1375,97 cm� = ���� �/���

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón, σY = 2570 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

Page 112: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

112

• Esfuerzos restantes para la parte inferior del tercer tramo de la torre

(ubicado a 8 m de la base)

Figura 3.33. Planos de momentos

SG = 385860 N

MY = - 91140 N m

(El signo menos significa que el momento es antihorario)

Z1XZ = 40850 N

A= 37,27 cm2

• Resistencia

σY = 3685 N/cm2 • Estabilidad pandeo global

ωG = 2,8

σY = 8250 N/cm2

• Estabilidad pandeo local

ωe = 1,14

σY = 4200 N/cm2

En este caso se puede apreciar que el momento es negativo, por lo tanto, podemos

deducir que existe un punto de inflexión del momento flector. En la base los cordones a

barlovento están traccionados y a sotavento están comprimidos, mientras que los

cordones del resto de la torre están comprimidos a barlovento y traccionados a

sotavento.

Page 113: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Esta situación se debe a que en la base los brazos de palanca son grandes, por lo tanto

los momentos ejercidos por el viento en tempestad vencen al momento del contrapeso

dándonos un momento resultante horario

En cambio si tomamos momentos respecto a la parte inferior del tercer tramo (8 metros

de diferencia con la base), los brazos de palanca disminuyen y los momentos ejercidos

por el viento en tempestad son vencidos por el momento del contrapeso que si bien

disminuye su brazo de palanca el peso del mismo es grande, dando un momento

resultante antihorario negativo.

3.8.1.4. CASO IV APARATO FUERA DE SERVICIO SIN VIENTO (C

Figura 3.34

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

113

Esta situación se debe a que en la base los brazos de palanca son grandes, por lo tanto

los momentos ejercidos por el viento en tempestad vencen al momento del contrapeso

dándonos un momento resultante horario positivo.

En cambio si tomamos momentos respecto a la parte inferior del tercer tramo (8 metros

de diferencia con la base), los brazos de palanca disminuyen y los momentos ejercidos

por el viento en tempestad son vencidos por el momento del contrapeso que si bien

isminuye su brazo de palanca el peso del mismo es grande, dando un momento

resultante antihorario negativo.

CASO IV APARATO FUERA DE SERVICIO SIN VIENTO (C

Figura 3.34. Aparato fuera de servicio sin viento

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Esta situación se debe a que en la base los brazos de palanca son grandes, por lo tanto

los momentos ejercidos por el viento en tempestad vencen al momento del contrapeso

En cambio si tomamos momentos respecto a la parte inferior del tercer tramo (8 metros

de diferencia con la base), los brazos de palanca disminuyen y los momentos ejercidos

por el viento en tempestad son vencidos por el momento del contrapeso que si bien

isminuye su brazo de palanca el peso del mismo es grande, dando un momento

CASO IV APARATO FUERA DE SERVICIO SIN VIENTO (C S = 1,1)

Page 114: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

114

• Verificación global

#2 23�� � � = 4�5 + �78 ∗ 5 ≤ �5��

• Fuerza normal

SG = 417000 N

• Momento flector con respecto al eje Y plano XZ

MY = Cs * γγγγc * (SG Pluma tramo 1-2 * L 1-2 + SG Pluma tramo 3 * L 3 + SG Pluma tramo 4 * L 4 +

SG Contrapluma * L 5 – SG Contrapeso * L 6)

MY = 1,5 * 1,08 * (21828 N * 10,6 m + 10012 N * 25,6 m + 9080 N * 35,6 m - 8886 N

* 5,85 m - 140160 N * 9,35 m) = - 893500 N m

• Fuerza normal flectora (ZXZ)

4<4 = 893500N m1,097 m = 814500 N

• Fuerza normal flectora por cordón (Z1XZ )

4�<4 = 814500 N2 = 407250 N

• Esfuerzo (σY)

�> = 407250 N 75,97 cm� + 417000 N4 ∗ 75,97 cm� = U�1� �/���

En la comprobación por resistencia se observa por comparación de esfuerzos que el

valor del esfuerzo obtenido en los cordones, σY = 6730 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

Page 115: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

115

@23�A � ��� (B���C !�CA��) � = �, ? ∗ 4�5 + �78 ∗ 5 ∗ $7 ≤ �5��

• Esfuerzo (σY)

�> = 0,9 ∗ 407250 N75,97 cm� + 417000 N4 ∗ 75,97 cm� ∗ 5,47 = ��11� �/���

En la comprobación por estabilidad global se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en los cordones, σY = 12330 N/cm2, es menor que el valor

de la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

• Verificación local

@23�A � ��� (B���C �C���) � = O ∗ $ 5 ≤ �5��

PC��(O = � Q� 3C3�� BC �C �ó�) → O = �78 + 4�

• Fuerza total por cordón FZ plano XZ

O4 = 417000 N4 + 407250 N = 508750 N

• Esfuerzo (σY)

�> = 508750 N ∗ 1,1375,97 cm� = �U�� �/���

En la comprobación por estabilidad local se observa por comparación de esfuerzos que

el valor del esfuerzo obtenido en el cordón, σY = 7600 N/cm2, es menor que el valor de

la tensión admisible σadm = 17500 N/cm2, por lo tanto verifica para el plano XZ.

Page 116: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

116

• Esfuerzos restantes para la parte inferior del tercer tramo de la torre

(ubicado a 8 m de la base)

SG = 385860 N

MY = - 893500 N m

(El signo menos significa que el momento es antihorario)

Z1XZ = 400315 N

A= 37,27 cm2

• Resistencia

σY = 13330 N/cm2 • Estabilidad pandeo global

ωG = 2,8

σY = 16900 N/cm2

• Estabilidad pandeo local

ωe = 1,14

σY = 15200 N/cm2

Page 117: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

117

3.8.1.5. RESUMEN GENERAL DE LOS CASOS I, II, III y IV

Como se explicó anteriormente la norma F.E.M. exige estos diferentes casos para el

cálculo de los cordones de la torre solicitados a flexocompresión.

Al analizarlos se encontró que el caso II (con pluma perpendicular al viento), es el que

presenta la mayor exigencia para los cordones, en el plano YZ donde el viento ejerce

presión.

El estado tensional más comprometido sobre los cordones se encuentra en la parte

inferior del tercer tramo ubicado a 8 metros de la base, esto se debe a que el área de los

cordones del primer y segundo tramo están reforzadas para verificar tal situación, esto

descarta la posibilidad de pensar de que en la base se encuentra el mayor estado

tensional.

También aclaramos que dentro de todas las verificaciones realizadas en los cordones ya

sean por resistencia, estabilidad global o local, el pandeo global de la torre es el que

presenta el mayor valor de tensión σx = 17710 N/cm2 en el plano YZ, igualando al valor

de la tensión admisible σx = 17500 N/cm2, este valor nos indica que un reticulado

siempre tiene una mayor probabilidad de colapsar por estabilidad global o local que por

resistencia.

En resumen, la ocurrencia del caso II (con pluma perpendicular al viento), es poco

probable debido a que se tienen que conjugar diferentes condiciones para obtenerla

(viento máximo de servicio perpendicular a la pluma, carga máxima en punta de pluma,

etc.), en caso de presentarse tales condiciones la torre estará solicitada al mayor estado

tensional que puede soportar, pero dándonos la seguridad de verificar tal situación.

Page 118: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

118

3.8.2. PANDEO GLOBAL DE LA TORRE POR TORSIÓN (C S = 1,33)

A continuación vamos a comprobar los esfuerzos cortantes que se originan por la

torsión en los cordones de la torre, los mismos se deben a que cuando rota la pluma se

produce un desplazamiento horizontal de la carga combinado con la acción del viento

actuando sobre la misma.

Simplificando, la torsión máxima sobre los cordones es producida por la inercia de la

pluma, la carga en punta y contrapeso, combinado con la acción del viento máximo de

servicio actuando perpendicular a la pluma.

La tensión admisible por corte que propone el libro EL ACERO EN LA

CONSTRUCCIÓN es τ adm = 13500 N/cm2.

i <> = Y�<>5 ≤ i5��

Figura 3.35. Fuerzas de corte

• Momento torsor con respecto al eje Z plano XY (Inercia)

• Fuerzas de inercia (Si)

SH1 = 330 N

Si Pluma = 4092 Kg * 0,3 m/s2 = 1230 N

Si Contrapeso = 14016 Kg * 0,3 m/s2 = 4205 N

MZ Inercia = Cs * [γγγγc * (SH1 * L P + Si Pluma * L Pluma - Si Contrapeso * L Contrapeso)]

Page 119: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

119

MZ Inercia = 1,33 * [1,08 * (330 N*40,6 m + 1230 N * 20,6 m - 4205 N * 9,35 m)] =

- 835 N m

• Momento torsor con respecto al eje Z plano XY (Viento)

• Fuerzas del viento (Sw)

Sw Pluma = 9680 N

Sw Contrapeso = 2385 N

Sw Carga = 490 N

MZ Viento = Cs * [Sw Pluma * H 3 - Sw Contrapeso * H 5 + Sw Carga * H6]

MZ Viento = 1,33 *[9680 N * 20,6 m - 2385 N * 9,35 m + 490 N * 40,6 m] = 262000 N m

MZ Total = MZ Inercia + MZ Viento

MZ Total = - 835 N m + 262000 N m = 261165 N m

• Fuerza torsora (TXY)

Y<> � 261165 N m1,116 m = 234020 N

• Fuerza torsora por cordón (T1XY )

Y�<> = 234020 N2 = 117010 N

• Esfuerzo de corte (τ XY)

i <> = 117010 N 37,27 cm� = 1��� �/���

En la comprobación de pandeo global por torsión se observa por comparación de

esfuerzos que el valor del esfuerzo obtenido en los cordones, τ XY = 3150 N/cm2, es

menor que el valor de la tensión admisible por corte τ adm = 13500 N/cm2, por lo tanto

verifica para el plano XY.

Page 120: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

120

3.8.3. TEORÍA DE LA ENERGÍA DE DISTORSIÓN MÁXIMA (VON MISE S)

El criterio de Von Mises, también llamado criterio de la máxima energía de distorsión,

es un criterio de resistencia estática, aplicado a materiales dúctiles, según el cual, el

material no fluirá en el punto analizado siempre que la energía de distorsión por unidad

de volumen en el punto no supere la energía de distorsión por unidad de volumen que se

da en el momento de la fluencia en el ensayo de tracción. El criterio de resistencia para

el estado de esfuerzo más frecuentemente encontrado de un esfuerzo normal σ y un

esfuerzo cortante τ se escribe matemáticamente en su forma reducida como:

� � +�� 6 1 ∗ i�)� �⁄

Puede representarse gráficamente en un diagrama σA-σB donde éstas representan las dos

tensiones principales no nulas, como se indica en la figura. La zona sombreada

representa la zona segura, para la cual el material no fluye de acuerdo con dicho criterio.

Figura 3.36. Diagrama de tensiones de Von Mises

Como ya sabemos que la combinación del mayor estado tensional biaxial se encuentra

en la base del tercer tramo en el plano YZ del caso II con pluma perpendicular al viento,

aplicamos en dicho punto el criterio de Von Mises para analizar la combinación de las

tensiones y asegurarnos de estar por debajo de la tensión de fluencia del material que

forman los cordones de la torre.

� = [(17710 N/cm�)� + (3 ∗ 3150 N/cm�)�]m �⁄ = ����� �/���

Page 121: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

El valor de la tensión equivalente obtenida está muy por debajo de la fluencia del

material (35000 N/cm2), por lo tanto el criterio de Von Mises verifica en su mayor

estado tensional, asegurándonos de esta manera que en todas las

posibles de los otros casos no se supere la resistencia de fluencia.

3.8.4. DIAGONALES

Las diagonales trabajan a compresión, la misma es generada por el viento actuante sobre

toda la grúa Qw más la suma de un corte ideal Q

normal total de la torre.

Para obtener el área de las diagonales se hará referencia al caso II pluma perpendicular

al viento (plano YZ).

Figura 3.37

• Corte total (Qt)

La suma es la siguiente:

Corte total (Q

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

121

El valor de la tensión equivalente obtenida está muy por debajo de la fluencia del

), por lo tanto el criterio de Von Mises verifica en su mayor

estado tensional, asegurándonos de esta manera que en todas las demás combinaciones

posibles de los otros casos no se supere la resistencia de fluencia.

Las diagonales trabajan a compresión, la misma es generada por el viento actuante sobre

más la suma de un corte ideal Qi que mantiene relación con el esfuerzo

Para obtener el área de las diagonales se hará referencia al caso II pluma perpendicular

�X � n3� ∗ �C2 o ∗ $5 9 ����

Figura 3.37. Fuerzas en diagonales

Corte total (Qt) = Corte del modelo (Qw) + Corte ideal (Q

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

El valor de la tensión equivalente obtenida está muy por debajo de la fluencia del

), por lo tanto el criterio de Von Mises verifica en su mayor

demás combinaciones

Las diagonales trabajan a compresión, la misma es generada por el viento actuante sobre

ación con el esfuerzo

Para obtener el área de las diagonales se hará referencia al caso II pluma perpendicular

) + Corte ideal (Qi)

Page 122: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Corte del modelo Q

Qw = Sw Torre 20 m + Sw Torre > 20 m

Qe = 3293 N + 6585 N + 9680 N + 1276 N + 2385 N + 490 N = 23710 N

• Corte ideal Qi

Figura 3.38

N total torre = Resultante cordón 1 + Resultante cordón 2 + Resultante cordón 3 +

Resultante cordón 4

N total torre = 368905 N + 359955 N

Qt = 23710 N + 34460 N = 58170 N

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

122

Corte del modelo Qw

w Torre > 20 m + Sw Pluma + Sw Cabeza de torre + Sw Contrapeso

3293 N + 6585 N + 9680 N + 1276 N + 2385 N + 490 N = 23710 N

n � �3C3�� 3C ∗ $7g�

Figura 3.38. Fuerzas resultantes por cordones

= Resultante cordón 1 + Resultante cordón 2 + Resultante cordón 3 +

368905 N + 359955 N – 620905 N – 611955 N = - 504000

n � 504000 N ∗ 5,4780 � 34460 N

23710 N + 34460 N = 58170 N

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

w Contrapeso + Sw Carga

3293 N + 6585 N + 9680 N + 1276 N + 2385 N + 490 N = 23710 N

= Resultante cordón 1 + Resultante cordón 2 + Resultante cordón 3 +

504000 N

Page 123: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

123

• Esbeltez local λe

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

D � �, �� ∗ � T

Figura 3.39. Diagrama de esbeltez

D = 0,75 ∗ 156,5 cm1,44 cm = 82

El coeficiente local de pandeo ωe = 1,83

• Esfuerzo

5 = 58170 N2 ∗ cos 39,81º ∗ 1,8317500 N/cm� = 8 ���

Utilizando la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 76 x76 x 6,4 con

un área de 9,43 cm2.

El aumento de la sección se debe a que hay que mantener una relación entre el área de

los cordones y las diagonales, esta misma se refleja en la obtención de la esbeltez

mecánica λ1, que con la cual obtenemos el coeficiente global de pandeo ωG.

Si esta relación es demasiado grande aumenta el coeficiente global ωG y la inestabilidad

de la torre, es por esa razón que se debe mantener equilibrada.

Page 124: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.8.5. MONTANTES

Las montantes también trabajan a compresión, generada por la torsión máxima que es

producida por la inercia de la pluma, la carga en punta y contrapeso, combinado con la

acción del viento máximo.

Figura 3.40

• Esbeltez local λe

Las montantes también tienen la posibilidad de pandear el 75 % de su longitud.

D � 0,75 ∗ +120 cm q +21,21 cm El coeficiente local de pandeo

Buscando la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 64 x 64 x 9,5 con

un área de 11,34 cm2.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

124

Las montantes también trabajan a compresión, generada por la torsión máxima que es

producida por la inercia de la pluma, la carga en punta y contrapeso, combinado con la

� <> � Y�<> ∗ $5 9 ����

Figura 3.40. Fuerzas en montantes

Las montantes también tienen la posibilidad de pandear el 75 % de su longitud.

2 ∗ 15,2 cm0cm � 55

El coeficiente local de pandeo ωe = 1,35

5 � 117010 N ∗ 1,35 17500 N/cm� � ? ���

Buscando la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 64 x 64 x 9,5 con

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Las montantes también trabajan a compresión, generada por la torsión máxima que es

producida por la inercia de la pluma, la carga en punta y contrapeso, combinado con la

Las montantes también tienen la posibilidad de pandear el 75 % de su longitud.

Buscando la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 64 x 64 x 9,5 con

Page 125: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

125

3.8.6. CÁLCULO DE LOS PERNOS DE UNIÓN DE LOS TRAMOS DE LA

TORRE

Como sabemos cuando la grúa está cargada y además la pluma soporta viento lateral

(caso II) los cordones de la torre se traccionan y se comprimen en forma opuesta.

En los cordones en donde hay tracción los pernos de unión de los tramos de la torre

están sujetos a corte, mientras que en los cordones comprimidos, la compresión es

soportada por ellos mismos debido a que están apoyados unos sobre otros. Por lo tanto

en los cordones traccionados necesitamos la presencia de pernos para garantizar la

unión de los tramos de torre.

En nuestro caso utilizaremos dos pernos por cordón de torre y según establece las

normas de construcción con una disposición de los taladros como se muestra a

continuación:

La tensión de corte a la que están sujetos los pernos es:

i = O� � ∗ 5 ≤ i���

5 = 368905 N 2 ∗ 13500 N/cm� = �1, UU ���

Utilizando una tabla de barras redondas seleccionamos 2 pernos de acero, diámetro

44,45 mm y sección 15,52 cm2.

i = 368905 N 2 ∗ 15,52 cm� = ��gg� �/��� ≤ i���

3.8.7. VERIFICACIÓN DE LA SECCIÓN DEL CORDÓN (en la base)

Comprobamos si la sección del cordón, disminuida por el taladro por el cual pasa el

perno resiste es esfuerzo de compresión.

� = �75�3� ≤ �5��

Page 126: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

126

5�3� � 5��� ó� − 5Y���� C 5�3� = 75,97 cm� − 11,3 cm� = 64,67 cm�

� = 620905 N64,67 cm� = ?U�� �/��� ≤ ����� �/���

3.8.8. VERIFICACIÓN DE LA SECCIÓN DEL CORDÓN (a 8 metros d e la base)

Ídem al caso anterior.

5�3� = 37,27 cm� − 5,64 cm� = 31,63 cm�

� = 594800 N31,63 cm� = �gg�� �/��� ≤ ����� �/���

Podemos observar que la tensión calculada es superior a la tensión admisible del

material, pero como sabemos que las cargas están mayoradas (nunca se alcanzaran en la

realidad) y los valores de las tensiones son próximos, tal situación puede ser aceptada

sin mayores inconvenientes en la estructura.

Page 127: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.CÁLCULO DE LOS ELEMENTOS DE LA PLUMA

3.9.1. GENERALIDADES

La pluma trabaja en su tramo 3

El tramo 1-3 trabaja a flexión si el carro se sitúa a lo largo del propio tramo.

En las verificaciones tendremos en cuenta únicamente los casos más desfavorables.

Estos serán para el plano XZ según la posición que ocupe S

en punta de pluma y carga máxima a diez metros de torre)

soplando perpendicular a la pluma.

Para cada una de las hipótesis, se calcularán las reacciones, los momentos flectores,

esfuerzos cortantes y normales para después una vez conocidos los esfuerzos máximos,

poder evaluar la combinación de las solicitaciones

comprobar y dimensionar los elementos que conforman la pluma.

3.9.2. PESO PROPIO

Utilizando el software Analysis of structural systems

flectores producidos por el

Figura 3.42

De esta forma podemos observar

peso propio de la pluma.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

127

CÁLCULO DE LOS ELEMENTOS DE LA PLUMA

GENERALIDADES

La pluma trabaja en su tramo 3-4 a flexión y cortadura y en su tramo 3-6 a compresión.

3 trabaja a flexión si el carro se sitúa a lo largo del propio tramo.

En las verificaciones tendremos en cuenta únicamente los casos más desfavorables.

Estos serán para el plano XZ según la posición que ocupe SL (carga máxima de servicio

en punta de pluma y carga máxima a diez metros de torre) y para el plano YZ el viento

oplando perpendicular a la pluma.

Para cada una de las hipótesis, se calcularán las reacciones, los momentos flectores,

esfuerzos cortantes y normales para después una vez conocidos los esfuerzos máximos,

poder evaluar la combinación de las solicitaciones en los puntos más desfavorables y así

comprobar y dimensionar los elementos que conforman la pluma.

Figura 3.41. Diagrama de pluma

software Analysis of structural systems, se calculan los momentos

flectores producidos por el peso propio de la pluma.

Figura 3.42. Diagrama de peso propio

De esta forma podemos observar y obtener valores del estado tensional generado por el

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

6 a compresión.

3 trabaja a flexión si el carro se sitúa a lo largo del propio tramo.

En las verificaciones tendremos en cuenta únicamente los casos más desfavorables.

(carga máxima de servicio

y para el plano YZ el viento

Para cada una de las hipótesis, se calcularán las reacciones, los momentos flectores,

esfuerzos cortantes y normales para después una vez conocidos los esfuerzos máximos,

en los puntos más desfavorables y así

, se calculan los momentos

el estado tensional generado por el

Page 128: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.3. CASO I CARGA MÁXIMA DE SERVICIO EN PUNTA DE PLUMA

(Ubicación del observador para

Figura 3.43. Diagrama de carga máxima de servicio en punta de pluma

γγγγc = 1,08

Cs = 1,33

SL = [1,08 * (1,25 * 11000 N)] * 1,33 = 19750 N

SG Pluma tramo 1-2 = [1,08 * (1092 N/m)] * 1,33 = 1568,5 N/m

SG Pluma tramo 3 = [1,08 * (1001,2 N/m)] * 1,33 = 1438 N/m

SG Pluma tramo 4 = [1,08 * (908 N/m)] * 1,33 = 1304 N/m

La pluma se puede resumir en una viga continua que

motivo es hiperestática, para poder obtener los esfuerzos internos, relacionándose con

las cargas que actúan sobre la misma, haremos uso del teorema de Clapeyron más

conocido como la ecuación de los tres momentos la cual es:

:r ∗ rq s tu ∗ uu� ∗ vwu q w

Donde:

ML, MC, MR = Momentos internos en los soportes izquierdo, central y derecho.

LL, LC, LR = Longitudes de claros izquierdo y derecho de la viga.

PL, qL, PR, qR = Cargas concentradas y cargas uniformes distribuidas izquierda y derecha

sobre la viga.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

128

CASO I CARGA MÁXIMA DE SERVICIO EN PUNTA DE PLUMA

(Ubicación del observador para el dimensionado del tramo 4 de pluma

. Diagrama de carga máxima de servicio en punta de pluma

[γγγγc (SG + Ψ*SL)] * C s

[1,08 * (1,25 * 11000 N)] * 1,33 = 19750 N

[1,08 * (1092 N/m)] * 1,33 = 1568,5 N/m

[1,08 * (1001,2 N/m)] * 1,33 = 1438 N/m

[1,08 * (908 N/m)] * 1,33 = 1304 N/m

La pluma se puede resumir en una viga continua que tiene tres puntos de apoyo por tal

hiperestática, para poder obtener los esfuerzos internos, relacionándose con

las cargas que actúan sobre la misma, haremos uso del teorema de Clapeyron más

conocido como la ecuación de los tres momentos la cual es:

rr 6 � ∗ :L ∗ +rr 6 r#0 6 :# ∗ r# � wu1x q s ty ∗ uy� ∗ vwy q wy1 x q zu ∗ uu18

= Momentos internos en los soportes izquierdo, central y derecho.

= Longitudes de claros izquierdo y derecho de la viga.

= Cargas concentradas y cargas uniformes distribuidas izquierda y derecha

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

CASO I CARGA MÁXIMA DE SERVICIO EN PUNTA DE PLUMA

el dimensionado del tramo 4 de pluma: anclaje 3)

. Diagrama de carga máxima de servicio en punta de pluma

tiene tres puntos de apoyo por tal

hiperestática, para poder obtener los esfuerzos internos, relacionándose con

las cargas que actúan sobre la misma, haremos uso del teorema de Clapeyron más

u1 q zy ∗ uy1 8

= Momentos internos en los soportes izquierdo, central y derecho.

= Cargas concentradas y cargas uniformes distribuidas izquierda y derecha

Page 129: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

129

kL, kR = Fracción de la longitud del claro donde actúa la carga concentrada desde el

soporte izquierdo o derecho.

Sabiendo que los apoyos 2 y 3 son los generados por los tirantes, debemos descomponer

estas reacciones en la dirección de los tirantes y en la dirección horizontal para así

conocer los esfuerzos a los que están solicitados.

Figura 3.44. Descomposición de fuerzas

• Teorema de los tres momentos

M1 = M4 = 0

:1 = 19750 N ∗ 10 m + 1304 N/m ∗ (10 m)�2 = �U���� � �

{O> = � → −19750 N − 13040 N + RI} = 0 → #1> = 1��?� � ↑

• Tramo 1-2-3

ML = M1 = 0 M2 = M2 MR = M3 = 262700 N m

LL = 20 m LR = 10 m

PL = 0 PR = 0

qL = 1568 N/m qR = 1438 N/m

kL = 0 kR = 0

0 + 2 ∗ M� ∗ (20 m + 10 m) − 262700 N m ∗ (10 m) = − 1568 N/m ∗ (20 m)I4

− 1438 N/m ∗ (10 m)I4

M2 = -14475 N m

Page 130: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Tramo 1-2

{:� � � → 14475 N m q

{O> � � → 14956 N q 31360

• Tramo 2-3

{:� � � → q 14475 N m#1> � 1���� � ↑

{O> � � → q14380 N 6

#�> � �8?�U � ↑

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

130

Figura 3.45. Tramo 1-2

q 31360 N ∗ 10 m 6 Rm} ∗ 20 m � 0 → #�>

31360 N 6 R�} � 0 → #�> � �U8�8 � ↑

Figura 3.46. Tramo 2-3

m 6 14380 N ∗ 5 m 6 262700 N m q RI} ∗ 10

32012 N 6 R�} � 0 → #�> � q��U1� � ↓

#�> � q���g � ↓ #1> � U8g��

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

�> � �8?�U � ↑

10 m � 0 →

U8g�� � ↑

Page 131: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Figura 3

En este caso cuando se presenta la carga de servicio en punta de pluma solamente

trabaja el tirante T3 (tracción), esto se debe a que en el tirante T

compresión, pero esto es falso ya que el tirante T

tirante T2 está sin tensión.

