39
JHEP01(2012)052 Published for SISSA by Springer Received: November 23, 2011 Accepted: December 21, 2011 Published: January 11, 2012 Exclusive γγ μ + μ - production in proton-proton collisions at s =7 TeV The CMS collaboration Abstract: A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at s = 7TeV, pp pμ + μ - p, is reported using data correspond- ing to an integrated luminosity of 40 pb -1 . For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p T (μ) > 4 GeV and pseudorapidity |η(μ)| < 2.1, a fit to the dimuon p T (μ + μ - ) distribution results in a measured cross section of σ(p pμ + μ - p) = 3.38 +0.58 -0.55 (stat.) ± 0.16 (syst.) ± 0.14 (lumi.) pb, consistent with the theoretical prediction evaluated with the event generator Lpair. The ratio to the predicted cross section is 0.83 +0.14 -0.13 (stat.) ± 0.04 (syst.) ± 0.03 (lumi.). The characteristic distributions of the muon pairs produced via γγ fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory. Keywords: Hadron-Hadron Scattering Open Access, Copyright CERN, for the benefit of the CMS collaboration doi:10.1007/JHEP01(2012)052

TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Published for SISSA by Springer

Received: November 23, 2011

Accepted: December 21, 2011

Published: January 11, 2012

Exclusive γγ → µ+µ− production in proton-proton

collisions at√s = 7TeV

The CMS collaboration

Abstract: A measurement of the exclusive two-photon production of muon pairs in

proton-proton collisions at√s = 7 TeV, pp→ pµ+µ−p, is reported using data correspond-

ing to an integrated luminosity of 40 pb−1. For muon pairs with invariant mass greater

than 11.5 GeV, transverse momentum pT (µ) > 4 GeV and pseudorapidity |η(µ)| < 2.1,

a fit to the dimuon pT(µ+µ−) distribution results in a measured cross section of σ(p →pµ+µ−p) = 3.38+0.58

−0.55 (stat.)±0.16 (syst.)±0.14 (lumi.) pb, consistent with the theoretical

prediction evaluated with the event generator Lpair. The ratio to the predicted cross

section is 0.83+0.14−0.13 (stat.) ± 0.04 (syst.) ± 0.03 (lumi.). The characteristic distributions

of the muon pairs produced via γγ fusion, such as the muon acoplanarity, the muon pair

invariant mass and transverse momentum agree with those from the theory.

Keywords: Hadron-Hadron Scattering

Open Access, Copyright CERN,

for the benefit of the CMS collaboration

doi:10.1007/JHEP01(2012)052

Page 2: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Contents

1 Introduction 1

2 The CMS detector 3

3 Simulated samples 3

4 Event selection 4

4.1 Trigger and muon reconstruction 4

4.2 Vertex and track exclusivity selection 4

4.3 Muon identification 5

4.4 Kinematic selection 5

5 Signal extraction 7

5.1 Efficiency corrections 7

5.2 Maximum likelihood fit 8

6 Control plots 11

7 Systematic uncertainties and cross-checks 11

7.1 Pileup correction systematic uncertainties 12

7.2 Muon efficiencies and momentum scale 14

7.3 Vertexing and tracking efficiencies 14

7.4 Crossing angle 14

7.5 Fit stability 14

7.6 Backgrounds 15

7.7 Summary of systematic uncertainties 15

8 Results 16

9 Summary 16

The CMS collaboration 20

1 Introduction

The exclusive two-photon production of lepton pairs may be reliably calculated within the

framework of quantum electrodynamics (QED) [1] (figure 1), within uncertainties of less

than 1% associated with the proton form factor [2]. Indeed, detailed theoretical studies

have shown that corrections due to hadronic interactions between the elastically scattered

protons are well below 1% and can be safely neglected [3]. The unique features of this

– 1 –

Page 3: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

p p

p p

γ

γ

µ+

µ−

p p

p

γ

γ

µ+

µ−

p

p

γ

γ

µ+

µ−

Figure 1. Schematic diagrams for the exclusive and semi-exclusive two-photon production of

muon pairs in pp collisions for the elastic (left), single dissociative (center), and double dissociative

(right) cases. The three lines in the final state of the center and right plots indicate dissociation of

the proton into a low-mass system N .

process, like the extremely small pair transverse momentum and acoplanarity (defined as

1− |∆φ(µ+µ−)/π|), stem from the very small virtualities of the exchanged photons.

At the Tevatron, the exclusive two-photon production of electron [4, 5] and muon [5, 6]

pairs in pp collisions has been measured with the CDF detector. Observations have been

made of QED signals, leading to measurements of exclusive charmonium photoproduc-

tion [6] and searches for anomalous high-mass exclusive dilepton production [5]. However,

all such measurements have very limited numbers of selected events because the data

samples were restricted to single interaction bunch crossings. The higher energies and

increased luminosity available at the Large Hadron Collider (LHC) will allow significant

improvements in these measurements, if this limitation can be avoided. As a result of the

small theoretical uncertainties and characteristic kinematic distributions in γγ → µ+µ−,

this process has been proposed as a candidate for a complementary absolute calibration of

the luminosity of pp collisions [1–3].

Unless both outgoing protons are detected, the semi-exclusive two-photon production,

involving single or double proton dissociation (figure 1, middle and right panels), becomes

an irreducible background that has to be subtracted. The proton-dissociation process is

less well determined theoretically, and in particular requires significant corrections due to

proton rescattering. This effect occurs when there are strong-interaction exchanges between

the protons, in addition to the two-photon interaction. These extra contributions may alter

the kinematic distributions of the final-state muons, and may also produce additional low-

momentum hadrons. As a result, the proton-dissociation process has significantly different

kinematic distributions compared to the pure exclusive case, allowing an effective separation

of the signal from this background.

In this paper, we report a measurement of dimuon exclusive production in pp collisions

at√s = 7 TeV for the invariant mass of the pair above 11.5 GeV, with each muon having

transverse momentum pT(µ) > 4 GeV and pseudorapidity |η(µ)| < 2.1 (where η is defined

as − ln(tan(θ/2))). This measurement is based on data collected by the Compact Muon

Solenoid (CMS) experiment during the 2010 LHC run, including beam collisions with

multiple interactions in the same bunch crossing (event pileup), and corresponding to an

integrated luminosity of 40 pb−1 with a relative uncertainty of 4% [7].

– 2 –

Page 4: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

The paper is organized as follows. In section 2, a brief description of the CMS detector

is provided. Section 3 describes the data and samples of simulated events used in the

analysis. Section 4 documents the criteria used to select events, and section 5 the method

used to extract the signal yield from the data. The systematic uncertainties and cross-

checks performed are discussed in section 6, while section 7 contains plots comparing the

selected events in data and simulation. Finally, the results of the measurement are given

in section 8 and summarized in section 9.

2 The CMS detector

A detailed description of the CMS experiment can be found elsewhere [8]. The central fea-

ture of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter. Within

the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calor-

imeter, and the brass/scintillator hadronic calorimeter. Muons are measured in gaseous

detectors embedded in the iron return yoke. Besides the barrel and endcap detectors, CMS

has extensive forward calorimetry. CMS uses a right-handed coordinate system, with the

origin at the nominal collision point, the x axis pointing to the center of the LHC ring, the

y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the

anticlockwise-beam direction. The azimuthal angle φ is measured in the x-y plane. Muons

are measured in the window |η| < 2.4, with detection planes made using three systems:

drift tubes, cathode strip chambers, and resistive plate chambers. Thanks to the strong

magnetic field, 3.8 T, and to the high granularity of the silicon tracker (three layers con-

sisting of 66 million 100 × 150µm2 pixels followed by ten microstrip layers, with strips of

pitch between 80 and 180µm), the pT of the muons matched to silicon tracks is measured

with a resolution better than ∼ 1.5%, for pT less than 100 GeV . The first level of the

CMS trigger system, composed of custom hardware processors, uses information from the

calorimeters and muon detectors to select (in less than 1µs) the most interesting events.

The High Level Trigger processor farm further decreases the event rate from 50-100 kHz to

a few hundred Hz, before data storage.

3 Simulated samples

The Lpair 4.0 event generator [9, 10] is used to produce simulated samples of two-photon

production of muon pairs. The generator uses full leading-order QED matrix elements,

and the cross sections for the exclusive events depend on the proton electromagnetic form-

factors to account for the distribution of charge within the proton. For proton dissociation,

the cross sections depend on the proton structure function. In order to simulate the frag-

mentation of the dissociated proton into a low-mass system N , the Lund model shower

routine [11] implemented in the JetSet software [12] is used with two different structure

functions. For masses of the dissociating system mN < 2 GeV and photon virtualities

Q2 < 5 GeV2, the Brasse “cluster” fragmentation is chosen [13], while for the other cases

the Suri-Yenni “string” fragmentation is applied [14]. In the first case, the low-mass system

N mostly decays to a ∆+ or ∆++ resonance, which results in low-multiplicity states. In

– 3 –

Page 5: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

the second case, the high-mass system usually decays to a variety of resonances (∆, ρ, Ω,

η, K), which produce a large number of forward protons, pions, neutrons and photons.

No corrections are applied to account for rescattering effects. In general, these effects are

expected to increase with the transverse momentum of the muon pair, modifying the slope

of the p2T(µ+µ−) distribution [3].

The inclusive Drell-Yan (DY) and quantum chromodynamic (QCD) dimuon back-

grounds are simulated with pythia v. 6.422 [15], using the Z2 underlying event tune [16].

