64
The Effects of Electric Utility Decoupling on Energy Efficiency Jenya Kahn-Lang 1 In partial fulfillment of a Bachelor of Arts Degree in Economics and Environmental Analysis, 2011-12 academic year, Pomona College, Claremont, California 1 I would like to thank Professor Bowman Cutter for his encouragement and feedback throughout the course of this project. His constant support and direction made this project a possibility. I am extremely appreciative to professors John Jurewitz and Pierangelo De Pace for sharing their expertise in their respective fields with me. I would also like to thank Professors Gary Smith, Eleanor Brown, and Char Miller for their indispensible assistance and enthusiasm. Finally, I could not possibly thank my parents enough for all of their help over the years and with this project.

The Effects of Electric Utility Decoupling on Energy Efficiency

Embed Size (px)

Citation preview

TheEffectsofElectricUtilityDecouplingonEnergyEfficiency

JenyaKahn­Lang1

InpartialfulfillmentofaBachelorofArtsDegreeinEconomicsand

EnvironmentalAnalysis,

2011­12academicyear,PomonaCollege,Claremont,California

1IwouldliketothankProfessorBowmanCutterforhisencouragementandfeedbackthroughoutthecourseofthisproject.Hisconstantsupportanddirectionmadethisprojectapossibility.IamextremelyappreciativetoprofessorsJohnJurewitzandPierangeloDePaceforsharingtheirexpertiseintheirrespectivefieldswithme.IwouldalsoliketothankProfessorsGarySmith,EleanorBrown,andCharMillerfortheirindispensibleassistanceandenthusiasm.Finally,Icouldnotpossiblythankmyparentsenoughforalloftheirhelpovertheyearsandwiththisproject.

2

AbstractTraditionalutilityregulationexacerbatesenergyinefficiencybycreatinganincentivetoencourageoverconsumptionofenergy.Revenuedecouplingmechanismseliminatethisthroughputincentive,butcriticsarguethatdecoupledutilitieswillstillnotactivelypromoteenergyefficiency.ThispapermodelstheinterplaybetweenutilityDSMinvestmentandregulatorincentivesandstandards.Itexploresthehypothesisthatdecouplingmechanismsdecreaseresidentialelectricityconsumption,butonlythroughtheireffectonthelevel,directdemand‐reducingeffects,andindirectdemand‐reducingeffectsthroughpriceofDSMinvestment.Itthenempiricallyanalyzestheeffectsofdecouplingmechanismsonresidentialper‐customerelectricityuse.Thefindingssuggestthatdecouplingmechanismsdosignificantlydecreaseresidentialelectricityconsumptionoverall,butthatthissignificancedisappearswhentheeffectsofdecouplingmechanismsonretailelectricitypriceandDSMinvestmentareproperlyaccountedfor.Resultsindicatethatdecouplingmechanismsincreasethedirectandindirectdemand‐reducingeffectsofDSMinvestment.FindingsconcerningtherelationbetweendecouplingmechanismsandlevelofDSMspendingsuggestapositivecorrelation,buttheyareinconclusiveduetolimitedsamplesize.

3

TableofContents• Introduction_______________________________________________________________________4• LiteratureReview_________________________________________________________________7

o EnergyInefficiency________________________________________________________7o TraditionalRegulation____________________________________________________8o SuggestedSolutionsConcerningtheThroughputIncentive

andEnergyEfficiency____________________________________________________10o DecouplingMechanisms–Overview____________________________________12o ArgumentsfortheImplementationofDecouplingMechanisms_____14o ArgumentsAgainsttheImplementationofDecoupling

Mechanisms_______________________________________________________________16o BriefHistoryofDecouplingAdoptionintheU.S.______________________20o MeasuringtheEffectsofDSMandDecouplingonEnergyEfficiency_21

• ModelingDSMInvestmentIncentives__________________________________________23o Introduction______________________________________________________________23o PartA–TraditionalRegulation_________________________________________26o PartB–Decoupling______________________________________________________28o Conclusions_______________________________________________________________29

