8
It-» TRANÍvACTKWS 1>N INSTRI-MFNTATION MHASl'RFMl·:^T. VOL IM V^. NO 4. DHCl-MBlíR I98f» Test Results of an Automatic Calibration System for AC-DC Thermal Voltage Converters and AC Voltage Sources CHU-MIN FU. ART COHEE. AND KLAUS B. JAEGER Ábstntci—\n autonuitic calibmtioii system has been developed for testia^ ac-dc thermal voltage converters (TVC's) and ac voltage sources. Precision, repeatability. and svi^ematic errors are investi- gated ttsiog the daU gathered from 100 mV to 1000 V over a frequency range 10 Hz to 1 MHi. The ac<-<k difference of a TVC is determined by the least-square fit to the charactrristic equation = ") ^ith ac and dc inpaU. A mathematicAi formalism incorporating the systematic errors and the »c-óc difference, or deviation, caused by the ac input source is developed for data analysis. I. INTRODUCTION A UTOMATIC systems for calibraiing ac-dc thermal voltage converters (TVC s) have been developed by NBS {!]. [2]. The use of TVC's for current and voltage measurements has been discussed in the literature l3]-[5]. In this paper a new system is presented which monitors the outputs of the reference JVC and that of an unknow (TVC unde: test), and determines their ac-dc differences Simultaneously. Each individual difference is determined by the ac and the dc characteristic curves of the TVC ob- tained through the least-square fit of the measurements to the equation TVCr TVCu (1) where is the output thermal EMF of the TVC. V is the corresponding input voltage, and k and are parameters CO be determined by the fit, A mathematical formalism is developed to relate the unknown to the reference and the deviations caused by the inaccuracN of the ac source and the calibration system. The basic idea behind the development of the auto- mated system is to take advantage of the availability of precision digital voltmeters and programmable ac and dc sources and to avoid building sophisticated electric cir- cuits for the system. Using a computer, we have inte- grated the measurement process and the data analysis into one cahbraiion system, which has eliminated reading and calculational human errors completely. Furthermore, it is capable of generating statistically significant results within a reasonable amount of time and with little operator at- tendance. .Manuscript received March 25, 1986. The authors arc with Primary Standards Laboratory. Lwkheed Missiles and Space Companv, Sunnvvalc, CA 94088-3503. lEEELoj, .>iumber 8610602. Fig. 1. Definition of the ac-dc difference. Data reported in this paper include both the latest re- sults generated by the new comparator and those from the comparator of an older version [6]. However, the former constitutes the bulk of the data. . CALIBRATION METHOD [6] A. Definition of AC-DC Difference For a thermal voltage converter / (TVC /), the ac-dc difference at Vj is defined by the equation (2) where Va and V,i are the input ac and dc voltages that pro- duce the same thermal EMF from / (as depicted in Fig. 1). B. Determination of AC-DC Difference Customarily (e.g., [1] and [2]) the ac-dc difference of an unknown TVC u is determined by measuring the quan- tity a - E, (3) for the reference TVC r, or for both u and r. Here n^ is the exponent (see Π ]) of a TVC with dc input, and and E¿ are EMF outputs of the TVC with ac and dc input, respectively. 0018-9456/86/1200-0396S01.(J() ^; 1986 IEEE

Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

  • Upload
    klaus-b

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

I t - » TRANÍvACTKWS 1>N INSTRI-MFNTATION ΑΝΠ MHASl'RFMl·:^T. VOL IM V .̂ NO 4. DHCl-MBlíR I98f»

Test Results of an Automatic Calibration System for AC-DC Thermal Voltage Converters and AC

Voltage Sources C H U - M I N F U . A R T C O H E E . A N D K L A U S B . J A E G E R

Ábstntci—\n autonuitic calibmtioii system has been developed for testia^ ac-dc thermal voltage converters (TVC's) and ac voltage sources. Precision, repeatability. and svi^ematic errors are investi­gated ttsiog the daU gathered from 100 mV to 1000 V over a frequency range 10 Hz to 1 MHi . The ac<-<k difference of a TVC is determined by the least-square fit to the charactrristic equation Ε = Μ") ^ith ac and dc inpaU. A mathematicAi formalism incorporating the systematic errors and the »c-óc difference, or deviation, caused by the ac input source is developed for data analysis.

I. I N T R O D U C T I O N

AU T O M A T I C s y s t e m s for ca l ibra i ing a c - d c t h e r m a l vo l t age c o n v e r t e r s ( T V C s) have been d e v e l o p e d by

N B S {!]. [ 2 ] . T h e use o f T V C ' s for cu r ren t and v o l t a g e m e a s u r e m e n t s h a s been d i scus sed in the l i t e ra tu re l 3 ] - [ 5 ] . In this p a p e r a new s y s t e m is presented w h i c h m o n i t o r s the ou tpu t s o f the r e fe rence JVC and that o f an u n k n o w η ( T V C unde : t e s t ) , and d e t e r m i n e s their a c - d c d i f ferences S imul taneous ly . E a c h ind iv idua l difference is d e t e r m i n e d by the ac and the d c cha rac te r i s t i c cu rves o f the T V C o b ­ta ined th rough the l ea s t - squa re fit of the m e a s u r e m e n t s to the equa t ion

TVCr TVCu

(1)

whe re Ε is t he ou tpu t t h e r m a l E M F of the T V C . V i s the co r r e spond ing input v o l t a g e , and k and η a r e p a r a m e t e r s CO be d e t e r m i n e d by the fit, A ma thema t i ca l fo rma l i sm is deve loped to re la te the u n k n o w n to the r e f e r ence a n d the devia t ions c a u s e d by t h e inaccuracN of the ac s o u r c e and the ca l ib ra t ion s y s t e m .