All these samples are then passed through the full geant4 detector simulation [17] in order

to determine the signal and background efficiencies after all selection criteria are applied.

4 Event selection

The analysis uses a sample of pp collisions at√s = 7 TeV, collected during 2010 at the

LHC and corresponding to an integrated luminosity of 40 pb−1. The sample includes 36

pb−1 of data passing the standard CMS quality criteria for all detector subsystems, and

4 pb−1 in which the quality criteria are satisfied for the tracking and muon systems used

in the analysis. From the sample of triggered events, the presence of two reconstructed

muons is required. Then the exclusivity selection is performed to keep only events with a

vertex having no tracks other than those from the two muons. Finally, the signal muons

are required to satisfy identification criteria, and kinematic constraints are imposed using

their four-momentum. All selection steps are described in the following sections.

4.1 Trigger and muon reconstruction

Events are selected online by triggers requiring the presence of two muons with a minimum

pT of 3 GeV . No requirement on the charge of the muons is applied at the trigger level.

Muons are reconstructed offline by combining information from the muon chambers with

that on charged-particle tracks reconstructed in the silicon tracker [18], and events with a

pair of oppositely charged muons are selected.

4.2 Vertex and track exclusivity selection

With single interactions, the exclusive signal is characterized by the presence of two muons,

no additional tracks, and no activity above the noise threshold in the calorimeters. The

presence of additional interactions in the same bunch crossing will spoil this signature by

producing additional tracks and energy deposits in the calorimeters. In the 2010 data,

less than 20% of the total luminosity was estimated to have been collected from bunch

crossings where only a single interaction look place, leading to a significant decrease in

signal efficiency if the conditions of no extra tracks or calorimeter energy are required.

The selection of exclusive events is therefore applied using the pixel and silicon tracker

only, since the primary vertex reconstruction [19, 20] allows discrimination between dif-

ferent interactions within the same bunch crossing. The selection requires a valid vertex,

reconstructed using an adaptive vertex fit to charged-particle tracks clustered in z [20, 21],

with exactly two muons and no other associated tracks, and vertex fit probability greater

– 4 –

Page 6: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

than 0.1%. The dimuon vertex is further required to have coordinates consistent with a

collision in CMS, with a longitudinal displacement of less than 24 cm and a transverse

displacement of less than 0.1 cm.

In order to reduce the background from inclusive DY and QCD dimuon production,

which typically have many tracks originating from the same vertex as a prompt muon pair,

the dimuon vertex is required to be separated in three dimensions by more than 2 mm from

any additional tracks in the event. This value is selected to optimize the signal efficiency

and background rejection found in events triggered only by the presence of colliding bunches

(“zero-bias” events), and in DY Monte Carlo simulation. For the zero-bias data, this is

accomplished by introducing an artificial additional dimuon vertex into each event as a

proxy for an exclusive dimuon interaction. Thus, in this study, beam crossings with no real

vertex present are counted as “single vertex” events, and crossings with one real vertex are

counted as having an additional pileup event.

The effects of the track veto on the signal efficiency and on the efficiency for misiden-

tifying background as signal are studied as a function of the distance to the closest track

for the zero-bias sample and DY background (figures 2 and 3). With no extra vertices in

the zero-bias events, the efficiency approaches 100% as expected for events with no pileup.

With the addition of overlap events, the efficiency decreases, falling to ∼ 60% with 8 extra

vertices reconstructed. In the full data sample the average number of extra vertices is 2.1,

with less than 10% of events having 4 or more extra vertices. The efficiency for misidentify-

ing the DY background as signal increases sharply for distances less than 1 mm, consistent

with the resolution of the single-track impact parameter in the longitudinal direction [20].

4.3 Muon identification

Each muon of the pair is required to pass a “tight” muon selection [22]. This selection

consists of requesting that the reconstructed muon have at least one hit in the pixel detector,

at least 10 hits in the silicon strip tracker, and segments reconstructed in at least two muon

detection planes. In addition, a global fit to the combined information from the tracker

and muon systems must include at least one muon chamber hit, and have a χ2 per degree

of freedom of less than 10.

4.4 Kinematic selection

In order to minimize the systematic uncertainties related to the knowledge of the low-pTand large-η muon efficiencies, only muons with pT > 4 GeV and |η| < 2.1 are selected.

The pT and |η| requirements retain muon pairs from exclusive photoproduction of upsilon

mesons, γp → Υp → µ+µ−p. This process occurs when a photon emitted from one

proton fluctuates into a qq pair, which interacts with the second proton via a color-singlet

exchange. This contribution is removed by requiring that the muons have an invariant

mass m(µ+µ−) > 11.5 GeV.

In order to suppress further the proton dissociation background, the muon pair is re-

quired to be back-to-back in azimuthal angle (1−|∆φ(µ+µ−)/π| < 0.1) and balanced in the

– 5 –

Page 7: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Veto size [mm] 0 1 2 3 4

Effi

cien

cy

0.5

0.6

0.7

0.8

0.9

1

1 vertex

2 vertices

8 vertices

-1 = 7TeV, L = 40pbsCMS,

0 vertices

Figure 2. Efficiency of the zero extra tracks selection vs. distance to closest track computed with

the artificial vertex method in zero-bias data. The points correspond to events with 0, 1, 2, and 8

real vertices in the event. Events to the right of the vertical dashed line are selected. The vertical

error bars are negligible.

Veto size [mm] 0 1 2 3 4

Effi

cien

cy

-310

-210µµ → γDY Z/

Pythia Z2 tune

CMS Simulation

Figure 3. Efficiency of the zero extra tracks selection vs. distance to closest track computed for

DY events in simulation. Events to the right of the vertical dashed line are selected. The vertical

error bars are negligible.

– 6 –

Page 8: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Selection Data Signal Single-pdiss. Double-pdiss. DY Total

Vertex and track-exclusivity 921 247 437 197 56 937

Muon ID 724 193 336 160 53 741

pT > 4 GeV, |η| < 2.1 438 132 241 106 20 499

m(µ+µ−) > 11.5 GeV 270 95 187 86 13 380

3D angle < 0.95π 257 87 178 83 12 361

1− |∆φ/π| < 0.1 203 87 126 41 8 263

|∆pT| < 1.0 GeV 148 86 79 16 3 184

Table 1. Number of events selected in data and number of signal and background events expected

from simulation at each selection step for an integrated luminosity of 40 pb−1. The last column is the

number of events expected from the sum of the signal, DY, and proton dissociation backgrounds in

the simulation. The relative statistical uncertainty on the sum of simulated signal and background

samples in each row is ≤ 0.5%. The contribution from exclusive resonance production of Υ or χb

mesons is not simulated, and thus contributes only to the data column before requiring m(µ+µ−) >

11.5 GeV . For entries in the line “Muon ID” and below, the simulation is corrected for effects related

to event pileup, muon identification, trigger, and tracking efficiencies, as described in the text.

scalar difference in the pT of the two muons (|∆pT(µ+µ−)| < 1.0 GeV). A possible contam-

ination could arise from cosmic-ray muons, which would produce a signature similar to the

exclusive γγ → µ+µ− signal. The three-dimensional opening angle of the pair, defined as

the arccosine of the normalized scalar product of the muon momentum vectors, is therefore

required to be smaller than 0.95 π, to reduce any contribution from cosmic-ray muons.

The effect of each step of the selection on the data and simulated signal and background

samples is shown in table 1. After all selection criteria are applied, 148 events remain, where

from simulation, approximately half are expected to originate from elastic production.

The number of events selected in data is below the expectation from simulation, with an

observed yield that is roughly 80% of the sum of simulated signal and background processes.

The deficit could be caused by a lower-than-expected signal yield, or by a smaller proton-

dissociation contribution than expected from simulation.

5 Signal extraction

5.1 Efficiency corrections

A correction is applied to account for the presence of extra proton-proton interactions in the

same bunch crossing as a signal event. These pileup interactions will result in an inefficiency

if they produce a track with a position within the nominal 2 mm veto distance around the

dimuon vertex. This effect is studied in zero-bias data using the method described in

section 4.2. The nominal 2 mm veto is then applied around the dimuon vertex, and the

event is accepted if no tracks fall within the veto distance. The efficiency is measured as

a function of the instantaneous luminosity per colliding bunch. The average efficiency is

calculated based on the instantaneous luminosities to be 92.29% for the full 2010 data set,

with negligible statistical uncertainty.

– 7 –

Page 9: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

The trigger, tracking, and offline muon selection efficiencies are each obtained from the

tag-and-probe [22, 23] method by using samples of inclusive J/ψ → µ+µ− and Z→ µ+µ−

events from data and Monte Carlo simulation. These control samples are triggered on one

muon such that the other muon is unbiased with respect to the efficiency to be measured.

For pT < 20 GeV muons from J/ψ decays are used, while above 20 GeV muons from Z

decays are used. The trigger and offline muon selection efficiencies are measured using J/ψ

events by requiring a muon tag that, when combined with a track reconstructed using only

the silicon detectors, is consistent with a J/ψ. These efficiencies are measured in bins in pTand η, separately for the two muon charges. The tracking efficiency is measured similarly

using J/ψ events by requiring a muon tag that, when combined with a muon reconstructed

using only the muon systems, is consistent with a J/ψ. The tracking efficiency is then

measured on the unbiased muon probe. In contrast to the trigger and muon identification

efficiencies, the tracking efficiency is measured in data and Monte Carlo simulation averaged

over |η| < 2.1 and pT > 4 GeV, and is taken to be uncorrelated between the two tracks.