Y1 � 64802 Nsen 7º � �1��1�

#1< � 531735 N ∗ cos 7º �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

131

Figura 3.47. Diagrama de momentos

En este caso cuando se presenta la carga de servicio en punta de pluma solamente

(tracción), esto se debe a que en el tirante T2

compresión, pero esto es falso ya que el tirante T2 no se puede comprimir por lo tanto el

Y1 � #1>2� �

�1��1� �

#1< � Y1 ∗ �C2 �

� ������ �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

En este caso cuando se presenta la carga de servicio en punta de pluma solamente

se registra una

no se puede comprimir por lo tanto el

Page 132: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.3.1. CORDONES

En este caso con la carga máxima en punta de pluma, el cordón superior trabaja a

tracción, mientras que los cordones inferiores están solicitados a compresión y a

flexión.

Figura 3.48

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

132

En este caso con la carga máxima en punta de pluma, el cordón superior trabaja a

tracción, mientras que los cordones inferiores están solicitados a compresión y a

Figura 3.48. Ubicación de los cordones de pluma

Figura 3.49. Fuerzas actuantes

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

En este caso con la carga máxima en punta de pluma, el cordón superior trabaja a

tracción, mientras que los cordones inferiores están solicitados a compresión y a

Page 133: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

133

• Verificación global (resistencia)

3.9.3.1.1. CORDÓN SUPERIOR

�L� = O�5 ≤ �5�� (Y ��� ó�)

• Fuerza de tracción debido a la carga y peso propio (F1)

O� = :;

O� = 262700 N m(1,3 m − 0,0489 m − 0,0346 m) = 216000 N

• Esfuerzo

5 = 216000 N17500 N/cm� = ��, 18 ���

Por razones constructivas (espacios para la ubicación de las diagonales) seleccionamos

a través de la tabla de perfiles C.I.R.S.O.C. un perfil L 127 x 127 x 9,5 mm con un área

de 23,44 cm2.

�L� = 216000 N23,44 cm� = ?��� �/��� ≤ ����� �/���

3.9.3.1.2. CORDONES INFERIORES

�� LJ = O� + O1 + O8 5 ≤ �5�� (LC�B 2 ó�)

• Fuerza de compresión debido a la carga y peso propio (F2)

O� = :� �C �C�2 ∗ ;

O� = 262700 N m2 ∗ (1,3 m − 0,0489 m − 0,0346 m) = 108000 N

Page 134: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

134

• Fuerza de compresión debido a la fuerza de inercia (F3)

OJ� � � L� !� = γγγγ� ∗ L2 ∗ � ∗ ��2��� !� ∗ �

OJ� � � L� !� = 1,08 ∗ 1,33 ∗ 1,25 ∗ 1100 Kg ∗ 0,3 m/s� = 595 N

OJ� � � ]��� = γγγγ� ∗ L2 ∗ ��2�B��� 3 ��C 8 ∗ �

OJ� � � ]��� = 1,08 ∗ 1,33 ∗ �908 Kg ∗ 0,3 m/s� � = 390 N

: = OJ� � � ∗ �B���

:L� !� = 595 N ∗ 10 m = 5950 N m

:]��� = 390 N ∗ 5 m = 1950 N m

:YC3�� = :L� !� + :]���

:YC3�� = 5950 N m + 1950 N m = 7900 N m

:YC3�� = O1 ∗ �´B���

O1 = 7900 N m(1 m − (2 ∗ 0,0346 m) = 8490 N

• Fuerza de compresión generada por la acción del viento (F4)

O� �3C B��� 3 ��C 8 = �WX ]��� ∗ r8

O� �3C B��� 3 ��C 8 = 242 N/m ∗ 10 m = 2420 N

Page 135: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

135

: � O� �3C B��� 3 ��C 8 ∗ �B���

:� �3C = 2420 N ∗ 5 m = 12100 N m

:� �3C = O8 ∗ �´B���

O8 = 12100 N m(1 m − (2 ∗ 0,0346 m) = 13000 N

• Esfuerzo

5 = 108000 N + 8490 N + 13000 N17500 N/cm� = �, � ���

Por razones constructivas (espacios para la ubicación de las diagonales) seleccionamos

a través de la tabla de perfiles C.I.R.S.O.C. un perfil L 127 x 127 x 9,5 mm con un área

de 23,44 cm2.

�� LJ = 108000 N + 8490 N + 13000 N23,44 cm� = ���� � /��� ≤ ����� � / ���

• Flexión generada por el carro de pluma

Por otra parte los cordones inferiores están sometidos a flexión, la cual es producida por

la carga, como el carro no está ubicado sobre el anclaje 3 que es nuestra posición de

análisis, el estudio es independiente.

�� LJ = :L� C� ≤ �5��(O�� ó�)

Page 136: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

136

Utilizando el software Analysis of structural systems, se calcula el momento flector del

cordón (entre las diagonales laterales) de la pluma que flexiona por la carga.

Figura 3.50. Diagrama de flexión del carro

: � 998 N m = 99800 N cm

• Esfuerzo de flexión

� = 99800 N cm17500 N/cm� = �, � ��1

Recurriendo a la tabla de perfiles C.I.R.S.O.C. se selecciona un perfil L 127 x 127 x 9,5

mm con un módulo resistente de 38,51cm3.

�� LJ = 99800 N cm38,51 cmI = ��?� �/��� ≤ ����� �/���

• Verificación pandeo global (estabilidad)

3.9.3.1.3. CORDONES INFERIORES

�� LJ = O� + O1 + O8 5 ∗ $7 ≤ �5��

• Coeficiente global de pandeo ωG

Conocidas las secciones de los perfiles que forman la pluma, calculamos la esbeltez

mecánica global de la torre λG, para obtener el coeficiente global de pandeo ωG.

Page 137: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

137

• Esbeltez mecánica global λG

Utilizando la gráfica de ESTRUCTURAS METÁLICAS de G. R. TROGLIA y buscando

la geometría de la torre encontramos el valor de esbeltez mecánica λ1.

Resultando ser para nuestro caso:

D� � F ∗ G � ∗ 5! ∗ �1�C ∗ 5� ∗ � ∗ ;�

D� = π ∗ G 2 ∗ 3 ∗ 23,44 cm� ∗ (122,67 cm)I 1 ∗ 3,21 cm� ∗ 100 cm ∗ (130cm)� = 21,73

D� = � ∗ � 7

iG = (h * 1/3) - eX

iG = (130 cm * 1/3) – 3,46 cm = 39,87 cm

D� = 2 ∗ 1000 cm39,87 cm = 50,15

D7 = N(21,73)� + (50,15)� = 56 Con la esbeltez mecánica global λG, ingresamos a la siguiente tabla extraída del ACERO

DE LA CONSTRUCCIÓN, para obtener el coeficiente global de pandeo ωG.

El coeficiente global de pandeo ωG = 1,36

• Esfuerzo

5 = 108000 N + 8490 N + 13000 N17500 N/cm� ∗ 1,36 = �� ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 9,5 mm para

cada cordón inferior con un área de 23,44 cm2.

�� LJ = 108000 N + 8490 N + 13000 N23,44 cm� ∗ 1,36 = ���� � /��� ≤ ����� � / ���

Page 138: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

138

• Verificación pandeo local (estabilidad)

3.9.3.1.4. CORDONES INFERIORES

�� LJ = O� + O1 + O8 5 ∗ $ ≤ �5��

• Coeficiente local de pandeo ωe

Conocida la sección, la longitud del cordón entre los nudos, el radio de giro respecto

a los ejes secundarios de inercia, calculamos la esbeltez mecánica local de la pluma

λe para obtener el coeficiente local de pandeo ωe.

D = 100 cm2,43 cm = 41

Con la esbeltez mecánica local λe, ingresamos a la siguiente tabla extraída del ACERO

DE LA CONSTRUCCIÓN, para obtener el coeficiente global de pandeo ωe.

El coeficiente local de pandeo ωe = 1,19

• Esfuerzo

�� LJ = 108000 N + 8490 N + 13000 N23,44 cm� ∗ 1,19 = U��� �/��� ≤ ����� �/���

Page 139: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.3.2. DIAGONALES LATERALES

Las diagonales laterales están solicitadas a compresión por la acción de la componente

vertical de corte RY3 del tirante T

�Pr � � ∗• Esbeltez local λe

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

D � 0,75 ∗ 122,67 cm0,96 cm � El coeficiente local de pandeo

5 � 4 ∗ cos 21,44Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm

�Pr � 648024 ∗ cos 21,44 º ∗

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

139

DIAGONALES LATERALES

Las diagonales laterales están solicitadas a compresión por la acción de la componente

del tirante T3, ubicada en el anclaje 3 de la pluma.

Figura 3.51. Diagonales laterales

#1>∗ �C2 o ∗ � ∗ �C2 � ∗ 5 ∗ $ 9 �5��

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

� 96

El coeficiente local de pandeo ωe = 2,33

64802 N44 º ∗ cos 21,44 º ∗ 17500 N/cm� ∗ 2,33 � �

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm2.

64802 Ncos 21,44 º ∗ 3,21 cm� ∗ 2,33 � �1��� �/

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Las diagonales laterales están solicitadas a compresión por la acción de la componente

5��

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

�, � ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

/��� 9 �5��

Page 140: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.3.3. DIAGONALES INFERIORES

En este caso también las diagonales inferiores están solicitadas a compresión pero

por la acción de la fuerza del viento más la fuerza de inercia de ori

pluma y la carga.

�PJ

• Esbeltez local λe

D � 0,75 ∗ 132,75 cm0,96 cm �

El coeficiente local de pandeo

5 � 2 ∗ cosPor la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm

�Pr � 985 2 ∗ cos 45

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

140

DIAGONALES INFERIORES

En este caso también las diagonales inferiores están solicitadas a compresión pero

por la acción de la fuerza del viento más la fuerza de inercia de orientación de la

Figura 3.52. Diagonales inferiores

� OJ 6 O� � ∗ �C2 � ∗ 5 ∗ $ 9 �5��

� 104

El coeficiente local de pandeo ωe = 2,74

985 N 6 2420 Ncos 45 º ∗ 17500 N/cm� ∗ 2,74 � �, 1����

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm2.

N 6 2420 N45 º ∗ 3,21 cm� ∗ 2,74 � ��U� �/��� 9

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

En este caso también las diagonales inferiores están solicitadas a compresión pero

entación de la

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

�5��

Page 141: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.4. CASO II CARGA MÁXIMA DE SERVICIO EN ANCLAJE 3

(Ubicación del observador para el dimensionado del

Figura 3.53. Diagrama de carga máxima de servicio en anclaje 3

γγγγc = 1,08

Cs = 1,33

SL = [1,08 * (1,25 * 16000 N)] * 1,33 = 28728

SG Pluma tramo 1-2 = [1,08 * (1092 N/m)] * 1,33 = 1568,5 N/m

SG Pluma tramo 3 = [1,08 * (1001,2 N/m)] * 1,33 = 1438 N/m

SG Pluma tramo 4 = [1,08 * (908 N/m)] * 1,33 = 1304 N/m

• Teorema de los tres momentos

M1 = M4 = 0

:1 � 1304 N/m ∗ +10 m02

{O> � � → q13040 N 6

• Tramo 1-2-3

ML = M1 = 0 M

LL = 20 m L

PL = 0 P

qL = 1568 N/m

kL = 0 k

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

141

CASO II CARGA MÁXIMA DE SERVICIO EN ANCLAJE 3

(Ubicación del observador para el dimensionado del tramo 3 de pluma

3. Diagrama de carga máxima de servicio en anclaje 3

[γγγγc (SG + Ψ*SL)] * C s

[1,08 * (1,25 * 16000 N)] * 1,33 = 28728 N

[1,08 * (1092 N/m)] * 1,33 = 1568,5 N/m

[1,08 * (1001,2 N/m)] * 1,33 = 1438 N/m

* (908 N/m)] * 1,33 = 1304 N/m

Teorema de los tres momentos

0� � U���� � � RI} � 0 → #1> � �1�8� � ↑

= 0 M2 = M2 MR = M3

= 20 m LR = 10 m

= 0 PR = 28728 N

qR = 1438 N/m

0 kR = 1

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

CASO II CARGA MÁXIMA DE SERVICIO EN ANCLAJE 3

pluma: anclaje 2)

3. Diagrama de carga máxima de servicio en anclaje 3

3 = 65200 N m

Page 142: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

0 6 2 ∗ M� ∗ +20 m 6 10 m q28728 N ∗ +10 m0� ∗ +1

M2 = -47392 N m

• Tramo 1-2

{:� � � → 47392 N m q

{O> � � → 13310 N q 31360

• Tramo 2-3

{:� � � → q 47392 N m#1> � g?��, g � ↑

{O> � � → q14380 N 6

#�> � �11�� � ↑

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

142

m0 q 65200 N m ∗ +10 m0 �

1 q 1I0 q 1568 N/m ∗ +20 m0I4 q 1438 N/m

Figura 3.54. Tramo 1-2

q 31360 N ∗ 10 m 6 Rm} ∗ 20 m � 0 → #�>

31360 N 6 R�} � 0 → #�> � �g��� � ↑

Figura 3.55. Tramo 2-3

m 6 14380 N ∗ 5 m 6 65200 N m q RI} ∗ 10

8970,8 N 6 R�} � 0 → #�> � �8�?, � � ↓ #�> � �18�? � ↑ #1> �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

m ∗ +10 m0I4

�> � �11�� � ↑

10 m � 0 →

� ���1? � ↑

Page 143: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Figura 3.5

En esta grafica podemos observar que el diagrama de momentos flectores es igual al

diagrama de momentos que se

que en el presente caso el tensor T

los cordones presentan un estado de mayor compresión.

Y� � 23459 Nsen 10 º � �1��?�

#�< � 135095 N ∗ cos 10º

Y1 � 50739 Nsen 7º � 8�U18�

#1< � 406340 N ∗ cos 7º �

3.9.4.1. CORDONES

En el caso con la carga máxima en el anclaje 3 de la pluma, el cordón superior trabaja a

compresión, mientras que los cordones inferiores est

flexión.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

143

Figura 3.56. Diagrama de momentos

En esta grafica podemos observar que el diagrama de momentos flectores es igual al

diagrama de momentos que se presenta con el peso propio de la pluma. Esto se debe a

que en el presente caso el tensor T3 absorve toda la carga, pero la diferencia esta en que

los cordones presentan un estado de mayor compresión.

�1��?� �

� �11�8� �

8�U18� �

� 8�1�1U �

En el caso con la carga máxima en el anclaje 3 de la pluma, el cordón superior trabaja a

compresión, mientras que los cordones inferiores están solicitados a compresión y a

Figura 3.57. Fuerzas actuantes

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

En esta grafica podemos observar que el diagrama de momentos flectores es igual al

presenta con el peso propio de la pluma. Esto se debe a

absorve toda la carga, pero la diferencia esta en que

En el caso con la carga máxima en el anclaje 3 de la pluma, el cordón superior trabaja a

án solicitados a compresión y a

Page 144: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

144

• Verificación global (resistencia)

3.9.4.1.1. CORDÓN SUPERIOR

�L� � O� − O�5 ≤ �5�� (LC�B 2 ó�)

• Fuerza de compresión debido a la carga (F1)

O� = #1<1 �C �C�2

O� = 413236 N3 = 137745 N

• Fuerza de tracción debido al peso propio (F2)

:� = 47392 N m

O� = :;

O� = 47392 N m(1,3 m − 0,0489 m − 0,0346 m) = 39000 N

• Esfuerzo

5 = 137745 N − 39000 N17500 N/cm� = U ���

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 127 x 127 x 9,5 mm con un

área de 23,44 cm2, esto se debe a espacios para la ubicación de las diagonales.

�L� = 137745 N − 39000 N23,44 cm� = 8��� �/��� ≤ ����� �/���

Page 145: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

145

3.9.4.1.2. CORDONES INFERIORES

�LJ � O� 6 O� 6 O1 + O8 5 ≤ �5��(LC�B 2 ó�)

• Fuerza de compresión debido a la carga (F1)

O� = 137745 N

• Fuerza de compresión debido al peso propio (F2)

O� = 47392 N m2 ∗ (1,3 m − 0,0489 m − 0,0346 m) = 19500 N

• Fuerza de compresión debido a la fuerza de inercia (F3)

OJ� � � L� !� = 1,08 ∗ 1,33 ∗ 1,25 ∗ 1600 Kg ∗ 0,3 m/s� = 860 N OJ� � � ]��� = 1,08 ∗ 1,33 ∗ (�908 Kg + 1001 Kg) ∗ 0,3 m/s� � = 855 N

:L� !��]��� = (860 N + 855 N) ∗ 10 m = 17150 N m

O1 = 17150 N m(1 m − (2 ∗ 0,0346 m) = 18425 N

• Fuerza de compresión generada por la acción del viento (F4)

O� �3C B��� 3 ��C 1�8 = 242 N/m ∗ 20 m = 4840 N

:� �3C = 4840 N ∗ 10 m = 48400 N m

O8 = 48400 N m(1 m − (2 ∗ 0,0346 m) = 52000 N

Page 146: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

146

• Esfuerzo

5 � 137745 N + 19500 N + 18425 N + 52000 N 17500 N/cm� = �1 ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 9,5 mm para

cada cordón inferior con un área de 23,44 cm2.

�LJ = 137745 N + 19500 N + 18425 N + 52000 N 23,44 cm� = ?��� �/��� ≤ ����� �/���

Page 147: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

147

• Flexión generada por el carro de pluma

Nuevamente los cordones inferiores están sometidos a flexión, la cual es producida por

la carga, como el carro no está ubicado sobre el anclaje 2 que es nuestra posición de

análisis, el estudio es independiente.

�� LJ = :L� C� ≤ �5��(O�� ó�)

Figura 3.58. Diagrama de flexión del carro

: = 1260 N m = 126000 N cm

• Esfuerzo de flexión

� = 126000 N cm17500 N/cm� = �, ���1

Recurriendo a la tabla de perfiles C.I.R.S.O.C. se selecciona un perfil L 127 x 127 x 9,5

mm con un módulo resistente de 38,51cm3.

�� LJ = 126000 N cm38,51 cmI = 1��� �/��� ≤ ����� �/���

Page 148: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

148

• Verificación pandeo global (estabilidad)

3.9.4.1.3. CORDÓN SUPERIOR

�L� � O� − O�5 ∗ $7 ≤ �5��

El coeficiente global de pandeo ωG = 1,36

• Esfuerzo

5 = 137745 N − 39000 N17500 N/cm� ∗ 1,36 = �, U ���

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 127 x 127 x 9,5 mm con un

área de 23,44 cm2, esto se debe a espacios para la ubicación de las diagonales.

�L� = 137745 N − 39000 N23,44 cm� ∗ 1,36 = ��1� �/��� ≤ ����� �/���

3.9.4.1.4. CORDONES INFERIORES

�LJ = O� + O� + O1 + O8 5 ∗ $7 ≤ �5��

• Esfuerzo

5 = 137745 N + 19500 N + 18425 N + 52000 N 17500 N/cm� ∗ 1,36 = 1�, U ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 9,5 mm para

cada cordón inferior con un área de 23,44 cm2.

� LJ = 137745 N + 19500 N + 18425 N + 52000 N 23,44 cm� ∗ 1,36 = �1��� �/��� ≤ ����� �/���

Page 149: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

149

• Verificación pandeo local (estabilidad)

3.9.4.1.5. CORDÓN SUPERIOR

�L� � O� − O�5 ∗ $ ≤ �5��

El coeficiente local de pandeo ωG = 1,19

• Esfuerzo

5 = 137745 N − 39000 N17500 N/cm� ∗ 1,19 = U, � ���

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 127 x 127 x 9,5 mm con un

área de 23,44 cm2, esto se debe a espacios para la ubicación de las diagonales.

�L� = 137745 N − 19500 N23,44 cm� ∗ 1,19 = ���� �/��� ≤ ����� �/���

3.9.4.1.6. CORDONES INFERIORES

�LJ = O� + O� + O1 + O8 5 ∗ $ ≤ �5��

• Esfuerzo

5 = 137745 N + 19500 N + 18425 N + 52000 N 17500 N/cm� ∗ 1,19 = ��, � ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 9,5 mm para

cada cordón inferior con un área de 23,44 cm2

.

� LJ = 137745 N + 19500 N + 18425 N + 52000 N 23,44 cm� ∗ 1,19 = ���U� �/��� ≤ ����� �/���

Page 150: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.4.2. DIAGONALES LATERALES

También en esta situación las diagonales laterales están solicitadas a compresión por la

acción de la componente vertical R

�Pr � � ∗• Esbeltez local λe

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

D � 0,75 ∗ 122,67 cm0,96 cm � El coeficiente local de pandeo

5 � 4 ∗ cos 21,44 Por la tabla de perfiles C.I.R.S.O.C.

cada cordón inferior con un área de 3,21 cm

�Pr � 507394 ∗ cos 21,44 º ∗

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

150

DIAGONALES LATERALES

También en esta situación las diagonales laterales están solicitadas a compresión por la

acción de la componente vertical RY3 del tirante T3, ubicado en el anclaje 3 de la pluma.

Figura 3.59. Diagonales laterales

#1>∗ �C2 o ∗ � ∗ �C2 � ∗ 5 ∗ $ 9 �5��

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

� 96

El coeficiente local de pandeo ωe = 2,33

50739 N º ∗ cos 21,44 º ∗ 17500 N/cm� ∗ 2,33 � �,

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm2.

50739 Ncos 21,44 º ∗ 3,21 cm� ∗ 2,33 � ��U1� �/

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

También en esta situación las diagonales laterales están solicitadas a compresión por la

, ubicado en el anclaje 3 de la pluma.

5��

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

, ?� ���

seleccionamos un perfil L 51 x 51 x 3,2 mm para

/��� 9 �5��

Page 151: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.4.3. DIAGONALES INFERIORES

En este caso también las diagonales inferiores est

por la acción de la fuerza del viento más la fuerza de inercia de orientación de la

pluma y la carga.

�PJ

• Esbeltez local λe

D � 0,75 ∗ 132,75 cm0,96 cm �

El coeficiente local de pandeo

5 � 2 ∗ cosPor la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de

�Pr � 17152 ∗ cos 45

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

151

DIAGONALES INFERIORES

En este caso también las diagonales inferiores están solicitadas a compresión pero

por la acción de la fuerza del viento más la fuerza de inercia de orientación de la

Figura 3.60. Diagonales inferiores

� OJ 6 O� � ∗ �C2 � ∗ 5 ∗ $ 9 �5��

� 104

El coeficiente local de pandeo ωe = 2,74

1715 N 6 4840 Ncos 45 º ∗ 17500 N/cm� ∗ 2,74 � �, �� ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm2.

1715 N 6 4840 N45 º ∗ 3,21 cm� ∗ 2,74 � 1?U� �/��� 9 �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

án solicitadas a compresión pero

por la acción de la fuerza del viento más la fuerza de inercia de orientación de la

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

�5��

Page 152: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.5. CASO III CARGA MÁXIMA DE SERVICIO A 10 METROS

(Ubicación del observador para el dimensionado del

Figura 3.61. Diagrama de carga máxima de

γγγγc = 1,08

Cs = 1,33

SL = [1,08 * (1,25 * 26000 N)] * 1,33 = 46683

SG Pluma tramo 1-2 = [1,08 * (1092 N/m)] * 1,33 = 1568,5 N/m

SG Pluma tramo 3 = [1,08 * (1001,2 N/m)] * 1,33 = 1438 N/m

SG Pluma tramo 4 = [1,08 * (908 N/m)] * 1,33 = 1304 N/m

• Teorema de los tres momentos

M1 = M4 = 0

:1 � 1304 N/m ∗ +10 m02

{O> � � → q13040 N 6

• Tramo 1-2-3

ML = M1 = 0 M

LL = 20 m L

PL = 46683 N

qL = 1568 N/m

kL = 0,5

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

152

CASO III CARGA MÁXIMA DE SERVICIO A 10 METROS

(Ubicación del observador para el dimensionado del tramo 2 de pluma

1. Diagrama de carga máxima de servicio a 10 metros

[γγγγc (SG + Ψ*SL)] * C s

[1,08 * (1,25 * 26000 N)] * 1,33 = 46683 N

[1,08 * (1092 N/m)] * 1,33 = 1568,5 N/m

[1,08 * (1001,2 N/m)] * 1,33 = 1438 N/m

* (908 N/m)] * 1,33 = 1304 N/m

Teorema de los tres momentos

0� � U���� � � RI} � 0 → #1> � �1�8� � ↑

= 0 M2 = M2 MR = M3

= 20 m LR = 10 m

PR = 0

qR = 1438 N/m

kR = 0

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

CASO III CARGA MÁXIMA DE SERVICIO A 10 METROS

pluma: carga)

servicio a 10 metros

3 = 65200 N m

Page 153: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

0 6 2 ∗ M� ∗ +20 m 6 10 m q46683 N ∗ +20 m0� ∗ +0

M2 = -164099 N m

• Tramo 1-2

{:� � � → 164099 N m→ #�> � 1�g�� � ↑

{O> � � → 30817 N q 31360

• Tramo 2-3

{:� � � → q 164099 N#1> � q���� � ↓

{O> � � → q14380 N q

#�> � 1�g�� � ↑

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

153

m0 q 65200 N m ∗ +10 m0 �

0,5 q 0,5I0 q 1568 N/m ∗ +20 m0I4 q 1438

Figura 3.62. Tramo 1-2

m q 31360 N ∗ 10 m q 46683 N ∗ 10 m 6 R

31360 N q 46683 N 6 R�} � 0 → #�> � 8���U

Figura 3.63. Tramo 2-3

N m 6 14380 N ∗ 5 m 6 65200 N m q RI} ∗ 10

2700 N 6 R�} � 0 → #�> � ���g� � ↑

#�> � U81�U � ↑ #1> � ��18�

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

1438 N/m ∗ +10 m0I4

Rm} ∗ 20 m � 0

8���U � ↑

10 m � 0 →

��18� � ↑

Page 154: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

:��� � 30817

Figura 3.6

Y� � 64306 Nsen 10º � 1��1�1

Y1 � 10340 Nsen 7º � g8g8� �

3.9.5.1. CORDONES

En el caso con la carga máxima a diez metros de la torre, el cordón superior de la pluma

trabaja a tracción, mientras que

a flexión. La fuerza de inercia es solo del peso propio de la pluma (tramos 3 y 4) y no de

la carga, esto se debe a que el observador ubicado sobre ella.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

154

30817 N ∗ 10 m q 15685 N ∗ 5 m � �1���� �

Figura 3.64. Diagrama de momentos

1 � → #�< � 370323 N ∗ cos 10º � 1U8���

� → #1< � 84845 N ∗ cos 7º � g8��� �

En el caso con la carga máxima a diez metros de la torre, el cordón superior de la pluma

trabaja a tracción, mientras que los cordones inferiores están solicitados a compresión y

a flexión. La fuerza de inercia es solo del peso propio de la pluma (tramos 3 y 4) y no de

la carga, esto se debe a que el observador ubicado sobre ella.