T h e bas ic idea b e h i n d the d e v e l o p m e n t of the a u t o ­ma ted sys t em is to t ake advan t age of the ava i l ab i l i ty of precis ion d ig i ta l v o l t m e t e r s and p r o g r a m m a b l e ac a n d dc sources and to avo id bu i l d ing soph i s t i ca t ed e l ec t r i c cir­cui ts for the s y s t e m . U s i n g a c o m p u t e r , w e h a v e in te­gra ted the m e a s u r e m e n t p r o c e s s and the da t a ana lys i s in to one c a h b r a i i o n s y s t e m , wh ich has e l im ina t ed r ead i n g and ca lcu la t iona l h u m a n e r r o r s comple t e ly . F u r t h e r m o r e , it is capable of gene ra t ing stat is t ical ly significant results wi thin a r easonab le a m o u n t of t i m e a n d with l i t t le o p e r a t o r at­t endance .

.Manuscript received March 25, 1986. The authors arc with Primary Standards Laboratory. Lwkheed Missiles

and Space Companv, Sunnvvalc, CA 94088-3503. lEEELoj, .>iumber 8610602.

Fig. 1. Definition of the ac-dc difference.

D a t a repor ted in th is p a p e r inc lude both the la tes t r e ­sul ts gene ra t ed by the n e w c o m p a r a t o r a n d those f rom the c o m p a r a t o r o f an o l d e r ve r s ion [6 ] . H o w e v e r , t h e f o r m e r cons t i tu tes the bu lk of the d a t a .

Π . C A L I B R A T I O N M E T H O D [6]

A. Definition of AC-DC Difference

F o r a the rmal vo l t age c o n v e r t e r / ( T V C / ) , t h e a c - d c difference at Vj is def ined by the equa t ion

(2)

w h e r e Va and V,i a re the input ac and dc vo l tages that p r o ­d u c e the s a m e t h e r m a l E M F from / (as d e p i c t e d in F i g . 1).

B. Determination of AC-DC Difference

C u s t o m a r i l y ( e . g . , [1] a n d [2]) the a c - d c d i f ference of an u n k n o w n T V C u is d e t e r m i n e d by measu r ing the q u a n ­tity

Ε a - E, (3)

for the re ference T V C r , o r for both u and r . H e r e n^ is the e x p o n e n t ( see Π ]) o f a T V C with dc inpu t , a n d a n d E¿ a re E M F ou tpu t s of the T V C with ac and dc inpu t , r e spec t ive ly .

0 0 1 8 - 9 4 5 6 / 8 6 / 1 2 0 0 - 0 3 9 6 S 0 1 . ( J ( ) ^ ; 1986 I E E E

Page 2: Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

Ρυ ff al.: TfvST RESULTS OF AUTOMATIC CAMBRA HON SYSThM W7

'"out

^out

yin (h)

Fig. 2. (a) Characteristic curves and measurement sequence, (b) Charac­teristic curve measurement, least-square fits, and the * "measured" ac-dc difference.

In this p a p e r the a c - d c difference is ca l cu l a t ed from the leas t - square fitted ac a n d dc charac te r i s t ic c u r \ ' e s , each o f wh ich is ob t a ined by fitting e m e a s u r e d da ta to (1 ) . A s ingle ac~dc d i f ference m e a ement at a rest point ( i . e . , at a cer ta in f r equency for a ed nomina l vo l t age K,. of a T V C ) is de r ived f rom four s t ies of r ead ing pai rs Eoui)^ w h e r e V^n and £out a re the input vo l t age to and out ­put E M F of t h e T V C . T h e V,^ is swi tched in the o rde r

{AC\, D C - F , DC-R. AC2) ( 4 )

w h e r e AC\ and AC2 s t and for the ac inpu t , a n d D C - F and DC-R m e a n dc wi th fo rward and reversed po la r i t i e s . E a c h of these four se r ies o f (Κ^^, E^^J,^) pa i rs t r aces a long the co r r e spond ing cha rac t e r i s t i c curves as ske t ched in F i g . 2 ( a ) . T h e reg ion c o v e r e d by these four se r ies (of read ing pairs) is e n l a r g e d as s h o w n in Fig , 2 ( b ) . N o t e that input vo l tages o f all ser ies a re s tepped up f rom the s a m e va lue V,, and wi th the s a m e s t ep s i z e . The sol id do ts indica te the measu red r ead ing p a i r s , and the c rosses and the squa res the ave rages o f the t w o dc series and the t w o ac se r i e s , r e spec t ive ly .

T h e ' ' m e a s u r e d a c - d c d i f f e r ence" is ca lcu la t ed us ing the l eas t - square fitted charac te r i s t ic c u r v e s ( l abe led as DC [LSQF] and AC [LSQF] of the a v e r a g e s s h o w n in F ig ,

2(b ) ) . T h e fits g i v e the exponen t η and its s t andard e m i r An. T h e la t te r is u s e d a s a reject ion cr i ter ion (see Sect ion I I I -C for de t a i l s ) .

# 1 Φ2

SOURCE r AC SOURCE

± ± C O N T R O L L E R

KEYBOARO M A S S S T 0 R A i 3 £ PLOTTER

Fig. 3 . Auiomauc calíbraiíon sysiem for 2i£-<k iramfor ^usiáaFái ¡asá sources.

T h e * 'measu red a c - d c d i f f e r e n c e ' ' is t he b a s i c infor­m a t i o n used in the da ta a n a l y s i s . H o w t h e a c - d c differ­e n c e o f an u n k n o w n T V C u is d e t e r m i n e d wi l l be d i s ­c u s s e d in Sec t i ons III and I V .

I I I . T H E A U T O M A T I C C A L I B R A T I O N S Y S T E M A N D I T S

OPER.ATION

T h e a u t o c o m p a r a t o r d i s c u s s e d in th i s p a p e r , a s dep ic ted in F i g . 3 , is bas ica l ly the s a m e a s tha t p r e s e n t e d in {6]. In the la t ter s y s t e m , the c o m p u t e r ins t ruc ted a s c a n n e r t o do t he swi tch ing of the inpu t v o l t a g e s o u r c e s . U s i n g an ac vo l t age sou rce with isola ted o u t p u t fea ture in the new s y s t e m , the sw i tching is n o w a c c o m p l i s h e d by ins t ruc t ing the v o l t a g e sou rces d i rec t ly . C o n s e q u e n t l y , t h e s canne r has b e e n e l imina t ed in the n e w s y s t e m . H o w e v e r , this modi f ica t ion h a s no effect o n h o w the m e a s u r e m e n t s are d o n e .