• TheoryandMethod_______________________________________________________________31o HypothesestobeTested_________________________________________________31o DataandMethods________________________________________________________33

• Results_____________________________________________________________________________38o OverallEffectsofDecouplingonConsumptionandPrice_____________38o EffectofDecouplingMechanismsonLevelofDSMSpending________40o EffectofDecouplingMechanismsontheDirectDemand‐Reducing

EffectsofDSMSpending_________________________________________________41o EffectofDecouplingMechanismsontheEfficacyofDSMInvestment

duetoitsIndirectEffectonConsumptionThroughPrice_____________42• RobustnessTests_________________________________________________________________43

o UseofanAnnualInstrumentalVariable________________________________43o Pre‐ExistingTrends______________________________________________________44o PotentialEndogeneityoftheDecouplingVariable____________________45

• Conclusions_______________________________________________________________________46• References________________________________________________________________________50• AppendixA________________________________________________________________________57• AppendixB________________________________________________________________________61

4

Introduction

Overconsumptionofenergyisthesourceoftwoofthelargestissuesfacing

today’sworld:globalclimatechange(Stern2008)andenergysecurity(Brookings

2011).Energydemandisincreasingworldwideandisprojectedtocontinue

increasing,atannualaverageratesofabout3.2%and1.1%foremergingand

matureeconomiesrespectively(AsifandMuneer2005).Asaresult,scientists

projectacontinuationofthetrendsofincreasingairpollution,especiallycarbon

dioxide(CO2)andotherGreenhouseGas(GHG)pollutionrelatedtoclimatechange,

andadecreasingstockofnon‐renewableenergysources(Smil2010).

Inefficientenergyuseisexacerbatingglobalclimatechange.Fossilfuel

combustionistheprimarycauseofthe80%increaseinCO2emissionsbetween

1970and2004(IPCC2007).Coal‐firedpowerplantsemitabout1tonofCO2for

everyMegawattofelectricityprovidedtocustomers(Hurleyetal.2008).Whilethe

exactcostsofglobalclimatechangearecurrentlyindebate,withnumerous

estimatesaround3‐5%ofgrossdomesticproduct(GDP)peryear,climatechangeis

arguablythelargestmarketfailurepresentintoday’sworld.Duetoenvironmental

andhealthexternalitiesassociatedwithGHGemissions,thecostsassociatedwith

failingtoadequatelymitigateclimatechangeconsiderablyexceedthemitigation

costs(Stern2006,AckermanandStanton2008).

Sincethemajorityoftheworld’senergycomesfromfinite,rapidlydepleting

sources(Smil2010),whicharelocatedinonlyafewspecificcountries,manypeople

worryaboutthesustainedattainabilityofenergy.TheUS,likemanyothercountries

includingChina,India,andUK,reliesheavilyonenergyimportationtofulfillits

growingdemand.USoilreservescouldsustainthecountry’sdemandforlessthan4

years(AsifandMuneer2005).Worldwide,fossilfuelsaregettingincreasingly

difficultandlesscost‐effectivetoobtainandconvertintousefulformsofenergy.

Inevitably,societywillneedtotransitiontoapost‐fossilfuelworld,butthereisalot

ofuncertaintyregardingthetiminganddetailsofthisprocess(Smil2010).

Whileproduction‐basedtechnologicaladvanceswillprobablybepartofthe

solution,increasedenergyefficiencyanddecreasedenergyconsumptionisessential

5

foreffectiveclimatechangemitigationandforimprovementstoenergysecurity.

