52
The AMANDA and IceCube 高高高高高高 ν 高高高 高高高高高高 Physics Motivation AMANDA detector Recent Experimental Results IceCube Project overview and Status EHE Physics Example: Detection of GZK neutrinos 高高 高 ( 高高高高高 )

The AMANDA and IceCube 高エネルギー ν 天文学:宇宙探査の窓

Embed Size (px)

DESCRIPTION

The AMANDA and IceCube 高エネルギー ν 天文学:宇宙探査の窓. Physics Motivation AMANDA detector Recent Experimental Results IceCube Project overview and Status EHE Physics Example: Detection of GZK neutrinos. 吉田 滋 (千葉大学理). You cannot expect too many n !. TeV/EGRET observations !!. Cosmic Ray - PowerPoint PPT Presentation

Citation preview

Page 1: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

The AMANDA and IceCube 高エネルギー ν 天文学:宇宙探査の窓

Physics Motivation

AMANDA detector

Recent Experimental Results

IceCube Project overview and Status

EHE Physics Example: Detection of GZK neutrinos

吉田 滋 ( 千葉大学理 )

Page 2: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

You cannot expect too many !

p (p,n) 2

e

TeV/EGRET observations !!

Cosmic Ray observations! Synchrotron

coolingYou cannot expect too high energies

Page 3: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Theoretical bounds

atmospheric

W&B W&B

MPRMPR

DUMAND test string

FREJUS

NT-200

MACRO opaque for neutrons

Mannheim, Protheroe and Rachen (2000) – Waxman, Bahcall (1999) derived from known limits on extragalactic protons + -ray flux

neutrons can escape

Suppressed by Synchrotron Cooling

Page 4: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

EHE(Extremely HE) Synchrotron cooling of … Production sites with low B

Intergalactic space!!

•GZK Production•Z-burst•Topological Defects/Super heavy Massive particles

Page 5: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Shall we Dance?

Page 6: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Amundsen-Scott South Pole Station

South PoleDome

Summer camp

AMANDA

road to work

1500 m

2000 m

[not to scale]

Where are we ?

Page 7: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

PMT noise: ~1 kHz

AMANDA-B10(inner core of AMANDA-II)

10 strings302 OMs

Data years: 1997-99

Optical Module

“Up-going”(from Northern sky)

“Down-going”(from Southern sky)

AMANDA-II19 strings677 OMs

Trigger rate: 80 HzData years: >=2000

PMT looking downward

Page 8: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Event detection in the iceO(km) long tracks

~15 m

cascades

Longer absorption length → larger effective volume

AMANDA-II

trackspointing error : 1.5º - 2.5º

σ[log10(E/TeV)] : 0.3 - 0.4

coverage : 2Cascades (particle showers)

pointing error : 30º - 40º

σ[log10(E/TeV)] : 0.1 - 0.2

coverage : 4

cosmic rays (+SPASE)combined pointing err : < 0.5º

σ[log10(E/TeV)] : 0.06 - 0.1

Nucl. Inst. Meth. A 524, 169 (2004)

event reconstruction by Cherenkov light timing

South Pole ice: the most transparent natural

medium ?

a neutrino telescope

0.65o(E/TeV)-0.48

(3TeV<E<100TeV)

abs> ~ 110 m @ 400 nm

sca> ~ 20 m @ 400 nm

Page 9: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Atmospheric 's in AMANDA-II

neural network energy reconstruction regularized unfolding

measured atmospheric neutrino spectrum

1 sigma energy error

spectrum up to 100 TeV compatible with Frejus data

presently no sensitivity to LSND/Nunokawa prediction of dip structures between 0.4-3 TeV

In future, spectrum will be usedto study excess due to cosmic ‘s

PRELIMINARY

Page 10: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Oscillation in AMANDA‘s range

Problem: lower energy threshold ~ 100 GeV - 1 TeV

P(

)

flight length / km

10 GeV

30 GeV

1 TeV

50 GeV

100 GeV

110° 180°

SuperK values:

m² = 2,4 * 10-3 eV²

sin²(2Mix) = 1,0

positive identification not possible

Page 11: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

P(

)

flight length / km 110° 180°

2,4 * 10-3 eV²

2,8 * 10-2 eV²

10-2 eV²

10-3 eV² significantoscillation

inAMANDA‘s

range

exclusionregions in

sin²(2)-m²-plane

Variation ofm² (E =100GeV)

Oscillation in AMANDA‘s range

Page 12: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Excess of cosmic neutrinos? Not yet ...

cascades (2000 data)

„AGN“ with 10-5 E-2

GeV-1 cm-2 s-1 sr-1

.. for now use number of hit channels as energy variable ...