Figura 3.65. Fuerzas actuantes

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

� �

1U8��� �

En el caso con la carga máxima a diez metros de la torre, el cordón superior de la pluma

los cordones inferiores están solicitados a compresión y

a flexión. La fuerza de inercia es solo del peso propio de la pluma (tramos 3 y 4) y no de

Page 155: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

155

• Verificación global (resistencia)

3.9.5.1.1. CORDÓN SUPERIOR

�L� � O� + O�5 ≤ �5�� (LC�B 2 ó�)

• Fuerza de compresión debido a la carga (F1)

O� = #�< + #1 < 1 �C �C�2

O� = 364700 N + 84212 N3 = 149640 N

• Fuerza de compresión al peso propio (F2)

O� = 230000 N m(1,3 m − 0,0489 m − 0,0346 m) = 189067 N

• Esfuerzo

5 = 149640 N + 189067 N17500 N/cm� = �?, 1� ���

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 127 x 127 x 9,5 mm con un

área de 23,44 cm2, esto se debe a espacios para la ubicación de las diagonales.

�L� = 149640N + 189067 N23,44 cm� = �88�� �/��� ≤ ����� �/���

Page 156: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

156

3.9.5.1.2. CORDONES INFERIORES

En los cordones inferiores se observan que uno está sometido a flexo tracción y el otro

flexo compresión, estas mismas son producidas por la combinación de la flexión de la

carga en el carro ubicado sobre el punto de estudio y la tracción o compresión que se

presentan en los cordones, por tal motivo se presenta un análisis combinado de

tensiones, esto se debe a que el observador está ubicado sobre la carga.

�LJ � :L� C� + O� + O� + O1 + O8 5 ≤ �5��

• Flexión generada por el carro de pluma

Utilizando el software Analysis of structural systems, se calcula el momento flector del

cordón (entre las diagonales laterales) de la pluma que flexiona por la carga.

Figura 3.66. Diagrama de flexión del carro

En este caso no contemplamos los pesos propios ya que los mismos son tomados en

cuenta en el cálculo de la reacciones, hacemos esto para no sumarlos dos veces a la

ecuación final.

: = 1902 N m = 190200 N cm

• Fuerza de tracción y compresión debido a la carga (F1)

O� = 149640 N

• Fuerza de tracción y compresión debido al peso propio (F2)

O� = 230000 N m2 ∗ (1,3 m − 0,0489 m − 0,0346 m) = 94535 N

Page 157: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

157

• Fuerza de tracción compresión debido a la fuerza de inercia (F3)

Tenemos en cuenta solamente la fuerza de inercia de la pluma, la fuerza de inercia de la

carga no la tomamos por estar ubicado sobre la carga.

OJ� � � ]��� = 1,08 ∗ 1,33 ∗ (�908 Kg + 1001 Kg + 1092 Kg) ∗ 0,3 m/s� � = 1295 N

:]��� = 1295 N ∗ 15 m = 19425 N m

O1 = 19425 N m(1 m − (2 ∗ 0,0346 m) = 20870 N

• Fuerza de tracción y compresión generada por la acción del viento (F4)

O� �3C B��� 3 ��C 1�8 = 242 N/m ∗ 30 m = 7260 N

:� �3C = 7260 N ∗ 15 m = 108900 N m

O8 = 108900 N m(1 m − (2 ∗ 0,0346 m) = 117000 N

• Esfuerzo de flexo tracción cordón inferior 1

� LJ = 190200 N cm50,62 cmI + 149640 N + 94535 N + 20870 N + 117000 N 30,86 cm� = �U�8� �/��� ≤ ����� �/���

• Esfuerzo de flexo tracción cordón inferior 2

� LJ = 190200 N cm50,62 cmI + 149640 N + 94535 N − 20870 N − 117000 N 30,86 cm� = ���� �/��� ≤ ����� �/���

Analizando los resultados de los esfuerzos, comprobamos que un cordón inferior esta

traccionado, mientras que el otro también lo está pero en menor grado. Elegimos un

perfil L 127 x 127 x 12,7.

Page 158: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

158

• Verificación pandeo global (estabilidad)

3.9.5.1.3. CORDÓN SUPERIOR

�L� � O� + O�5 ∗ $7 ≤ �5��

El coeficiente global de pandeo ωG = 1,36

5 = 149640 N + 189067 N17500 N/cm� ∗ 1,36 = �1, � ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 9,5 mm para

cada cordón inferior con un área de 23,44 cm2.

�L� = 149640 N + 189067 N23,44 cm� ∗ 1,36 = ��1�� �/��� ≤ ����� �/���

• Verificación pandeo local (estabilidad)

3.9.5.1.4. CORDÓN SUPERIOR

�L� = O� + O�5 ∗ $ ≤ �5��

El coeficiente global de pandeo ωG = 1,19

5 = 149640 N + 189067 N17500 N/cm� ∗ 1,19 = �1, �1 ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 9,5 mm para

cada cordón inferior con un área de 23,44 cm2.

�L� = 149640 N + 189067 N23,44 cm� ∗ 1,19 = ����� �/��� ≤ ����� �/���

Page 159: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.5.2. DIAGONALES LATERALES

Las diagonales laterales del primer y segundo tramo están solicitadas a corte por la

acción de la componente vertical del tirante T

�Pr � � ∗• Esbeltez local λe

Hay que tener en cuenta que las diagonales al estar

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

D � 0,75 ∗ 122,67 cm0,96 cm � El coeficiente local de pandeo

5 � 4 ∗ cos 21,44Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm

�Pr � 643064 ∗ cos 21,44 º ∗

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

159

DIAGONALES LATERALES

Las diagonales laterales del primer y segundo tramo están solicitadas a corte por la

n de la componente vertical del tirante T2, ubicado en el anclaje 2 de la pluma.

Figura 3.67. Diagonales laterales

#�>∗ �C2 o ∗ � ∗ �C2 � ∗ 5 ∗ $ 9 �5��

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

� 96

El coeficiente local de pandeo ωe = 2,33

64306 N44 º ∗ cos 21,44 º ∗ 17500 N/cm� ∗ 2,33 � �

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm2.

64306 Ncos 21,44 º ∗ 3,21 cm� ∗ 2,33 � �18�� �/

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Las diagonales laterales del primer y segundo tramo están solicitadas a corte por la

, ubicado en el anclaje 2 de la pluma.

5��

soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

�, � ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

/��� 9 �5��

Page 160: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.5.3. DIAGONALES INFERIORES

En este caso también las diagonales inferiores están solicitadas a compresión pero

por la acción de la fuerza del viento más la fuerza de inercia de orientación de la

pluma y la carga.

�PJ

• Esbeltez local λe

D � 0,75 ∗ 132,75 cm0,96 cm �

El coeficiente local de pandeo

5 � 2 ∗ cosPor la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm

�Pr � 12952 ∗ cos 45

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

160

DIAGONALES INFERIORES

también las diagonales inferiores están solicitadas a compresión pero

por la acción de la fuerza del viento más la fuerza de inercia de orientación de la

Figura 3.68. Diagonales inferiores

� OJ 6 O� � ∗ �C2 � ∗ 5 ∗ $ 9 �5��

� 104

El coeficiente local de pandeo ωe = 2,74

1295 N 6 7260 Ncos 45 º ∗ 17500 N/cm� ∗ 2,74 � �, ?8 ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cordón inferior con un área de 3,21 cm2.

1295 N 6 7260 N45 º ∗ 3,21 cm� ∗ 2,74 � ��U� �/��� 9 �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

también las diagonales inferiores están solicitadas a compresión pero

por la acción de la fuerza del viento más la fuerza de inercia de orientación de la

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

�5��

Page 161: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.6. CASO IV CARGA MÁXIMA DE SERVICIO A 10 METROS

(Ubicación del observador para el dimensionado del tramo 2 de pluma:

Figura 3.69. Diagrama de carga máxima de servicio a 10 metros

Y� � 64306 Nsen 10º � 1��1�1

Y1 � 10340 Nsen 7º � g8g8� �

3.9.6.1. CORDONES

Este caso es idéntico al anterior con la carga máxima a diez metros de la torre,

solamente se diferencia que el observador se ubica en el anclaje 1 de la pluma, el cordón

superior de la pluma trabaja a compresión, mientras que los cordones inferiores están

solicitados a compresión y tracción.

El momento resultante en el anclaje 1 es cero, por lo tanto las reacciones de la carga

comprimen el anclaje.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

161

CASO IV CARGA MÁXIMA DE SERVICIO A 10 METROS

(Ubicación del observador para el dimensionado del tramo 2 de pluma:

9. Diagrama de carga máxima de servicio a 10 metros

1��1�1 � → #�< � 370323 N ∗ cos 10º � 1U8���

� → #1< � 84845 N ∗ cos 7º � g8��� �

Este caso es idéntico al anterior con la carga máxima a diez metros de la torre,

solamente se diferencia que el observador se ubica en el anclaje 1 de la pluma, el cordón

superior de la pluma trabaja a compresión, mientras que los cordones inferiores están

solicitados a compresión y tracción.

El momento resultante en el anclaje 1 es cero, por lo tanto las reacciones de la carga

Figura 3.70. Fuerzas actuantes

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

CASO IV CARGA MÁXIMA DE SERVICIO A 10 METROS

(Ubicación del observador para el dimensionado del tramo 2 de pluma: anclaje 1)

9. Diagrama de carga máxima de servicio a 10 metros

1U8��� �

Este caso es idéntico al anterior con la carga máxima a diez metros de la torre,

solamente se diferencia que el observador se ubica en el anclaje 1 de la pluma, el cordón

superior de la pluma trabaja a compresión, mientras que los cordones inferiores están

El momento resultante en el anclaje 1 es cero, por lo tanto las reacciones de la carga

Page 162: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

162

• Verificación global (resistencia)

3.9.6.1.1. CORDÓN SUPERIOR

�L� � O�5 ≤ �5�� (LC�B 2 ó�)

• Fuerza de compresión debido a la carga (F1)

O� = #�< + #1 < 1 �C �C�2

O� = 364700 N + 84212 N3 = 149640 N

• Esfuerzo

5 = 149640 N17500 N/cm� = g, � ���

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 127 x 127 x 9,5 mm con un

área de 23,44 cm2.

�L� = 149640 N23,44 cm� = U1g� �/��� ≤ ����� �/���

3.9.6.1.2. CORDONES INFERIORES

�LJ = O� + O1 + O8 5 ≤ �5��(LC�B 2 ó�)

• Fuerza de compresión debido a la carga (F1)

O� = 149640 N

Page 163: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

163

• Fuerza de compresión debido a la fuerza de inercia (F3)

OJ� � � L� !� = 1,08 ∗ 1,33 ∗ 1,25 ∗ 2600 Kg ∗ 0,3 m/s� = 1400 N

OJ� .]��� = 1,08 ∗ 1,33 ∗ (�908 Kg + 1001 Kg + 2 ∗ 1092 kg) ∗ 0,3 m/s� � = 1765 N

:L� !� = 1400 N ∗ 10 m = 14000 N m

:]��� = 1765 N ∗ 20 m = 35300 N m

:YC3�� = 14000 N m + 35300 N m = 49300 N m

O1 = 49300 N m(1 m − (2 ∗ 0,0346 m) = 52965 N

• Fuerza de compresión generada por la acción del viento (F4)

O� �3C B��� 3 ��C 1�8 = 242 N/m ∗ 40 m = 9680 N

:� �3C = 9680 N ∗ 20 m = 193600 N m

O8 = 193600 N m(1 m − (2 ∗ 0,0346 m) = 207995 N

• Esfuerzo

5 = 149640 N + 52965 N + 207995 N17500 N/cm� = �1, 8 ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 12,7 mm

para cada cordón inferior con un área de 30,86 cm2.

� LJ = 149640 N + 52965 N + 207995 N30,86 cm� = �11�� �/��� ≤ ����� �/���

Page 164: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

164

• Flexión generada por el carro de pluma

En esta situación como en otros casos anteriores los cordones inferiores están sometidos

a flexión, la cual es producida por la carga, como el carro no está ubicado sobre el

anclaje 1 que es nuestra posición de análisis, el estudio es independiente.

�� LJ = :L� C� ≤ �5��(O�� ó�)

Figura 3.71. Diagrama de flexión del carro

: = 1980 N m = 198000 N cm

• Esfuerzo de flexión

� = 198000 N cm17500 N/cm� = ��, 1��1

Recurriendo a la tabla de perfiles C.I.R.S.O.C. se selecciona un perfil L 127 x 127 x

12,7 mm con un módulo resistente de 50,62 cm3.

�� LJ = 198000 N cm50,62 cmI = 1?��/��� ≤ ����� �/���

Page 165: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

165

• Verificación pandeo global (estabilidad)

3.9.6.1.3. CORDÓN SUPERIOR

�L� � O�5 ∗ $7 ≤ �5�� El coeficiente global de pandeo ωG = 1,36

5 = 149640 N17500 N/cm� ∗ 1,36 = ��, U ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 9,5 mm para

cada cordón inferior con un área de 23,44 cm2.

�L� = 149640 N23,44 cm� ∗ 1,36 = gUg� �/��� ≤ ����� �/��� 3.9.6.1.4. CORDONES INFERIORES

�LJ = O� + O1 + O8 5 ∗ $7 ≤ �5��

• Esfuerzo

5 = 149640 N + 52965 N + 207995 N17500 N/cm� ∗ 1,36 = 1�, ? ���

� LJ = 149640 N + 52965 N + 207995 N30,86 cm� ∗ 1,36 = �g�?� �/��� ≤ ����� �/���

Podemos observar que la tensión de trabajo es superior a la tensión admisible del

material, pero como sabemos que las cargas están mayoradas (nunca se alcanzaran en la

realidad) y los valores de las tensiones son próximos, tal situación puede ser aceptada

sin mayores inconvenientes en la estructura.

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 12,7 mm

para cada cordón inferior con un área de 30,86 cm2.

Page 166: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

166

• Verificación pandeo local (estabilidad)

3.9.6.1.5. CORDÓN SUPERIOR

�L� � O�5 ∗ $ ≤ �5�� El coeficiente global de pandeo ωG = 1,19

5 = 149640 N17500 N/cm� ∗ 1,19 = �� ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 9,5 mm para

cada cordón inferior con un área de 23,44 cm2.

�L� = 149640 N23,44 cm� ∗ 1,19 = �U�� �/��� ≤ ����� �/���

3.9.6.1.6. CORDONES INFERIORES

�LJ = O� + O� + O1 + O8 5 ∗ $ ≤ �5��

• Esfuerzo

5 = 149640 N + 52965 N + 207995 N17500 N/cm� ∗ 1,19 = �g ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 127 x 127 x 12,7 mm

para cada cordón inferior con un área de 30,86 cm2.

� LJ = 149640 N + 52965 N + 207995 N30,86 cm� ∗ 1,19 = ��g1� �/��� ≤ ����� �/���

Page 167: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.9.6.2. DIAGONALES LATERALES

Ídem al caso anterior. 3.9.6.3. DIAGONALES INFERIORES

En este caso también las diagonales inferiores están solicitadas a compresión pero

por la acción de la fuerza del

pluma y la carga.

�PJ

• Esbeltez local λe

D � 0,75 ∗ 132,75 cm0,96 cm �

El coeficiente local de pandeo

5 � 2 ∗ cosPor la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm

�Pr � 31652 ∗ cos 45

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

167

DIAGONALES LATERALES

DIAGONALES INFERIORES

En este caso también las diagonales inferiores están solicitadas a compresión pero

por la acción de la fuerza del viento más la fuerza de inercia de orientación de la

Figura 3.72. Diagonales inferiores

� OJ 6 O� � ∗ �C2 � ∗ 5 ∗ $ 9 �5��

� 104

El coeficiente local de pandeo ωe = 2,74

3165 N 6 9680 Ncos 45 º ∗ 17500 N/cm� ∗ 2,74 � �, 8� ���

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

cada cordón inferior con un área de 3,21 cm2.

3165 N 6 9680 N45 º ∗ 3,21 cm� ∗ 2,74 � ���� �/��� 9 �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

En este caso también las diagonales inferiores están solicitadas a compresión pero

viento más la fuerza de inercia de orientación de la

Por la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 51 x 51 x 3,2 mm para

�5��

Page 168: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.10. CÁLCULO DE LOS ELEMENTOS DE LA CONTRAPLUMA

Los cordones de la contrapluma estan solicitados a compresión, mientras que las

diagonales inferiores trabajan a corte.

Para el caso citado, se calcularán las reacciones, los momentos

cortantes y normales para después una vez conocidos los esfuerzos máximos, poder

evaluar la combinación de las solicitaciones en los puntos más desfavorables y así

comprobar y dimensionar los elementos que conforman la contrapluma.

3.10.1. ÚNICO CASO (ubicación observador sobre el anclaje 1)

Figura 3.7

γγγγc = 1,08

Cs = 1,33

SG Contrapluma = [1,08 * (846

SG Contrapeso = 41260 N/m

• Teorema de los tres momentos

M1 = M6 = 0

• Tramo 6-5-1

ML = M6 = 0 M

LL = 3,5 m

PL = 0

qL = 41260 N/m

kL = 0

0 6 2 ∗ M� ∗ +3,5 m 6 7 mM5 = -26021 N m

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

168

CÁLCULO DE LOS ELEMENTOS DE LA CONTRAPLUMA

contrapluma estan solicitados a compresión, mientras que las

diagonales inferiores trabajan a corte.

Para el caso citado, se calcularán las reacciones, los momentos flectores, esfuerzos

cortantes y normales para después una vez conocidos los esfuerzos máximos, poder

evaluar la combinación de las solicitaciones en los puntos más desfavorables y así

comprobar y dimensionar los elementos que conforman la contrapluma.

ÚNICO CASO (ubicación observador sobre el anclaje 1)

Figura 3.73. Diagrama de carga de contrapluma

[γγγγc (SG)] * C s

846 N/m)] * 1,33 = 1215 N/m

Teorema de los tres momentos

= 0 M5 = M5 MR = M1

m LR = 7 m

= 0 PR = 0

qR = 1215

0 kR = 0

m0 6 0 � q 41260 N/m ∗ +3,5 m0I4 q 1215

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

CÁLCULO DE LOS ELEMENTOS DE LA CONTRAPLUMA

contrapluma estan solicitados a compresión, mientras que las

flectores, esfuerzos

cortantes y normales para después una vez conocidos los esfuerzos máximos, poder

evaluar la combinación de las solicitaciones en los puntos más desfavorables y así

= 0

m

1215 N/m

1215 N/m ∗ +7 m0I4

Page 169: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Tramo 6-5

{:� � � → 26201 N m q

→ #U> � U8��� � ↑

{O> � � → 64720 N q 4252

• Tramo 5-1

{:� � � → q 26201 N m {O> � � → 510 N q 8505

#U> � U8��� � ↑

:�,8� � 64720N ∗ 1,4 m q

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

169

Figura 3.74. Tramo 6-5

q 4252 N ∗ 1,75 m q 140160 N ∗ 1,75 m 6

4252 N q 140160 N 6 R�} � 0 → #�> � �?U?�

Figura 3.75. Tramo 5-1

m 6 8505 N ∗ 3,5 m q Rm} ∗ 7 m � 0 → #�>8505 N 6 R�} � 0 → #�> � �??� � ↑

#�> � g�Ug� � ↑ #�> � q

q 1701 N ∗ 0,7 m q 56065 N ∗ 0,7m � �����

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

R�} ∗ 3,5 m � 0

�?U?� � ↑

�> � ��� � ↑

q��� � ↑

����� � �

Page 170: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Figura 3.7

YU � 64720 Nsen 24º � 159120

Y´U � 159120 N2 ∗ cos 3,6 º � 79717

#U< � 79717 N ∗ cos 24º �

Y� � 87685 Nsen 33º � 161000

Y´� � 161000 N2 ∗ cos 5,26 º � 80840

#�< � 80840 N ∗ cos 33º �

3.10.1.1. CORDONES

Los cordones que forman parte de la contrapluma están solicitados, en su peor

condición a compresión.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

170

Figura 3.76. Diagrama de momentos

N

79717 N

� ��g�� �

N

80840 N

� U�g�� �

CORDONES

Los cordones que forman parte de la contrapluma están solicitados, en su peor

Figura 3.77. Fuerzas actuantes

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Los cordones que forman parte de la contrapluma están solicitados, en su peor

Page 171: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

171

• Verificación global (resistencia)

�L � O� + O� + O15 ≤ �5�� (LC�B 2 ó�)

• Fuerza de compresión debido a contrapeso (F1)

O� = #�< + #U < � �C �C�2

O� = 67800 N + 72825 N2 = 70315 N

• Fuerza de compresión debido a la fuerza de inercia (F2)

OJ� � � LC�3 �B2C = 1,08 ∗ 1,33 ∗ 14016 Kg ∗ 0,3 m/s� = 6040 N

OJ� � � �C�3 �B��� = 1,08 ∗ 1,33 ∗ �888,6 Kg ∗ 0,3 m/s� � = 383 N

:LC�3 �B2C = 6040 N ∗ 8,75 m = 52850 N m

:LC�3 �B��� = 383 N ∗ 5,25 m = 2010 N m

:YC3�� = 52850 N m + 2010 N m = 54860 N m

O� = 54860 N m(1,4 m − (2 ∗ 0,042 m) = 41690 N

Page 172: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

172

• Fuerza de compresión generada por la acción del viento (F3)

O� �3C LC�3 �B��� = 2385 N

:� �3C = 2385 N ∗ 8,75 m = 20870 N m

O1 = 20870 N m(1,4 m − (2 ∗ 0,042 m) = 15860 N

• Esfuerzo

5 = 70315 N + 41690 N + 15860 N17500 N/cm� = �, 1 ���

Por razones constructivas (espacios para la ubicación de las diagonales) seleccionamos

a través de la tabla de perfiles C.I.R.S.O.C. un perfil L 152 x 152 x 12,7 mm, para cada

cordón inferior con un área de 37,27 cm2.

�� = 70315 N + 41690 N + 15860 N37,27 cm� = 181� �/��� ≤ ����� �/���

• Verificación pandeo global (estabilidad)

�L = O� + O� + O15 ∗ $7 ≤ �5�� • Coeficiente global de pandeo ωG

D� = π ∗ G 3 ∗ 37,27 cm� ∗ (156,17 cm)I 1 ∗ 9,43 cm� ∗ 100 cm ∗ (140cm)� = 15

D� = 2 ∗ 1050 cm (140 cm − (2 ∗ 4,2 cm)) = 15,95

Page 173: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

173

D7 � N(15)� + (15,95)� = 22 El coeficiente global de pandeo ωG = 1,07

• Esfuerzo

5 = 70315 N + 41690 N + 15860 N17500 N/cm� ∗ 1,07 = g ���

Por razones constructivas (espacios para la ubicación de las diagonales) seleccionamos

a través de la tabla de perfiles C.I.R.S.O.C. un perfil L 152 x 152 x 12,7 mm, para cada

cordón inferior con un área de 37,27 cm2.

�� = 70315 N + 41690 N + 15860 N37,27 cm� ∗ 1,07 = 1U�� �/��� ≤ ����� �/���

• Verificación pandeo local (estabilidad)

• Coeficiente local de pandeo ωe

D = 100 cm2,92 cm = 34

El coeficiente local de pandeo ωe = 1,14

• Esfuerzo

5 = 70315 N + 41690 N + 15860 N17500 N/cm� ∗ 1,14 = g, 1 ���

Por razones constructivas (espacios para la ubicación de las diagonales) seleccionamos

a través de la tabla de perfiles C.I.R.S.O.C. un perfil L 152 x 152 x 12,7 mm, para cada

cordón inferior con un área de 37,27 cm2.

�� = 70315 N + 41690 N + 15860 N37,27 cm� ∗ 1,14 = 1?�� �/��� ≤ ����� �/���

Page 174: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.10.1.2. DIAGONALES

Las diagonales están solicitadas a compresión por la acción de la fuerza del viento

más la fuerza de inercia de orientación de la contrapluma y el contrapeso.

�PJ

• Esbeltez local λe

D � 0,75 ∗ 156,17 cm1,44 cm �

El coeficiente local de pandeo

5 � 2 ∗ cosPor la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 76 x 76 x 6,4 mm para

cada cordón inferior con un área de 9,43 cm

�P � 6423 2 ∗ cos 45

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

174

DIAGONALES

Las diagonales están solicitadas a compresión por la acción de la fuerza del viento

más la fuerza de inercia de orientación de la contrapluma y el contrapeso.

Figura 3.78. Diagonales inferiores

� OJ 6 O� � ∗ �C2 � ∗ 5 ∗ $ 9 �5��

� 81

El coeficiente local de pandeo ωe = 1,81

6423 N 6 2385 Ncos 45 º ∗ 17500 N/cm� ∗ 1,81 � �, U� ���

C.I.R.S.O.C. seleccionamos un perfil L 76 x 76 x 6,4 mm para

cada cordón inferior con un área de 9,43 cm2.

N 6 2385 N45 º ∗ 9,43 cm� ∗ 1,81 � ��?� �/��� 9 �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Las diagonales están solicitadas a compresión por la acción de la fuerza del viento

más la fuerza de inercia de orientación de la contrapluma y el contrapeso.

C.I.R.S.O.C. seleccionamos un perfil L 76 x 76 x 6,4 mm para

�5��

Page 175: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

175

3.10.1.3. CÁLCULO DE LOS PERNOS DE UNIÓN DE LOS TRAMOS DE

LA PLUMA

Los pernos de unión de los tramos de pluma, están solicitados a tracción como también

a corte, para obtener el área de estos mismos, analizaremos dos situaciones.

La primera corresponde al cordón superior del caso I, mientras que la segunda nos ubica

en los cordones inferiores del caso III.

Por último realizaremos un estudio basado en el criterio de Von Mises, combinando los

esfuerzos de tracción y de corte.