Duetothescaleofnecessarycarbonstorage,itisunlikelythatpeoplecouldcapture

andstoreanadequatefractionofourcurrentcarbonemissionsthroughcarbon

sequestrationmethods(Bryce2010).Duringthecontinuedperiodofheavyreliance

onfossilfuels,therefore,asubstantialreductioninemissionsmustbearesultof

lowerdemandforenergyproduction.Furthermore,whiletherearemanypotential

sourcesofenergyinaninevitablepost‐fossilfuelenergyregime,theyarealllimited

inthepotentialusefulenergytheycouldprovidesociety.Expertsagreethatthe

futureenergyregimewillmostlikelyneedtocopewithlowerenergyandpower

densitiesbydecreasingenergyconsumption(Smil2010).Accordingtothe

EnvironmentalProtectionAgency(EPA)(2007),increasingenergyefficiencyin

residential,business,andindustrialsectorsisoneofthemostcost‐effectivewaysto

addresstheissuesofenergysecurity,airpollution,andclimatechange.

Therecurrentlyexistmanycost‐effectiveandnegativecostopportunitiesin

energyefficiency,but,forthemostpart,peopledonotseemtobecapitalizingon

theseopportunities(Gillingham,Newell,andPalmer2009).Forexample,many

consumershaveyettoreplacetheirinefficientincandescentlightbulbswith

efficientcompact‐fluorescentlightbulbs(CFL’s)orlight‐emittingdiode(LED)

fixtures,eventhoughdoingsowouldsavetheconsumermoneyanddecrease

energyuse(McKinsey2007;EnergyStar2012).Economistshavesuggesteda

multitudeofreasonsforthisabundanceofseeminglyirrationaldecision‐making.

Themainimplicationofthesestudiesisthatconsumersneedexternalassistancein

makingefficientenergydecisions.

Utilitypromotionofenergyefficiencyisvaluable.Utilitiespromoteenergy

efficiencythroughvariousdemand‐side‐management(DSM)programsthataimto

alterthelevelandtimingofconsumerenergyconsumption.Theseprogramsinclude

assistingconsumerspracticallyandfinanciallyininstallingenergyefficient

technologies,educatingconsumersaboutenergyconsumptionmanagement,and

institutingpricingschemesintendedtotransformconsumerincentives.DSM

programsexistforindustrial,commercial,andresidentialcustomers(Loughranand

6

Kulick2004).Gillingham,NewellandPalmer(2006)foundthatutility‐based

demand‐side‐management(DSM)programsproducedgreaterenergyreductions

thangovernmentorthird‐partyDSMefforts.TrainandStebel(1987)foundthat

peopleareskepticalthatspecificsupposedlyenergy‐efficientdeviceswillbecost‐

effectiveandthatthisskepticismisreducedwhenutilitiesofferrebates.

Undertraditionalenergyutilityregulation,however,utilitiesareincentivized

toencourageinefficientenergyuse.Thisphenomenonisknownasthethroughput

incentiveofelectricandnaturalgasutilities.Asitisasubstantialbarriertoutility

promotionofenergyefficiency,itisimportanttoaddressthisincentivestructure.

Onemechanismthatcanbeimplementedtoaddressthethroughput

incentiveissueandtherebyencourageenergyefficiencyisdecoupling,inwhich

revenuesarepartiallyorfullydetachedfromandunaffectedbysalesquantities.

Whileadecouplingmechanismeliminatesautility’saversiontodemandside

management(DSM),thereissomedebateoverwhetherthesemechanisms

encourageutilitiestoactivelyinvestinDSMandtopromoteenergyefficiency

(NARUC2007).

Thispaperaimstoaddressthequestionofwhetherdecouplingmechanisms

promoteenergy‐efficientpracticesandcost‐effectivechangesinenergy

consumptioninpracticethroughanalysisofhistoricaltrendsinenergy

consumption.Itbeginsbyreviewingtheexistingliteratureonthesubjectand

performingeconomicmodelingtoexploretheinterplaybetweenutilityDSM

investmentandregulatorincentivesandstandards.Econometrictechniquesare

thenutilizedtoanalyzetheempiricalrelationbetweendecouplingmechanismsand

residentialelectricityconsumption.Finally,thispaperaddressessomepotential

concernswiththeunderlyingassumptionsmadeinthisanalysisandpresentssome

robustnesstestsontheresults.