T h e t w o T V C ' s shown in F i g . 3 a re p l aced in a w o o d e n box a s ind ica ted by t he do t t ed l i nes . A me ta l l i c screen is inse r t ed b e t w e e n the inner fiberglass in su la t ion and the ex te rna l w o o d e n wal ls of the b o x . T h u s t h e Sox has bo th the t h e r m a l insula t ion and e lec t r i ca l s h i e l d i n g . T h e func­t ions o f different parts of the s \ s i e m are d e s c r i b e d in the fo l lowing th ree s tages of o p e r a t i o n .

A. Input

T h r o u g h the keyboard w e inpu t t h e fo l lowing infor­m a t i o n to start the measurement:

1) t h e ident i f icat ion of t h e T V C o n e a c h s ide of the c o m p a r a t o r ;

2 ) n o m i n a l input vo l t age 3) a c in ru t f requencies F.: 4 ) total n u m b e r of v o l t a s e s t eps p e r charac te r i s t ic c u n e

5) input v o l t a g e s t ep s ize in dV V (/?^., in p p m of 6) n u m b e r o f read ings p e r s t ep A V : 7) s tabi l i ty l imit on r ead ings (S^, 5 n V s : a measun?-

m e n t re ject ion cr i te r ion o n the s t a n d a r d e r r o r o f the e x p o n e n t η {λη) from the LSQF—stc Sec t ion I I I - A for de t a i l s ) : and

8) n u m b e r o f ' ^ m e a s u r e m e n t s ' * p e r T V C a r r a n g e m e n t p e r test po in t Λ',„.

Each " m e a s u r e m e n t " p r o d u c e s o n e set o f fitted a c a n d dc charac te r i s t i c c u r s e s for the t w o T V C ' s . T h e r e are t w o

Page 3: Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

398 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. IM-35, NO. 4, DECEMBER 1986

T V C a r r a n g e m e n t s , be fo re a n d after s w i t c h i n g the s ides for the t w o T V C ' s .

B, Measurement

T h e con t ro l l e r does the fo l lowing in the m e a s u r e m e n t s t age .

I ) Based on the k e y b o a r d inpu t , c a l cu l a t e s the initial vo l tage

K ^ V n - {Ny ~ 1) · K„ . Ryll (5a)

and instructs t h e vo l t age s o u r c e s to s t ep u p

= I / , + m · /?, · V, (5b)

whe re

m - 0 , 1, 2 , · · · (/V, - 1).

2) Swi tches the input v o l t a g e sou rces in the o rde r of (4)

iACX. DC-F, DC'R. ACl)

for N„ t imes . ( N o t e : the ACl se r ies of the wth ' ' m e a ­s u r e m e n t ' ' wil l be used a s t h e AC\ se r ies o f the (m l ) th ' ' m e a s u r e m e n t . " )

3) C h e c k s t he .stability l imi t (on read ings ) S, and in­structs the n a n o v o l t m e t e r s t o t ake r ead ings (after the S, test has been passed each t i m e ) .

4 ) Stores the E M F o u t p u t of the T V C ' s in the m a s s s torage uni t ( M S U ) .

5 ) Ins t ructs t h e vo l t age s o u r c e s to start from I ' , a t a new le.st point .

6 ) S tops t ak ing m e a s u r e m e n t s w h e n da ta for all the F , ' s h a v e been co l l ec ted .

7) Manua l ly swi t ches the t w o T V C ' s and p roceeds the measu remen t p roces s f rom Π to 6 ) . T h e n s tops tak ing m e a s u r e m e n t s .

C. Data Analysis

W h e n the da ta for bo th T V C a r r a n g e m e n t s a re ava i lab le in M S U , the d a t a ana lys i s c a n b e g i n . T h e con t ro l l e r d o e s the fol lowing du r ing the d a t a ana lys i s s t a g e .

1) Re t r ieves the data from the M S U . 2) Per fo rms data ana lys i s that i nc ludes :

a ) Ca l cu l a t e s the η v a l u e s of the charac te r i s t i c c u r \ e s of bíMh T V C ' s t h r o u g h l ea s t - squa re fits, the individ­ual ' m e a s u r e d " a c - d c d i f fe rences , the i r relative a c -dc dif ference, a n d s a m p l e s tandard dev ia t ions ( S S D ' s ) of these q u a n t i t i e s .

H o w the " m e a s u r e d " a c - d c differences of a reference s tandard r (6,) and that of a n u n k n o w n T V C u (δ„), and the i r re lat ive difference (ό^/) , a re ob t a ined is depic ted in F i g . 4 . N o t e that the η v a l u e s a re au toma t i ca l l y ca lcu la ted in he re . But , it is not so by t h e conven t i ona l m e t h o d ( i . e . , measu r ing the relat ive di f ference d i r ec t l y ) . T h e η va lues and the S S D ' s (of fi, δ^, ó.,, a n d ό.,,) a re exce l l en t c h e c k s for the qual i ty of the ca l i b r a t i on tes t .

b ) Rejec ts p o o r m e a s u r e m e n t s . T h e s t andard er ror (Δ.»ί) of the exponen t η is u sed as re jec t ion cr i te r ion . Any

Fig. 4. Individual and relative ac-dc diflfercnces.

m e a s u r e m e n t has a An g r e a t e r t han a cer ta in l imi t is re jec ted . D e p e n d i n g o n the f r equency , the l imi t ing va lue of An r anges a n y w h e r e b e t w e e n 0 .1 to 1.0.

c) I n c o φ o r a t e s the i n fo rma t ion ob t a ined f rom bo th T V C a r r a n g e m e n t s to p e r f o r m the ana lys is u s ing the ma themat i ca l f o rma l i sm d e v e l o p e d in the nex t s ec ­t ion .

3) Ins t ructs the p r in te r t o pr in t out the resul ts of the a n a l y s i s . T h e t ime requ i red for " o n e m e a s u r e m e n t " at a test point is about 9 - 1 0 m i n w h e n seven input v o l t a g e s t eps and 5 n V / s of D V M r e a d i n g stabil i ty are u s e d .