3.10.1.3.1. CASO I CARGA MÁXIMA DE SERVICIO EN PUNTA DE PLUMA

• Análisis por tracción

� � O�� B �C2 ∗ 5

• Fuerza de tracción debido a la carga y peso propio

O� = 216000 N

5 = 216000 N2 pernos ∗ 17500 N/cm� = U, �� ���

• Análisis por corte

i = �r + �7 U B �C2 ∗ 5 • Carga y peso propio

�r + �7 = 19750 N + 13040 N = 32790 N

5 = 32790 N6 pernos ∗ 13500 N/cm� = �, 8 ���

Page 176: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

176

3.10.1.3.2. CASO III CARGA MÁXIMA DE SERVICIO A 10 METROS

• Análisis por tracción

� � O�� B �C2 ∗ 5

• Fuerza de tracción debido a la carga, peso propio, inercia y viento

O� = 149640 N + 94535 N + 20870 N + 117000 N = 382045 N

5 = 382045 N2 pernos ∗ 17500 N/cm� = ��, ? ���

• Análisis por corte

i = �r + �7 U B �C2 ∗ 5

• Carga y peso propio

�r + �7 = 46683 N + 13040 N + 14380 N + 15685 N = 98788 N

5 = 98788 N6 pernos ∗ 13500 N/cm� = �, � ���

Como observamos comparando las situaciones analizadas, el caso III presenta un

contexto más comprometedor tensionalmente hablando que el caso I, además el análisis

por tracción requiere una mayor área que por el análisis de corte, esto es debido a la

cantidad de pernos utilizados, por cada cordón se encuentran dos pernos.

La tracción es soportada por dos pernos ya que se presenta por cordón, mientras que el

corte lo resisten seis pernos.

Por lo tanto con el área del análisis por tracción del caso III A = 10,9 cm2

seleccionamos por tabla el diámetro normalizado del perno a utilizar.

Page 177: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

177

Utilizando una tabla de barras redondas seleccionamos 2 pernos de acero por cordón,

diámetro 38,1 mm y sección 11,4 cm2.

Comprobamos las tensiones con la nueva área seleccionada por tabla:

� � 382045 N2 pernos ∗ 11, 4 cm� = �U�U� �/��� ≤ ����� �/���

i = 98788 N 6 pernos ∗ 11,4 cm� = �8�� �/��� ≤ �1��� �/���

Por último combinamos los esfuerzos calculados en la ecuación de Von Mises para

obtener un estado tensional global volcándonos por la seguridad.

� = [(16760 N/cm�)� + (3 ∗ 1450 N/cm�)�]m �⁄ = ��1�� �/���

El valor de la tensión equivalente obtenida está muy por debajo de la fluencia del

material (35000 N/cm2), por lo tanto el criterio de Von Mises verifica.

Page 178: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.11.CÁLCULO DE LOS ELEMENTOS DE LA CABEZA DE TORRE

La cabeza o parte superior de la torre trabaja a compresión, flexión y cortadura. Para la

comprobación de sus elementos tendremos en cuenta los esfuerzos que producen los

tirantes, el viento y el peso propio de la cabeza de torre.

Luego por último con los esfuerzos resultantes calculados, verificaremos con el criterio

de Von Mises, para asegurarnos de que cuando se presenten simultáneamente en la

estructura no presenten fallo alguno.

El estado tensional de los tirantes será cuando se presenta la carga de

de pluma solamente trabaja el tirante T

registra una compresión, pero esto es falso ya que el tirante T

por lo tanto el tirante T2 está sin tensión.

Figura 3.79

3.11.1 CORDONES

• Verificación global (resistencia)

SG Cabeza de torre= 9760 N * 1,33 * 1,08 =

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

178

CÁLCULO DE LOS ELEMENTOS DE LA CABEZA DE TORRE

La cabeza o parte superior de la torre trabaja a compresión, flexión y cortadura. Para la

comprobación de sus elementos tendremos en cuenta los esfuerzos que producen los

tirantes, el viento y el peso propio de la cabeza de torre.

s esfuerzos resultantes calculados, verificaremos con el criterio

de Von Mises, para asegurarnos de que cuando se presenten simultáneamente en la

estructura no presenten fallo alguno.

El estado tensional de los tirantes será cuando se presenta la carga de servicio en punta

de pluma solamente trabaja el tirante T3 (tracción), esto se debe a que en el tirante T

registra una compresión, pero esto es falso ya que el tirante T2 no se puede comprimir

está sin tensión.

Figura 3.79. Descomposición de fuerzas de tirantes

erificación global (resistencia)

� � 4�5 6 �7 6 #> 8 ∗ 5 9 �5��

9760 N * 1,33 * 1,08 = 14020 N

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

CÁLCULO DE LOS ELEMENTOS DE LA CABEZA DE TORRE

La cabeza o parte superior de la torre trabaja a compresión, flexión y cortadura. Para la

comprobación de sus elementos tendremos en cuenta los esfuerzos que producen los

s esfuerzos resultantes calculados, verificaremos con el criterio

de Von Mises, para asegurarnos de que cuando se presenten simultáneamente en la

servicio en punta

(tracción), esto se debe a que en el tirante T2 se

no se puede comprimir

Page 179: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

179

Y1 � 531735 N #1> = 64802 N #1< = 527770 N �1 = 7º Y� = 80840 N #�> = 44028 N #�< = 67800 N �� = 33º YU = 79717 N #U> = 32425 N #U< = 72825 N �U = 24º

• Resultante Y

#> = #1> + � 3 ��32 ∗ #�> + � 3 ��32 ∗ #U>

#> = 64802 N + 2 ∗ 44028 N + 2 ∗ 32425 N = 217708 N

• Resultante X

#< = #1< − � 3 ��32 ∗ #�< − � 3 ��32 ∗ #U<

#< = 527770 N − 2 ∗ 67800 N − 2 ∗ 72825 N = 246520 N

• Momento flector con respecto al eje Y

:> = L2 ∗ �X L�AQ� � 3C ∗ �/� + #< ∗ �

:> = 1,33 ∗ 1276 N ∗ 2,5 m + 246520 N ∗ 5 m = 1236845 N m

• Fuerza normal flectora

4 = 1236845 N m1,116 m = 1108284 N

• Fuerza normal flectora por cordón

4� = 1108285 N2 = 554142 N

Page 180: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

180

• Esfuerzo

5 = 554142 N 17500 N/cm� + 14020 N + 217708 N4 ∗ 17500 N/cm� = 1� ���

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 152 x 152 x 12,7 mm con

un área de 37,27 cm2.

� = 554142 N 37,27 cm� + 14020 N + 217708 N4 ∗ 37,27 cm� = �U8�� �/��� ≤ ����� �/���

• Verificación pandeo global (estabilidad)

� = �, ? ∗ 4�5 + �7 + #> 8 ∗ 5 ∗ $7 ≤ �5��

• Coeficiente global de pandeo ωG

Conocidas las secciones de los perfiles que forman la cabeza de torre, calculamos la

esbeltez mecánica global de la torre λG, para obtener el coeficiente global de pandeo.

• Esbeltez mecánica global λG

D� = F ∗ G 5! ∗ �1�C ∗ 5� ∗ � ∗ ;�

D� = π ∗ G 4 ∗ 37,27 cm� ∗ (103,5 cm)I 2 ∗ 9,43 cm� ∗ 62,5 cm ∗ (120cm)� = 9,8

D� = � ∗ � 7

D� = 2 ∗ 500 cm55 cm = 18

D7 = N(9,8)� + (18)� = 20,5

El coeficiente global de pandeo ωG = 1,06

Page 181: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

181

• Esfuerzo

5 = 0,9 ∗ 554142 N 17500 N/cm� + 14020 N + 217708 N4 ∗ 17500 N/cm� ∗ 1,06 = 1� ���

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 152 x 152 x 12,7 mm con un área de 37,27 cm2.

� = 0,9 ∗ 554142 N 37,27 cm� + 14020 N + 217708 N4 ∗ 37,27 cm� ∗ 1,06 = ����� �/��� ≤ �5��

• Verificación pandeo local (estabilidad)

� = �, ? ∗ 4�5 + �7 + #> 8 ∗ 5 ∗ $ ≤ �5��

• Coeficiente local de pandeo ωe

Conocida la sección, la longitud del cordón entre los nudos, el radio de giro respecto

a los ejes secundarios de inercia, calculamos la esbeltez mecánica local de la pluma

λe para obtener el coeficiente local de pandeo ωe.

D = 62,5 cm2,92 cm = 22

El coeficiente local de pandeo ωe = 1,07

• Esfuerzo

5 = 0,9 ∗ 554142 N 17500 N/cm� + 14020 N + 217708 N4 ∗ 17500 N/cm� ∗ 1,07 = 1� ���

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 152 x 152 x 12,7 mm con

un área de 37,27 cm2.

� = 0,9 ∗ 554142 N 37,27 cm� + 14020 N + 217708 N4 ∗ 37,27 cm� ∗ 1,07 = ����� �/��� ≤ �5��

Page 182: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

182

• Verificación por corte

i = #< + ��8 ∗ 5 ≤ i5��

i = 246520 N + 1,33 ∗ 1276 N 4 ∗ 37,27 cm�/2 = 111� �/��� ≤ i5��

Seleccionamos por tabla de perfiles C.I.R.S.O.C. un perfil L 152 x 152 x 12,7 mm con

un área de 37,27 cm2.

3.11.1.1. TEORÍA DE LA ENERGÍA DE DISTORSIÓN MÁXIMA (VON

MISES)

Aplicamos el criterio de Von Mises para analizar la combinación de las tensiones y

asegurarnos de estar por debajo de la tensión de fluencia del material que forman los

cordones de la cabeza de torre.

� = (�� + 1 ∗ i�)� �⁄

� = [(16420 N/cm�)� + 3 ∗ (3330 N/cm�)�]m �⁄ = ��8�� �/���

El valor de la tensión equivalente obtenida está muy por debajo de la fluencia del

material (35000 N/cm2), por lo tanto el criterio de Von Mises verifica, asegurándonos

de esta manera no superar la resistencia de fluencia.

Page 183: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.11.2. DIAGONALES

Las diagonales trabajan a compresión, la misma es generada por el viento actuante sobre

la cabeza de torre Qw más la suma de un corte ideal Q

esfuerzo normal total de la cabeza de torre.

Figura 3.80

• Corte total (Qt)

La suma es la siguiente:

Corte total (Q

• Corte del modelo Q

Qe = 1,33 * 1276 N = 1700 N

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

183

Las diagonales trabajan a compresión, la misma es generada por el viento actuante sobre

más la suma de un corte ideal Qi que mantiene

esfuerzo normal total de la cabeza de torre.

� � n3�C2 o ∗ �C2 � ∗ $5 9 ����

Figura 3.80. Fuerzas en diagonales

Corte total (Qt) = Corte del modelo (Qw) + Corte ideal (Q

del modelo Qw

Qw = Cs * Sw Cabeza de torre

1,33 * 1276 N = 1700 N

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Las diagonales trabajan a compresión, la misma es generada por el viento actuante sobre

que mantiene relación con el

) + Corte ideal (Qi)

Page 184: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Corte ideal Qi

Figura 3.81

N total cabeza de torre = Resultante cordón 1 + Resultante cordón 2 + Resultante cordón

3 + Resultante cordón 4

N total torre = 496210 N + 496210 N

Qt = 1700 N + 3070 N = 4770 N

• Esbeltez local λe

Hay que tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

D � 0,75 ∗ 103,5 cm1,44 cm

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

184

n � �3C3�� ��AQ� � 3C ∗ $7g�

Figura 3.81. Fuerzas resultantes por cordones

= Resultante cordón 1 + Resultante cordón 2 + Resultante cordón

496210 N + 496210 N – 612074 N – 612074 N = -231728 N

n � 231728 N ∗ 1,0680 � 3070 N

1700 N + 3070 N = 4770 N

tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

cm � 54

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

= Resultante cordón 1 + Resultante cordón 2 + Resultante cordón

231728 N

tener en cuenta que las diagonales al estar soldadas sobre los cordones,

solamente tienen la posibilidad de pandear el 75 % de la longitud de las mismas.

Page 185: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

185

El coeficiente local de pandeo ωe = 1,33

• Esfuerzo

5 � 4770 Ncos 43º ∗ cos 37º ∗ 1,3317500 N/cm� = �, U� ���

Utilizando la tabla de perfiles C.I.R.S.O.C. seleccionamos un perfil L 76 x76 x 6,4 con

un área de 9,43 cm2.

El aumento de la sección se debe a que hay que mantener una relación entre el área de

los cordones y las diagonales, esta misma se refleja en la obtención de la esbeltez

mecánica λ1, que con la cual obtenemos el coeficiente global de pandeo ωG.

Si esta relación es demasiado grande aumenta el coeficiente global ωG y la inestabilidad

de la cabeza de torre, es por esa razón que se debe mantener equilibrada.

Page 186: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.12.CÁLCULO DE LOS ELEMENTOS DE LA BASE

La base está solicitada a flexión, la cual es producida por la tracción de los cordones de

la torre en los nodos 1, 2 y por la compresión en los nodos 3, 4.

Para el dimensionado de la misma hacemos referencia al mayor estado tensional de la

estructura que corresponde al caso II con pluma perpendicular al viento.

Figura 3.82

A continuación calculamos las reacciones a las que están sometidas las vigas A

C-D, por la acción de las diferentes combinaciones de fuerzas externas (viento, carga en

punta, peso propio, fuerzas de inercia, etc.) que sufre la estructura.

Con el mayor valor que tomen las reacciones se buscara por medio del catálogo

C.I.R.S.O.C., el perfil H correspondiente para poder verificar con la tensión admisible.

Por otra parte las reacciones también servirán para obtener las dimensiones del

contrapeso de la base, cuya misión es impedir el momento de vuelco.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

186

CÁLCULO DE LOS ELEMENTOS DE LA BASE

La base está solicitada a flexión, la cual es producida por la tracción de los cordones de

nodos 1, 2 y por la compresión en los nodos 3, 4.

Para el dimensionado de la misma hacemos referencia al mayor estado tensional de la

estructura que corresponde al caso II con pluma perpendicular al viento.

Figura 3.82. Fuerzas actuantes por cordones

ontinuación calculamos las reacciones a las que están sometidas las vigas A

D, por la acción de las diferentes combinaciones de fuerzas externas (viento, carga en

punta, peso propio, fuerzas de inercia, etc.) que sufre la estructura.

valor que tomen las reacciones se buscara por medio del catálogo

C.I.R.S.O.C., el perfil H correspondiente para poder verificar con la tensión admisible.

Por otra parte las reacciones también servirán para obtener las dimensiones del

cuya misión es impedir el momento de vuelco.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

La base está solicitada a flexión, la cual es producida por la tracción de los cordones de

Para el dimensionado de la misma hacemos referencia al mayor estado tensional de la

estructura que corresponde al caso II con pluma perpendicular al viento.

ontinuación calculamos las reacciones a las que están sometidas las vigas A-B y

D, por la acción de las diferentes combinaciones de fuerzas externas (viento, carga en

valor que tomen las reacciones se buscara por medio del catálogo

C.I.R.S.O.C., el perfil H correspondiente para poder verificar con la tensión admisible.

Por otra parte las reacciones también servirán para obtener las dimensiones del

cuya misión es impedir el momento de vuelco.

Page 187: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.12.1. VIGA A-B

• Momento flector con respecto al apoyo A (M

MA = - F1 * L 1 + F3 * (L1 + L

MA = - 368905 N * 1,98 m + 620905

B = 274050 N ↑

• Suma de fuerzas respecto al eje Y (

Σ FY = -A + F1 – F3 + B = 0

Σ FY = - A + 368905 N – 620905 N + 274050

A= 22050 N ↓

• Momento flector máximo

M máx. = 542620 N m

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

187

Figura 3.83. Viga A-B

Momento flector con respecto al apoyo A (MA = 0)

+ L2) – B * (L1 + L2 + L3) = 0

368905 N * 1,98 m + 620905 N * 3,67 m – B * 5,65 m = 0

Suma de fuerzas respecto al eje Y (Σ FY = 0)

+ B = 0

620905 N + 274050 N = 0

Momento flector máximo

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Page 188: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Figura 3.84

3.12.2. VIGA C-D

• Momento flector con respecto al

MC = - F2 * L 1 + F4 * (L1 + L

MC = - 359955 N * 1,98 m + 611955 N * 3,67 m

D = 271360 N ↑

• Suma de fuerzas respecto al eje Y (

Σ FY = -C + F2 – F4 + D = 0

Σ FY = - C + 359955 N – 611955

A= 19360 N ↓

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

188

Figura 3.84. Diagrama de momentos

Figura 3.85. Viga C-D

Momento flector con respecto al apoyo C (MC = 0)

+ L2) – D * (L1 + L2 + L3) = 0

359955 N * 1,98 m + 611955 N * 3,67 m – D * 5,65 m = 0

Suma de fuerzas respecto al eje Y (Σ FY = 0)

= 0

611955 N + 271360 N = 0

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Page 189: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Momento flector máximo

M máx. = 537300 N m

Figura 3.86

Ya realizados los cálculos para determinar las reacciones, se observa que la viga A

la más solicitada, por esta razón la utilizamos para dimensionar las vigas que formaran

la base.

• Esfuerzo de flexión (

#2 23�� �

• Esfuerzo de corte (τ

Buscando en la tabla de perfiles C.I.R.S.O.C. se selecciona un perfil

con un modulo resistente de

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

189

Momento flector máximo

Figura 3.86. Diagrama de momentos

Ya realizados los cálculos para determinar las reacciones, se observa que la viga A

más solicitada, por esta razón la utilizamos para dimensionar las vigas que formaran

Esfuerzo de flexión (σz)

#2 23�� � �Q � :�Q�á�.� 9 �5��

� � 54262000 N cm17500 N/cm� � 1��� ��1

Esfuerzo de corte (τ)

i � O ��� ó�5���� 9 i���

5���� � 274050 N13500 N/cm� � ��, 1 ���

en la tabla de perfiles C.I.R.S.O.C. se selecciona un perfil IPB 450

con un modulo resistente de W = 3550 cm3 y con un área de alma de 48,16 cm

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Ya realizados los cálculos para determinar las reacciones, se observa que la viga A-B es

más solicitada, por esta razón la utilizamos para dimensionar las vigas que formaran

IPB 450 (perfil H)

48,16 cm2.

Page 190: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

190

3.13. CÁLCULO DEL CONTRAPESO DE LA BASE

La función del contrapeso de la base es mantener la estabilidad de la grúa, la cual se

define matemáticamente como el cociente entre el momento estable Me y el momento

de vuelco Mv, también esta relación da como resultado el coeficiente de seguridad al

vuelco.

El momento estable Me es la suma del momento que producen los pesos (ΣM) más el

producido por el empuje pasivo (Mep).

Por lo tanto el momento estable es: Me = ΣM + Mep

Dado que el momento del empuje pasivo suele tener un valor de apenas entre un 1% y

un 3% del producido por los pesos, el momento estable se considera habitualmente:

Me = ΣM

El momento de vuelco es el producido por el empuje activo Mv = Ea.

En nuestro caso el momento de vuelco es la resultante entre el momento con respecto al

eje Y plano XZ y el momento con respecto al eje X plano YZ. Estos momentos

corresponden al caso II con pluma perpendicular al viento.

:T � N+9815 N m)� + (1076000 N m)� = 1076045 N m

El coeficiente de seguridad al vuelco será entonces:

L2T = ::T > 1

Que se considera suficiente para valores que rondan entre 2 a 3.

�C��� LC�3 �B2C � A�2 = O ��� ó� ∗ L2Tδ������ó�

�C��� LC�3 �B2C � A�2 = 22050 N ∗ 2,524000 N/mI = �, 1 �1 ≅ �, � �1

Page 191: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

�7 LC� �B2C � �7 LC� �B2C � ��2 � 24000 El contrapeso de la base de cada pie de la

apoyados sobre los perfiles H más una fundación de hormigón bajo tierra.

Por este motivo repartiremos el peso o volumen del hormigón recientemente calculado

en bloques y fundaciones para garantizar la estabilid

SG IPB 450 = 1710 N/m * 5,65 m

3.13.1. FUNDACIÓN DE HORMIGÓN

La misma se dispone bajo tierra, con una geometría de pirámide truncada de base

cuadrada. La parte superior cuenta con cuatro barras de acero roscadas, mediante las

cuales se fija el pie de base por medio de tuercas.

���C � O ��� ó

5 ��2 ����� ó� � 274050

Conforme al área de base calculada, las dimensiones de la fundación de hormigón son:

Figura 3.87.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

191

��2 � �;C � !ó� ∗ �C��� LC�3 �B2C � A�224000 N/mI ∗ 2,5 mI � U���� �

El contrapeso de la base de cada pie de la grúa, está distribuido en bloques de hormigón

apoyados sobre los perfiles H más una fundación de hormigón bajo tierra.

Por este motivo repartiremos el peso o volumen del hormigón recientemente calculado

en bloques y fundaciones para garantizar la estabilidad de la grúa.

1710 N/m * 5,65 m = 9661,5 N

FUNDACIÓN DE HORMIGÓN

La misma se dispone bajo tierra, con una geometría de pirámide truncada de base

cuadrada. La parte superior cuenta con cuatro barras de acero roscadas, mediante las

se fija el pie de base por medio de tuercas.

ó� 6 �7 LC�3 �B2C 6 �7 J]� 8�� 5 ��2 ����� ó� 9 �� �274050 N 6 60000 N 6 4830,75 N15 N/cm� � ��U�� ���

Conforme al área de base calculada, las dimensiones de la fundación de hormigón son:

Figura 3.87. Fundación de hormigón

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

A�2

grúa, está distribuido en bloques de hormigón

apoyados sobre los perfiles H más una fundación de hormigón bajo tierra.

Por este motivo repartiremos el peso o volumen del hormigón recientemente calculado

La misma se dispone bajo tierra, con una geometría de pirámide truncada de base

cuadrada. La parte superior cuenta con cuatro barras de acero roscadas, mediante las

�/���

Conforme al área de base calculada, las dimensiones de la fundación de hormigón son:

Page 192: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

�C���

�C�. � 1,042 m3 ∗ k+0,3 m0�7 O���� ó� � 24000 N/m

3.13.2. BLOQUES DE HORMIGÓN

Se ubican apoyados sobre las vigas IPB que forman la base, son paralelepípedos de

base rectangular.

�C�����CW2

�C��� ��CW2 � 2,5 m

�7 ��CW2 � 24000 N/mI

Conforme al volumen y peso calculado las dimensiones de los bloques de hormigón de

la base son:

Longitud = 4 m

Anchura = 1 m

Altura = 0,1273 m

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

192

�C��� O��� ó� � �1 ∗ +5� 6 5 ∗ � 6 ��0

0� 6 0,3 m ∗ 1,503 m 6 + 1,503 m0�l � �, ?���

mI ∗ 0,9725 mI � �118� �

BLOQUES DE HORMIGÓN (LASTRES)

Se ubican apoyados sobre las vigas IPB que forman la base, son paralelepípedos de

� �C��� LC�3 �B2C � A�2 q �C���O����

mI q 0,9725 mI � �, ���� �1 ∗ 1,5275 mI � 1UUU� �

Conforme al volumen y peso calculado las dimensiones de los bloques de hormigón de

Figura 3.88. Lastres

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

?��� �1

Se ubican apoyados sobre las vigas IPB que forman la base, son paralelepípedos de

O���� ó�

Conforme al volumen y peso calculado las dimensiones de los bloques de hormigón de

Page 193: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

193

Volumen Bloques x unidad = 0,5092 m3

�7 ��CW2 � � ��� = ����� �

Cantidad = 3 unidades

3.14. CÁLCULO DEL PIE DE LA BASE

El pie de base es el que está en contacto con la parte superior de la pirámide truncada.

La fundación de hormigón tiene que ser resistente a la compresión porque si esta cede

unos pocos milímetros se traduce en una gran inclinación en la cabeza de torre pudiendo

colapsar toda la grúa, debido a esta posible situación se realiza una plataforma de

hormigón H 17 que tiene una resistencia a la compresión de σ Hormigón= 1700 N/cm2.

Con la reacción del apoyo B en la viga más solicitada (AB), calculamos las dimensiones

del pie de base. La resistencia a la compresión del hormigón la dividimos por dos

porque tenemos dos pie de base por viga.

��C � !ó� = 1700 N/cm�2 Pie Base = 850 N/cm�

��C � !ó� = O ��� ó� + �7 LC�3 �B2C + �7 J]� 8�� 5 ] ��2 ≤ g�� �/���

5 ] ��2 = 274050 N + 36660 N + 4830,75 N850 N/cm� = 1�� ���

Se propone un pie de base cuadrada con 25 cm de lado resultando un área de 625 cm2.

��C � !ó� = 274050 N + 36660 N + 4830,75 N625 cm� = ��� �/��� ≤ g�� �/���

Page 194: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

3.15. CÁLCULO DE LAS BARRAS ROSCADAS PARA FIJAR EL PIE DE BASE

Las barras roscadas están sometidas a tracción, la cual es ejercida por el peso de la

fundación de hormigón.

La fuerza externa Fe por barra es:

O � 23340 N4 barras � �g1� �

Por el libro DISEÑO DE ELEMENTOS DE MAQUINAS

la siguiente ecuación:

52 � ¡15,24 ∗ 5835 N31000 N/cm� ¢� I£

Figura 3.89

Con el área de esfuerzo As

próximo, comprobando que corresponde una rosca métrica

natural o zincado blanco con un

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

194

CÁLCULO DE LAS BARRAS ROSCADAS PARA FIJAR EL PIE DE BASE

Las barras roscadas están sometidas a tracción, la cual es ejercida por el peso de la

por barra es:

DISEÑO DE ELEMENTOS DE MAQUINAS de V. M. FAIRES

O � �� 8.g��, �8 ∗ 521 �£

¢ I£ � 2,01 cm� � 201 mm�

Figura 3.89. Tabla de sección de tornillos

s calculada, ingresamos en la tabla y buscamos el valor más

próximo, comprobando que corresponde una rosca métrica M 20 x 40 grado 4 .8

con un As = 245 mm2.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

CÁLCULO DE LAS BARRAS ROSCADAS PARA FIJAR EL PIE DE BASE

Las barras roscadas están sometidas a tracción, la cual es ejercida por el peso de la

V. M. FAIRES, obtenemos

calculada, ingresamos en la tabla y buscamos el valor más

M 20 x 40 grado 4 .8

Page 195: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

195

Propiedades mecánicas de elementos roscados de clase métrica

Clase Rango del diámetro

Carga de prueba [MPa]

Esfuerzo de ruptura [MPa]

Material Marcado de la

cabeza

4.8 M1.6 - M16 310 420 Acero de bajo carbono ó acero al carbono

Figura 3.90. Tabla de propiedades mecánicas de tornillos

3.16. CÁLCULO DEL CONTRAPESO AÉREO

El contrapeso aéreo, es la masa que se coloca en la contrapluma de la grúa torre para

equilibrar las acciones de la carga y/o esfuerzos de la misma durante su funcionamiento.