The resulting ratio of efficiencies in data and simulation for the pair (99.18 ± 0.14)% is

applied as a correction to the efficiency.

The effect of the vertexing efficiency is studied both in inclusive dimuon data and

signal simulation, by performing an independent selection of all muon pairs with a lon-

gitudinal separation of less than 0.5 mm. A Kalman filter [24] algorithm is then applied

to estimate the best position of the dimuon vertex, without using information from any

tracks other than the two muons. Among events with a valid dimuon vertex and for which

no additional tracks exist within 2 mm in z, the efficiency for the default adaptive vertex

fitter to reconstruct a primary vertex with only two muons attached and matching with

the Kalman vertex is computed. The ratio of the vertexing efficiency in data to that in

simulation is 99.97%, and therefore no correction is applied.

5.2 Maximum likelihood fit

The elastic pp → pµ+µ−p contribution is extracted by performing a binned maximum-

likelihood fit to the measured pT(µ+µ−) distribution. Shapes from Monte Carlo simulation

are used for the signal, single-proton dissociation, double-proton dissociation, and DY

contributions, with all corrections described in section 4.4 applied.

Three parameters are determined from the fit: the elastic signal yield relative to the

Lpair prediction for an integrated luminosity of 40 pb−1 (REl−El), the single-proton dissoci-

ation yield relative to the Lpair single-proton dissociation prediction for 40 pb−1 (Rdiss−El),

and an exponential modification factor for the shape of the pT distribution, characterized

by the parameter a. The modification parameter is included to account for possible rescat-

tering effects not included in the simulation, as described in section 3. Given the small

number of events expected in 40 pb−1, the double-proton dissociation and DY contribu-

tions cannot be treated as free parameters and are fixed from simulation to their predicted

values. The contribution from exclusive γγ → τ+τ− production is estimated to be 0.1

events from the simulation, and is neglected.

– 8 –

Page 10: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

) [GeV]µµ(T

p0 0.5 1 1.5 2 2.5 3 3.5

Eve

nts/

0.15

GeV

0

10

20

30

40

50

data-µ+µ→γγSignal

-µ+µ→γγSingle dissociative -µ+µ→γγDouble dissociative

-µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

Figure 4. Distribution of pT(µ+µ−) for the selected sample. Data are shown as points with

statistical error bars. The histograms represent the simulated signal (yellow), single (light green)

and double (dark green) proton dissociative backgrounds, and DY (red). The yields are determined

from a fit using the distributions from simulation.

The pT(µ+µ−) distribution in data is shown overlaid with the result of the fit to the

shapes from Monte Carlo simulation in figure 4. The result from the best fit to the data is:

data-theory signal ratio: REl−El = 0.83+0.14−0.13;

single-proton dissociation yield ratio: Rdiss−El = 0.73+0.16−0.14;

modification parameter: a = 0.04+0.23−0.14 GeV−2,

(5.1)

with asymmetric statistical uncertainties computed using minos [25]. The corresponding

value of the signal cross section is 3.38+0.58−0.55 (stat.) pb. The resulting 1σ and 2σ contours

projected onto each pair of fit variables are displayed in figure 5. For any values of the

proton dissociation ratio and slope within the 1σ contour, the extreme values of the data-

theory signal ratio are 0.64 and 1.03. The upper value of 1.03 for the signal ratio would

correspond to the single-proton dissociation component having a ratio to the prediction

of approximately 0.65. The best fit does not require a significant modification parameter.

However, the statistical uncertainty on this parameter is chosen to play the role of a non-

negligible systematic uncertainty, to take account of the neglect of the rescattering effects

in the simulation.

As a cross-check, a fit to the 1−|∆φ(µ+µ−)/π| distribution is performed, with the signal

and single-proton dissociation yields as free parameters, and the shape of the single-proton

dissociation component fixed from the simulation. The resulting value of the data-theory

signal ratio is 0.81+0.14−0.13, consistent with the nominal fit result.

– 9 –

Page 11: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

a -0.2 0 0.2 0.4 0.6 0.8 1

R (

diss

-El)

0.4

0.6

0.8

1

1.2

a -0.2 0 0.2 0.4 0.6 0.8 1

R (

El-E

l)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

R (diss-El) 0.4 0.6 0.8 1 1.2

R (

El-E

l)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

-1 = 7TeV, L = 40pbsCMS,

Figure 5. One and two standard-deviation contours in the plane of fitted parameters for the

proton-dissociation yield ratio vs. modification parameter a (left), the data-theory signal ratio vs.

modification parameter a (center), and the data-theory signal ratio vs. proton-dissociation yield

ratio (right). The contours represent 39.3% and 86.5% confidence regions, where the cross indicates

the best-fit point.

) [GeV]µµ(T

p0 0.5 1 1.5 2 2.5 3

Eve

nts/

0.15

GeV

0

5

10

15

20

25

30

35

40

45

data-µ+µ→γγSignal

-µ+µ→γγSingle dissociative -µ+µ→γγDouble dissociative

-µ+µ→γZ/

-1 = 7 TeV, L = 40 pbsCMS,

) [GeV]µµ(T

p0 0.5 1 1.5 2 2.5 3

Eve

nts/

0.15

GeV

0

5

10

15

20

25

30

35

40

45

data-µ+µ→γγSignal

-µ+µ→γγSingle dissociative -µ+µ→γγDouble dissociative

-µ+µ→γZ/

-1 = 7 TeV, L = 40 pbsCMS,

Figure 6. Result of fit to the pT(µ+µ−) distribution with requirements on |∆pT(µ+µ−)| (left) and

on both |∆pT(µ+µ−)| and 1−|∆φ(µ+µ−)/π| (right) removed. The points with error bars represent

the data. The histograms are the result of fitting the simulated distributions to the data.

The central values of the signal and single-proton dissociation yields from the fit are

both below the mean number expected for 40 pb−1, consistent with the deficit shown in ta-

ble 1. This is investigated by repeating the fit, first with the ∆pT(µ+µ−) < 1.0 GeV require-

ment removed, and then with both the ∆pT(µ+µ−) < 1.0 GeV and 1−|∆φ(µ+µ−)/π| < 0.1

selections removed. From simulation this is expected to have negligible effect on the sig-

nal efficiency, while enhancing the background. The double-proton dissociation and DY

contributions in particular are expected to be small with the nominal selection, but their

sum becomes comparable in size to the signal with the ∆pT(µ+µ−) and 1−|∆φ(µ+µ−)/π|requirements removed.

– 10 –

Page 12: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Selection REl−El Rdiss−ElAll selection criteria applied 0.83+0.14

−0.13 0.73+0.16−0.14

No |∆pT| requirement 0.82+0.13−0.13 0.63+0.11

−0.10Both |∆pT| and 1− |∆φ/π| requirements removed 0.81+0.13

−0.13 0.45+0.08−0.07

Table 2. Best-fit values of REl−El and Rdiss−El for the nominal selection, and with the requirements

on |∆pT(µ+µ−)| and 1− |∆φ(µ+µ−)/π| removed.

The fits to the data with these looser selection requirements are shown in figure 6,

and the resulting best-fit yields for the signal and single-proton dissociation are shown in

table 2; the single-proton dissociation yield is observed to be significantly lower relative

to the prediction with the looser selections. In all variations, the normalizations of the

double-proton dissociation and DY yields are fixed, although the double-dissociation con-

tribution is expected to be significant at large pT(µ+µ−) with the looser selection. With

additional data, a more precise comparison of the single and double dissociation yields to

the theoretical expectation may be made. In spite of the lower single-proton dissociation

yield, the data-theory ratio for the signal is stable in all three variations.

6 Control plots

The dimuon invariant mass and acoplanarity distributions for events passing all selection

criteria listed in table 1 are shown in figure 7, with the simulation predictions normalized

to the best-fit signal and background yields. The event with the largest invariant mass has

m(µ+µ−) = 76 GeV. No events consistent with Z → µ+µ− are observed. This is expected

for exclusive production, since the γγ → Z process is forbidden at tree-level.

In figure 8, the |∆pT(µ+µ−)| and η distributions are plotted. In figures 9–10, the data

and simulation are similarly compared for the pT and η of single muons passing all other

selection requirements. Agreement between the data and simulation is observed in the

distributions of all dimuon and single-muon quantities.

7 Systematic uncertainties and cross-checks

Systematic uncertainties related to the pileup efficiency correction, muon trigger and re-

construction efficiency corrections, momentum scale, LHC crossing angle, and description

of the backgrounds in the fit are considered. The systematic uncertainties related to the

muon identification, trigger, and tracking efficiencies are determined from the statistical

uncertainties of the J/ψ and Z control samples used to derive the corrections. The re-

maining systematic uncertainties are evaluated by varying each contribution as described

in the following sections, and repeating the fit with the same three free parameters REl−El,

Rdiss−El, and the shape correction a. The relative difference of the data-theory signal ratio

between the modified and the nominal fit result is taken as a systematic uncertainty.