IV . T H E M A T H E M A T I C A L F O R M A L I S M FOR D A T A

A N A L Y S I S

In prepara t ion for the d i s c u s s i o n of the resu l t s , w e in­t roduce the t e r m i n o l o g y , n o t a t i o n s , and the bas ic equa ­t ions to be used for da ta a n a l y s i s .

A. The AC-DC Difference

I. A Single Measurement: A s ingle a c - d c difference m e a s u r e m e n t for a T V C / c a n be exp res sed as

( ó j , = δ, -¥ Ca + es + Cr (6)

w h e r e δ, is the t m e v a l u e , e^ is the e r ro r caused by the inaccuracy of the ac s o u r c e , a n d e^ and £V a re the s y s t e m ­at ic and random e r ro r s , r e spec t ive ly . T h e subsc r ip t a re­fers to a par t icular ac s o u r c e a. T o s implify the d e v e l o p ­m e n t of the fomia l i sm , the e r r o r c a u s e d by the inaccu racy o f the d c source h a s b e e n in ten t iona l ly left out in ( 6 ) . N o t e that its con t r ibu t ion to the tota l e r ro r can easi ly b e deter ­m i n e d and be i n c o φ o r a t e d in t he co r rec t ion to the a c - d c difference d e t e r m i n a t i o n .

2. A Sample of Measurements: By tak ing the a v e r a g e o v e r a sufficiently la rge s a m p l e , (6) r educes to

a n d

<δ,>, = δ, -f e, ^ (es\

<er>^ = 0 .

(7a)

(7b)

Page 4: Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

FU et al.: TEST RESULTS OF AUTOMATIC CALIBRA!ION SYSTEM 399

S * i (in % or ppm)

Fig. 5 . Systematic and random errors in an ac-dc difference distribution.

T h e t e r m s <oa>^ and <^;.>^ are the m e a n v a l u e of the m e a s u r e d ' ' a c - d c dif ference of / and tha t of t h e r a n d o m

e r r o r , r espec t ive ly . T h e i n t e φ r e t a t i o n of t h e s e equa t ions is d e p i c t e d in F i g .

5 . T h e wid th of the d i s t r ibu t ion gives the p rec i s ion of the m e a s u r e m e n t s . T h e S S D is a direct m e a s u r e of the w i d t h . In Sec t ions V a n d V I w e shal l use S S D for the d i s cus s ion o f p rec i s ion .

3, The ''Right'* and the "Lefi^' Differences: W h e n T V C / is p laced on the right side of the c o m p a r a t o r , the m e a n va lue of i ts a c - d c difference is g iven by

S imi la r ly

<6^>f = δ, + + (es)^

(8a)

(8b)

(ir, % Of ßpm)

Fig. 6. Systematic and random errors and the left and right ac-dc differ­ence distributions.

T h e r e l a t i ons desc r ibed by (11) a r e dep ic ted in F i g . 6 . T h e a n t i s y m m e t r i c a l par t of the sys temat i c e r r o r m e a s u r e s t h e s e p a r a t i o n be tween the right a n d the left m e a n va lue a s wel l a s t h e i r d i s t ances from the ave rage va lue (def ined by (1 I c ) ) . T h e t e rm on the right-hand s ide of (1 l a ) is the offset o f t h e a v e r a g e f rom the t m e a c - d c difference 6j.

B. Determination of the Difference of an Unknown TVC

1. Relative AC-DC Difference: C o n s i d e r a r e f e r ence s t anda rd r o n the left and an u n k n o w n T V C u o n t h e right. E l i m i n a t i n g e^ b e t w e e n (9a) and ( 9 b ) , o n e o b t a i n s t h e a c -d c di f ference of u r e la t ive to r as g iven b e l o w :

a s uni t / is p laced on the left s ide . E q u a t i o n s (8a ) and (8b) can b e wr i t ten in the fo rm

<5 , > f = δ, + + (el\ + {et\ (9a) w h e r e

and

w h e r e

and

<δ,>ί- = δ, + e, + (el)i -

{ei\ - ies), = (es)l

(9b)

(lOa)

(I Ob)

and

Oa)^ = <^a>u - <δ.>'

= δ„ ~ δ, + D l + Si

D l = {ehu ~ iel)r

(12)

( I 3 a )

( I 3 b )

S i m i l a r i y , if w e swi tch s ides for u and r ( i . e . , w h e n u is on the left s ide and r is on the right s ide ) , w e h a v e t h e re la t ive di f ference

T h e t e r m s ( ^ 5 ) , and ies)i a r e referred to as the s y m m e t r i c a l and the an t i symmet r i ca l pa r t of the sys temat ic e r ro r for /. T h e y are indeed proper ly n a m e d , s ince o n e n o t e s that the an t i symmet r i ca l part mus t vanish if one requ i res that m e a n v a lu e s of the right and the left differences (<δ^>f and <óa>f) o f / are equa l w h e n the sys tem is s y m m e t r i c .

E q u a t i o n s (9) and (10) fo rm the bas i s for t h e da t a ana l ­y s i s . So lv ing for e^ + el a n d e^ in t e rms of the m e a n va lue a n d the t rue va lue of t h e a c - d c difference, o n e ob ta ins

(11a)

( l i b )

<δ.>ίί = <δ.>ί; - <δ,>?

= δ„ - δ;. + DI - Sur- (14)

e, + e's = AvidJi - δ,

eí = i «δ.>Γ - <δ.>ί')

E q u a t i o n s (12 ) and (14) g ive the relat ive a c - d c differ­ences for t he t w o different T V C a r r a n g e m e n t s in t e rms of the a c - d c di f ference of individual T V C ' s and c o m b i n a ­t ions o f s y s t e m a t i c e r ro r s . T h e y a r e general r e la t ions a p ­p ly ing t o a n y two T V C ' s .