El contrapeso está formado por bloques de hormigón armado, no existiendo holgura

entre ellos, ya que si chocan entre sí se pueden fragmentar desprendiendo material

generando posibles accidentes.

Calculamos su valor mediante la siguiente ecuación:

MY = Ψ * SL * L P + SG Pluma tramo 1-2 * L 1-2 + SG Pluma tramo 3 * L 3 + SG Pluma

tramo 4 * L 4 - SG Contrapluma * L 5 – SG Contrapeso * L 6 = 0

MY = 1,25 * 11000 N * 40,6 m + 21828 N * 10,6 m + 10012 N * 25,6 m + 9080 N *

35,6 m - 8886 N *5,85 m - SG Contrapeso * 9,35 m = 0

SG Contrapeso = 140160 N

El volumen total del contrapeso aéreo se define por la formula la cual tiene en cuenta la

densidad del hormigón.

�C��� 3C3�� �C�3 �B2C �é C = �7 LC�3 �B2Cδ������ó�

Page 196: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

196

�C��� 3C3�� �C�3 �B2C �é C = 140160 N24000 N/mI = �, g8 �1

El volumen por unidad es el siguiente:

�C��� � ��� �C�3 �B2C �é C = r� ∗ r� ∗ r1 = �C��� 3C3��1 ��CW2

Volumen ¦��§¨§ ©��ª�¨«¬­� ¨é�¬� = 0,36 m ∗ 3,2 m ∗ r1 = 5,84 mI3 Bloques

r1 = �, Ug �

�7 LC�3 �B2C � ��� = δ������ó� ∗ �C��� � ��� �C�3 �B2C �é C

�7 LC�3 �B2C � ��� = 24000 N/mI ∗ 1,94 mI = 8U��� �

Page 197: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

CAPÍTULO 4: SELECCIÓN DEL RODAMIENTO DE GIRO

4.1. GENERALIDADES

El giro de la pluma grúa se realiza media

cual es un elemento de máquina que forma po

para la transmisión simultánea de esfuerzos axiales, ra

resultantes.

Este rodamiento tiene una doble función, p

pluma para situar convenient

de la pluma y la carga además de transmitir el momento de vuelco a la torre

La fijación del rodamiento a la grúa se realiza mediante tornillos. La parte exterior del

rodamiento se asienta sobre

Figura 4.1. Rodamiento Rothe Erde

Usualmente los rodamientos de gran dimensión se montan de forma asentada como se

muestra a continuación.

Figura 4.2. Acciones sobre el rodamiento

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

197

SELECCIÓN DEL RODAMIENTO DE GIRO

grúa se realiza mediante un gran rodamiento de ROTHE ERDE

s un elemento de máquina que forma por sí mismo una unidad completa,

ón simultánea de esfuerzos axiales, radiales y de los pares de vuelco

Este rodamiento tiene una doble función, por un lado ha de permitir un giro

pluma para situar convenientemente la carga y por otro tiene que soportar todo el

a carga además de transmitir el momento de vuelco a la torre

La fijación del rodamiento a la grúa se realiza mediante tornillos. La parte exterior del

rodamiento se asienta sobre la torre y la parte interior del rodamiento sobre la plu

Figura 4.1. Rodamiento Rothe Erde

Usualmente los rodamientos de gran dimensión se montan de forma asentada como se

Figura 4.2. Acciones sobre el rodamiento

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

SELECCIÓN DEL RODAMIENTO DE GIRO

ROTHE ERDE, el

r sí mismo una unidad completa, previsto

diales y de los pares de vuelco

lado ha de permitir un giro suave de la

que soportar todo el peso

a carga además de transmitir el momento de vuelco a la torre.

La fijación del rodamiento a la grúa se realiza mediante tornillos. La parte exterior del

sobre la pluma.

Usualmente los rodamientos de gran dimensión se montan de forma asentada como se

Page 198: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

198

En principio la selección de un modelo de rodamiento de grandes dimensiones la

realiza la empresa ROTHE ERDE esto se refiere tanto al dimensionado correcto de las

pistas de rodadura del rodamiento, al dentado como también a la unión de tornillos.

Es por ello que la empresa provee al cliente un formulario para ser completado con los

datos más importantes para la selección del rodamiento.

Con la ayuda del catálogo suministrado por ROTHE ERDE es posible realizar una

selección aproximada del rodamiento a efectos de realizar el proyecto.

Para los rodamientos de grandes dimensiones indicados en el catálogo se reflejan curvas

de carga límite para la capacidad de carga estática y curvas de vida útil.

Para la determinación de la capacidad de carga necesaria del rodamiento se deberán

multiplicar las cargas obtenidas con los factores de carga indicados en la siguiente tabla

para los diferentes casos de aplicación.

4.1.1. FACTOR DE CAPACIDAD DE CARGA ESTÁTICA (f stat)

Las cargas obtenidas se multiplican con un factor fstat correspondiente al caso de

aplicación en cuestión. El producto Fa o Mk debe quedar situado por debajo de la curva

de carga límite estática del rodamiento seleccionado.

Fa = carga axial

M k = par de vuelco

Por tabla fstat = 1,25

4.1.2. FACTOR DE VIDA ÚTIL DEL RODAMIENTO (f L)

La carga de servicio multiplicada por el factor fL se pasa correspondientemente a la

curva de vida útil del rodamiento.

Por tabla fL = 1,25

4.2. CÁLCULO PARA LA SELECCIÓN DEL RODAMIENTO

• Carga máxima de servicio

Fa = SG GRÚA TORRE + SL

Page 199: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

199

Fa= 1,33 * 1,08 * 350900 N + 11000 N = 515 KN

:¯ � E+:<� 6 :> � )

:¯ = N((9815 N m)� + (1076000 N m)�) = 1076 KN m

• Supuesto de carga incluyendo un 25% de incremento por ensayo

Fa = SG GRÚA TORRE + SL * 1,25

Fa= 1,33 * 1,08 * 350900 N + 11000 N * 1,25 = 518 KN

:¯ = N((:< ∗ �, ��)� + (:> ∗ �, ��)�)

:¯ = N((9815 N m ∗ 1,25 )� + (1076000 N m ∗ 1,25)�) = 1345 KN m

A la hora de seleccionar el rodamiento se deberá tomar el supuesto de carga 2) para el

dimensionado estático y el supuesto de carga 1) para la vida útil.

4.2.1. CAPACIDAD DE CARGA ESTÁTICA

La capacidad de carga estática del rodamiento se verifica frente a la curva límite de

carga estática, considerando el factor de carga fstat = 1,25 y tomando para la lectura en

gráfico los valores anteriormente calculados:

Supuesto de carga 2)

Fa = 518 KN * 1,25 = 650 KN

M k = 1345 KN m * 1,25 = 1680 KN m

Page 200: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Figura 4.3

4.2.2. VIDA ÚTIL DEL RODAMIENTO

Para una vida útil de 60.000 giros a plena carga se utilizara un factor

Valores para la lectura en grafico:

Supuesto de carga 1)

Fa = 515 KN * 1,25 = 643 KN

M k = 1076 KN m * 1,25 = 1345 KN m

Los criterios referentes a la duración teó

a los rodamientos de grandes dimensiones, en e

realizan simples giros parciales o giros a baja velocidad, de

influye negativamente sobre el equilibrio de la marcha y la precisió

esta razón no es usual proceder al

a giros parciales y/o giros lentos en función de su duración teó

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

200

Figura 4.3. Curvas de carga límite estática

VIDA ÚTIL DEL RODAMIENTO

.000 giros a plena carga se utilizara un factor de carga f

Valores para la lectura en grafico:

515 KN * 1,25 = 643 KN

1076 KN m * 1,25 = 1345 KN m

riterios referentes a la duración teórica no pueden traspasarse incondicionalmente

rodamientos de grandes dimensiones, en especial si nos referimos a aquellos que

ciales o giros a baja velocidad, de manera que

influye negativamente sobre el equilibrio de la marcha y la precisión de

esta razón no es usual proceder al dimensionado de los grandes rodamientos destinados

giros lentos en función de su duración teórica.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

de carga fL = 1,25.

pueden traspasarse incondicionalmente

si nos referimos a aquellos que

manera que el desgaste no

n de la misma. Por

rodamientos destinados

Page 201: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Para estos casos se ha creado el concepto de vida ú

cuando se incrementa progresivamente el par

rodamiento alcanza niveles en los que el rodamiento ya no cumple su funció

Proyectamos desde el origen de coordenadas del diagrama hasta la cortar la primera

curva dando como resultado los siguientes valores:

Fa1 = 810 KN

M k1 = 1681 KN m

El factor de carga se calcula

curva y las cargas reales.

�r � 810 KN643 KN � 1681 KN 1345 KN

La vida útil en números giros

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

201

sos se ha creado el concepto de vida útil . El límite de la vida útil se alcanza

crementa progresivamente el par resistente al giro o cuando el desgaste del

iveles en los que el rodamiento ya no cumple su funció

Figura 4.4. Curvas de vida útil

Proyectamos desde el origen de coordenadas del diagrama hasta la cortar la primera

resultado los siguientes valores:

El factor de carga se calcula como la relación entre las cargas proyectadas sobre la

�r � O��O� � :¯�:¯

m m � �, �� meros giros es:

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

. El límite de la vida útil se alcanza

l giro o cuando el desgaste del

iveles en los que el rodamiento ya no cumple su función.

Proyectamos desde el origen de coordenadas del diagrama hasta la cortar la primera

como la relación entre las cargas proyectadas sobre la

Page 202: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

202

7 � +�r0B ∗ 1����

Donde:

p = 3,333 para rodamientos de rodillos

7 = (1,25)I,II ∗ 30000 = U1��� ! C2 ≈ U���� ! C2 ���C BC 3�A��

4.2.3. SELECCIÓN DEL RODAMIENTO

Por la capacidad de carga estática y la vida útil del rodamiento calculados

anteriormente, seleccionamos un rodamiento serie RD 900 de triple hilera de rodillos

con dentado exterior número de identificación 191.20.1250.990.41.1502.

Figura 4.5. Rodamiento serie RD 900

Page 203: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

203

Figura 4.6. Tabla de dimensiones del rodamiento serie RD 900

Figura 4.7. Número de identificación del rodamiento

Page 204: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

204

4.3. TORNILLOS DE FIJACIÓN

Las curvas de carga límite para los tornillos que se representan en los diagramas

estáticos en todos los casos se refieren a la categoría de resistencia grado 10.9. Se

establece como condición previa una longitud de apriete de 5 * d y un tensado previo

correspondiente al 70 % del límite elástico.

Tanto la cantidad como la calidad de los tornillos se determinan de acuerdo con las

cargas máximas, sin aplicar ningún factor.

Fe= 370 KN (Fuerza externa de tracción sobre los tornillos)

:¯ � �18� ±� �

Figura 4.8. Curvas de carga límite estática

Como vemos en la figura las cargas máximas exceden la curva de límite para los

tornillos que se refieren a la categoría de resistencia 10.9, por esta razón nos vemos

obligados a utilizar tornillos de resistencia 12.9, con un límite elástico de 100 KN/cm2.

Page 205: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

205

Figura 4.9. Tabla de dimensiones del rodamiento serie RD 900

Ingresando en la tabla con el número de identificación del rodamiento la empresa

sugiere que necesitamos 36 tornillos por círculo, rosca métrica M 24 x 160 grado 12.9

fosfatizado boca llave 36 mm.

Propiedades mecánicas de elementos roscados de clase métrica

Clase Rango del diámetro

Carga de prueba [MPa]

Esfuerzo de ruptura [MPa]

Material Marcado de la

cabeza

12.9 M1.6 - M36 100 1220 Acero aleado, Templado y Revenido

Figura 4.10. Tabla de propiedades mecánicas de tornillos

4.3.1. DETERMINACIÓN DE LA FUERZA DE TENSADO O INICIAL DE

APRIETE F i DE LOS TORNILLOS, UTILIZANDO EL 85 % DEL

LÍMITE ELÁSTICO (SEGÚN FAIRES)

Cuando se aprieta la tuerca, la carga en el perno aumenta y la deformación en éste

también aumenta.

Para los tornillos en cuestión se determinara por calculo la dilatación elástica con una

tensión previa del 85 % frente al límite elástico, considerando la deformación del

tornillo en relación a la longitud de apriete.

La fuerza externa Fe por tornillo es:

O � 370 KN9 tornillos = 8�, �� ±�

Page 206: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

La cantidad de nueve tornillos se debe a que por aro de rodamiento se tiene 36 tornillos

y a estos mismos los dividimos por cuatro soportes.

Por el libro DISEÑO DE ELEMENTOS DE

la siguiente ecuación:

52 � ¡15,24 ∗ 41,11 KN100 KN/cm� ¢�

Figura 4.11

Con el área de esfuerzo As

el valor más aproximado, comprobando que corresponde una rosca métrica

As = 353 mm2 tal como nos sugirió la empresa ROTHE ERDE anteriormente.

Por lo tanto la fuerza de tensado o inic

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

206

La cantidad de nueve tornillos se debe a que por aro de rodamiento se tiene 36 tornillos

y a estos mismos los dividimos por cuatro soportes.

DISEÑO DE ELEMENTOS DE MAQUINAS de V. M. FAIRES

O � �� ��.?��, �8 ∗ 521 �£

¢� I£ � 3,39 cm� � 339 mm�

Figura 4.11. Tabla de sección de tornillos

recientemente calculada, ingresamos en la tabla y buscamos

el valor más aproximado, comprobando que corresponde una rosca métrica

tal como nos sugirió la empresa ROTHE ERDE anteriormente.

Por lo tanto la fuerza de tensado o inicial de apriete de los tornillos es:

O � �, g� ∗ �� ��.? ∗ 52

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

La cantidad de nueve tornillos se debe a que por aro de rodamiento se tiene 36 tornillos

V. M. FAIRES, obtenemos

recientemente calculada, ingresamos en la tabla y buscamos

el valor más aproximado, comprobando que corresponde una rosca métrica M 24 con un

tal como nos sugirió la empresa ROTHE ERDE anteriormente.

Page 207: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

207

O � 0,85 ∗ 100 KNcm� ∗ 3,53 cm� = 1�� ±�

Observamos que la fuerza inicial de apriete Fi es 7,3 veces mayor que la carga externa

Fe, cumpliéndose que la tracción inicial del tornillo sea mayor que la carga externa

aplicada.

4.3.2. PAR DE APRIETE T (SEGÚN FAIRES)

El esfuerzo o carga Fi inducida por la operación de apriete se llama tracción inicial, que

con llaves comunes depende del operario, de la longitud de la llave utilizada y también

del estado del tornillo.

Cuando la magnitud de la tracción inicial es importante como en este caso se debe

utilizar una llave de torsión.

La relación entre el par de apriete aplicado y la tracción inicial es:

Y = L ∗ P ∗ O C = Coeficiente de par.

Cuando el coeficiente de fricción es igual a f = 0,15 (rosca y superficie de apoyo

ligeramente engrasadas) el valor de C ≈ 0,2

D = Tamaño nominal del perno.

Y = 0,2 ∗ 2,4 cm ∗ 300 KN = �88 ±� �� = �88� � �

4.3.3. ALARGAMIENTO LONGITUDINAL ∆L A TRAVÉS DE LA

FLEXIBILIDAD ELÁSTICA DEL TORNILLO

La constante elástica del tornillo Kb se determina por la ecuación:

±A = 5A ∗ @ArA

Donde:

Ab = Área de esfuerzo del tornillo

Eb = Modulo de elasticidad del material

Lb = Longitud del tornillo

Page 208: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

208

±A = 3,53 cm� ∗ 21000 KN/cm�16 cm = 4633,125 KN/cm

O = ±A ∗ ∆r

∆r = 300 KN4633,125 KN/cm = �, �U8� ��

4.4. CÁLCULO DEL PAR ROZAMIENTO DE ARRANQUE Mr

(PAR RESISTENTE)

El proceso de determinación del par de rozamiento Mr se, basa en datos de

conocimientos teóricos y prácticos.

Sobre el par de rozamiento influyen el coeficiente de rozamiento de rodadura µ, los

propios cuerpos de rodadura, los elementos distanciadores, las juntas de estanqueidad,

la distancia y distribución de la carga así como la carga propiamente dicha.

Entre otros, también influyen los siguientes elementos:

– La desviación de planitud incluyendo también el ángulo de separación de las

estructuras de apoyo superior e inferior.

– El relleno de grasa y el tipo de grasa utilizado.

– El engrase del labio de la junta y el tensado de la junta.

– La variación de la holgura del rodamiento provocada por el montaje del mismo.

Evidentemente el par de rozamiento obtenido por cálculo presenta un determinado

margen de fluctuación que se puede fijar en aproximadamente un +/- 25 %.

Para uniones giratorias de rodillos tenemos:

: = ³� ∗ (8, � ∗ :¯ + O� ∗ Pr + �, �� ∗ O ∗ Pr) Donde:

Fa = Carga axial

Fr = Carga radial

M k = Par de vuelco resultante

DL = Diámetro de rodadura del rodamiento

µ = coeficiente de rozamiento

Page 209: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

209

Figura 4.12. Tabla de coeficientes de rozamiento

En nuestro caso al tener la serie RD 900 el coeficiente de rozamiento µ = 0,003.

Fr = 1,33 * 1,08 * 330 N = 0,475 KN

: � 0,0032 ∗ (4,1 ∗ 1076 KN m + 515 KN ∗ 1,25 m + 2,05 ∗ 0,475 KN ∗ 1,25 m)

= �, �g� ±� � = ��g� � �

Page 210: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

210

CAPÍTULO 5: MECANISMOS DE LA GRÚA TORRE

5.1. GENERALIDADES Los mecanismos de una grúa torre son conjuntos de dispositivos que permiten realizar

cada uno de los movimientos de la grúa.

En el presente proyecto destacamos tres mecanismos a saber:

• Mecanismo de elevación

• Mecanismo de orientación

• Mecanismo de distribución

Estos mecanismos descriptos tienen la necesidad de disponer de elementos de seguridad

(frenos electromagnéticos, electromecánicos, etc.), para evitar un manejo inadecuado de

la carga y el poder funcionar casi sin interrupción.

Por otra parte agregamos que la energía eléctrica es la más empleada en el

accionamiento de las máquinas de elevación.

Los motores eléctricos utilizados en la grúa son trifásicos asincrónicos de anillos

rozantes. La velocidad puede ser regulada por medio de resistencias rotóricas o por

equipos electrónicos, son baratos y confiables. El par máximo o par de calado es 2,5 a 3

veces el par nominal.

La tensión de trabajo normalizada según VDE 0530 es de 380 V alternada con una

tolerancia de ± 5% y una frecuencia de 60 Hz.

Mientras que las tensiones en los circuitos de mando utilizamos 48 V, utilizada para

seguridad de los operarios.

Los motores poseen elementos de protección eléctrica mencionándolos a continuación:

• Protección contra sobrecargas eléctricas prolongadas utilizamos relés térmicos y

magnetotérmicos

• Protección contra cortocircuitos o sobreintensidades los fusibles son los

elementos más idóneos

• Puesta a tierra

Page 211: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

211

5.2. MECANISMO DE ORIENTACIÓN

Es el encargado de hacer girar la pluma, contrapluma y plataforma giratoria en un plano

horizontal alrededor de la torre. Básicamente se compone de un motor eléctrico

vinculado a un reductor epicicloidal de alto poder de reducción, el cual lleva asociado

un ralentizador que regula la potencia del motor, consiguiendo así una velocidad

progresiva tanto en el arranque como en la parada. Encontramos también un freno

electromecánico que actúa una vez que se haya parado el giro. Y a la salida de este

conjunto de reducción un piñón de ataque que se conecta a su vez con la corona de

giro.

La velocidad del motor ronda las 1440 rpm, acoplando el mismo al reductor planetario y

este al piñón de ataque obtenemos una velocidad de giro en la corona de 1 rpm

aproximadamente.

Figura 5.1. Mecanismo de orientación

Page 212: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

212

5.2.1. CÁLCULO DEL MOTOR - REDUCTOR DE ORIENTACIÓN

El cálculo del motor – reductor estará compuesto por los siguientes pasos:

• Selección del reductor epicíclico o planetario

• Selección del motor eléctrico

• Selección freno electromecánico

• Selección del acoplamiento flexible

5.2.1.1. SELECCIÓN DEL REDUCTOR EPICÍCLICO O PLANET ARIO

Los reductores epicicloidales consiguen grandes relaciones de reducción, mantienen un

diseño compacto, por tanto se elige este tipo de reductor para realizar la transmisión.

Para realizar la selección de los reductores epicicloidales utilizaremos el boletín técnico

correspondiente a la serie 300 emitido por la empresa BONFIGLIOLI.

La elección del reductor viene determinada por los siguientes parámetros:

• Relación de reducción elevada

• Tamaño del reductor lo más compacto y pequeño posible, dada la ubicación del

motor-reductor (encima de la pluma).

• Par de salida elevado.

Los pasos a seguir para la selección que propone BONFIGLIOLI son los siguientes:

• Calcular la relación de velocidad de reducción

• Obtener el par requerido en la salida para determinar el par de cálculo

• Determinar el par de cálculo utilizando el factor de servicio

• Calcular el factor de duración

• Seleccionar el tamaño del reductor que con la relación de velocidad más cercana

a la calculada satisfaga la siguiente condición:

:�� ≤ :�� �C� O;� ≤ (�� ∗ ;)

Page 213: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

213

5.2.1.2. RELACIÓN DE VELOCIDAD DE REDUCCIÓN (i)

La velocidad de salida que hay que conseguir en la corona de giro es n3=1 rpm, si se

considera una velocidad de entrada de n1=1410 rpm, la relación de reducción deseada

es:

� ��C���3C ��C��� �C

�1 = ���1 = 1440 rpm1 rpm = 1440

Los engranajes son de dentado recto, por tanto, siguiendo las recomendaciones del libro

DISEÑO DE ELEMENTOS DE MAQUINAS de V. M. FAIRES, la relación entre la

corona de giro y el piñón de ataque ha de estar entre 1 < i�I ≤ 10.

El número de dientes de la corona de giro es Z3=119, según el tipo de engranajes el

número mínimo de dientes ha de ser 20 a 21, elegimos Z2=20 para el piñón de ataque,

así de este modo buscamos obtener la relación de reducción más alta posible en esta

etapa. Por tanto la relación de velocidad de reducción entre el piñón y la corona es:

�1 = 414� = 119 dientes20 dientes = 5,95

Y la relación de transmisión del reductor epicíclico ha de estar alrededor de:

�1 = �� ∗ �1 �� = �1 �1 = 14405,95 = 242

Las revoluciones por minuto a la salida del reductor son:

�� = �� �� = 1440 rpm242 = 5,95 rpm

Page 214: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

214

5.2.1.3. PAR RESISTENTE (Mr3 Corona de giro) Y PAR REQUERIDO A LA

SALIDA DEL REDUCTOR (Mr 2)

El par resistente que actúa sobre el motor-reductor de giro está constituido por dos pares

resistentes. En primer lugar, por el par resistente más desfavorable originado por las

inercias y rozamientos para iniciar el movimiento de rotación en el rodamiento de giro.

Y en segundo lugar, por el momento torsor originado por el viento transversal sobre la

carga y la pluma.

: 1 � : + :� �3C

Sw Pluma = (16,46 m2 * 245 N/m2 * 1,2) = 4840 N

:� �3C = 4840 N ∗ 20,6 m − 2385 N ∗ 9,35 m = 77405 N m

: 1 = 7585 N m + 77405 N m = 85000 N m Este par de anteriormente calculado es el que necesita la corona de giro para salir de su

estado de reposo, el par que se precisa en la salida del reductor, teniendo en cuenta los

rendimientos de las transmisiones corona piñón es:

: � = : 1 �1 ∗ µ�1

Las trasmisiones de engranajes de dientes rectos de una etapa tienen un rendimiento de

η = 0,98, que es el caso de la transmisión entre la corona y el piñón.

: � = 85000 N m5,95 ∗ 0,98 = 14600 N m

Page 215: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

215

5.2.1.4. PAR DE CÁLCULO DEL REDUCTOR (Mc2)

Para poder hacer la selección del reductor epicíclico, se ha de calcular el momento de

cálculo Mc2, el cual tiene en cuenta el factor de marcha y de servicio de la aplicación.

• Factor de marcha (%ED)

El factor de marcha está definido por la siguiente fórmula:

% @P = ��� ∗ ∑ 3 �BC � �� �;�∑ 3 �BC � �� �;� + ∑ 3 �BC � B� ���

En la siguiente tabla extraída de GRÚAS de E. LARRODÉ – A. MIRAVETE, están

detallados el factor de marcha y el número de conexiones por hora para diferentes

máquinas de elevación. El número de conexiones por hora no influye en el cálculo del

motor, pero si influye en el cálculo de contactores.

Figura 5.2. Tabla factor de marcha

Para nuestro caso pertenece al tipo 3 grúas para obras y construcciones con una

frecuencia de conexión de 150 c/h.

Page 216: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

• Factor de servicio (f

El factor fs de servicio es el parámetro que traduce a un valor numérico aproximado la

dureza del servicio que

funcionamiento diario, la variabilidad de

la aplicación específica del reductor.

En otras palabras depende de las horas al día que trabaja el motor y el número de

arranques a la hora que se llevan a cabo. La frecuencia de conexiones por hora es

Zr =150 c/h.

Figura 5.3. Tabla factor de servicio

Suponemos que el aparato trabaja 8 horas al día. Las curvas K están

tipo de servicio que se lleve a cabo: K

elegimos un servicio uniforme curva K

un valor de fs = 1,2.

El momento de cálculo está determinado por la siguiente ecuación:

Donde Mn2 es el par de salida nominal

:�� � 14600 N m ∗ 1,2 �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

216

servicio (fs)

El factor fs de servicio es el parámetro que traduce a un valor numérico aproximado la

que el reductor tiene que realizar, teniendo en cuenta: el

funcionamiento diario, la variabilidad de la carga y las eventuales sobrecargas, unidos a

específica del reductor.

depende de las horas al día que trabaja el motor y el número de

hora que se llevan a cabo. La frecuencia de conexiones por hora es

Figura 5.3. Tabla factor de servicio

que el aparato trabaja 8 horas al día. Las curvas K están relacionadas con el

tipo de servicio que se lleve a cabo: K1 uniforme, K2 medio y K3 pesado, por lo tanto

uniforme curva K1. En estas condiciones factor de servicio

El momento de cálculo está determinado por la siguiente ecuación:

:�� � : � ∗ �2 9 :��

es el par de salida nominal

� ����� � �

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

El factor fs de servicio es el parámetro que traduce a un valor numérico aproximado la

alizar, teniendo en cuenta: el

ecargas, unidos a

depende de las horas al día que trabaja el motor y el número de

hora que se llevan a cabo. La frecuencia de conexiones por hora es

relacionadas con el

pesado, por lo tanto

factor de servicio toma

Page 217: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

217

5.2.1.5. FACTOR DE DURACIÓN

Es un factor que resulta de multiplicar la velocidad angular en entrada n1 o en salida n2

por las horas de funcionamiento efectivo h, excluyendo los tiempos de reposo.