– 11 –

Page 13: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

mass [GeV]µµ20 40 60 80 100

Eve

nts/

1.5

GeV

0

5

10

15

20

25

30

35

40

45

data-µ+µ→γγSignal

-µ+µ→γγSingle dissociative -µ+µ→γγDouble dissociative

-µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

|π / φ ∆ 1-|µµ0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Eve

nts/

0.00

5

0

10

20

30

40

50

60

70

data-µ+µ→γγSignal

-µ+µ→γγSingle dissociative -µ+µ→γγDouble dissociative

-µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

Figure 7. Muon pair invariant mass spectrum (left) and acoplanarity (right), with all selection

criteria applied and the simulation normalized to the best-fit value. Data are shown as points with

statistical error bars, while the histograms represent the simulated signal (yellow), single (light

green) and double (dark green) proton dissociative backgrounds, and DY (red).

| [GeV]T

p∆ |µµ0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eve

nts/

0.1

GeV

0

5

10

15

20

25

30

35

40

45

data-µ+µ→γγSignal

-µ+µ→γγSingle dissociative -µ+µ→γγDouble dissociative

-µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

)µµ(η-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Eve

nts/

0.3

0

5

10

15

20

25

30

35

40data

-µ+µ→γγSignal -µ+µ→γγSingle dissociative

-µ+µ→γγDouble dissociative -µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

Figure 8. Muon pair transverse momentum difference (left) and pair pseudorapidity (right), with

all selection criteria applied and the simulation normalized to the best-fit value. Data are shown

as points with statistical error bars, while the histograms represent the simulated signal (yellow),

single (light green) and double (dark green) proton dissociative backgrounds, and DY (red).

7.1 Pileup correction systematic uncertainties

Charged tracks from pileup interactions more than 2.0 mm from the dimuon vertex may

induce a signal inefficiency, if they are misreconstructed to originate from within the 2.0 mm

veto window. The η-dependent single-track impact parameter resolution in CMS has been

measured to be less than 0.2 mm in the transverse direction, and less than 1.0 mm in the

longitudinal direction [20]. The track-veto efficiency is studied in zero-bias data by varying

the nominal 2.0 mm veto distance from 1.0 to 3.0 mm. The maximum relative variation is

– 12 –

Page 14: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

)+µ(η-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Eve

nts/

0.3

0

5

10

15

20

25

30data

-µ+µ→γγSignal -µ+µ→γγSingle dissociative

-µ+µ→γγDouble dissociative -µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

)-µ(η-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Eve

nts/

0.3

0

5

10

15

20

25

30data

-µ+µ→γγSignal -µ+µ→γγSingle dissociative

-µ+µ→γγDouble dissociative -µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

Figure 9. Single-muon pseudorapidity distribution with all other selections applied for µ+ (left)

and µ− (right) and the simulation normalized to the best-fit value. Data are shown as points with

statistical error bars, while the histograms represent the simulated signal (yellow), single (light

green) and double (dark green) proton dissociative backgrounds, and DY (red).

) [GeV]+µ(T

p0 5 10 15 20 25 30

Eve

nts/

1 G

eV

0

10

20

30

40

50

data-µ+µ→γγSignal

-µ+µ→γγSingle dissociative -µ+µ→γγDouble dissociative

-µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

) [GeV]-µ(T

p0 5 10 15 20 25 30

Eve

nts/

1 G

eV

0

10

20

30

40

50

data-µ+µ→γγSignal

-µ+µ→γγSingle dissociative -µ+µ→γγDouble dissociative

-µ+µ→γDY Z/

-1 = 7 TeV, L = 40 pbsCMS,

Figure 10. Single-muon transverse momentum with all other selections applied for µ+ (left) and

µ− (right) and the simulation normalized to the best-fit value. Data are shown as points with

statistical error bars, while the histograms represent the simulated signal (yellow), single (light

green) and double (dark green) proton dissociative backgrounds, and DY (red).

found to be 3.6%, when enlarging the veto size to 3.0 mm. In addition, the veto is modified

to use high-quality tracks having at least seven consecutive layers hit in the tracker, in

place of the default veto based on all charged tracks. This is found to result in a 2.5%

variation in the signal yield, which is taken as a systematic uncertainty.

As a further check, the same variations are applied to the selected sample of dimuon

events, removing the Υ mass cut m < 11.5 GeV to increase the statistics with photo-

produced exclusive upsilon events. The change in the number of events selected in the

dimuon sample is found to be consistent with the expectation from the zero-bias sample.

– 13 –

Page 15: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

7.2 Muon efficiencies and momentum scale

The statistical uncertainty on the muon efficiency correction is evaluated by performing a

fast Monte Carlo study in which each single-muon correction evaluated from the tag-and-

probe study is varied independently using a Gaussian distribution having a width equal

to the measured uncertainty. The r.m.s. of the distribution of the resulting variations in

the overall dimuon efficiency correction is taken as the systematic uncertainty. From 1000

pseudo-experiments, this results in an uncertainty of 0.8%. In addition, we study the effect

of correlations in the dimuon efficiency. The tag-and-probe study is only sensitive to single-

muon efficiencies. Since we take the dimuon efficiency as the product of the single-muon

efficiencies, the effect of correlations in the efficiency are not modeled. To evaluate the

size of this effect, the efficiency corrections are computed after removing events in the J/ψ

control sample in which the two muons bend towards each other in the r-φ plane, potentially

becoming very close or overlapping. Such events may introduce larger correlations in the

efficiency of the dimuon pair than would be present in the well separated signal muons.

Repeating the signal extraction with this change results in a relative difference of 0.7%

from the nominal efficiency, which is taken as a systematic uncertainty.

Using studies of the muon momentum scale derived from Z → µ+µ− [23], the muon

pT is shifted by the observed pT-dependent bias, and the nominal fit is performed again.

The resulting relative change in the signal yield is 0.1%, which is taken as a systematic

uncertainty. As a cross-check using a sample kinematically closer to the signal, we apply

all the selections except for the veto on the Υ mass region, and perform a fit to the Υ(1S)

resonance. The resulting mass is consistent with the PDG value [26], within an uncertainty

of 20 MeV . Applying a 20 MeV shift to the mass and pT scales of the data and performing

the fit again results in no change from the nominal efficiency.

7.3 Vertexing and tracking efficiencies

Since the study described in section 4.4 shows no significant difference in the vertexing

efficiency between data and simulation, the 0.1% statistical uncertainty of the measurement

in data is taken as a systematic uncertainty. For the tracking efficiency, the difference

between data and simulation is applied as a single correction without binning in pT or η.

The statistical uncertainty of 0.1% on the correction for the dimuon is taken as a systematic

uncertainty.

7.4 Crossing angle

The non-zero crossing angle of the LHC beams leads to a boost of the dimuon system in the

x direction. Consequently, the pT of the pair is over-estimated by a few MeV, especially for

high-mass dimuon events. This effect is estimated by applying a correction for the Lorentz

boost, using a half-angle of 100µrad in the x-z plane. This results in a 1.0% variation from

the nominal fit value, and is taken as an additional systematic uncertainty.

7.5 Fit stability

Checks of the fit stability are performed by testing different bin widths and fit ranges.

Starting from the nominal number of 20 bins in the range 0-3 GeV, variations in the bin

width from 0.1 to 0.2 GeV and fit range [0, 2] to [0, 4] GeV show deviations by at most

– 14 –

Page 16: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

3.3% with respect to the nominal yield. The fit bias is studied by performing a series

of Monte Carlo pseudo-experiments for different input values of the signal and proton-

dissociation yields, using events drawn from the fully simulated samples. The means of the

pull distributions are found to be consistent with zero. Since the pseudo-experiments with

the nominal binning and fit range show no significant bias, no additional systematics are

assigned in this case.

7.6 Backgrounds

The yields of the double-proton dissociation and DY contributions are fixed in the nominal

fit. To estimate the systematic uncertainty from this constraint, the fit is repeated with

each of these varied independently by a factor of 2. The resulting changes in the fitted

signal yield are 0.9% and 0.4%, respectively, where because of the similar shapes of the

single and double proton dissociation components, this variation is partly absorbed into the

fitted single-proton dissociation yield. As a cross-check of this procedure, the |∆pT(µ+µ−)|and 1−|∆φ(µ+µ−)/π| requirements are inverted to select samples of events expected to be

dominated by double-proton dissociation and DY backgrounds. The agreement between

data and simulation in these regions is found to be within the factor of 2 used as a systematic

variation.

The possibility of a large contamination from cosmic-ray muons, which may fake a

signal since they will not be correlated with other tracks in the event, is studied by com-

paring the vertex position and three-dimensional opening angle in data and simulations

of collision backgrounds. A total of three events fail the vertex position selection in data,

after all other selection criteria are applied. All three also fail the opening angle selection,

which is consistent with the expected signature from cosmic muons. We conclude that the

opening angle requirement effectively rejects cosmic muons, and do not assign a systematic

uncertainty for this possible contamination.

A similar check for contamination from beam-halo muons is performed by applying the

nominal analysis selection to non-collision events triggered by the presence of a single beam.

Within the limited statistics, zero events pass all the analysis selections, and therefore no

additional systematic uncertainty is assigned in this case.

7.7 Summary of systematic uncertainties

The individual variations in the definition of the track-veto are taken as correlated uncer-

tainties, with the largest variation taken as a contribution to the systematic uncertainty.

The largest variation related to the track quality, obtained when requiring high-purity

tracks with > 10 hits instead of the nominal value of > 3 hits, is also taken as a con-

tribution. The larger variation resulting from increasing or decreasing the double-proton

dissociation background normalization by a factor of 2, and the larger variation resulting

from increasing or decreasing the DY background normalization by a factor of 2, are each

taken as contributions to the systematic uncertainty. The variation in the crossing angle,

muon identification and trigger efficiencies, tracking efficiency, bias due to correlations in

the J/ψ control sample, and vertexing efficiency are treated as uncorrelated uncertainties.

Summing quadratically all uncorrelated contributions gives an overall relative systematic

uncertainty of 4.8% on the signal yield (table 3).