2. The AC-DC Difference of the Unknown u: R e a r r a n g i n g (12) and (14) , w e ob ta in the a c - d c di f ference of the u n k n o w n u for the t w o different T V C a r r a n g e m e n t s as fo l lows :

w h e r e and

^ι^<δ,>. = \ «δ ,> f 4- <δ,>ί). ( l i e )

δα = δ^ -r iha)^^ - DI - si

δ, - δ, + iKYfr - O l + S

(15a)

(15b)

Page 5: Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

4 0 0 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. IM-35, NO. 4, DECEMBER 1986

By c o m b i n i n g t he t w o p rev ious equa t ions , w e h a v e

δ . = 5r + i * l<8a> RL + <δ.>ίί] ~ Dl, (16)

( k n o w n ) ( m e a s u r e d ) (es t imated)

N o w w e h a v e r educed the re la t ion for d e t e r m i n i n g the a c -d c d i f ference o f the u n k n o w n u t o one quant i ty D^r t o b e e s t i m a t e d . U s i n g t w o k n o w n s t andards r' a n d r o n e c a n u s e (15) a n d (16) to e s t ima te t h e values o f Df^ and 5^^.. By def ini t ion ( 1 3 b ) , t h e la t ter c a n also be ca l cu l a t ed w i th ( l i b ) . E q u a t i o n s (15) and (16) a r e the genera l r e l a t i ons to be u sed to d e t e r m i n e the a c - d c difference o f an u n k n o w n T V C w.

C. Calibration of an AC Source

U s i n g (9) and (11a ) one can expres s the i n a c c u r a c y of an a c sou rce a s fo l lows :

^ = = - δ, - [ ( 4 ) , + iet)^] ( I 7 a )

7 7 = ^« = <^^>ί' ~ δ, - [(el), - (e^),] (17b)

77 = ^o- Av(dJ, - 0, - (el)^ (18)

w h e r e / is a k n o w n T V C . Equa t i on (18) can a l s o be o b ­ta ined by c o m b i n i n g (17a) and (17b) . T h e i n a c c u r a c y is exp re s sed in t e r m s o f the ra t io o f ΔΚ^ to the n o m i n a l d c vo l t age of the test . T h e sys temat i c e r rors in t h e a b o v e equa t ions h a v e to b e p r e d e t e r m i n e d . H o w e v e r , if e^ is k n o w n t h e n o n e can d e t e r m i n e the inaccuracy o f an u n ­k n o w n sou rce a' by

ea^ - e,= <δ,.>Γ - ( ó ,> f (19a)

(19b)

w h e r e / c a n be an u n k n o w n T V C . Equat ion (19) is de r ived from ( 1 7 ) .

V . R E S U L T S

D a t a r epor t ed in th i s sec t ion conta in all the m e a s u r e ­m e n t s t a k e n in the last 18 m o n t h s . D u r i n g that t i m e dif­ferent t y p e s and leng ths of c a b l e s , different c o n n e c t o r s and d ig i ta l v o l t m e t e r s , and e v e n different a c s o u r c e s h a v e been u s e d . N u m e r o u s tes ts and i m p r o v e m e n t s h a v e b e e n m a d e for t h e au toma t i c ca l ibra t ion sys tem. H o w e v e r , even wi th m a n y modi f ica t ions , bas ica l ly the s y s t e m is o f the same t y p e . T o t ake a c ons e rva t i ve v iewpoin t , in s t u d y i n g each o f t h e quant i t i es in t roduced in this p a p e r , w e a l w a y s use all t he da ta ava i l ab le inc lud ing the wors t c a s e . In a b r o a d e r s e n s e , it e n h a n c e s the statistical s ign i f icance o f the s tudy o f th is n e w au tomat i c ca l ibra t ion s y s t e m . In t he fo l lowing d i s c u s s i o n , excep t fo r one case ( r epea t ab i l i t y . Sec t ion V - B ) , w e shal l not separa te the da ta o b t a i n e d in different s t a g e s . Th i s m e a n s tha t the l imits of all the q u a n ­t i t ies q u o t e d in this p a p e r shou ld be rather c o n s e r v a t i v e .

A s a r e m i n d e r , t h e da ta p resen ted here w e r e t aken at

100.0

1 FREQUENCY (Hz)

V/A 1 Sid Dev. =0 .5-6 ppm \:^ΐΣ\ 1 Sid Dev.i1~10 ppm

1 Std Dev. = 3-60 ppm

1 Std Dev. - 30-100 ppm

to be tested

1 Std Dev. =^160-550 ppm

Fig. 7. One S S D of the relative ac-dc difference.

test po in ts that are c o m m o n l y r equ i r ed for ins t rument ca l ­ib ra t ions . F o r major i ty o f the d a t a , m e a s u r e m e n t s w e r e not m a d e in the ideal s i tua t ions . W h e n the appl ied vo l t age is m u c h l o w e r than the nomina l v o l t a g e o f the T V C ' s o r the full r ange o f the vo l t age s o u r c e (espec ia l ly at the u p ­pe r l imi t ing f requency of t h e s o u r c e ) , t h e sys t em d o e s not per form as wel l as it is expec t ed t o . T h u s la rge unce r t a in ­t ies resul t , e . g . , at 100 m V and a r o u n d 1 M H z .

T h e da ta p resen ted in this p a p e r c o v e r a vo l t age r a n g e from 100 m V to 1000 V . At 4 V o r b e l o w , the T V C ' s used a re j u s t t he rma l e l e m e n t s . A b o v e 4 V , t h e T V C ' s a lways cons is t of a the rma l e l e m e n t a n d a range res is tor . T h e fo l lowing are the g roups of s a m p l e s used in the d i s ­cuss ion b e l o w .

G r o u p A : vo l t age from 100 m V to 1000 V , f requency from 10 H z to 1 M H z , and ten m e a s u r e m e n t s p e r T V C a r r a n g e m e n t at each test po in t .

G r o u p B : at 0 .5 V and 2 0 k H z , w i th 5 0 m e a s u r e m e n t s per data po in t . ^

G r o u p C : 6 0 0 V at 2 0 and 5 0 k H z , wi th 5 0 m e a s u r e ­ments p e r da ta point .^

F o r G r o u p s Β and C , there m a y b e m o r e than o n e da t a point for a T V C a r r a n g e m e n t at a tes t po in t .