O;� � �� ∗ ; → O;� = 5,95 rpm ∗ 12500 h = �81�� B� ;

Utilizando los valores de entrada i12 = 242 y Fh2 = 74375 rpm h seleccionamos el

reductor en la siguiente tabla extraída de el boletín técnico de la empresa

BONFIGLIOLI.

Figura 5.4. Tabla de reductor epicicloidal

Page 218: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

218

Por lo tanto seleccionamos un reductor epicicloidal lineal de tres etapas de reducción,

con la siguiente codificación 3 10 L 3 249 HC, con una relación de reducción de i12 =

249, un par nominal Mn2 = 17800 N m y una duración de funcionamiento de n2 h =

100000 rpm h.

Figura 5.5. Codificación reductor epicicloidal

Page 219: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

219

Comprobando:

:�� ≤ :�� → ����� � � ≤ ��g�� � � Y

O;� ≤ (�� ∗ ;) → �81�� B� ; ≤ ������ B� ;

La velocidad a la salida del reductor epicíclico será:

�� = �� �� = 1440 rpm249 = �, �g B�

La velocidad de la corona de giro será:

�1 = �� �1 = �� �� ∗ �1 = 1440 rpm249 ∗ 5,78 = � B�

El nuevo par a la salida del reductor es:

: � = 85000 N m5,78 ∗ 0,98 = 15000 N m

5.2.1.6. DIMENSIONES GENERALES DEL REDUCTOR EPICICLOIDAL

En la siguiente grafica observamos las dimensiones generales del reductor epicicloidal

seleccionado del catalogo de la empresa BONFIGLIOLI.

Figura 5.6. Dimensiones generales reductor epicicloidal

Page 220: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

220

5.2.1.7. SELECCIÓN DEL MOTOR ELÉCTRICO

Para la elección del motor que más se adecue para una determinada función, tendremos

que consultar catálogos en donde se encuentran toda la información técnica, distintos

modelos y tipos de construcciones que necesitamos para la concreción del proyecto.

Cabe señalar que el motor a elegir debe poseer un freno electromagnético de corriente

alterna por razones de seguridad en la operación de giro de la grúa.

• Tipo de motor

El tipo de motor a utilizar será como se menciono anteriormente, un motor asíncrono de

anillos rozantes ya que son los más utilizados en los accionamientos de las grúas.

• Tipo de servicio

El motor está sometido a un régimen de conexiones y desconexiones que influyen en su

calentamiento. Cuando se calcula la potencia del motor se ha de considerar el tipo de

servicio de la máquina. Estos regímenes se agrupan en tipos de servicio según VDE

0530 y se ha de tener en cuenta en la elección del motor.

En nuestro caso el motor de orientación trabaja con servicio S3, es decir, servicio

intermitente sin influencia del arranque en la temperatura.

Se trata de un servicio compuesto de una sucesión permanente de ciclos iguales,

formados por tiempos con carga constante (potencia nominal) y tiempos de reposo, no

alcanzándose el estado térmico de equilibrio dentro de un ciclo, ni durante el tiempo de

carga o tiempo de enfriamiento. Duración de un ciclo 10 minutos (si no se acuerda otra

cosa).

Figura 5.7. Tipo de servicio

Page 221: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

221

• Forma constructiva

La forma constructiva escogida es la B5, con brida sin patas, para conseguir un conjunto

lo más compacto posible con el reductor.

Figuras 5.8. y 5.9. Forma constructiva

Page 222: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

222

• Grado de protección

Los motores están protegidos del ambiente exterior en diversos grados. El grado de

protección está formado por dos siglas, la primera contra contactos y penetración de

cuerpos extraños mientras que la segunda contra la penetración del agua.

Los tipos de protección indicados son DIN 40050.

El motor se protegerá en grado IP 44 y la caja de bornes en grado IP55, como mínimo.

IP 44: Protección absoluta contra contactos y contra cuerpos extraños granulados.

Protección contra salpicaduras de agua en todas las direcciones.

IP 55: Protección absoluta contra contactos y contra la acumulación de polvo.

Protección contra chorros de agua.

Figura 5.10. Grado de protección

Page 223: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

223

• Clase de refrigeración

El tipo a utilizar es la refrigeración propia en la cual el movimiento del aire se realiza

mediante ventilador fijado al rotor en forma de ventilación longitudinal.

Y según el funcionamiento de la refrigeración es superficial en la cual el calor es

transmitido por la superficie de la máquina cerrada al medio refrigerante.

5.2.1.8. POTENCIA DE GIRO A RÉGIMEN PERMANENTE REQU ERIDA A

LA ENTRADA DEL REDUCTOR (Pr 1), OBTENIENDO ASÍ LA

POTENCIA DEL MOTOR

Conociendo el par requerido a la salida del reductor Mr2, las revoluciones de salida del

reductor n2 y el rendimiento dinámico del mismo η, (también se puede obtener la

potencia con el par resistente Mr3 y las revoluciones de giro de la corona n3), deducimos

la potencia con la siguiente ecuación:

] � � : � ∗ ��?��� ∗ µ��

El rendimiento dinámico η de reductor formado por 3 etapas de reducción esta dado por

la siguiente tabla:

] � = 15000 N m ∗ 5,78 rpm 9550 ∗ 0,91 = 9,7 KW

Los motor-reductores del catálogo se basan en servicio continuo S1, como el servicio de

nuestra aplicación es S3 – 25% la potencia nominal del motor-reductor según el

fabricante se puede calcular como: ] ��� ≤ ]��

Page 224: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Donde el factor fm se obtiene del siguiente cuadro suministrado por

Para nuestro caso fm = 1,25 con una duración relativa de conexió

(Relación entre la duración de la carga, incluido el arranque y frenado, y la duración del

ciclo).

] � �1 � 9,7 KW1,4 � 7 KW

Figura 5.11. Tabla de motores eléctricos

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

224

Donde el factor fm se obtiene del siguiente cuadro suministrado por BONFIGLIOLI:

Para nuestro caso fm = 1,25 con una duración relativa de conexión ED S3

(Relación entre la duración de la carga, incluido el arranque y frenado, y la duración del

Figura 5.11. Tabla de motores eléctricos

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

BONFIGLIOLI:

S3 – 25%.

(Relación entre la duración de la carga, incluido el arranque y frenado, y la duración del

Page 225: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

225

El motor elegido esta designado con las siglas BN 132MA de 4 polos con una potencia

nominal Pn1 = 7,5 KW, una relación par de arranque par nominal de Ms/Mn = 2,5 y

una velocidad nominal de n =1440 rpm.

Figura 5.12. Codificación de motores eléctricos

Dado que la potencia requerida por el sistema es aproximadamente igual a la potencia

seleccionada en el motor, podemos afirmar que tal situación verifica.

] � �1 = 7 KW ≤ ]�� = 7,5 KW

Page 226: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

226

5.2.1.9. POTENCIA DE ARRANQUE

La potencia de arranque está definida por la adición de la potencia de giro a régimen

permanente mas la potencia necesaria para el movimiento de las masas. Esta debe ser

menor que la potencia nominal.

]� ��W � ] � �1 + ]��2�2 ≤ ]��

En donde Pb1 se calcula según:

]��2�2 = J3 ∗ º ∗ �?���

En la cual:

J3 = s 7 ∗ � = 4092 Kg ∗ (20,6 m)� − 888,6 Kg ∗ (5,85 m)� − 14016 Kg ∗

∗ (9,35 m)� = 480700 Kg m�

y

º = F ∗ �1� ∗ 3� = π ∗ 1 rpm30 ∗ 10 s = 0,0105 rpm/s

Siendo, ta tiempo de aceleración de este tipo de grúas se estima en ta = 10 s

]A = 480700 Kg m� ∗ 0,0105rpm/s ∗ 1 rpm9550 = �, � ±�

Verificando que:

]� ��W = 7 KW + 0,5 KW = �, � ±� ≤ ]�� = �, � ±�

Page 227: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

227

5.2.1.10. COMPROBACIÓN DEL PAR DE ARRANQUE

Se debe verificar que el par resistente máximo no supere del par de arranque que puede

dar el motor.

: �á� �C ≤ :2 = �, � :�

El par resistente a la entrada del reductor epicicloidal es:

: � = : 1 �1 ∗ µ�� ∗ µ�1 = : � �� ∗ µ��

: � = 85000 N m1440 ∗ 0,91 ∗ 0,98 = 15000 N m249 ∗ 0,91 = UU � �

Por lo tanto comprobamos que:

: �á� �C = 66 N m ≤ :2 = 2,5 ∗ 50 N m = 125 N m

Por otra parte también se debe comprobar que el par nominal sea mayor al par

resistente.

: �á� �C ≤ :�

: �á� �C = 66 N m ≤ :� = 50 N m

Podemos observar claramente que el par resistente es mayor que el par nominal, esta

situación solamente se presenta cuando la pluma está en posición perpendicular al

viento máximo de servicio y además está presente la carga máxima, por otro lado la

pluma tendría que girar en contra del viento, porque existe la posibilidad de girar en

sentido opuesto.

Se puede afirmar que este escenario es poco probable y en caso de presentarse lo que

ocurrirá es que al caer las revoluciones de giro aumentara el par motor y el mismo no

estará trabajando a torque nominal sino probablemente a torque máximo.

Page 228: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

228

Prosiguiendo en este contexto el par resistente disminuye con el giro de la pluma a tal

punto que cuando la pluma barra aproximadamente 40º en contra del viento máximo el

par resistente valdrá aproximadamente 50 N m que es nuestro valor de par nominal y el

motor ya estará trabajando a régimen constante.

Por tal efecto aseguramos que tal situación verifica sin mayores inconvenientes.

5.2.1.11. DIMENSIONES GENERALES DEL MOTOR TRIFÁSICO

En la siguiente grafica observamos las dimensiones generales del motor con freno

electromagnético seleccionado del catalogo BONFIGLIOLI.

Figura 5.13. Dimensiones generales del motor eléctrico

Page 229: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

229

5.2.1.12. SELECCIÓN DEL ACOPLAMIENTO FLEXIBLE

La función de un acoplamiento es transmitir un par determinado entre una parte

conductora y otra conducida, unidas ambas por medio de elementos, otras razones de su

utilización son las de amortiguar choques por ejemplo producidos en el arranque y en el

frenado, garantizar la posición relativa de los extremos del árbol en cualquier condición

y dilataciones en los bastidores a causa de diferencias de temperatura. Dependiendo de

la naturaleza de estos elementos tendremos acoplamientos rígidos, elásticos,

semielásticos y flexibles.

En nuestro caso utilizaremos un acoplamiento flexible entre el motor- reductor y el

piñón de giro.

La característica que define a un acoplamiento es el par que puede transmitir en

condiciones ideales de funcionamiento (arranque suave y en vacío, sin sobrecargas y

con velocidad uniforme).

El par a la salida del reductor calculado anteriormente toma un valor de:

: � � 15000 N m.

Este debe ser multiplicado por un coeficiente de seguridad que depende de la naturaleza

de las máquinas acopladas, los valores del coeficiente de seguridad k vienen indicados

en la siguiente tabla.

Figura 5.14. Tabla de coeficiente de seguridad

Para nuestro caso el coeficiente de seguridad toma un valor de k = 2,25.

Por lo tanto el par de selección valdrá:

Page 230: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

230

:2� � ¯ ∗ : � → :2� = 2,25 ∗ 15000 N m = 11��� � � = 11�� ��� �

Utilizando el par de selección como dato de entrada en el catálogo escogemos el

siguiente acoplamiento de dientes abombados.

Figura 5.15. Acoplamiento flexible de dientes abombados

Tamaño del acoplamiento de dientes abombados número 165, con un par nominal de

3800 daN m, velocidad máxima 1800 rpm y dimensiones mostradas en tabla.

Las ventajas de los acoplamientos flexibles de dientes son su robustez, totalmente

construidos en acero, no llevan elementos elásticos susceptibles de desgaste, permiten

transmitir fuertes potencias y grandes velocidades de rotación.

Page 231: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

231

5.3. MECANISMO DE ELEVACIÓN

Es el mecanismo principal de la grúa, consta de un motor conectado a una caja

reductora, cuyo eje de salida va unido a un tambor ranurado en el que se enrolla y

desenrolla el cable de elevación.

Variando la velocidad del motor eléctrico conseguimos diferentes velocidades de

elevación. Las revoluciones del motor rondan aproximadamente las 1440 rpm para una

velocidad máxima de elevación de 50 m/min = 0,83 m/s y para una velocidad mínima

de 25 m/min = 0,415 m/s el motor esta en 720 rpm.

La velocidad máxima va a ser utilizada en cargas livianas, reposición de movimientos

en zona de carga en condiciones climáticas favorables, mientras que su velocidad

mínima queda acotada a cargas elevadas.

Por último resaltamos la presencia del freno electromagnético, que es un dispositivo de

seguridad que evita la posible caída de la carga en aquellas situaciones en que se

interrumpe el suministro eléctrico.

Figura 5.16. Mecanismo de elevación

Page 232: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

232

5.3.1. CÁLCULO DEL MOTOR - REDUCTOR DE ELEVACIÓN

El cálculo del motor – reductor estará compuesto por los siguientes pasos:

• Selección del reductor coaxial

• Selección del motor eléctrico

• Selección freno electromecánico

• Cálculo del tambor de arrollamiento

• Selección del acoplamiento flexible

5.3.1.1. SELECCIÓN DEL REDUCTOR COAXIAL HELICOIDAL

Los reductores en disposición coaxial mantienen un diseño compacto por compartir un

mismo eje de simetría en su entrada como en su salida, por tal motivo este tipo de

reductor será utilizado para realizar la transmisión.

Por lo tanto para realizar la selección de los reductores epicicloidales utilizaremos el

boletín técnico correspondiente a la serie C (reductor en disposición coaxial de

engranajes helicoidales) emitido por la empresa BONFIGLIOLI.

La elección del reductor viene determinada por los siguientes parámetros:

• Tamaño del reductor lo más compacto y pequeño posible.

• Par de salida elevado.

• Disposición de su eje de entrada con respecto al eje de salida.

• Engranajes helicoidales los cuales evitan ruidos y vibraciones en la transmisión.

Los pasos a seguir para la selección que propone BONFIGLIOLI son los siguientes:

• Calcular la relación de velocidad de reducción

• Obtener el par requerido en la salida para determinar el par de cálculo

• Determinar el par de cálculo utilizando el factor de servicio

• Seleccionar el tamaño del reductor con el par de cálculo y la relación de

velocidad más cercana a la calculada satisfaga la siguiente condición:

:�� ≤ :��

Page 233: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

5.3.1.2. RELACIÓN DE VELOCIDAD DE REDUCCIÓN (i)

La velocidad lineal máxima de sa

y la velocidad lineal mínima de salida es

velocidad de entrada de n1 = 1440

$���� � 0,83 m/s0,25 m � 3,32

$�� � � 0,415 m/s0,25 m � 1,66

El valor del radio del tambor de arrollamiento más adelante será justificado.

�� � 1440 rpm32 rpm � 720 rpm16 rpm

5.3.1.3. PAR REQUERIDO A LA SALIDA DEL

En este caso el par resistente en la salida del reductor es el que resulta del producto del

radio del tambor de arrollamiento con la tensión en el cable de elevación.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

233

RELACIÓN DE VELOCIDAD DE REDUCCIÓN (i)

lineal máxima de salida en el tambor de arrollamiento es V

y la velocidad lineal mínima de salida es V2min = 0,415 m/s, si se

= 1440 rpm, la relación de reducción deseada

$� � ��

32 rad/s → ����� � 32 rpm

66 rad/s → ��� � � 16 rpm

El valor del radio del tambor de arrollamiento más adelante será justificado.

rpmrpm � 45 PAR REQUERIDO A LA SALIDA DEL REDUCTOR (Mr 2

En este caso el par resistente en la salida del reductor es el que resulta del producto del

radio del tambor de arrollamiento con la tensión en el cable de elevación.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

lida en el tambor de arrollamiento es V2max = 0,83 m/s

, si se considera una

, la relación de reducción deseada es la siguiente:

El valor del radio del tambor de arrollamiento más adelante será justificado.

2)

En este caso el par resistente en la salida del reductor es el que resulta del producto del

radio del tambor de arrollamiento con la tensión en el cable de elevación.

Page 234: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

234

: � � Y� ∗

: � = 16250 N ∗ 0,25 m = 4062,5 N m

5.3.1.4. PAR DE CÁLCULO DEL REDUCTOR (Mc2)

:�� = : � ∗ �2 ≤ :��

:�� = 4062,5 N m ∗ 1,2 = 4875 N m

Utilizando los valores de entrada i12 = 45 y Mc2 = 4875 N m seleccionamos el reductor

en la siguiente tabla extraída de el boletín técnico de la empresa BONFIGLIOLI.

Figura 5.17. Tabla de reductor coaxial

Page 235: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

235

Por lo tanto seleccionamos un reductor coaxial de tres etapas de reducción, con

engranajes helicoidales, con la siguiente codificación C 90 3 P 43, con una relación de

reducción de i12 = 43 y un par nominal Mn 2 = 7200 N m

Figura 5.18. Codificación de reductor coaxial

Page 236: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

236

Comprobando:

:�� ≤ :�� → 8g�� � � ≤ ���� � �

5.3.1.5. DIMENSIONES GENERALES DEL REDUCTOR COAXIAL

HELICOIDAL

En la siguiente grafica se observan las dimensiones generales del reductor coaxial

seleccionado del catalogo de la empresa BONFIGLIOLI.

Figura 5.19. Dimensiones generales del reductor coaxial

Page 237: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

237

5.3.1.6. SELECCIÓN DEL MOTOR ELÉCTRICO

Para la selección del motor del mecanismo de elevación, nuevamente consultaremos los

catálogos de la empresa BONFIGLIOLI en donde se encuentran toda la información

técnica necesaria. En este caso también resaltamos la presencia de un freno

electromagnético de corriente alterna, el cual actuara cuando se interrumpa la energía

eléctrica para impedir la caída de cargas evitando posibles accidentes en la elevación de

las mismas.

• Tipo de motor

Ídem al mecanismo de giro, motor asíncrono de anillos rozantes.

• Tipo de servicio

Ídem al anterior, servicio S3, servicio intermitente sin influencia del arranque en la

temperatura.

• Forma constructiva

La forma constructiva escogida es la B3, con patas, para poder fijarse junto con el

reductor a la contrapluma.

• Grado de protección

Ídem al anterior, el motor se protegerá en grado IP 44 y la caja de bornes en grado

IP55, como mínimo.

IP 44: Protección absoluta contra contactos y contra cuerpos extraños granulados.

Protección contra salpicaduras de agua en todas las direcciones.

IP 55: Protección absoluta contra contactos y contra la acumulación de polvo.

Protección contra chorros de agua.

• Clase de refrigeración

Ídem al anterior

Page 238: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

238

5.3.1.7. POTENCIA REQUERIDA A LA ENTRADA DEL REDUCT OR (Pr1),

OBTENIENDO ASÍ LA POTENCIA DEL MOTOR

Conociendo el par requerido a la salida del reductor Mr2, las revoluciones de salida del

reductor n2 y el rendimiento dinámico del mismo η, deducimos la potencia con la

siguiente ecuación:

] � � : � ∗ ��?��� ∗ µ��

El rendimiento dinámico η de reductor formado por 3 etapas de reducción esta dado por

la siguiente tabla:

] � = 4062,5 N m ∗ 32 rpm 9550 ∗ 0.93 = 14,6 KW

Otra forma de calcular la potencia de requerida a la entrada es:

] � = �r ∗ ������ ∗ µ��

] � = 16250 N ∗ 0,83 m/s 1000 ∗ 0.93 = 14, ,5 KW

Como en el caso anterior los motor-reductores del catálogo se basan en servicio

continuo S1, como el servicio de nuestra aplicación es S3 – 25% la potencia nominal

del motor-reductor según el fabricante se puede calcular dividiendo la potencia por el

factor fm. Pero omitimos tal regla porque si seleccionamos un motor de de menor

potencia el par nominal del motor es menor que el par resistente no verificando tal

condición.

Page 239: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

239

A diferencia del mecanismo de giro, en el cual el par resistente es variable por la acción

del viento y posición de la pluma, en el mecanismo de elevación el par resistente es

constante por esta circunstancia es fundamental que el par motor nominal sea mayor que

el par resistente. Por eso seleccionamos:

Figura 5.20. Tabla de motores eléctricos

El motor elegido esta designado con las siglas BN 160 L de 4 polos con una potencia

nominal Pn1 = 15 KW, una relación par de arranque par nominal de Ms/Mn = 2,3 y una

velocidad nominal de n =1440 rpm.

Comprobando que:

] � = 14,6 KW ≤ ]�� = 15 KW

Page 240: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

240

5.3.1.8. COMPROBACIÓN DEL PAR DE ARRANQUE

Se debe verificar que el par resistente máximo no supere del par de arranque que puede

dar el motor.

: �á� �C ≤ :2 = �, 1 :�

El par resistente a la entrada del reductor coaxial helicoidal es:

: � = : � �� ∗ µ��

: � = 4062,5 N m45 ∗ 0,93 = ?� � �

Por lo tanto comprobamos que:

: �á� �C = 97 N m ≤ :2 = 2,3 ∗ 98 N m = 225 N m

Por otra parte también se debe comprobar que el par nominal sea mayor al par

resistente.

: �á� �C ≤ :�

: �á� �C = 97 N m ≤ :� = 98 N m

Page 241: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

241

5.3.1.9. DIMENSIONES GENERALES DEL MOTOR TRIFÁSICO

En la siguiente grafica se observan las dimensiones generales del motor con freno

electromagnético seleccionado del catalogo BONFIGLIOLI.

Figura 5.21. Dimensiones generales del motor eléctrico

Page 242: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

242

5.3.1.10. CÁLCULO DEL TAMBOR DE ARROLLAMIENTO

La función del tambor de arrollamiento es la de ir almacenando el cable sobrante al

producirse la elevación de la carga.

Se pueden clasificar los tambores en dos grupos:

• De una capa: el cable se enrolla en una sola capa.

• De varias capas de cabe: el cable se enrolla en capas sucesivas.

Los tambores se suelen fabricar bien en fundición de hierro, de acero fundido, o en

construcción de chapa de acero soldada, siendo está última opción la utilizada para los

tambores de la grúa, debido a las pequeñas series que de ésta se fabrican.

En el caso de la presente grúa se accionan directamente por el motor – reductor.

La longitud del tambor de elevación debe ser tal que en la posición inferior del gancho

queden entre dos y tres espiras muertas, para reforzar la fijación del cable e impedir que

la carga quede colgando de ésta.

• Perfil de garganta

La norma D.I.N. 15061 marca los perfiles de garganta basándose en el diámetro del

cable a utilizar.

Figura 5.22. Dimensiones de las ranuras de los tambores de los cables

Page 243: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

243

El diámetro del cable de elevación es de 16 mm (en el capitulo cables se desarrollara en

profundidad), por lo tanto las dimensiones de las ranuras del tambor son:

s = 18 mm, r = 9 mm y a = 2 mm.

• Diámetro del tambor

El diámetro del tambor se calcula con la siguiente expresión:

∅Y��AC � ∅L�A� ∗ ;� ∗ ;�

Donde h1 y h2 son coeficientes de cálculo.

La clasificación del aparato completo según las normas F.E.M. como ya sabemos es A4

dado en ciclos de trabajo, también la podemos denominar M6 que es su equivalente en

horas de funcionamiento.

Con la clasificación del aparato y el cable a utilizar ingresamos en la siguiente tabla

obtenemos el valor del coeficiente h1.

Figura 5.23. Tabla coeficiente h1

Por lo tanto h1 = 22,4

Page 244: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

244

Para obtener el coeficiente h2 observamos las siguientes gráficas en las cuales pueden

apreciarse las disposiciones del aparejo.

Figura 5.24. Tabla coeficiente h2

La disposición utilizada en las grúas torre es la primera en la gráfica, entonces h2 = 1.

∅Y��AC = 16 mm ∗ 22,4 ∗ 1 = 1�g, 8 �� ≈ ��� ��

Page 245: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

245

• Determinación del espesor de pared

Para la determinación del espesor de pared, se han confeccionado unas tablas que para

una tensión de trabajo determinada, dan el espesor de la pared en fusión del diámetro

del tambor y la carga por ramal.

Tomamos acero de σ = 160 MPa para el cálculo del tambor el cual es un valor medio de

otras tensiones de trabajo expuestas en las tablas.

La carga por ramal se calcula atreves de la formula:

�r � 26000 N ∗ 1,252 ramales = 16250 N = 1625 daN ≈ 2000 daN

Ingresando los valores de la carga por ramal y el diámetro del tambor de arrollamiento

obtenemos el espesor de pared en la siguiente tabla:

Figura 5.25. Tabla espesor de pared

Al combinar los valores de entrada (2000 daN y 500 mm) el casillero esta en blanco por

lo tanto se supone seleccionar el espesor más próximo que en nuestro caso es 6.

Por lo tanto el espesor de la pared es h = 6 mm.

Page 246: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

246

• Longitud del tambor

Para la altura de elevación que es de 40 metros, calculamos la longitud del tambor.

La longitud del cable es:

r��A� � ��T�� ó� ∗ �º � ����2

r��A� = 40000 mm ∗ 2 ramales = 80000 mm

La longitud de una espira es:

r2B � = F ∗ ∅Y��AC

r2B � = π ∗ 500 mm = 1570 mm

Tenemos que considerar al menos dos espiras muertas para que el cable no se desenrolle

de tambor, entonces el número de espiras totales que necesitamos es:

�º � 2B �2 = r��A�r2B � + �º � 2B �2 � 3�2

�º � 2B �2 = 80000 mm1570 mm + 2 = 53 espiras

La longitud del tambor está dada por la formula:

r3��AC = �º � 2B �2 ∗ B�2C

r3��AC = 53 espiras ∗ 18 mm = 954 mm

Está longitud del tambor es para un arrollamiento simple de cable, haciéndola para dos

arrollamientos superpuestos la longitud del tambor será:

r3��AC = 954 mm2 arrollamietos = 8�� �� ≈ ��� ��

Page 247: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

247

5.3.1.11. SELECCIÓN DEL ACOPLAMIENTO FLEXIBLE

Repitiendo la selección, utilizaremos nuevamente un acoplamiento flexible de dientes

abombados entre el motor- reductor y el tambor de arrollamiento.