– 15 –

Page 17: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Selection Variation from nominal yield

Track veto criteria 3.6%

Track quality 2.5%

DY background 0.4%

Double-proton dissociation background 0.9%

Crossing angle 1.0%

Tracking efficiency 0.1%

Vertexing efficiency 0.1%

Momentum scale 0.1%

Efficiency correlations in J/ψ control sample 0.7%

Muon and trigger efficiency statistical uncertainty 0.8%

Total 4.8%

Table 3. Relative systematic uncertainties.

8 Results

For muon pairs with invariant mass greater than 11.5 GeV, single-muon transverse momen-

tum pT(µ) > 4 GeV, and single-muon pseudorapidity in the range |η(µ)| < 2.1, 148 events

pass all selections. Approximately half of these are ascribed to fully exclusive (elastic)

production. The number of events expected from Monte Carlo simulation of signal, proton

dissociation, and DY backgrounds for an integrated luminosity of 40 pb−1 is 184.

The resulting visible cross section from a fit to the pT(µ+µ−) distribution is σ(pp →pµ+µ−p) = 3.38+0.58

−0.55 (stat.) ± 0.16 (syst.) ± 0.14 (lumi.) pb, and the corresponding data-

theory signal ratio is 0.83+0.14−0.13 (stat.) ± 0.04 (syst.) ± 0.03 (lumi.), where the statistical

uncertainties are strongly correlated with the single-proton dissociation background.

9 Summary

A measurement is reported of the exclusive two-photon production of muon pairs, pp →pµ+µ−p, in a 40 pb−1 sample of proton-proton collisions collected at

√s = 7 TeV during

2010 at the LHC. The measured cross section

σ(pp→ pµ+µ−p) = 3.38+0.58−0.55 (stat.)± 0.16 (syst.)± 0.14 (lumi.) pb,

is consistent with the predicted value, and the characteristic distributions of the muon

pairs produced via γγ fusion, such as the pair acoplanarity and transverse momentum, are

well described by the full simulation using the matrix-element event generator Lpair. The

detection efficiencies are determined from control samples in data, including corrections for

the significant event pileup. The signal yield is correlated with the dominant background

from two-photon production with proton dissociation, for which the current estimate from

a fit to the pT(µ+µ−) distribution can be improved with additional data. The efficiency for

the exclusivity selection is above 90% in the full data sample collected by CMS during the

– 16 –

Page 18: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

2010 LHC run. With increasing instantaneous luminosity this efficiency will decrease, but

without possible improvements to the selection remains above 60% with up to 8 additional

pileup vertices. Since the process may be calculated reliably in the framework of QED,

within uncertainties associated with the proton form factor, this represents a first step

towards a complementary luminosity measurement, and a reference for other exclusive

production measurements to be performed with pileup.

Acknowledgments

We wish to congratulate our colleagues in the CERN accelerator departments for the ex-

cellent performance of the LHC machine. We thank the technical and administrative staff

at CERN and other CMS institutes. This work was supported by the Austrian Federal

Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and

Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES,

FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the

Chinese Academy of Sciences, Ministry of Science and Technology, and National Natu-

ral Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the

Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation,

Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish

Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National

de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l’Energie

Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung

und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher

Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece;

the National Scientific Research Foundation, and National Office for Research and Tech-

nology, Hungary; the Department of Atomic Energy and the Department of Science and

Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran;

the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean

Ministry of Education, Science and Technology and the World Class University program of

NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CIN-

VESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation,

New Zealand; the Pakistan Atomic Energy Commission; the State Commission for Sci-

entific Research, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR

(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technolo-

gies of the Russian Federation, the Russian Ministry of Atomic Energy and the Russian

Foundation for Basic Research; the Ministry of Science and Technological Development

of Serbia; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010,

Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Can-

ton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical

Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Tech-

nology Facilities Council, U.K.; the U.S. Department of Energy, and the U.S. National

Science Foundation.

– 17 –

Page 19: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Individuals have received support from the Marie-Curie programme and the European

Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation;

the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the

Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-

Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium);

and the Council of Science and Industrial Research, India.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] V. Budnev, I. Ginzburg, G. Meledin and V. Serbo, The process pp→ ppe+e− and the

possibility of its calculation by means of quantum electrodynamics only, Nucl. Phys. B 63

(1973) 519 [INSPIRE].

[2] A. Shamov and V.I. Telnov, Precision luminosity measurement at LHC using two photon

production of µ+µ− pairs, Nucl. Instrum. Meth. A 494 (2002) 51 [hep-ex/0207095]

[INSPIRE].

[3] V.A. Khoze, A.D. Martin, R. Orava and M. Ryskin, Luminosity monitors at the LHC, Eur.

Phys. J. C 19 (2001) 313 [hep-ph/0010163] [INSPIRE].

[4] CDF collaboration, A. Abulencia et al., Observation of exclusive electron-positron production

in hadron-hadron collisions, Phys. Rev. Lett. 98 (2007) 112001 [hep-ex/0611040] [INSPIRE].

[5] CDF collaboration, T. Aaltonen et al., Search for exclusive z boson production and

observation of high mass pp→ γγ → p+``+p events in pp collisions at√s = 1.96 TeV, Phys.

Rev. Lett. 102 (2009) 222002 [arXiv:0902.2816] [INSPIRE].

[6] CDF collaboration, T. Aaltonen et al., Observation of exclusive charmonium production and

γγ → µ+µ− in pp collisions at√s = 1.96 TeV, Phys. Rev. Lett. 102 (2009) 242001

[arXiv:0902.1271] [INSPIRE].

[7] CMS collaboration, Absolute luminosity normalization, CMS Detector Performance Study

CMS-DP-2010-002 (2010).

[8] CMS collaboration, R. Adolphi et al., The CMS experiment at the CERN LHC, 2008 JINST

3 S08004 [INSPIRE].

[9] J. Vermaseren, Two photon processes at very high-energies, Nucl. Phys. B 229 (1983) 347

[INSPIRE].

[10] S.P. Baranov et al., LPAIR — A generator for lepton pair production, in the Proceedings of

Physics at HERA (1991) 1478.

[11] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Parton fragmentation and string

dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].

[12] T. Sjostrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4,

Comput. Phys. Commun. 82 (1994) 74 [INSPIRE].

– 18 –

Page 20: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

[13] F. Brasse, W. Flauger, J. Gayler, S. Goel, R. Haidan, et al., Parametrization of the Q2

dependence of virtual γp total cross-sections in the resonance region, Nucl. Phys. B 110

(1976) 413 [INSPIRE].

[14] A. Suri and D.R. Yennie, The space-time phenomenology of photon absorption and inelastic

electron scattering, Ann. Phys. 72 (1972) 43.

[15] T. Sjostrand, L. Lonnblad and S. Mrenna, PYTHIA 6.2: physics and manual,

hep-ph/0108264 [INSPIRE].

[16] R. Field, Early LHC underlying event data - Findings and surprises, arXiv:1010.3558

[INSPIRE].

[17] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum.

Meth. A 506 (2003) 250 [INSPIRE].

[18] CMS collaboration, S. Chatrchyan et al., Performance of CMS muon reconstruction in

cosmic-ray events, 2010 JINST 5 T03022 [arXiv:0911.4994] [INSPIRE].

[19] CMS collaboration, Measurement of tracking efficiency, PAS-TRK-10-002.

[20] CMS collaboration, Tracking and primary vertex results in first 7 TeV collisions,

PAS-TRK-10-005.

[21] CMS collaboration, Adaptive vertex fitting, CMS Note CMS-NOTE-07-008 (2007).

[22] CMS collaboration, Performance of muon identification in pp collisions at√s = 7 TeV,

PAS-MUO-10-002.

[23] CMS collaboration, S. Chatrchyan et al., Measurement of the inclusive W and Z production

cross sections in pp collisions at√s = 7 TeV with the CMS experiment, JHEP 10 (2011) 132

[arXiv:1107.4789] [INSPIRE].

[24] R. Fruhwirth, Application of Kalman filtering to track and vertex fitting, Nucl. Instrum.

Meth. A 262 (1987) 444 [INSPIRE].

[25] F. James and M. Roos, Minuit: a system for function minimization and analysis of the

parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].

[26] Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J.

Phys. G 37 (2010) 075021 [INSPIRE].