A. Precision

U s i n g G r o u p A w e obta in the d i s t r ibu t ion of 1 S S D va l ­ues of t he rela t ive a c - d c d i f ferences ( (12) o r (14)) as shown in F i g . 7 . A b o v e 3 9 0 m V a n d u p to 1000 V , the largest shaded area in the figure h a s t he bes t 1 S S D va l ­u e s , app rox ima te ly 0 . 5 - 6 . 0 p p m . H o w e v e r , the major i ty of the da t a points in this a rea l ie a r o u n d 2 - 2 . 5 p p m . T h e h igh- f requency region (500 k H z to 1 M H z ) h a s the la rges t 1 S S D va lues ( 3 - 6 0 p p m ) . B e l o w 3 9 0 m V and d o w n to

' -Part of this group of measurements was taken with the comparator of the earlier design | 6 ] .

Page 6: Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

FU et al.: TEST RESULTS OF AUTOMATIC CAUBRAHON SYSTEM 401

Δ 300 mV O 1 V • 900 V

• O.S V Χ 3.B V

4

Ίο 50 ισ* ^ 1 0 * 10* 10* ίο* FREQUENCY (Hz)

κι. RL RL Fig. 8. Repeatability: Δ<6,>ί? = | « δ . > ! ; ) 2 - «ö ,>t f ) . i .

100 m V , t he 1 S S D v a l u e s a re a r o u n d 3 0 - 1 0 0 p p m b e ­tween 10 H z and 100 k H z , a n d 1 6 0 - 5 5 0 p p m be tween 100 k H z to 1 M H z .

B. Repeatability

In F ig . 8 w e p lo t as a funct ion o f f r equency the abso lu te va lue of t h e d e v i a t i o n b e t w e e n t w o m e a n re la t ive differ­ences of the s a m e k i n d at 3 9 0 m V , 0 . 5 V , 1.0 V , 3 . 9 V , and 600 V . H e r e a f t e r w e sha l l refer to th i s dev ia t ion a s Δ . T h e da ta a re t a k e n f rom al l t h r e e g r o u p s A , B , a n d C when.f ; t he re is m o r e t h a n o n e set o f m e a s u r e m e n t s o f a relat ive a c - d c d i f ference a v a i l a b l e . T h e e r r o r bars s h o w the combined t h r e e s t a n d a r d d e v i a t i o n s . T h e e r ror is e s ­t imated at th ree t i m e s o f t h e s q u a r e roo t of t he sum of t he squares of 1 S S D ' s o f t he m e a n re la t ive differences f rom the two sets of m e a s u r e m e n t s , o r

Error = 3[(1 S S D of M, )^ 4- (1 S S D oí M^fY'^ (20)

w h e r e Μχ and Mi r e fe r t o t h e m e a n v a l u e s of the s a m e relat ive difference o b t a i n e d f rom t w o se ts of m e a s u r e ­m e n t s , set 1 a n d se t 2 , r e spec t ive ly .^ Only the largest er­ror at each frequency is plotted.

Based on the d a t a s h o w n in F i g , 8 , w e o b s e r v e the fol­lowing .

1) T h e va lue of Δ i s l e s s t h a n 10 p p m b e l o w 2 0 0 k H z and a round 2 0 0 p p m o r less b e t w e e n 2 0 0 k H z and 1 M H z , T h e main con t r i bu to r s to t h e l a rge Δ v a l u e s in the h igh -frequency reg ion a r e d a t a p o i n t s f rom 0 , 5 and 3 ,9 V , In both cases the Δ v a l u e s w e r e e v a l u a t e d u s i n g data t aken at t imes sepa ra t ed b y at l eas t e igh t m o n t h s . In add i t ion , they w e r e t a k e n e i t h e r a t o r n e a r t h e u p p e r l imit ing fre­quency a n d at 5 0 p e r c e n t o r l e s s of the ftiU range of t he a c source . T h e n , a f t e r r e m o v i n g da t a f rom 0 , 5 and 3 , 9 V in the h igh- f requency r e g i o n , all the res t o f the data po in t s in F ig , 8 (excep t o n e po in t at 1 M H z a n d 390 m V ) l ie be low 10 p p m . A g a i n the e x c e p t i o n a l c a s e was t aken a t

^Part of this group of measurements was taken with the comparator of the earlier design [6],

t h e u p p e r l im i t i ng f requency and l e s s than 5 0 percen t of t he full r ange < 1.0 V ) o f the s o u r c e . In o r d e r to m a k e a m o r e definite s t a t e m e n t in t he h igh - f r equency reg ion , re ­p e a t e d n e w m e a s u r e m e n t s h a v e t o b e m a d e the re ,

2) Er rors of m a n y o f the Δ ' 8 ( e spec ia l ly above 2 0 0 k H z ) are s m a l l e r than the v a l u e o f Δ ' 5 t h emse lves . T h i s ind ica tes tha t in t hose cases the re w a s a significant c h a n g e in t h e s y s t e m b e t w e e n t imes w h e n t h e t w o samples w e r e t a k e n . T h e c h a n g e s d u e to modi f ica t ions of the sys t em c a u s e d the m e a n re la t ive dif ferences t o shift significantly (wi th respec t to the t h r e e s tandard dev ia t i ons ) but h a d lit­t le effect on the p rec i s ion .

C. Asymmetry

T h e a s y m m e t r y o f t h e ca l ib ra t ion s y s t e m is defined by the a n t i s y m m e t r i c a l par t of t h e s y s t e m a t i c e r ror (^5)/ ( l i b ) . I dea l l y , w h e n a T V C i is s w i t c h e d from the left s ide to the right s ide , o r v ice v e r s a , t h e m e a n va lue o f its m e a s u r e d a c - d c difference s h o u l d shift b y twice the a m o u n t of (^5 ) , . T h e la t ter v a n i s h e s if the sys t em ( inc lud­ing t h e t w o TVC*s) is per fecdy s y m m e t r i c . F i g . 9(a) and (b) s h o w s t h e ^ 5 va lues of the t w o T V C ' s present in the s a m e test run a s a funct ion of f r equency at 390 m V to 1000 V a n d at 100 m V , r e spec t ive ly . O n l y the la rges t er­ror a t each f requency is p lo t t ed .