El par a la salida del reductor calculado anteriormente toma un valor de:

: � � 4062,5 N m.

Este debe ser multiplicado por un coeficiente de seguridad que depende de la naturaleza

de las máquinas acopladas, los valores del coeficiente de seguridad k.

Para nuestro caso el coeficiente de seguridad toma un valor de k = 2,25.

Por lo tanto el par de selección valdrá:

:2� = ¯ ∗ : � → :2� = 2,25 ∗ 4062,5 N m = ?�8� � � = ?�8 ��� �

Utilizando el par de selección como dato de entrada en el catálogo escogemos el

siguiente acoplamiento de dientes abombados.

Figura 5.26. Acoplamiento flexible de dientes abombados

Tamaño del acoplamiento de dientes abombados número 100, con un par nominal de

920 daN m, velocidad máxima 2700 rpm y dimensiones mostradas en tabla.

Page 248: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

248

5.4. MECANISMO DE DISTRIBUCIÓN

Es un mecanismo que funciona con una polea de fricción logrando desplazar el carro a

lo largo de la pluma. El mismo está ubicado en el primer tramo de la pluma y consta de

un motor eléctrico acoplado a un reductor planetario o epicíclico ligado a la salida del

mismo la polea de fricción.

El motor al igual que el motor de elevación, posee un variador de velocidad, así se

consiguen diferentes velocidades de distribución. Las revoluciones del motor están al

orden de las 1440 rpm para una velocidad máxima de traslación de 35 m/min = 0,58 m/s

y para una velocidad mínima de 17,5 m/min = 0,29 m/s el motor está en 705 rpm.

Como en los demás mecanismos también el motor cuenta con un freno

electromagnético, el cual evita posibles movimientos del carro de distribución.

Figura 5.27. Mecanismo de distribución

Page 249: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

249

5.4.1. CÁLCULO DEL MOTOR - REDUCTOR DE DISTRIBUCIÓN

El cálculo del motor – reductor estará compuesto por los siguientes pasos:

• Selección del reductor epicíclico o planetario

• Selección del motor eléctrico

• Selección freno electromecánico

5.4.1.1. SELECCIÓN DEL REDUCTOR EPICÍCLICO O PLANET ARIO

Seguimos los mismos pasos para la selección del reductor epicíclico que se usaron para

la elección del reductor de giro recordando:

• Calcular la relación de velocidad de reducción

• Obtener el par requerido en la salida para determinar el par de cálculo

• Determinar el par de cálculo utilizando el factor de servicio

• Calcular el factor de duración

• Seleccionar el tamaño del reductor que con la relación de velocidad más cercana

a la calculada satisfaga la siguiente condición:

:�� ≤ :�� �C� O;� ≤ (�� ∗ ;)

5.4.1.2. RELACIÓN DE VELOCIDAD DE REDUCCIÓN (i)

La velocidad lineal máxima de salida en la polea de fricción es V2max = 0,58 m/s y la

velocidad lineal mínima de salida es V2min = 0,29 m/s, si se considera una velocidad de

entrada de n1 = 1440 rpm, la relación de reducción deseada es la siguiente:

$� = ��

$���� = 0,58 m/s0,125 m = 4,64 rad/s → ����� = 44 rpm ^ ��� � = 22 rpm El valor del radio de la polea de fricción más adelante será justificado.

�� = 1440 rpm44 rpm = 705 rpm22 rpm = 32

Page 250: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

5.4.1.3. PAR REQUERIDO A LA SALIDA DEL REDUCTOR (Mr

El par resistente en la salida del reductor es el que resulta del producto del radio de la

polea de fricción con la tensión del cable de traslación dividido en dos, esto se debe a

que el cable no se enrolla, sino que se desplaza sobre la polea, como sucede con las

correas o cadenas de transmisión.

: � � 16250 N ∗ 0,125 m2

5.4.1.4. PAR DE CÁLCULO DEL REDUCTOR (Mc

:�� � 1015 N m ∗ 1,2 � 1220

5.4.1.5. FACTOR DE DURACIÓN

Es un factor que resulta de multiplicar la velocidad angular en entrada n

por las horas de funcionamiento efectivo h, excluyendo los tiempos de reposo.

O;� � �� ∗ ; → O;� � 44 Utilizando los valores de entrada i

reductor en la siguiente tabla extraída de

BONFIGLIOLI.

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

250

PAR REQUERIDO A LA SALIDA DEL REDUCTOR (Mr 2

El par resistente en la salida del reductor es el que resulta del producto del radio de la

polea de fricción con la tensión del cable de traslación dividido en dos, esto se debe a

enrolla, sino que se desplaza sobre la polea, como sucede con las

correas o cadenas de transmisión.

: � � Y� ∗ �

m � 1015 N m

PAR DE CÁLCULO DEL REDUCTOR (Mc 2)

:�� � : � ∗ �2 9 :��

1220 N m

DE DURACIÓN

Es un factor que resulta de multiplicar la velocidad angular en entrada n1

por las horas de funcionamiento efectivo h, excluyendo los tiempos de reposo.

44 rpm ∗ 12500 h � ������ B� ;

los valores de entrada i12 = 32 y Fh2 = 550000 rpm h seleccionamos el

reductor en la siguiente tabla extraída de el boletín técnico de la empresa

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

2)

El par resistente en la salida del reductor es el que resulta del producto del radio de la

polea de fricción con la tensión del cable de traslación dividido en dos, esto se debe a

enrolla, sino que se desplaza sobre la polea, como sucede con las

1 o en salida n2

por las horas de funcionamiento efectivo h, excluyendo los tiempos de reposo.

= 550000 rpm h seleccionamos el

el boletín técnico de la empresa

Page 251: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

251

Figura 5.28. Tabla de reductor epicicloidal

Por lo tanto seleccionamos un reductor epicicloidal lineal de dos etapas de reducción,

con la siguiente codificación 3 03 L 2 30,8 PC, con una relación de reducción de i12 =

30,8, un par nominal Mn 2 = 1700 N m y una duración de funcionamiento de n2 h =

1000000 rpm h.

Page 252: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

252

Comprobando:

:�� ≤ :�� → ���� � � ≤ ���� � � Y

O;� ≤ (�� ∗ ;) → ������ B� ; ≤ ������� B� ;

La velocidad a la salida del reductor epicíclico será:

�� = �� �� = 1440 rpm30,8 = 8U B� = 8, g ��/2 = �, U �/2 = 1U �/� �

5.4.1.6. DIMENSIONES GENERALES DEL REDUCTOR EPICICLOIDAL

En la siguiente grafica observamos las dimensiones generales del reductor epicicloidal

seleccionado del catalogo de la empresa BONFIGLIOLI.

Figura 5.29. Dimensiones generales del reductor epicicloidal

Page 253: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

253

5.4.1.7. SELECCIÓN DEL MOTOR ELÉCTRICO

Nuevamente consultamos los catálogos para la elección del motor que más se adecue

para efectuar la distribución del carro a lo largo de la pluma.

• Tipo de motor

Motor asíncrono de anillos rozantes ya que son los más utilizados en los accionamientos

de las grúas.

• Tipo de servicio

Servicio S3, es decir, servicio intermitente sin influencia del arranque en la

temperatura.

• Forma constructiva

La forma constructiva escogida es la B5, con brida sin patas.

• Grado de protección

El motor se protegerá en grado IP 44 y la caja de bornes en grado IP55, como mínimo.

IP 44: Protección absoluta contra contactos y contra cuerpos extraños granulados.

Protección contra salpicaduras de agua en todas las direcciones.

IP 55: Protección absoluta contra contactos y contra la acumulación de polvo.

Protección contra chorros de agua.

• Clase de refrigeración

Ídem al anterior

Page 254: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

254

5.4.1.8. POTENCIA REQUERIDA A LA ENTRADA DEL REDUCT OR (Pr1),

OBTENIENDO ASÍ LA POTENCIA DEL MOTOR

Como en casos anteriores, una vez determinado el par requerido a la salida del reductor

Mr2, las revoluciones de salida del reductor n2 y el rendimiento dinámico del mismo η,

la potencia solicitada por el mecanismo es:

] � � : � ∗ ��?��� ∗ µ��

El rendimiento dinámico η de reductor formado por 2 etapas de reducción esta dado por

la siguiente tabla:

] � = 1015 N m ∗ 46 rpm 9550 ∗ 0,94 = 5,2 KW

Como en los casos anteriores los motor-reductores del catálogo se basan en servicio

continuo S1, como el servicio de nuestra aplicación es S3 – 25% la potencia nominal

del motor-reductor según el fabricante se puede calcular dividiendo la potencia por el

factor fm. Pero omitimos tal regla porque si seleccionamos un motor de de menor

potencia el par nominal del motor es menor que el par resistente no verificando tal

condición.

A diferencia del mecanismo de giro, en el cual el par resistente es variable por la acción

del viento y posición de la pluma, en el mecanismo de distribución el par resistente es

constante por esta circunstancia es fundamental que el par motor nominal sea mayor que

el par resistente.

La selección utilizando el catálogo es:

Page 255: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

255

Figura 5.30. Tabla de motores eléctricos

El motor elegido esta designado con las siglas BN 132 S de 4 polos con una potencia

nominal Pn1 = 5,5 KW, una relación par de arranque par nominal de Ms/Mn = 2,3 y

una velocidad nominal de n =1440 rpm.

Comprobando que:

] � = 5,2 KW ≤ ]�� = 5,5 KW

:

Page 256: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

256

5.4.1.9. COMPROBACIÓN DEL PAR DE ARRANQUE

Se debe verificar que el par resistente máximo no supere del par de arranque que puede

dar el motor.

: �á� �C ≤ :2 = �, 1 :�

El par resistente a la entrada del reductor coaxial helicoidal es:

: � = : � �� ∗ µ��

: � = 1015 N m 30,8 ∗ 0,94 = 1� � �

Por lo tanto comprobamos que:

: �á� �C = 35 N m ≤ :2 = 2,3 ∗ 36 N m = 83 N m

Por otra parte también se debe comprobar que el par nominal sea mayor al par

resistente.

: �á� �C ≤ :�

: �á� �C = 35 N m ≤ :� = 36 N m

Page 257: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

257

CAPÍTULO 6: TIRANTES Y CABLES

6.1. TIRANTES

6.1.1. CÁLCULO Y SELECCIÓN DE LOS TIRANTES DE PLUMA Y

CONTRAPLUMA

Los tirantes T2, T3, T5 y T6 trabajan a tracción y se disponen para reducir la flecha en

punta de pluma y disminuir los esfuerzos de flexión en pluma. Su inclusión en una grúa

de estas características es fundamental debido a los fuertes voladizos que alcanza la

pluma.

Figura 6.1. Esquemas de los tirantes

6.1.1.1. RESISTENCIA A LA ROTURA EN CABLES

Según el libro GRÚAS de E. LARRODÉ – A. MIRAVETE, los valores máximos de

resistencia a la rotura en los cables varían entre 90000 N/cm2 a 180000 N/cm2 e incluso

más de 200000 N/cm2, pero los ensayos de duración aconsejan no exceder de

180000 N/cm2 con el fin de obtener la máxima duración.

Con lo mencionado anteriormente se propone una resistencia a la rotura de

165000 N/cm2, la cual es muy utilizada.

6.1.1.2. FACTOR DE SEGURIDAD (N) Y RESISTENCIA ADMISIBLE (σadm)

BASADA EN LA ROTURA

El factor de seguridad de un cable de acero es la relación entre la resistencia a la rotura

mínima garantizada del cable y la carga o fuerza de trabajo a la cual está sujeta. No es

posible detallar el factor de seguridad para todas las aplicaciones, porque también hay

Page 258: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

258

que considerar el ambiente y circunstancias en el área de trabajo, pero en la siguiente

tabla extraída de el libro GRÚAS de E. LARRODÉ – A. MIRAVETE se observa una

guía general para la selección del correspondiente factor.

Aplicación Factor (N)

Tirantes de cable o torones (trabajo estático) 3 a 4

Cables principales para puentes colgantes 3 a 3.5

Cables de suspensión (péndulo para puentes colgantes)

3.5 a 4

Cables de tracción para teleféricos y andariveles

5 a 6

Cable de operación de una grúa 5 a 9

Palas mecánicas - excavadoras 5

Cable de arrastre en minas 4 a 5

Cables de izaje en minas (vertical e inclinado) 7 a8

Grúas tecles y polipastos industriales 6 (mínimo)

Ascensores - elevadores - para personal 12 a 15

Ascensores - elevadores - para material y equipos

7 a 10

Grúas con crisoles calientes de fundición 8 (mínimo)

Figura 6.2. Tabla de factor de seguridad

Hay que tomar en cuenta que es necesario aumentar el factor de seguridad cuando hay

vidas en juego, donde hay un ambiente muy corrosivo o donde una inspección frecuente

es difícil de llevar a cabo. Utilizamos un factor de seguridad N = 3.

���� = � C3 ��

���� = 165000 N/cm�3 = ����� �/���

Page 259: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

259

6.1.2. TIRANTE DE PLUMA T 3

La mayor tracción en el tirante de pluma T3 se presenta cuando la carga esta en punta de

pluma (caso I verificación tramo 4 de pluma), en esta situación este mismo soporta toda

la carga y el peso propio de la pluma, ya que el tirante T2 no trabaja.

• Longitud

r � N[(��33C CB23C)� + (��33C ��½���3)�]

r1 = N(3,7 m)� + (30,6 m)� = 1�, g� �

• Sección y diámetro

Y1 = 531735 N

���� = Y5 → 5 = Y����

5 = 531735 N 55000 N/cm� = 9,66 cm�

5��A� = F ∗ P�8 → P = G8 ∗ 5��A�F

P = G4 ∗ 9,66 cm�π = 3,5 cm = 35 mm

Debido a que los tirantes sufren mucho la solicitación de estrepada la cual es fuertes

estirones repentinos del cable que provocan en éste deformaciones respecto a su

condición inicial.

Los cables más apropiados para evitar este fenómeno son los de cordoneado Seale y con

alma metálica.

Utilizando la siguiente tabla extraída de www.cablecentrosac.com/tablas.html, se

procede a la selección del cable para el tirante.

Page 260: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

260

Figura 6.3. Tabla de cables 6 x 19

Se selecciona un cable 6 x 19 (1 + 9 + 9) Seale + 1 con alma de acero, el cual su última

capa tiene los alambres de gran diámetro y por lo tanto posee una gran resistencia de

estrepada, con un diámetro de 34,93 mm que si bien es menor que el calculado se sabe

que funcionara correctamente debido a los factores de seguridad incluidos.

Page 261: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

261

6.1.3. TIRANTE DE PLUMA T 2

En el tirante T2, la tracción es máxima cuando la carga de servicio se encuentra a diez

metros de la torre como en los III y IV de la verificación de los cordones de la pluma.

• Longitud

r� � N(3,7 m)� + (20,6 m)� = �� �

• Sección y diámetro

Y� = 364700 N

5 = 364700 N 55000 N/cm� = 6,6 cm�

P = G4 ∗ 6,6 cm�π = 3 cm = 30 mm

Utilizando la tabla de cables seleccionamos un cable 6 x 19 (1 + 9 + 9) Seale + 1 con

alma de acero de 31,75 mm de diámetro. En conclusión el tirante 1 y 2 utilizan el

mismo cable.

Page 262: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

262

6.1.4. TIRANTES DE CONTRAPLUMA T 5

Los tirantes de contrapluma tanto en el anclaje 5 como en el 6 están divididos de a pares

de manera que calcularemos los diámetros descomponiendo las tensiones.

Su tensión es constante debido a que no se presenta movimientos de carga en la

contrapluma.

• Longitud

r� � N(5 m)� + (7,63 m)� = ?, �� �

• Sección y diámetro

Y� = 161000 N

Y´� = 161000 N2 ∗ cos 5,26 º = 80840 N

5 = 80840 N 55000 N/cm� = 1,46 cm�

P = G4 ∗ 1,46 cm�π = 1,36 cm = 13,6 mm

Observando la tabla seleccionamos dos cables de 6 x 19 (1 + 9 + 9) Seale + 1 con alma

de acero de 14,3 mm diámetro.

Page 263: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

263

6.1.5. TIRANTES DE CONTRAPLUMA T 6

Ídem tirantes T5.

• Longitud de cada tirante

rU � N(5 m)� + (11,12 m)� = ��, � �

• Sección y diámetro

YU = 159120 N

Y´U = 159120 N2 ∗ cos 3,6 º = 79717 N

5 = 79717 N 55000 N/cm� = 1,45 cm�

P = G4 ∗ 1,45 cm�π = 1,35 cm = 13,5 mm

Por la tabla seleccionamos dos cables de 6 x 19 (1 + 9 + 9) Seale + 1 con alma de acero

de 14,3 mm diámetro.

Page 264: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

264

6.2. CABLES

6.2.1 GENERALIDADES

Un cable metálico es un órgano flexible constituido por alambres agrupados formando

cordones, que a su vez se enrollan sobre un alma formando un conjunto apto para

resistir esfuerzos de extensión.

Los elementos componentes del cable son:

• Alambres: generalmente de acero trefilado al horno, con carga de rotura de

120000 N/cm2 y 180000 N/cm2.

• Almas: son los núcleos en torno a los cuales se enrollan los alambres y los

cordones, suelen ser metálicas, textiles (cáñamo, algodón) o amianto.

• Cordones: son las estructuras más simples que podemos constituir con

alambres y almas: se forman trenzando los alambres, bien sobre un alma o sin

ella.

• Cabos: son agrupaciones de varios cordones en torno a un alma secundaria

utilizados para formar otras estructuras.

Figura 6.4. Constitución de un cable

Page 265: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

265

6.2.2. ESTRUCTURA TRANSVERSAL DE LOS CORDONES

La estructura transversal de los cordones está relacionada con el trenzado longitudinal

de los alambres.

Cordones de alambres de igual diámetro

Figura 6.5. Diferentes tipos de cables de igual diámetro

Cordones de alambres de diferente diámetro Como el seale en donde las dos últimas capas llevan igual número de hilos y el

warrignton en donde la capa exterior lleva alambres de dos diámetros distintos.

Figura 6.6. Diferentes cables

6.2.3. ESTRUCTURA TRANSVERSAL DE LOS CABLES

Se pueden dividir en:

Cables monocordes

Son enteramente metálicos, también llamados espiroidales, son poco utilizados.

Cables monocordes

El número de cordones oscila entre 3 y 8, siendo el más común 6 por ser bastante

redondo y con buena superficie de apoyo.

Page 266: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

266

6.2.4. SISTEMAS DE TRENZADO DE LOS ALAMBRES Y CORDONES

Atendiendo al sentido de torsión de los alambres en los cordones y el de los cordones en

los cables tenemos:

Torsión cruzada o normal

El sentido de cordoneado de los alambres es el contrario al sentido de cableado de los

cordones. Según el cableado de los cordones, puede ser a derecha o a izquierda.

Figura 6.7. Trenzado con torsión cruzada

Torsión lang o de sentido único

Los alambres en el cordón y los cordones en el cable se tuercen en la misma dirección,

pudiendo ser a derecha o a izquierda.

Figura 6.8. Trenzado con torsión lang

Page 267: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

267

6.2.5. CABLES PREFORMADOS

En estos cables, los alambres y cordones reciben, antes de cablearlos la forma helicoidal

que adoptaran más tarde, con ello se evitan las tensiones internas, obteniendo una mayor

vida del cable. Además se evita que los alambres rotos salgan a la superficie del cable.

La preformación es la mejora más importante introducida en la fabricación del cable

desde sus principios.

Ventajas:

•••• Mayor resistencia a la fatiga por flexión

•••• Más duración del factor de seguridad

•••• Menos susceptibles a las sacudidas y vibraciones

•••• Menor tendencia a girar sobre si mismos

•••• Tienen todas las ventajas del cable lang (mayor flexibilidad y mayor superficie de

apoyo)

Por esto, el cable preformado tiene una mayor duración, pero también un mayor coste

debido a su sistema más complejo de fabricación.

6.2.6. NOTACIÓN DE LOS CABLES

Constituida por tres cifras, las dos primeras separadas por el signo “x” y las dos últimas

por el signo “+”.

• 1º cifra: número de cordones del cable

• 2º cifra: número de alambres de los cordones

• 3º cifra: número de almas del cable

Ejemplo: 6 x 19 + 1 (formula abreviada) o 6 x 19 (1 + 9 + 9) + 1 (desarrollada),

contiene la disposición de los alambres dentro del cordón.

Figura 6.9. Cable de 6 cordones, 19 alambres y 1 alma

Page 268: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

268

6.2.7. DIMENSIONADO Y SELECCIÓN DEL CABLE DE ELEVACIÓN

La misión del cable de elevación es el izaje de la carga y los órganos de aprehensión

como el gancho y el aparejo. El mismo se dispone anclado en punta de pluma, en forma

horizontal, pasando por una polea fija ubicada en el carro de distribución, por lo cual

cambia de dirección a vertical, llegando a las poleas móviles del aparejo, para luego

nuevamente encontrarse con otra polea fija también ubicada en el carro, cambiando de

posición vertical a horizontal y por último enrollándose en su tramo final al tambor de

arrollamiento.

6.2.7.1. CÁLCULO DEL DIÁMETRO DEL CABLE

La norma D.I.N. 15400 marca unas reglas para el dimensionamiento basadas en ensayos

y experiencias prácticas.

Para ello es necesario tener en cuenta las condiciones de trabajo de la máquina. La

clasificación según las normas F.E.M. es M6.

El diámetro del cable se calcula según la fórmula:

∅L�A� = ±� ∗ √�

El Kc se calcula en la tabla, según la clasificación de la máquina y para cargas

peligrosas.

Figura 6.10. Tabla coeficiente Kc

Por lo tanto Kc = 0,335

Page 269: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

269

La tracción máxima S en el cable de elevación se obtiene:

� � �r ∗ µ

� = 26000 N ∗ 1,33 ∗ 1,08 ∗ 1,252 ramales ∗ 0,99 = 23580 N = 2358 daN

Por lo tanto el diámetro del cable es:

∅L�A� = 0,335 ∗ √2358 = �U, �U �� ≈ �U ��

Utilizando la siguiente tabla extraída de www.cablecentrosac.com/tablas.html, se

procede a la selección del diámetro cable.

Figura 6.11. Tabla de cables 8 x 19

Se selecciona un cable 8 x 19 (1 + 9 + 9) Seale + 1 con alma de fibra o textil, con un

diámetro nominal de 16 mm.

Cabe aclarar que no se utilizan cables antigiratorios por que el mecanismo de elevación

cuenta con dos ramales lo cual imposibilita a que la carga gire, los mismos son de

utilización indispensable en grúas en que el mecanismo de elevación posea un ramal.

Page 270: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

270

6.2.7.2. CÁLCULO DE LAS FATIGAS DEL CABLE

Los principales esfuerzos a que se someten los cables son de tracción y de flexión al

curvarse para pasar por poleas y tambores.

La tensión admisible del material es:

La resistencia a la rotura del cable de elevación es 165000 N/cm2, y el coeficiente de

seguridad extraído de la tabla del libro GRÚAS de E. LARRODÉ – A. MIRAVETE es

N = 6.

���� = 165000 N/cm2 6 = 27500 N/cm�

La tensión de tracción para el cable de elevación contemplando el esfuerzo dinámico

generado al iniciarse el movimiento es:

�3 = �, � ∗ �r5

5��A� = π ∗ (1,6 cm)�4 = 2 cm�

�3 = 1,1 ∗ 26000 N ∗ 1,33 ∗ 1,08 ∗ 1,252 cm� = ��U�� �/���

Verificando que:

�3 = 25675 N/cm� ≤ ���� = 27500 N/cm�

6.2.7.3. DURACIÓN DEL CABLE

La duración se mide en cantidad de flexiones que puede soportar el cable sin

deteriorarse, el valor de flexiones como límite mínimo suele estar comprendido entre

30000 flexiones para polipastos 150000 flexiones para grandes grúas.

La duración se calcula por la siguiente ecuación:

� = ������� ∗ (�� ∗ A� ∗ A� ∗P� − ?A�� + 8�)�

Page 271: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

271

En donde:

n = 1,5 flexión en cable cruzado

b1 = 1 coeficiente de forma de la garganta de la polea

b2 = 1,04 coeficiente de forma del cable

D = diámetro de la polea

d = diámetro del cable

σe = tensión estática del cable

� � 1700001,5 ∗ (10 ∗ 1 ∗ 1,04 ∗35,5 cm1,6 cm − 9181,25 + 40 )� = �8���� ���. ≈ ������ ���.

6.2.8. DIMENSIONADO Y SELECCIÓN DEL CABLE DE DISTRIBUCIÓN

La función del cable de distribución es permitir el desplazamiento de la carga y del

carro a lo largo de la pluma. Este se sitúa entre dos poleas una conductora y otra

conducida y en sus dos extremos está anclado al carro de distribución.

6.2.8.1. CÁLCULO DEL DIÁMETRO DEL CABLE

Lo calculamos de idéntica forma al cable de elevación.

El Kc se calcula en la tabla, según la clasificación de la máquina y para cargas

normales.

Por lo tanto Kc = 0,28

La tracción máxima S en el cable es:

� = 26000 N ∗ 1,252 ramales ∗ 0,99 = 16415 N = 1641,5 daN

Por lo tanto el diámetro del cable es:

∅L�A� = 0,28 ∗ N1641,5 = ��, 1 �� ≈ �� ��

Page 272: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

272

Utilizando la siguiente tabla extraída de www.cablecentrosac.com/tablas.html, se

procede a la selección del diámetro cable.

Figura 6.12. Tabla de cables 6 x 19

Se selecciona un cable 6 x 19 (1 + 9 + 9) Seale + 1 con alma de fibra o textil, con un

diámetro nominal de 12,7 mm.