– 19 –

Page 21: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut fur Hochenergiephysik der OeAW, Wien, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Ero, C. Fabjan, M. Friedl, R. Fruhwirth,

V.M. Ghete, J. Hammer1, S. Hansel, M. Hoch, N. Hormann, J. Hrubec, M. Jeitler,

W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, B. Rahbaran,

H. Rohringer, R. Schofbeck, J. Strauss, A. Taurok, F. Teischinger, C. Trauner, P. Wagner,

W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

S. Bansal, L. Benucci, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello,

S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen,

N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes,

A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Universite Libre de Bruxelles, Bruxelles, Belgium

O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus,

A. Leonard, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wickens

Ghent University, Ghent, Belgium

V. Adler, K. Beernaert, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch,

A. Marinov, J. Mccartin, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, L. Vanelderen,

P. Verwilligen, S. Walsh, N. Zaganidis

Universite Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, G. Bruno, J. Caudron, L. Ceard, E. Cortina Gil, J. De Favereau De Jeneret,

C. Delaere, D. Favart, L. Forthomme, A. Giammanco2, G. Gregoire, J. Hollar, V. Lemaitre,

J. Liao, O. Militaru, C. Nuttens, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Universite de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

– 20 –

Page 22: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W.L. Alda Junior, W. Carvalho, A. Custodio, E.M. Da Costa, C. De Oliveira Martins,

S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado

Da Silva, A. Santoro, S.M. Silva Do Amaral, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

T.S. Anjos3, C.A. Bernardes3, F.A. Dias4, T.R. Fernandez Perez Tomei, E. M. Gregores3,

C. Lagana, F. Marinho, P.G. Mercadante3, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

N. Darmenov1, V. Genchev1, P. Iaydjiev1, S. Piperov, M. Rodozov, S. Stoykova,

G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev,

B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao,

J. Wang, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia

A. Cabrera, B. Gomez Moreno, A.A. Ocampo Rios, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia

N. Godinovic, D. Lelas, R. Plestina5, D. Polic, I. Puljak

University of Split, Split, Croatia

Z. Antunovic, M. Dzelalija, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus

A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic

M. Finger, M. Finger Jr.

– 21 –

Page 23: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran6, A. Ellithi Kamel7, S. Khalil8, M.A. Mahmoud9, A. Radi10

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

A. Hektor, M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

S. Czellar, J. Harkonen, A. Heikkinen, V. Karimaki, R. Kinnunen, M.J. Kortelainen,

T. Lampen, K. Lassila-Perini, S. Lehti, T. Linden, P. Luukka, T. Maenpaa, E. Tuominen,

J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland

K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS,

Annecy-le-Vieux, France

D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri,

S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci,

J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau,

France

S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj11, C. Broutin, P. Busson,

C. Charlot, T. Dahms, L. Dobrzynski, S. Elgammal, R. Granier de Cassagnac,

M. Haguenauer, P. Mine, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno,

Y. Sirois, C. Thiebaux, C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Universite de Strasbourg, Univer-

site de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram12, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert,

C. Collard, E. Conte12, F. Drouhin12, C. Ferro, J.-C. Fontaine12, D. Gele, U. Goerlach,

S. Greder, P. Juillot, M. Karim12, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique

des Particules (IN2P3), Villeurbanne, France

F. Fassi, D. Mercier

– 22 –

Page 24: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS-IN2P3, Institut

de Physique Nucleaire de Lyon, Villeurbanne, France

C. Baty, S. Beauceron, N. Beaupere, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene,

H. Brun, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, A. Falkiewicz,

J. Fay, S. Gascon, B. Ille, T. Kurca, T. Le Grand, M. Lethuillier, L. Mirabito, S. Perries,

V. Sordini, S. Tosi, Y. Tschudi, P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University,

Tbilisi, Georgia

D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen,

K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael,

D. Sprenger, H. Weber, M. Weber, B. Wittmer, V. Zhukov13

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, E. Dietz-Laursonn, M. Erdmann, T. Hebbeker, C. Heidemann, A. Hinzmann,

K. Hoepfner, T. Klimkovich, D. Klingebiel, P. Kreuzer, D. Lanske†, J. Lingemann,

C. Magass, M. Merschmeyer, A. Meyer, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz,

L. Sonnenschein, J. Steggemann, D. Teyssier

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Bontenackels, V. Cherepanov, M. Davids, G. Flugge, H. Geenen, M. Giffels, W. Haj

Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla,

O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl, D. Tornier, M.H. Zoeller

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, W. Behrenhoff, U. Behrens, M. Bergholz14, A. Bethani, K. Borras,

A. Cakir, A. Campbell, E. Castro, D. Dammann, G. Eckerlin, D. Eckstein, A. Flossdorf,

G. Flucke, A. Geiser, J. Hauk, H. Jung1, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge,

A. Knutsson, M. Kramer, D. Krucker, E. Kuznetsova, W. Lange, W. Lohmann14, B. Lutz,

R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich,

A. Mussgiller, S. Naumann-Emme, J. Olzem, A. Petrukhin, D. Pitzl, A. Raspereza,

M. Rosin, R. Schmidt14, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein,

J. Tomaszewska, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, M. Gorner,

T. Hermanns, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura,

F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, M. Schroder,

T. Schum, H. Stadie, G. Steinbruck, J. Thomsen

– 23 –

Page 25: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Institut fur Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, J. Bauer, J. Berger, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm,

G. Dirkes, M. Feindt, J. Gruschke, M. Guthoff1, C. Hackstein, F. Hartmann, M. Heinrich,

H. Held, K.H. Hoffmann, S. Honc, I. Katkov13, J.R. Komaragiri, T. Kuhr, D. Martschei,

S. Mueller, Th. Muller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast,

K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, S. Rocker, C. Saout, A. Scheurer,

P. Schieferdecker, F.-P. Schilling, M. Schmanau, G. Schott, H.J. Simonis, F.M. Stober,

D. Troendle, J. Wagner-Kuhr, T. Weiler, M. Zeise, E.B. Ziebarth

Institute of Nuclear Physics ”Demokritos”, Aghia Paraskevi, Greece

G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou,

C. Markou, C. Mavrommatis, E. Ntomari, E. Petrakou

University of Athens, Athens, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioannina, Ioannina, Greece

I. Evangelou, C. Foudas1, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu1, P. Hidas, D. Horvath15, A. Kapusi,

K. Krajczar16, F. Sikler1, G.I. Veres16, G. Vesztergombi16

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli,

M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J. Singh, S.P. Singh

University of Delhi, Delhi, India

S. Ahuja, B.C. Choudhary, P. Gupta, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin,

K. Ranjan, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, S. Jain, S. Jain, R. Khurana, S. Sarkar

Bhabha Atomic Research Centre, Mumbai, India

R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty1, L.M. Pant, P. Shukla

– 24 –

Page 26: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Tata Institute of Fundamental Research - EHEP, Mumbai, India

T. Aziz, M. Guchait17, A. Gurtu, M. Maity18, D. Majumder, G. Majumder, K. Mazumdar,

G.B. Mohanty, B. Parida, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India

S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

H. Arfaei, H. Bakhshiansohi19, S.M. Etesami20, A. Fahim19, M. Hashemi, H. Hesari,

A. Jafari19, M. Khakzad, A. Mohammadi21, M. Mohammadi Najafabadi, S. Paktinat

Mehdiabadi, B. Safarzadeh22, M. Zeinali20

INFN Sezione di Baria, Universita di Barib, Politecnico di Baric, Bari, Italy

M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b, A. Colaleoa, D. Creanzaa,c, N. De

Filippisa,c,1, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, L. Lusitoa,b, G. Maggia,c, M. Maggia,

N. Mannaa,b, B. Marangellia,b, S. Mya,c, S. Nuzzoa,b, N. Pacificoa,b, A. Pompilia,b,

G. Pugliesea,c, F. Romanoa,c, G. Selvaggia,b, L. Silvestrisa, S. Tupputia,b, G. Zitoa

INFN Sezione di Bolognaa, Universita di Bolognab, Bologna, Italy

G. Abbiendia, A.C. Benvenutia, D. Bonacorsia, S. Braibant-Giacomellia,b, L. Brigliadoria,

P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria,

A. Fanfania,b, D. Fasanellaa,1, P. Giacomellia, M. Giuntaa, C. Grandia, S. Marcellinia,

G. Masettia, M. Meneghellia,b, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa,

F. Primaveraa, A.M. Rossia,b, T. Rovellia,b, G. Sirolia,b, R. Travaglinia,b

INFN Sezione di Cataniaa, Universita di Cataniab, Catania, Italy

S. Albergoa,b, G. Cappelloa,b, M. Chiorbolia,b, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b,

C. Tuvea,b

INFN Sezione di Firenzea, Universita di Firenzeb, Firenze, Italy

G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, S. Frosalia,b,

E. Galloa, S. Gonzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa,1

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, S. Colafranceschi23, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy

P. Fabbricatore, R. Musenich

– 25 –

Page 27: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

INFN Sezione di Milano-Bicoccaa, Universita di Milano-Bicoccab, Milano,

Italy

A. Benagliaa,b,1, F. De Guioa,b, L. Di Matteoa,b, S. Gennaia,1, A. Ghezzia,b, S. Malvezzia,

A. Martellia,b, A. Massironia,b,1, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia,

S. Ragazzia,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b

INFN Sezione di Napolia, Universita di Napoli ”Federico II”b, Napoli, Italy

S. Buontempoa, C.A. Carrillo Montoyaa,1, N. Cavalloa,24, A. De Cosaa,b, O. Doganguna,b,

F. Fabozzia,24, A.O.M. Iorioa,1, L. Listaa, M. Merolaa,b, P. Paoluccia

INFN Sezione di Padovaa, Universita di Padovab, Universita di

Trento (Trento)c, Padova, Italy

P. Azzia, N. Bacchettaa,1, P. Bellana,b, D. Biselloa,b, A. Brancaa, R. Carlina,b, P. Checchiaa,

T. Dorigoa, U. Dossellia, F. Fanzagoa, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa,

S. Lacapraraa,25, I. Lazzizzeraa,c, M. Margonia,b, M. Mazzucatoa, A.T. Meneguzzoa,b,

M. Nespoloa,1, L. Perrozzia, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa,

M. Tosia,b,1, S. Vaninia,b, P. Zottoa,b, G. Zumerlea,b

INFN Sezione di Paviaa, Universita di Paviab, Pavia, Italy

P. Baessoa,b, U. Berzanoa, S.P. Rattia,b, C. Riccardia,b, P. Torrea,b, P. Vituloa,b, C. Viviania,b

INFN Sezione di Perugiaa, Universita di Perugiab, Perugia, Italy

M. Biasinia,b, G.M. Bileia, B. Caponeria,b, L. Fanoa,b, P. Laricciaa,b, A. Lucaronia,b,1,

G. Mantovania,b, M. Menichellia, A. Nappia,b, F. Romeoa,b, A. Santocchiaa,b, S. Taronia,b,1,

M. Valdataa,b

INFN Sezione di Pisaa, Universita di Pisab, Scuola Normale Superiore di Pisac,

Pisa, Italy

P. Azzurria,c, G. Bagliesia, J. Bernardinia,b, T. Boccalia, G. Broccoloa,c, R. Castaldia,

R.T. D’Agnoloa,c, R. Dell’Orsoa, F. Fioria,b, L. Foaa,c, A. Giassia, A. Kraana, F. Ligabuea,c,