In F i g , 9 ( a ) , t he d a t a poin ts t e n d to be d is t r ibuted n e a r ze ro but o n the nega t ive s ide o f 6 5 , H o w e v e r , in m a n y c a s e s the v a l u e s of t he t w o T V C ' s f rom the same test run h a v e app rox ima te ly equa l m a g n i t u d e and a re of oppos i t e s i gns . T h e m a g n i t u d e o f the a s y m m e t r y is abou t 5 p p m or less be low 5 0 0 k H z , and 120 p p m o r less at 1 M H z , In F i g . 9 (b) t h e a s y m m e t r y is nega t i ve at all f requenc ies , and has a m a g n i t u d e of 6 0 p p m o r l e s s b e l o w 5 0 0 k H z , and 350 p p m o r l ess at 1 M H z ,

D, Offset

T h e offset o f the ca l ibra t ion s y s t e m is defined by Ca -f (^s)i as g iven in (11a ) . F i g . 10 s h o w s the offset as a func­t ion of f r equency for da ta from 0 . 5 , 1.0, 3 . 9 , 10, 3 5 , 100 , 6 0 0 , and 1000 V . The error bars indicate the largest er­ror at each frequency. The offset l i es in the range of —120 to -h 160 p p m b e t w e e n 10 H z a n d 6 0 k H z , and in the r a n g e of - 1 2 0 to 4-500 p p m above 5 0 k H z u p to 5 0 0 k H z . S o m e of t h e s p r e a d i n g of the data po in t s a r e d u e to modif ica t ions d o n e o n t h e c o m p a r a t o r s at d i f ferent t i m e s . Signif icant shifts o f t h e offset, fo r e x a m p l e , t h e da ta po in t s at 2 0 , 5 0 , and 100 k H z f rom 3 . 9 ν and 3 5 V , a r e ma in ly caused by the c h a n g e of t he input ac s o u r c e . T h i s t ype of shift can eas i ly b e u n d e r s t o o d in t e rms o f

and S'^r'r^

B a s e d o n the data from s u b g r o u p s of G r o u p s A and C , w h e r e the a c - d c differences o f b o t h T V C ' s present in a test run a r e a v a i l a b l e , p a r a m e t e r s (16) and 5^v (15) h a v e b e e n ca l cu la t ed . T h e abso lu t e va lue of aga ins t f requency at 1, 3 , 9 , 3 5 , 100 , 6 0 0 , a n d 1000 V is p lo t ted in F i g , 1 1 , In the fo l lowing d i s c u s s i o n w e shall s imply use D and S t o d e n o t e the p a r a m e t e r s .

Page 7: Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

402 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. VOL. IM-35, NO. 4, DECEMBER 1986

(a)

80

40

1 0

«< Vi '40

'80

'120

-160

lOOmV

/ I r : ]

i 1 L —

: : [ Γ

L

i 1 L —

1 0 10^ 10^ 10^ 10

I

\ )

400

200

0

'200

•400

- 6 0 0

'800

10^

FREQUENCY (Hz)

(b) Fig. 9. (a) Asymmetr>' of the calibration system between 390 mV and 1000

V. (b) Asymmetry of the calibration system at 100 mV.

0) + (if-

.1 I o U C 3 9 i/

\ X ro V ^ 600 V

35 V © TOGO V "7 fOO V

^ J

10^ 10^

FREQUENCY (Hz)

Fig. 10. Offset {e^ + €¡).

10^ 2XtO^

T h e S v a l u e s a r e usua l ly of the o r d e r o f a f ew par t s p e r mi l l ion o r l e s s , e x c e p t a t 1 M H z w h e r e o n e v a l u e is c l o s e to 27 p p m . T h e v a l u e o f D va r ies f rom less than 1 u p to a r o u n d 6 0 p p m . T h e r e is a t e n d e n c y that it ge t s l a r g e r n e a r t h e u p p e r f r equency l imi t s of t he ac s o u r c e a t different vo l t ages ( e . g . , 1 M H z b e l o w 100 V , 100 k H z at 100 V , a n d 5 0 k H z at 6 0 0 V ) . O n e m a y n o t e tha t the S d e p e n d s on ly o n the m e a s u r e d q u a n t i t i e s . H o w e v e r , D d e p e n d s on bo th the m e a s u r e d quan t i t i e s and the va lues of t he a c - d c di f ferences o f t he t w o k n o w n T V C ' s . T h e l a t t e r , e v e n t h o u g h t r a c e a b l e t o N B S , w e r e d e t e r m i n e d by different ca l ib ra t ion l a b o r a t o r i e s o v e r a t i m e span of m o r e t han ten y e a r s . It is i n t e n d e d tha t the D v a l u e s wil l b e r eeva lua t ed

wi th t w o sets of T V C ' s , bo th o f w h i c h a re t o be ca l ib ra ted by N B S .

E . The Exponent η

T h e measured ind iv idua l a c - d c di f ferences a r e c a l cu ­la ted us ing the l e a s t - squa re fits t o ( 1 ) . H e n c e the e x p o n e n t η mus t a lways b e d e t e r m i n e d first. F r o m the da ta of G r o u p s Β and C w e o b s e r v e tha t t h e m e a n v a l u e of of a T V C differs no t m o r e t h a n 1.25 p e r c e n t b e t w e e n t w o s a m p l e s , even t h o u g h different c o m p a r a t o r s w e r e e m ­p l o y e d . Therefore the value of the exponent n„ and its S S D can be used as initial indicators to see whether the cali­bration system is functioning properly. T h e y a l s o can tell

Page 8: Test results of an automatic calibration system for AC-DC thermal voltage converters and AC voltage sources

FU e! al.: TEST RESULTS OF AUTOMATIC CALIBRATION SYSTEM 403

o IV • »001^

X ».»v ^ «oov Δ 361^ ·1000ν

r

ι f<M>

f.O

a i

c 5 f<M>

f.O

a i

f<M>

f.O

a i

f<M>

f.O

a i

FREQUENCY (Hz)

Fig. 11. Estimate of the absolute value of Df,.