muon neutrinos (1997 B10-data)accepted by PRL

cuts determined by MC – blind analyses !

talk HE 2.3-4

Page 13: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

The highest energy event (~200 TeV)

300 m

Page 14: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Theoretical bounds and future

atmospheric

W&B W&B

MPRMPR

DUMAND test string

FREJUS

NT-200

MACRO

NT-200+

AMANDA-II

IceCube

AMANDA-97

AMANDA-00

opaque for neutrons

Mannheim, Protheroe and Rachen (2000) – Waxman, Bahcall (1999) derived from known limits on extragalactic protons + -ray flux

neutrons can escape

Page 15: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

telescope : point source search

2000-2003

3369 from northern hemisphere

3438 expected from atmosphere

Preliminary

Search for clustering in northern hemisphere• compare significance of local fluctuation to atmospheric expectations• un-binned statistical analysis• no significant excess

~92%

Maximum significance 3.4

compatible with atmospheric

also search for neutrinos from unresolved sources

Page 16: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Second Assumption:

use X-ray data to define relative High/Low time for the whole time 2000/2003

Extend this information to the AMANDA exposure time, caveat:

-rays observation are generally very short and for limited periods…

Tibet data quite cover the (HEGRA) High period

AMANDA observational time High state/total time:

~210/807 or also

~1 year/4 years of AMANDA exposure

Page 17: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

¶O.C.De Jager & F.W.Stecker, Astrophy.J. 566 (2002), 738-743

Fit of the measured spectrum from HEGRA (Low)

Allowed range for the emitted flux

AMANDA sensitivity

Low state:

can be compared to our best upper limit (sensitivity shown here)

Correction for extra-galactic absorption¶:

TeV -ray spectra are modified by red-shift dependent absorption by intergalactic IR-UV background

about factor 2

Page 18: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Fit of the measured spectrum from HEGRA (Low)

Allowed range for the emitted flux

AMANDA sensitivity (NB: this under the assumption that the source would show ~ 800 days of high state!)

High state:

can be compared to the AMANDA sensitivity for ~ 200 days of live time (1 year exposure)

Sensitivity ~1 BUT without accounting for oscillations (a factor 2 in the flux should be added!!)

Current best estimate

Page 19: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Search for correlated with GRBs

GRB catalogs: BATSE, IPN3 & GUSBAD

Analysis is blind: finalized off-source (± 5 min)

with MC simulated signal

BG stability required within ± 1 hour

Muon effective area (averaged over zenith angle) 50,000 m2 @ PeV

Year Detector NBursts NBG, Pred NObs Event U.L.

1997 B-10 78 (BT) 0.06 0 2.41

1998 B-10 94 (BT) 0.20 0 2.24

1999 B-10 96 (BT) 0.20 0 2.24

2000 A-II(2 analyses)

44 (BT) 0.83/0.40 0/0 1.72/2.05

97-00 B-10/A-II 312 (BT) 1.29 0 1.45

2000 A-II 24 (BNT) 0.24 0 2.19

2000 A-II 46 (New) 0.60 0 1.88

2000 A-II 114 (All) 1.24 0 1.47

(BT = BATSE Triggered BNT = BATSE Non-Triggered New = IPN & GUSBAD)

97-00 Flux Limit at Earth*: E2Φν≤ 4·10-8 GeV cm-2 s-1

sr-1 *For 312 bursts w/ WB Broken Power-Law Spectrum (Ebreak= 100 TeV, ΓBulk=

300)

PRELIMINARY

Time of GRB (Start of T90 )

-1 hour +1 hour

Background determined on-source/off-time Background determined on-source/off-time

10 min

Low background analysis due to

space and time coincidence!

Blinded Window

Page 20: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Sensitivity to muon flux from neutralino annihilations in the center of the Earth:

WIMP annihilations in the center of Earth

Eμ > 1 GeV

Muon flux limits

PRELIMINARY H Z, W,,ll ,qq -xx

Look for vertically upgoing tracks

NN optimized (on 20% data) to - remove misreconstructed atm. μ - suppress atmospheric ν - maximize sensitivity to WIMP signal

Combine 3 years: 1997-99

Total livetime (80%): 422 days

No WIMP signal found

Disfavored by direct search(CDMS II)

-WWxx -ττxx

Limit for “hardest” channel:

GeV 5000-100 xM

GeV 50 xM

Page 21: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

WIMP annihilations in the Sun

Increased capture rate due to addition of spin-dependent processes

Sun is maximally 23° below horizon

Search with AMANDA-II possible thanks to improved reconstructioncapabilities for horizontal tracks