T. Lomtadzea, L. Martinia,26, A. Messineoa,b, F. Pallaa, F. Palmonaria, A. Rizzi,

G. Segneria, A.T. Serbana, P. Spagnoloa, R. Tenchinia, G. Tonellia,b,1, A. Venturia,1,

P.G. Verdinia

INFN Sezione di Romaa, Universita di Roma ”La Sapienza”b, Roma, Italy

L. Baronea,b, F. Cavallaria, D. Del Rea,b,1, M. Diemoza, D. Francia,b, M. Grassia,1,

E. Longoa,b, P. Meridiania, S. Nourbakhsha, G. Organtinia,b, F. Pandolfia,b, R. Paramattia,

S. Rahatloua,b, M. Sigamania

– 26 –

Page 28: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

INFN Sezione di Torinoa, Universita di Torinob, Universita del Piemonte

Orientale (Novara)c, Torino, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, C. Bottaa,b,

N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b, C. Mariottia,

S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, N. Pastronea,

M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, V. Solaa,b,

A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Triestea, Universita di Triesteb, Trieste, Italy

S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b, D. Montaninoa,b,1,

A. Penzoa

Kangwon National University, Chunchon, Korea

S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea

S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, S.R. Ro,

D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles,

Kwangju, Korea

J.Y. Kim, Zero J. Kim, S. Song

Konkuk University, Seoul, Korea

H.Y. Jo

Korea University, Seoul, Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park,

E. Seo, K.S. Sim

University of Seoul, Seoul, Korea

M. Choi, S. Kang, H. Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

M.J. Bilinskas, I. Grigelionis, M. Janulis, D. Martisiute, P. Petrov, M. Polujanskas,

T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez,

R. Magana Villalba, J. Martınez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

– 27 –

Page 29: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

H.A. Salazar Ibarguen

Universidad Autonoma de San Luis Potosı, San Luis Potosı, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand

D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand

A.J. Bell, P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

M. Ahmad, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi,

M.A. Shah, M. Shoaib

Institute of Experimental Physics, Faculty of Physics, University of Warsaw,

Warsaw, Poland

G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland

T. Frueboes, R. Gokieli, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska,

M. Szleper, G. Wrochna, P. Zalewski

Laboratorio de Instrumentacao e Fısica Experimental de Partıculas, Lisboa,

Portugal

N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro,

P. Musella, A. Nayak, J. Pela1, P.Q. Ribeiro, J. Seixas, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia

S. Afanasiev, I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev,

V. Karjavin, G. Kozlov, A. Lanev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov,

V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin,

I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

– 28 –

Page 30: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov,

V. Matveev, A. Pashenkov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, M. Erofeeva, V. Gavrilov, V. Kaftanov†, M. Kossov1, A. Krokhotin,

N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, M. Dubinin4, L. Dudko, A. Ershov, A. Gribushin, O. Kodolova,

I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, L. Sarycheva, V. Savrin,

A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats,

S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy

Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin1, V. Kachanov, D. Konstantinov,

A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin,

N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear

Sciences, Belgrade, Serbia

P. Adzic27, M. Djordjevic, M. Ekmedzic, D. Krpic27, J. Milosevic

Centro de Investigaciones Energeticas Medioambientales

y Tecnologicas (CIEMAT), Madrid, Spain

M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada,

M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos,

D. Domınguez Vazquez, C. Fernandez Bedoya, J.P. Fernandez Ramos, A. Ferrando,

J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez,

M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares,

C. Willmott

Universidad Autonoma de Madrid, Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Troconiz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias,

J.M. Vizan Garcia

– 29 –

Page 31: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Instituto de Fısica de Cantabria (IFCA), CSIC-Universidad de Cantabria,

Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros,

M. Felcini28, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo,

A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez,

J. Piedra Gomez29, T. Rodrigo, A.Y. Rodrıguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro,

M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, C. Bernet5,

W. Bialas, P. Bloch, A. Bocci, H. Breuker, K. Bunkowski, T. Camporesi, G. Cerminara,

T. Christiansen, J.A. Coarasa Perez, B. Cure, D. D’Enterria, A. De Roeck, S. Di Guida,

N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, A. Gaddi, G. Georgiou,

H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-Reino Garrido,

M. Gouzevitch, P. Govoni, S. Gowdy, R. Guida, L. Guiducci, S. Gundacker, M. Hansen,

C. Hartl, J. Harvey, J. Hegeman, B. Hegner, H.F. Hoffmann, V. Innocente, P. Janot,

K. Kaadze, E. Karavakis, P. Lecoq, P. Lenzi, C. Lourenco, T. Maki, M. Malberti,

L. Malgeri, M. Mannelli, L. Masetti, G. Mavromanolakis, F. Meijers, S. Mersi, E. Meschi,

R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini,

E. Palencia Cortezon, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimia, D. Piparo,

G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi30,

T. Rommerskirchen, C. Rovelli31, M. Rovere, H. Sakulin, F. Santanastasio, C. Schafer,

C. Schwick, I. Segoni, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas32, D. Spiga,

M. Spiropulu4, M. Stoye, A. Tsirou, P. Vichoudis, H.K. Wohri, S.D. Worm33, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram,

H.C. Kaestli, S. Konig, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe,

J. Sibille34

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

L. Bani, P. Bortignon, B. Casal, N. Chanon, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar,

J. Eugster, K. Freudenreich, C. Grab, P. Lecomte, W. Lustermann, C. Marchica35,

P. Martinez Ruiz del Arbol, P. Milenovic36, N. Mohr, F. Moortgat, C. Nageli35, P. Nef,

F. Nessi-Tedaldi, L. Pape, F. Pauss, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez,

M.-C. Sawley, A. Starodumov37, B. Stieger, M. Takahashi, L. Tauscher†, A. Thea,

K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, M. Weber, L. Wehrli, J. Weng

Universitat Zurich, Zurich, Switzerland

E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan

Mejias, P. Otiougova, P. Robmann, A. Schmidt, H. Snoek, M. Verzetti

– 30 –

Page 32: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

National Central University, Chung-Li, Taiwan

Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic,

R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz,

U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, J.G. Shiu, Y.M. Tzeng,

X. Wan, M. Wang

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci38, S. Cerci39, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis,

G. Gokbulut, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk40,

A. Polatoz, K. Sogut41, D. Sunar Cerci39, B. Tali39, H. Topakli38, D. Uzun, L.N. Vergili,

M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan,

A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey

M. Deliomeroglu, E. Gulmez, B. Isildak, M. Kaya42, O. Kaya42, M. Ozbek,

S. Ozkorucuklu43, N. Sonmez44

National Scientific Center, Kharkov Institute of Physics and Technology,

Kharkov, Ukraine

L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Bostock, J.J. Brooke, E. Clement, D. Cussans, R. Frazier, J. Goldstein, M. Grimes,

G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold33, K. Nirunpong, A. Poll,

S. Senkin, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Basso45, K.W. Bell, A. Belyaev45, C. Brew, R.M. Brown, B. Camanzi, D.J.A. Cockerill,

J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt,

B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom

R. Bainbridge, G. Ball, J. Ballin, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps,

M. Cutajar, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert,

A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli,

L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko37,

– 31 –

Page 33: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

A. Papageorgiou, M. Pesaresi, K. Petridis, M. Pioppi46, D.M. Raymond, S. Rogerson,

N. Rompotis, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, A. Tapper, S. Tourneur,

M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, D. Wardrope, T. Whyntie

Brunel University, Uxbridge, United Kingdom

M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie,

W. Martin, I.D. Reid, L. Teodorescu

Baylor University, Waco, U.S.A.

K. Hatakeyama, H. Liu

The University of Alabama, Tuscaloosa, U.S.A.

C. Henderson

Boston University, Boston, U.S.A.

A. Avetisyan, T. Bose, E. Carrera Jarrin, C. Fantasia, A. Heister, J. St. John, P. Lawson,

D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, U.S.A.

S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev,

G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer,

K.V. Tsang

University of California, Davis, Davis, U.S.A.

R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok,

J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, R. Houtz, W. Ko, A. Kopecky,

R. Lander, H. Liu, O. Mall, S. Maruyama, T. Miceli, D. Pellett, J. Robles, B. Rutherford,

M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra

University of California, Los Angeles, Los Angeles, U.S.A.

V. Andreev, K. Arisaka, D. Cline, R. Cousins, A. Deisher, J. Duris, S. Erhan, P. Everaerts,

C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein†, J. Tucker,

V. Valuev

University of California, Riverside, Riverside, U.S.A.

J. Babb, R. Clare, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, S.C. Kao,

H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo,

R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, U.S.A.