X ' 7.4 1SSD-.0183

Ü

ω

1.630 1.638 1.646 1.610 1 6 5 0 1 690

> 24,

0 1 SSD=.O048

( > / o )

1SSD-.0 190

I

1.690 1.700 1.7 10 1.670 1.710 1 750

Fig. 12. The exponent η without RFIS.

t he qual i ty o f the m e a s u r e m e n t s . T o i l lus t ra te the po in t , the e x p o n e n t s a n d for b o t h T V C ' s u n d e r the same fixed a r r a n g e m e n t a r e plot ted in F i g s . 12 and 1 3 . T h e only difference i n t h e ca l ibra t ion s y s t e m s for t he t w o figures is tha t the D V M at t h e left for F i g . 12 w a s r ep laced by a m e t e r w i t h R F in ter ference s h i e l d i n g ( R F I S ) fo r F i g . 13 . T h e data h a v e b e e n fitted t o G a u s s i a n s as s h o w n b y the c u r v e s . T h e c h i - s q u a r e o f the fit a n d the v a l u e of 1 S S D of each s a m p l e a r e g iven in the subf igures . B o t h t he chi-squa re a n d t h e S S D show c o n s i d e r a b l e i m p r o v e m e n t in F i g . 13 . L o w e r ch i - squa re impl i e s tha t the s a m p l e ag rees be t t e r w i t h t h e ' * r a n d o m n e s s " a s s u m p t i o n , a n d tha t the errors can be broken down loosely in the manner as de­picted in Fig. 6. T h e smal ler S S D v a l u e s in F i g . 13 sim­ply m e a n b e t t e r p r e c i s i o n .

V I . C O N C L U S I O N

W i t h t h e n e w a u t o m a t i c s y s t e m w e h a v e p r o d u c e d sta­t is t ical ly s igni f icant data to d e t e r m i n e the p r e c i s i o n and the repea tab i l i ty o f m e a s u r e m e n t s . T h e 1 S S D dis t r ibut ion s h o w n in F i g . 7 we l l represents the p rec i s ion of the sys­t e m as con f i rmed by samples o t h e r t h a n G r o u p A . Excep t

1.694 1 702 1.7 10 1.670 1 7 10 1 750

Fig. 13. The exponent η with RFIS.

for t w o small v o l t a g e - f r e q u e n c y regions w h i c h are to b e tes ted , the 1 S S D v a l u e o v e r a vo l tage r ange o f 3 9 0 m V to 1000 V is a b o u t 0 . 5 - 1 0 p p m be tween 10 H z - 5 0 0 k H z , and 3 - 6 0 p p m a b o v e 5 0 0 k H z u p to I M H z . A t 100 m V the 1 S S D va lue is m u c h h ighe r . It is abou t 3 0 - 1 0 0 p p m b e t w e e n 10 H z a n d 100 k H z , a n d 1 6 0 - 5 5 0 p p m from 100 k H z to 1 M H z . Repea t ab i l i t y in t e rms o f the m e a n v a l u e of the re la t ive d i f ference of t w o T V C ' s is a b o u t 10 p p m o r less b e t w e e n 10 a n d 2 0 0 k H z , and 2 0 0 p p m o r l e s s ab o v e 2 0 0 k H z u p to 1 M H z (see Sect ion V - B for a d e ­tai led d i s c u s s i o n ) .

T o d e t e r m i n e t h e a c - d c difference of an u n k n o w n T V C , one c a n use e i t h e r (15) o r ( 1 6 ) . The only quan t i t y tha t needs t o b e e s t i m a t e d is D in ( 1 6 ) , s ince the v a l u e of S in (15) c a n readi ly b e ca l cu l a t ed b y using ( l i b ) . W i t h t w o k n o w n T V C ' s w e h a v e e s t i m a t e d the va lue o f D . I t va r i e s app rox ima te ly f rom —60 to 4 - 6 0 p p m . T h e m a g n i t u d e in ­c reases with f r e q u e n c y . As d i scussed ear l ie r , b e t t e r e s t i ­ma te s on D and S wi l l b e d o n e in the n e a r fu tu re .

F ina l ly , wi th t h e a u t o m a t e d sys t em w e are a b l e t o g e n ­erate sufficient d a t a for e x a m i n i n g var ious a s p e c t s of t he m e a s u r e m e n t s s u c h a s the r a n d o m n e s s of the m e a s u r e ­men t s of a s a m p l e ( s ee Sec t ion V - E ) and the i n c o n s i s t e n c y in the m e a n v a l u e s of t he re la t ive difference ( s ee Sec t ion V - B ) . Careful e x a m i n a t i o n o f these aspects s h o u l d g u i d e us to fur ther i m p r o v e the s y s t e m .

R E F E R E N C E S

[1] E. S. Williams and J. R. Kinard, '*A dual-channel automated compar­ator for ac-dc difference measurements," in Proc. Precision Electro­magnetic Meas. Conf., 1984, pp. 191-192; also/££"£ Trans. Instrum. Meas., vol. lM-34. no. 2, pp. 290-294, June 1985.

[2] K. J. Lentner. D. R. Flach, and B. A. Bell, "An automated ac/dc thermal voltage converter and ac voltage calibration system," Nat. Bur. Stand., Rep. NBSIR 84-2973, Nov. 1984.

(3] F. L. Hermach, ** A C - D C transfer instruments for current and voltage meas. ," ¡RE Trans. Instrum., pp. 235-240, Dec. 1958.

14] F. L. Hermach, "AC-DC comparators for audio-frequency current and voltage measurements of high accuracy," IEEE Trans. Instrum. Meas., vol. IM-25, no. 4, pp. 489-494, Dec. 1976.

[5] E. S. Williams, "The practical uses of ac-dc transfer instruments," Nat. Bur. Stand., Tech. Note 1166, Oct. 1982.

[6] C. Fu, A. Cohee, and K. B. Jaeger, "Preliminary results from a semi-automated comparator for testing the ac-dc transfer standards," in Proc. NCSL Workshop and Symp. Conf., 1985, pp. 113-131.