Exclusion sensitivity fromanalyzing off-source bins

2001 data0.39 years livetime

Best sensitivity (considering livetime) of existing indirect searches using

muons from the Sun/Earth

No WIMP signal found

Eμ > 1 GeV

PRELIMINARYMuon flux limits

Page 22: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Bursts of low-energy (MeV) νe from SN

► simultaneous increase of all

PMT count rates (~10s)

Since 2003:

SNDAQ includes all AMANDA-II channels

Recent online analysis software upgrades can detect 90% of SN within 9.4 kpc less than 15 fakes/year

can contribute to

SuperNova Early Warning System

(with Super-K, SNO, Kamland, LVD, BooNE)

AMANDA-II

AMANDA-B10

IceCube30 kpc

AMANDA as supernova monitor

B10: 70% of GalaxyA-II: 95% of GalaxyIceCube: up to LMC

coverage

Analysis of 200X datain progress

~MeV

Page 23: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

The IceCube Neutrino Telescope

Project overview and Status

EHE Physics Example: Detection of GZK neutrinos

Page 24: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Bartol Research Inst, Univ of Delaware, USAPennsylvania State University, USAUniversity of Wisconsin-Madison, USAUniversity of Wisconsin-River Falls, USALBNL, Berkeley, USAUC Berkeley, USAUC Irvine, USA

Bartol Research Inst, Univ of Delaware, USAPennsylvania State University, USAUniversity of Wisconsin-Madison, USAUniversity of Wisconsin-River Falls, USALBNL, Berkeley, USAUC Berkeley, USAUC Irvine, USA

Univ. of Alabama, USAClark-Atlanta University, USAUniv. of Maryland, USAIAS, Princeton, USAUniversity of Kansas, USASouthern Univ. and A&M College, Baton Rouge

Univ. of Alabama, USAClark-Atlanta University, USAUniv. of Maryland, USAIAS, Princeton, USAUniversity of Kansas, USASouthern Univ. and A&M College, Baton Rouge

Universidad Simon Bolivar, Caracas,Venezuela

Université Libre de Bruxelles, BelgiumVrije Universiteit Brussel, BelgiumUniversité de Mons-Hainaut, BelgiumUniversität Mainz, GermanyDESY-Zeuthen, GermanyUniversität Wuppertal, Germany

Université Libre de Bruxelles, BelgiumVrije Universiteit Brussel, BelgiumUniversité de Mons-Hainaut, BelgiumUniversität Mainz, GermanyDESY-Zeuthen, GermanyUniversität Wuppertal, Germany

Uppsala Universitet, SwedenStockholm universitet, SwedenKalmar Universitet, SwedenImperial College, London, UKUniversity of Oxford, UKUtrecht University, Utrecht, NL

Uppsala Universitet, SwedenStockholm universitet, SwedenKalmar Universitet, SwedenImperial College, London, UKUniversity of Oxford, UKUtrecht University, Utrecht, NL

Chiba University, JapanChiba University, Japan

University of Canterbury, Christchurch, New Zealand

University of Canterbury, Christchurch, New Zealand

Who are we ?

Page 25: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

AMANDA

IceCube

IceTop

IceCube80 strings

60 OMs/string17 m vertical spacing

125 m between strings

IceTop160 tanks

frozen-water tanks2 OMs / tank

First year deployment (Jan 2005) 4 IceCube strings (240 OMs)

8 IceTop Tanks (16 OMs)

10” Hamamatsu R-7081

1200 m

IceTop Tank deployed in 2004

Page 26: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Road to South Pole

9 hours

6 hours

Page 27: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Eµ=10 TeV ≈ 90 hits Eµ=6 PeV ≈ 1000 hits

How EHE events look like

The typical light cylinder generated by a muon of 100 GeV is 20 m, 1PeV 400 m, 1EeV it is about 600 to 700 m.

Page 28: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Digital Optical Module (DOM)

HV Base

Main Board (DOM-MB)

“Flasher Board”

10” PMT

13” Glass (hemi)sphere

Page 29: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Capture Waveform information (MC)

ATWD 300MHz 14 bits.

3 different gains (x15 x3 x0.5)

Capture inter. 426nsec

10 bits FADC for long duration pulse.

E=10 PeV

0 - 4 µsec

Events / 10 nsec

String 1 String 2 String 3 String 4 String 5

Page 30: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

World-wide DOM collaboration

LBLWisconsin

Chiba

DESY

Stockholm

ElectronicsAssemblyCalibration

AssemblyCalibration

CalibrationScreening.

Page 31: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Photomultiplier: Hamamatsu R7081-02

(10”, 10-stage, 1E+08 gain)

• Selection criteria (@ -40 °C)• Noise < 300 Hz (SN,

bandwidth)• Gain > 5E7 at 2kV (nom.