W. Andrews, J.G. Branson, G.B. Cerati, D. Evans, F. Golf, A. Holzner, R. Kelley,

M. Lebourgeois, J. Letts, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, H. Pi, M. Pieri,

R. Ranieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak,

S. Wasserbaech47, F. Wurthwein, A. Yagil, J. Yoo

– 32 –

Page 34: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

University of California, Santa Barbara, Santa Barbara, U.S.A.

D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert,

C. George, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi1, V. Krutelyov,

S. Lowette, N. Mccoll, S.D. Mullin, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman,

R. Rossin, D. Stuart, W. To, J.R. Vlimant, C. West

California Institute of Technology, Pasadena, U.S.A.

A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin,

Y. Ma, A. Mott, H.B. Newman, C. Rogan, K. Shin, V. Timciuc, P. Traczyk, J. Veverka,

R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, U.S.A.

B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, S.Y. Jun, Y.F. Liu, M. Paulini,

J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, U.S.A.

J.P. Cumalat, M.E. Dinardo, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn,

E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner,

S.L. Zang

Cornell University, Ithaca, U.S.A.

L. Agostino, J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley,

W. Hopkins, A. Khukhunaishvili, B. Kreis, G. Nicolas Kaufman, J.R. Patterson, D. Puigh,

A. Ryd, E. Salvati, X. Shi, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan,

Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, U.S.A.

A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, U.S.A.

S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, M. Atac, J.A. Bakken,

L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler,

V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, W. Cooper, D.P. Eartly,

V.D. Elvira, S. Esen, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, D. Green, O. Gutsche,

J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, H. Jensen, S. Jindariani,

M. Johnson, U. Joshi, B. Klima, K. Kousouris, S. Kunori, S. Kwan, C. Leonidopoulos,

D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride,

T. Miao, K. Mishra, S. Mrenna, Y. Musienko48, C. Newman-Holmes, V. O’Dell, J. Pivarski,

R. Pordes, O. Prokofyev, T. Schwarz, E. Sexton-Kennedy, S. Sharma, W.J. Spalding,

L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, L. Uplegger, E.W. Vaandering, R. Vidal,

J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

– 33 –

Page 35: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

University of Florida, Gainesville, U.S.A.

D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni,

D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, S. Goldberg,

J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low,

K. Matchev, G. Mitselmakher, L. Muniz, M. Park, R. Remington, A. Rinkevicius,

M. Schmitt, B. Scurlock, P. Sellers, N. Skhirtladze, M. Snowball, D. Wang, J. Yelton,

M. Zakaria

Florida International University, Miami, U.S.A.

V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, U.S.A.

T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas,

S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, S. Sekmen,

V. Veeraraghavan

Florida Institute of Technology, Melbourne, U.S.A.

M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, U.S.A.

M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Callner,

R. Cavanaugh, C. Dragoiu, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan,

G.J. Kunde49, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, C. Silvestre, D. Strom,

N. Varelas

The University of Iowa, Iowa City, U.S.A.

U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, C.K. Lae, E. McCliment, J.-

P. Merlo, H. Mermerkaya50, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom,

E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, U.S.A.

B.A. Barnett, B. Blumenfeld, S. Bolognesi, A. Bonato, C. Eskew, D. Fehling, G. Giurgiu,

A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, N.V. Tran,

A. Whitbeck

The University of Kansas, Lawrence, U.S.A.

P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan,

S. Sanders, R. Stringer, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, U.S.A.

A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin,

S. Shrestha, I. Svintradze

– 34 –

Page 36: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Lawrence Livermore National Laboratory, Livermore, U.S.A.

J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, U.S.A.

A. Baden, M. Boutemeur, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn,

Y. Lu, A.C. Mignerey, K. Rossato, P. Rumerio, A. Skuja, J. Temple, M.B. Tonjes,

S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, U.S.A.

B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta,

G. Gomez Ceballos, M. Goncharov, K.A. Hahn, P. Harris, Y. Kim, M. Klute, Y.-J. Lee,

W. Li, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph,

G.S.F. Stephans, F. Stockli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf,

B. Wyslouch, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, U.S.A.

S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt,

K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, V. Rekovic, R. Rusack, M. Sasseville,

A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, U.S.A.

L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, U.S.A.

E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, P. Jindal,

J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, U.S.A.

U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, K. Smith, Z. Wan

Northeastern University, Boston, U.S.A.

G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, S. Reucroft, D. Trocino, D. Wood,

J. Zhang

Northwestern University, Evanston, U.S.A.

A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov,

M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, U.S.A.

L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb,

T. Kolberg, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti,

J. Slaunwhite, N. Valls, M. Wayne, J. Ziegler

– 35 –

Page 37: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

The Ohio State University, Columbus, U.S.A.

B. Bylsma, L.S. Durkin, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg,

C. Vuosalo, G. Williams

Princeton University, Princeton, U.S.A.

N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, A. Hunt, E. Laird,

D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroue,

X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, U.S.A.

J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas,

A. Zatserklyaniy

Purdue University, West Lafayette, U.S.A.

E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, L. Borrello, D. Bortoletto, M. De

Mattia, A. Everett, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen,

N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers,

A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, U.S.A.

S. Guragain, N. Parashar

Rice University, Houston, U.S.A.

A. Adair, C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley,

R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, U.S.A.

B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq,

H. Flacher, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner,

G. Petrillo, W. Sakumoto, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, U.S.A.

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, U.S.A.

S. Arora, O. Atramentov, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-

Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas,

D. Hits, A. Lath, S. Panwalkar, M. Park, R. Patel, A. Richards, K. Rose, S. Salur,

S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, U.S.A.

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

– 36 –

Page 38: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

Texas A&M University, College Station, U.S.A.

R. Eusebi, W. Flanagan, J. Gilmore, A. Gurrola, T. Kamon51, V. Khotilovich, R. Montalvo,

I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, S. Sengupta, I. Suarez,

A. Tatarinov, D. Toback

Texas Tech University, Lubbock, U.S.A.

N. Akchurin, C. Bardak, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee,

T. Libeiro, P. Mane, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, U.S.A.

E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, M. Issah, W. Johns, C. Johnston,

P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, U.S.A.

M.W. Arenton, M. Balazs, S. Boutle, S. Conetti, B. Cox, B. Francis, S. Goadhouse,

J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay

Wayne State University, Detroit, U.S.A.

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane,

M. Mattson, C. Milstene, A. Sakharov

University of Wisconsin, Madison, U.S.A.

M. Anderson, M. Bachtis, D. Belknap, J.N. Bellinger, D. Carlsmith, M. Cepeda, S. Dasu,

J. Efron, E. Friis, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Herve,

P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra,

I. Ojalvo, W. Parker, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson, M. Weinberg

– 37 –

Page 39: TeV · 2019. 1. 9. · The sample includes 36 pb 1 of data passing the standard CMS quality criteria for all detector subsystems, and 4 pb 1 in which the quality criteria are satis

JHEP01(2012)052

†: Deceased

1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland

2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

3: Also at Universidade Federal do ABC, Santo Andre, Brazil

4: Also at California Institute of Technology, Pasadena, U.S.A.

5: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

6: Also at Suez Canal University, Suez, Egypt

7: Also at Cairo University, Cairo, Egypt

8: Also at British University, Cairo, Egypt

9: Also at Fayoum University, El-Fayoum, Egypt

10: Also at Ain Shams University, Cairo, Egypt

11: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland

12: Also at Universite de Haute-Alsace, Mulhouse, France

13: Also at Moscow State University, Moscow, Russia

14: Also at Brandenburg University of Technology, Cottbus, Germany

15: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary

16: Also at Eotvos Lorand University, Budapest, Hungary

17: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India

18: Also at University of Visva-Bharati, Santiniketan, India

19: Also at Sharif University of Technology, Tehran, Iran

20: Also at Isfahan University of Technology, Isfahan, Iran

21: Also at Shiraz University, Shiraz, Iran

22: Also at Plasma Physics Research Center, Islamic Azad University, Teheran, Iran

23: Also at Facolta Ingegneria Universita di Roma, Roma, Italy

24: Also at Universita della Basilicata, Potenza, Italy

25: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy

26: Also at Universita degli studi di Siena, Siena, Italy

27: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia

28: Also at University of California, Los Angeles, Los Angeles, U.S.A.

29: Also at University of Florida, Gainesville, U.S.A.

30: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy

31: Also at INFN Sezione di Roma; Universita di Roma ”La Sapienza”, Roma, Italy

32: Also at University of Athens, Athens, Greece

33: Also at Rutherford Appleton Laboratory, Didcot, U.K.

34: Also at The University of Kansas, Lawrence, U.S.A.

35: Also at Paul Scherrer Institut, Villigen, Switzerland

36: Also at Univ. of Belgrade, Fac. of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia

38: Also at Gaziosmanpasa University, Tokat, Turkey

39: Also at Adiyaman University, Adiyaman, Turkey

40: Also at The University of Iowa, Iowa City, U.S.A.

41: Also at Mersin University, Mersin, Turkey

42: Also at Kafkas University, Kars, Turkey

43: Also at Suleyman Demirel University, Isparta, Turkey

44: Also at Ege University, Izmir, Turkey

45: Also at School of Physics and Astronomy, University of Southampton, Southampton, U.K.

46: Also at INFN Sezione di Perugia; Universita di Perugia, Perugia, Italy

47: Also at Utah Valley University, Orem, U.S.A.

48: Also at Institute for Nuclear Research, Moscow, Russia

49: Also at Los Alamos National Laboratory, Los Alamos, U.S.A.

50: Also at Erzincan University, Erzincan, Turkey

51: Also at Kyungpook National University, Daegu, Korea

– 38 –