Page 273: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

273

6.2.8.2. CÁLCULO DE LAS FATIGAS DEL CABLE

La resistencia a la rotura del cable de distribución es:

���� = 30000 N/cm�

La tensión de tracción para el cable de elevación contemplando el esfuerzo dinámico

generado al iniciarse el movimiento es:

�3 = �, � ∗ �r5

5��A� = π ∗ (1,27 cm)�4 = 1,26 cm�

�3 = 1,1 ∗ 26000 N ∗ 1,251,27 cm� = �g��� �/���

Verificando que:

�3 = �g��� �/��� ≤ ���� = 30000 N/cm�

6.2.8.3. DURACIÓN DEL CABLE

La duración del cable de distribución es:

� = 1700001,5 ∗ (10 ∗ 1 ∗ 1,04 ∗25 cm1,27 cm − 91140,75 + 40)� = ?g��� ���.

Page 274: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

274

CAPITULO 7: POLEAS

7.1. GENERALIDADES La polea es un elemento de un aparato de elevación cuyo objetivo es cambiar la

dirección del cable o de servir de elemento de acoplamiento entre el aparato y la carga

como componente de un aparejo.

Existen dos tipos de poleas, las de radios o las de alma central, sus partes principales

son:

• El cuerpo es el elemento que une el cubo con la garganta. En algunos tipos de

poleas está formado por radios para reducir peso y facilitar la ventilación de las

máquinas en las que se instalan.

• El cubo es la parte central que comprende el agujero, permite aumentar el grosor

de la polea para aumentar su estabilidad sobre el eje. Suele incluir un chavetero

que facilita la unión de la polea con el eje o árbol (para que ambos giren

solidarios).

• La garganta es la parte que entra en contacto con la cuerda o la correa y está

especialmente diseñada para conseguir el mayor agarre posible. La parte más

profunda recibe el nombre de llanta.

Figura 7.1. Partes de una polea

Page 275: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

275

Las poleas se fabrican con los siguientes materiales:

• Fundición nodular

• Acero moldeado

• Acero soldado

• Acero laminado

Las poleas de fundición no resisten bien el desgaste, por lo que en casos de servicio

duro, se deben utilizar poleas de acero moldeado.

Las poleas soldadas, son más utilizadas que las poleas fundidas, los radios son pletinas

o varillas, en el caso de existir alma, está se compone de una o dos placas, que pueden

estar aligeradas. La llanta es una angular o pletina perfilada y plegada en forma

semicircular, mientras que el cubo es realizado mediante una operación de torneado.

Figura 7.2. Polea soldada

Las poleas laminadas requieren para su fabricación, maquinaria específica. Una placa de

forma circular es trabajada en frío o en caliente en su línea exterior hasta conformar el

Page 276: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

276

perfil de la garganta de la polea. Posteriormente, se ejecuta el cubo y su inclusión por

soldadura en el conjunto del elemento.

Figura 7.3. Polea laminada

Existen así mismo poleas de garganta especial, preparadas para el paso del cable, la

garganta está formada por dos laterales soldados a un anillo central, mecanizado para el

paso del cable. El cubo y los radios están unidos por soldadura.

Figura 7.4. Polea de garganta especial

Page 277: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

277

El acoplamiento entre la polea y el eje se realiza mediante casquillos o bujes de bronce

o rodamientos.

El material de la garganta de la polea determina la vida del cable. Debido a la existencia

de mayores tensiones de contacto entre los alambres del cable y de la garganta, y a las

peores condiciones de deslizamiento del cable por las poleas de acero, el cable se

desgasta más en estas poleas que en las de fundición.

A veces, con el fin de aumentar la vida del cable, se emplean poleas con la garganta

forrada de otros materiales como aluminio, goma, plásticos, etc.

Figura 7.5. Diferentes tipos de gargantas de polea

7.1.1. SELECCIÓN DE POLEAS DE ACERO

En primera medida se diferencian las poleas a seleccionar en el aparato de elevación.

El mecanismo de elevación consta de dos poleas fijas ubicadas en el carro de

distribución, encargadas de direccionar el cable de elevación.

Page 278: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

278

Por otra parte el mecanismo de distribución posee dos poleas una unida al motor –

reductor y la otra ubicada en punta de pluma, las mismas están vinculadas entre sí y al

carro por el cable de distribución.

7.2. POLEAS DEL MECANISMO DE ELEVACIÓN

El diámetro de las poleas se calcula con la siguiente expresión:

∅]C�� � ∅L�A� ∗ ;� ∗ ;�

Con la clasificación del aparato y el cable a utilizar ingresamos en la siguiente tabla

obtenemos el valor del coeficiente h1.

Figura 7.6. Tabla del coeficiente h1

Por lo tanto h1 = 22,4

Para obtener el coeficiente h2 observamos las siguientes gráficas en las cuales pueden

apreciarse las disposiciones del aparejo.

Figura 7.7. Tabla del coeficiente h2

Page 279: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

279

La disposición utilizada en las grúas torre es la primera en la gráfica, entonces h2 = 1.

∅]C�� � 16 mm ∗ 22,4 ∗ 1 = 1�g, 8 �� ≈ 1�� ��

Por lo tanto seleccionamos una polea de acero soldada modelo C con rodamiento de

bolas de ∅ = 355 mm y dimensiones según la siguiente tabla.

Figura 7.8. Tabla de poleas con rodamientos

Figura 7.9. Poleas con rodamientos

Page 280: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

280

7.3. POLEAS DEL MECANISMO DE DISTRIBUCIÓN

Para la polea conductora el diámetro a seleccionar es:

∅]C�� � 12,7 mm ∗ 22,4 ∗ 1 = �g8 �� ≈ ��� ��

Por lo tanto seleccionamos una polea de acero soldada modelo C con casquillos de

bronce de ∅ = 250 mm y dimensiones según la siguiente tabla.

Figura 7.10. Tabla de poleas con casquillos de bronce

Page 281: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

Figura 7.11. Poleas con casquillos de bronce

El diámetro de la polea conducida es el mismo que la polea

conductora, pero con la diferencia que la misma está montada

bolas.

En la tabla se aprecian sus dimensiones:

Figura 7.12. Dimensiones poleas casquillos de bron

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

281

Figura 7.11. Poleas con casquillos de bronce

o de la polea conducida es el mismo que la polea de acero soldada modelo C

conductora, pero con la diferencia que la misma está montada sobre rodamiento de

En la tabla se aprecian sus dimensiones:

Figura 7.12. Dimensiones poleas casquillos de bronce

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

de acero soldada modelo C

sobre rodamiento de

Page 282: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

282

CAPÍTULO 8: APAREJO Y GANCHO

8.1. APAREJO

8.1.1. GENERALIDADES Se llama aparejo a una máquina que se utiliza para levantar o mover una carga con una

gran ventaja mecánica, porque se necesita aplicar una fuerza mucho menor que el peso

que hay que mover. Lleva dos o más poleas incorporadas para minimizar el esfuerzo.

Existen varias tipologías de aparejos, las configuraciones más utilizadas son:

• Aparejos de traviesa única: poseen una sola traviesa que tiene la función doble

de soportar las poleas y sujetar a su vez el elemento de suspensión.

• Aparejos de doble traviesa: con dos traviesas, una para soportar el elemento de

suspensión y otra para las poleas.

Dentro de los aparejos de doble traviesa podemos distinguir entre aparejos de poleas

continuas y aparejos de poleas discontinuas. La diferencia estriba en que los aparejos de

poleas continuas, éstas están todas juntas.

Existe además otra clasificación para los aparejos en función de su longitud, así

distinguiremos entre aparejos largos y cortos.

Figura 8.1. Representación de aparejos

Page 283: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

283

Aparejo de simple traviesa (A), aparejo de doble traviesa corto (B), largo (C).

Dependiendo del número de ramales, el aparejo se compone de una o varias poleas. La

tuerca del gancho está fijada por medio de una placa que se apoya sobre un soporte a

través de un rodamiento axial. El carter protege al aparejo del polvo y del agua. La

traviesa de gancho está articulada en los extremos de manera que el gancho puede girar

respecto a un eje horizontal.

Un aparejo se compone de los siguientes elementos:

Figura 8.2. Partes de un aparejo

8.1.2. SELECCIÓN DEL TAMAÑO DEL APAREJO

Con el fin de obtener el aparejo adecuado al servicio requerido, es necesario indicar los

siguientes datos:

• Grupo F.E.M. / D.I.N. del mecanismo de elevación o descripción del trabajo de

la grúa o aparato de elevación

• Carga máxima a elevar

• Diámetro del cable

• Número de ramales del aparejo

• Velocidad de elevación

Page 284: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

284

Los aparejos están sometidos a un riguroso control de calidad durante el proceso de

fabricación, según las normas D.I.N. 15411 y todos son suministrados con pestillo de

seguridad..

Con la clasificación del aparato M6, seleccionamos el aparejo a utilizar:

Figura 8.3. Tabla de selección de aparejos

Seleccionamos un aparejo de una polea con un nº de gancho 2,5 y una capacidad de

carga máxima de 3200 Kg y dimensiones normalizadas según la grafica.

Page 285: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

285

8.2. GANCHO

8.2.1. GENERALIDADES En el ciclo completo realizado por un aparato de elevación una parte importante la

compone la operación de enganche y desencanche de la carga.

En la actualidad existe una normativa vigente, que define completamente el diseño de

los ganchos. Por lo tanto, la tarea del ingeniero se compone de seleccionar de forma

adecuada el gancho de acuerdo a la normativa.

Existen diferentes tipos de ganchos:

o Gancho simple

o Gancho doble

o Gancho de seguridad

El gancho simple se utiliza en grúas de capacidad de carga media o baja. Se realizan en

acero pobre en carbono mediante una operación de forja o estampación.

En aparatos de elevación de capacidad de carga alta, se recurren a ganchos dobles cuya

solicitación simétrica es más favorable. También se realizan en acero forjado o

estampado.

Figura 8.4. Tipos de ganchos

Page 286: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

286

En casos de alta seguridad, se dispone una pieza articulada que cierra el espacio

existente entre el extremo y la parte recta del gancho. De esta forma, se impide la salida

de la eslinga a través del gancho.

Figura 8.5. Gancho de seguridad

8.2.2. DIMENSIONES DE GANCHOS SEGÚN NORMATIVA

Los ganchos corresponden a las normas D.I.N. 15401 y 15402 y se construyen en acero

forjado de calidad ASt – 41, 52 (clase P). Bajo pedido se pueden utilizar aceros aleados

34 Cr Mo 4, Cr Ni Mo 6 y 30 Cr Ni Mo 8 (clases S, T y V).

Del tipo de material dependen las dimensiones del gancho. Un gancho de acero al

carbono tiene dimensiones mayores que un gancho al cromo níquel.

Pueden ser equipados con un sistema antigiro de fácil enclavamiento manual, sin

herramientas, que mantiene fijo el gancho.

Page 287: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

287

Figura 8.6. Dimensiones de ganchos simples

8.2.3. SELECCIÓN DEL TAMAÑO DEL GANCHO DE CARGA

Para la selección del tamaño del gancho se utiliza una tabla de tres entradas,

combinando los tres valores ingresados obtenemos el tamaño del gancho apropiado.

La primer variable a tener en cuenta es la clasificación del aparato completo, que en

nuestro caso es A6 = M4 (se denominan con distintas letras pero significan lo mismo),

que pertenece a la categoría de grúa 2 (grúa torre de obra de montaje por elementos).

La segunda variable es la clase del gancho a utilizar, utilizamos la clase P que nos dice

que es un gancho de acero forjado de calidad ASt – 52.

Y por último la tercer variable nos indica la capacidad de carga (hay que recordar que

la misma será mayorada por los coeficientes dinámico Ψ).

Capacidad de carga = Ψ *Carga útil máxima

Capacidad de carga = 1,25 * 25000 N = 31250 N

Page 288: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

288

Clasificación según D.I.N. 15400 / D.I.N. 15020

Grupo Grupo

M

- - - - A3 A4 A5 A6 A7 A8 M

P - - - A3 A4 A5 A6 A7 A8 - P

S

- - A3 A4 A5 A6 A7 A8 - - S

T

- A3 A4 A5 A6 A7 A8 - - - T

V

A3 A4 A5 A6 A7 A8 - - - - V

Gancho RSN Capacidad de carga en kg Gancho

RSN

0,8 4000 3200 2500 2000 1600 1250 1000 800 630 500 08

1 5000 4000 3200 2500 2000 1600 1250 1000 800 630 1

1.6 8000 6300 5000 4000 3200 2500 2000 1600 1250 1000 1.6

2.5 12500 10000 8000 6300 5000 4000 3200 2500 2000 1600 2.5

4 20000 16000 12500 10000 8000 6300 5000 4000 3200 2500 4

5 25000 20000 16000 12500 10000 8000 6300 5000 4000 3200 5

6 32000 25000 20000 16000 12500 10000 8000 6300 5000 4000 6

8 40000 32000 25000 20000 16000 12500 10000 8000 6300 5000 8

10 50000 40000 32000 25000 20000 16000 12500 10000 8000 6300 10

12 63000 50000 40000 32000 25000 20000 16000 12500 10000 8000 12

16 80000 63000 50000 40000 32000 25000 20000 16000 12500 10000 16

20 100000 80000 63000 50000 40000 32000 25000 20000 16000 12500 20

25 125000 100000 80000 63000 50000 40000 32000 25000 20000 16000 25

32 160000 125000 100000 80000 63000 50000 40000 32000 25000 20000 32

40 200000 160000 125000 100000 80000 63000 50000 40000 32000 25000 40

50 250000 200000 160000 125000 100000 80000 63000 50000 40000 32000 50

63 320000 250000 200000 160000 125000 100000 80000 63000 50000 40000 63

80 400000 320000 250000 200000 160000 125000 100000 80000 63000 50000 80

100 500000 400000 320000 250000 200000 160000 125000 100000 80000 63000 100

125 - 500000 400000 320000 250000 200000 160000 125000 100000 80000 125

160 - - 500000 400000 320000 250000 200000 160000 125000 100000 160

200 - - - 500000 400000 320000 250000 200000 160000 125000 200

250 - - - - 500000 400000 320000 250000 200000 160000 250 Figura 8.7. Tabla de selección de ganchos

Page 289: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

289

Haciendo uso de la tabla obtenemos un gancho simple RSN (con pestillo de seguridad)

número 2,5 con las siguientes dimensiones:

Figura 8.8. Gancho seleccionado

Page 290: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

290

CAPÍTULO 9: VERIFICACIÓN POR SOFTWARE SAP2000

9.1. GENERALIDADES

Haciendo uso del software de análisis estructural SAP2000 (Structural Analysis

Program), se procede a simular los diferentes estados de carga que se presentan en la

grúa torre.

El programa se basa en la norma americana AISC-LRFD99, por la cual obtiene la

capacidad seccional de los elementos que componen la estructura. Está capacidad

seccional está en función del material, tipo de perfil y condiciones de apoyo.

La capacidad seccional calculada se relaciona con la carga solicitante mediante la

ecuación:

L� !� 2C� � 3��3L�B�� ��� 2�� C��� < � → �@#JOJL5

Si la relación es menor a la unidad el cálculo verifica, en caso contrario, se procederá a

revisar el diseño, el material de la estructura, etc.

La gran ventaja de este software es la de poder combinar diferentes estados de carga y

analizarlos en forma simultánea, de modo que en un solo archivo podemos concentrar

todas las combinaciones de carga que deseemos.

Cuando se ejecuta asistente de cálculo, la estructura se presenta con una gama de

colores indicando el estado tensional de cada elemento, el celeste nos indica un estado

tensional bajo, eso se refleja en la ecuación anterior con un valor próximo a cero, la

capacidad seccional del elemento estructural es mucho más grande que la carga

solicitante, mientras que el rojo nos muestra un estado tensional comprometido con una

relación mayor a la unidad, en este caso la carga solicitante es mayor que la capacidad

seccional del elemento, no verificando la ecuación.

Otra gran virtud del programa es que nos permite seleccionar un elemento estructural

cualquiera indicándonos la combinación de cargas que genera el estado tensional más

comprometido.

Page 291: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

291

Gráfico de la estructura en 3D de la grúa torre en SAP2000.

Figura 9.1. Estructura en 3D

9.2. SOLICITACIONES PRINCIPALES

Las diferentes solicitaciones principales que actúan sobre la grúa torre reflejadas en

SAP2000 son:

Page 292: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

292

• Peso Propio

Figura 9.2. Peso propio

Page 293: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

293

• Carga 26000 N en pluma a 10 metros

Figura 9.3. Carga 26000 N en pluma a 10 metros

Page 294: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

294

• Carga 21000 N en pluma a 20 metros

Figura 9.4. Carga 21000 N en pluma a 20 metros

Page 295: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

295

• Carga 16000 N en pluma a 30 metros

Figura 9.5. Carga 16000 N en pluma a 30 metros

Page 296: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

296

• Carga 11000 N en pluma a 40 metros

Figura 9.6. Carga 11000 N en pluma a 40 metros

Page 297: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

297

• Viento X perpendicular a la pluma

Figura 9.7. Viento X

Page 298: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

298

• Viento Y paralelo a la pluma

Figura 9.8. Viento Y

Page 299: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

299

• Viento en Tempestad X

Figura 9.9. Viento en Tempestad X

Page 300: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

300

• Viento en Tempestad Y

Figura 9.10. Viento en Tempestad Y

Page 301: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

301

9.3. COMBINACIÓN DE LAS SOLICITACIONES PRINCIPALES

Después de haber cargado las solicitaciones principales a la que está sometida la grúa

torre se procede a combinarlas para obtener los diferentes casos.

Las enumeramos:

• COMB 1 = Peso propio + Carga 26000 N en pluma a 10 metros

• COMB 2 = Peso propio + Carga 21000 N en pluma a 20 metros

• COMB 3 = Peso propio + Carga 16000 N en pluma a 30 metros

• COMB 4 = Peso propio + Carga 11000 N en pluma a 40 metros

• COMB 5 = Peso propio + Carga 26000 N en pluma a 10 metros + Viento X

• COMB 6 = Peso propio + Carga 26000 N en pluma a 10 metros + Viento -X

• COMB 7 = Peso propio + Carga 26000 N en pluma a 10 metros + Viento Y

• COMB 8 = Peso propio + Carga 26000 N en pluma a 10 metros + Viento -Y

• COMB 9 = Peso propio + Carga 21000 N en pluma a 20 metros + Viento X

• COMB 10 = Peso propio + Carga 21000 N en pluma a 20 metros + Viento -X

• COMB 11 = Peso propio + Carga 21000 N en pluma a 20 metros + Viento Y

• COMB 12 = Peso propio + Carga 21000 N en pluma a 20 metros + Viento -Y

• COMB 13 = Peso propio + Carga 16000 N en pluma a 30 metros + Viento X

• COMB 14 = Peso propio + Carga 16000 N en pluma a 30 metros + Viento -X

• COMB 15 = Peso propio + Carga 16000 N en pluma a 30 metros + Viento Y

• COMB 16 = Peso propio + Carga 16000 N en pluma a 30 metros + Viento -Y

• COMB 17 = Peso propio + Carga 11000 N en pluma a 40 metros + Viento X

• COMB 18 = Peso propio + Carga 11000 N en pluma a 40 metros + Viento -X

• COMB 19 = Peso propio + Carga 11000 N en pluma a 40 metros + Viento Y

• COMB 20 = Peso propio + Carga 11000 N en pluma a 40 metros + Viento -Y

• COMB 21 = Peso propio + Viento en Tempestad X

• COMB 22 = Peso propio + Viento en Tempestad -X

• COMB 23 = Peso propio + Viento en Tempestad Y

• COMB 24 = Peso propio + Viento en Tempestad -Y

Page 302: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

302

9.4. ANÁLISIS DE LA COMB 17 Y COMB 18 (CASO II PLUM A

PERPENDICULAR A LA DIRECCIÓN DEL VIENTO)

Solamente se analiza las combinaciones 17 y 18 que corresponden a Peso propio +

Carga 11000 N en pluma a 40 metros + Viento X y Viento –X.

Como podemos observar en el gráfico no se aprecian elementos estructurales de color

rojo por lo tanto la relación entre la carga solicitante y la capacidad seccional está por

debajo de la unidad verificando la ecuación.

Figura 9.11. Análisis de la COMB 17 y COMB 18

Page 303: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

303

9.5. ANÁLISIS DE LA COMB 21 (CASO III VIENTO EN TEM PESTAD)

Se procede al análisis de la combinación 21 la cual es Peso propio + Viento en

Tempestad X.

También se observa que la relación entre la carga solicitante y la capacidad seccional de

los elementos estructurales está por debajo de la unidad.

Figura 9.12. Análisis de la COMB 21

Page 304: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

304

9.6. ANÁLISIS DE TODAS LAS COMBINACIONES

Por último el software analiza todas las combinaciones enumeradas anteriormente.

Algunos elementos estructurales se aprecian de color rojo los que nos indica que no

verifican, pero como la relación entre la carga solicitante y la capacidad seccional

supera por muy poco a la unidad se pueden tomar como validos.

Figura 9.13. Análisis de la todas las combinaciones

Page 305: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

305

CONCLUSIONES

Después de haber finalizado el proyecto: diseño y cálculo de una grúa torre que se

desarrolló en varios capítulos se presentan las conclusiones pertinentes.

Desde el punto vista académico, la elección de tema de este proyecto se vincula con la

carrera de Ingeniería Mecánica ampliamente ya que un ingeniero mecánico es

competente para proponer su diseño, efectuar los cálculos correspondientes, intervenir

en su proceso de fabricación, en su mantenimiento, en sus mejoras y evolución de la

máquina, entre otras.

Desde el punto de vista de los cálculos, este proyecto está doblemente asegurado

porque para su construcción se combinan dos teorías: la teoría más comúnmente

utilizada propone dividir la tensión de fluencia del material por un coeficiente de

seguridad, obtenido en tablas de acuerdo con el tipo de cargas, dando como resultado la

tensión de seguridad que debe ser mayor o igual a la tensión del trabajo. Por otro lado,

las normas F.E.M. exigen que las cargas a elevar, los pesos propios y las acciones del

viento sean magnificadas por diferentes coeficientes de mayoración. Esta teoría

compara estas cargas mayoradas, que nunca existen en la realidad, con la tensión de

fluencia del material. Si la tensión mayorada es menor a la tensión de fluencia, el

cálculo se da por verificado. La combinación que resulta de estas dos teorías es que se

mayoran las cargas y las tensiones mayoradas, que en vez de ser comparadas con la

tensión de fluencia del material para su verificación, se comparan con la tensión de

seguridad.

Con respecto al diseño, dada la altura de la grúa torre propuesta en el proyecto y

teniendo en cuenta la combinación de las teorías ante expuestas, se necesitó realizar

reforzamientos en los cordones de los dos primeros tramos para aumentar las áreas

asegurando así la estabilidad de la grúa. Por eso, están propuestas discriminaciones en

las áreas de los cordones de sus dos primeros tramos, los perfiles ángulo se refuerzan

con planchuelas para poder aumentar el área del cordón y satisfacer la verificación del

cálculo. En los tramos superiores no es necesario este refuerzo porque existe un menor

brazo de palanca.

Page 306: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

306

Cabe aclarar que la única solución para el reforzamiento de los cordones es unir

mediante soldadura los perfiles ángulo con las planchuelas porque no existe un perfil

ángulo con mayor área en el mercado regional.

También los cordones de la pluma fueron diseñados con áreas diferenciadas de forma

gradual contando los cordones de sus dos primeros tramos con áreas de mayor sección.

Este tipo de estructura es sumamente riesgosa por estar emplazada al aire libre en

entornos urbanos y también porque desplaza grandes pesos a elevadas alturas. Pero al

configurarla y realizar los cálculos, el mayor problema que se planteó fue por poseer

extensos brazos de palancas y en menos grados por sus cargas.

El aporte novedoso que se puede señalar como resultado de la presente investigación es

la utilización combinada de las dos teorías de cálculo basadas en la tensión admisible y

las cargas mayoradas propuestas por las normas F.E.M. para el cálculo y diseño de la

grúa en cuestión.

Finalmente, en relación a la viabilidad de este proyecto, se concluye que desde el punto

de vista del cálculo, este proyecto es factible en su totalidad por el refuerzo de las dos

teorías mencionadas. Desde el punto de vista de su fabricación, se considera aceptable

por la disponibilidad de los materiales y accesorios en la zona como así también, porque

en la región existe infraestructura para poder construirla.

Page 307: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

307

BIBLIOGRAFÍA

Acindar, Tablas y Equivalencias .Productos, Sistemas y Servicios para la Construcción,

Acindar, 2003

CIRSOC, Reglamento CIRSOC 102, Acción del Viento sobre las Construcciones,

publicado por I.N.T.I. (Instituto Nacional de Tecnología Industrial), 1994

CIRSOC, Tablas de Perfiles Laminados y Tubos Estructurales, publicado por I.N.T.I.

(Instituto Nacional de Tecnología Industrial), 2005

Faires, Virgil Morgan, Diseño de Elementos de Máquinas, Edit. Limusa, Grupo Noriega

Editores, México, 1995

Stahleisen Verlag, Acero en la Construcción, Edit. Reverté S.A. Barcelona 1981,

Versión española de José Pinos Calvet

Larrodé, Emilio; Miravete Antonio, Grúas. Servicio de Publicaciones, Centro

Politécnico Superior de la Universidad de Zaragoza, Zaragoza 1996

Menéndez González, Miguel Ángel, Manual para la Formación de Operadores de

Grúa Torre Edit. Lex Nova 8º Edición, 2006

Troglia, Gabriel R., Estructuras Metálicas, Edit Universidad Nacional de Córdoba,

Universitas Libros

CATÁLOGOS

Catálogo Bonfiglioli Trasmital, Catálogo de Reductor Epicicloidal Serie 300

Catálogo Bonfiglioli Trasmital, Catálogo de Reductores Coaxiales

Catálogo Bonfiglioli Riduttori, Catálogo de Motores Eléctricos trifásicos

Rothe Erde, Catálogo de Grandes Rodamientos

PÁGINAS INTERNET

www.acerosevilla.com (Composición Química del acero)

www.cablecentrosac.com/tablas.html (Cables)

www.irizarforge.com (Aparejo)

Page 308: Tesis Grua Torre Hugo Cattoni

UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL VILLA MARÍA

308

www.sadimetal.com.ar (Barras redondas)

www.monografías.com. Archivo de Word de Javier Vega Arias

Nota: la mayoría de las figuras utilizadas en el Proyecto han sido extraídas de:

Larrodé, Emilio; Miravete Antonio, Grúas. Servicio de Publicaciones, Centro

Politécnico Superior de la Universidad de Zaragoza, Zaragoza 1996

Menéndez González, Miguel Ángel, Manual para la Formación de Operadores de

Grúa Torre Edit. Lex Nova 8º Edición, 2006

www.monografías.com. Archivo de Word de Javier Vega Arias

Autor: HUGO CATTONI DONADIO

Mail: [email protected]