1E7 + margin)• P/V > 2.0 (Charge res.; in-

situ gain calibration)

• Notes:• Only Hamamatsu PMT

meets excellent low noise rates!

• Tested three flavors of R7081.

Page 32: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

SPE Charge Spectrum

Page 33: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Setup photo

Page 34: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Expected Data Rates

PMT noise rate of 1 kHz is expected "Scintillation" of glass introduces correlations!

Two DOMs/twisted pair ( $, kg, flights,...)Rates/pair (bits/s) for coincidence mode(with zero suppression and compression) None: 18 kbytes/s x 2 x 10 = ~400 kbits/s Soft: 6-8 kbytes x 2 x 10 = ~160 kbits/s Hard: <1 kbyte/s x 2 x 10 = ~20 kbits/s

Demonstrated in the lab: 1 Mbit/s

Page 35: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

IceCube Software

CORSIKA JULIeT

MMC/NuSim

Photonics

ROMEO DOM Sim

Page 36: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

ROMEO – Optical detector simulator

ROOT Ttask base

Full detector simulation

Page 37: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

JULIeT – Particle Propagator

Monte-Carlo Simulation

Numerical Calculation

Page 38: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Angular resolution as a function of zenith angle

above 1 TeV, resolution ~ 0.6 - 0.8 degrees for most zenith angles

0.8°0.6°

Waveforminformationnot used.Will improveresolution forhigh energies !

Page 39: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Energy Spectrum Diffuse Search

Blue: after downgoing muon rejectionRed: after cut on Nhit to get ultimate sensitivity

Page 40: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Project status

Startup phase has been approved by the U.S. NSB and funds have been allocated. 100 DOMs are produced and being tested this year.Assembling of the drill/IceTop prototypes is carried out at the pole last season. Full Construction start in 04/05 (this year!!); takes 6 years to complete.Then 16 strings per season, increased rate may be possible.

HEAPA 2004

Page 41: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Right now at the pole

Page 42: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

GZK EHE detection

What is the GZK mechanism?

EHE Propagation in the Earth

Expected intensities at the IceCube depth

Atmospheric – background

Event rate

HEAPA 2004

Page 43: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

UHE (EeV or even higher) Neutrino Events

Arriving Extremely Horizontally

• Needs Detailed Estimation• Limited Solid Angle Window

(NA)-1 ~ 600 (/10-32cm2) -1(/2.6g cm-3) -1 [km]

Involving the interactions generating electromagnetic/hadron cascades

N X e+e-

Page 44: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

e

e

e/

e/

Weak

Weak

Weak

Inco

min

gProducts

Weak

Weak

Weak

Cascades

Cascades

Decay DecayWeak

Pair/decayBremss

Pair Pair PhotoNucl.

PhotoNucl.DecayPair Pair

PairBremssDecay

DecayWeak

DecayDecayDecay

Page 45: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

HEAPA 2004

Upward-going Downward going!!

Atmospheric muon! – a major backgrondBut so steep spectrum

Page 46: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

HEAPA 2004

Down-going events dominate…

1400 m

2800 m

11000mUp Down

Atmospheric is strongly attenuated…

Page 47: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Flux as a function of energy deposit in km3

dE/dX~E E~XbE

Page 48: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Uncertainty in Prompt Lepton

Cross Sections

• The uncertainty ~3 orders

• Need for accelerator data extrapolation

• Crossover between 40TeV and 3 PeV

ZhVd

AMANDA II (neutrinos)

Page 49: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

Constraining Charm Neutrino models by analysis of downgoing Muon Data

• Very preliminary sensitivity on ZHV-D model

• Systematics to be well understood

• Potential to set a more restrictive limit than neutrino diffuse analyses

AMANDA II (neutrinos)

AMANDA II(muons)

ZHVd

Page 50: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

IceCube EHE Sensitivity

Published in Phys. Rev. D S.Yoshida, R.Ishibashi, H,Miyamoto, PRD 69 103004 (2004)

90% C.L. for 10 year observation

Page 51: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

IceTop : EeV detection

back

Penetrating muon bundle in shower core

Incident cosmic-ray nucleus

Threshold ~ 1018 eV to veto this background

Potential to reject this background for EeV neutrinos by detecting the fringe of coincident horizontal air shower in an array of water Cherenkov detectors (cf. Ave et al., PRL 85 (2000) 2244, analysis of Haverah Park)

Page 52: The AMANDA and IceCube  高エネルギー ν 天文学:宇宙探査の窓

MacroBaikal

IceCube& km3 in sea

Amanda-B

Frejus

RICEFly‘s Eye

AGASA

AMANDA-II & ANTARES

OWL, EUSO

AUGER

NT-214

Courtesy: Learned & Mannheim; Spiering

Grand Summary