7

LiteratureReview

EnergyInefficiency

HeightenedawarenessabouttheharmfuleffectsofGHGemissionsand

widespreadconcernsaboutenergysecurityhavesparkedincreasedresearchon

energyefficiencyoverthepastfewdecades.Numerousacademicshaveattempted

touncoverthestructuralandbehavioralfactorsthataffectenergyconsumptionand

energyefficiencyinvestment(GlaeserandKahn2008,Baumann2008).Othershave

focusedonunderstandingthereasonsthatsomepeoplesupportenergyefficiency

measuresandchoosetoparticipateinenergyefficiencyprogramswhileothersdo

not(Musti,Kortum,andKockelman2011,KotchenandMoore2007,CostaandKahn

2010).

Despiteincreasedawarenessabouttheneedforenergyefficiencyand

improvedunderstandingofenergyefficientpractices,homeownersarenot

investinginenergyefficiencyasmuchastheyshould(Brennan2009b).Historically,

consumershaveactedasiftheyhadabout25%discountrateintheirchoicesof

investinginconservation,whichissubstantiallyhigherthanmostestimatesofthe

prevailingsocialdiscountrate(Hausman1979).Galluppollsthroughoutthepast

decadeshowthatAmericansbelievethatconservation,asopposedtoincreased

fossilfuelproduction,isthekeytoaddressingthenation’senergyproblems(Saad

2011).Brennan(2009b)attributesthisdiscrepancybetweenbeliefsandactionsto

consumerchoicefailure.Gillingham,Newell,andPalmer(2009)identifyheuristic

decision‐makingandboundedrationalityaspotentialcausesofconsumerchoice

failureregardingenergyefficiency.Inotherwords,decisionsconsumersmakeabout

energyefficiencyareoftenirrationalduetolackofavailableinformation,human

cognitivelimitations,thecognitiveburdenofdecision‐makingandthetimeittakes

tomakedecisions.Gillingham,Newell,andPalmer(2009)alsorecognizeprospect

theoryasapotentialbehavioralfailure.Prospecttheorystatesthatpeopleare

hesitanttochangetheirbehavior,suchasinvestinginenergyefficiencyiftheyare

unsureofthepotentialcostsandbenefitsbecausetheyaredisproportionately

aversetopotentiallossesrelativetopotentialgains.Gillingham,Newell,andPalmer

8

(2009)foundthatconsumersoftenignoreenergyefficiencyinpurchasingdecisions

becausetheycannotdistinguishbetweenproductsthataremoreenergyefficient

andproductsthatarelessenergyefficientsinceallproductsarebeingadvertisedas

beingenergyefficient.

Anothersourceofinefficienciesinenergyusestemsfromaconceptknownas

theprincipal‐agentproblem.Peoplewhouseenergyinabuildingyetdonotpay

utilitybills,suchasmanyrenters,havenoincentivetominimizetheirenergyuseor

toinvestinenergyefficiency.Theresidentsmakethedecisionabouthowmuch

energytoconsumeandhowmuchmoneytoinvestinfutureenergysavings,but

theydonotexperienceanyoftheprivatecostsoftheirchosenactions.Asaresult,

theytendtoover‐consumeandunder‐investcomparedtotheefficientsetofactions

(Gillingham,Newell,&Palmer2009).IncreasedutilityDSMprogramsmay

somewhatincreasetheenergyefficiencyofsuchresidentsduetoenvironmental

consciousness,butneitherDSMprogramsnorutilitypricestructurestacklethecore

inefficiencyoftheprincipal‐agentissue.

TraditionalRegulation

Undertraditionalregulation,theratesofanelectricutilityareestablishedby

anexternalpartyduringageneralratecase,whichusuallyoccurevery3‐6years,or,

insomestatesonlyattherequestoftheutility(OhioPUCO2011,WisconsinPSC

2001).

Inaratecase,thethirdpartyexaminesalloftheutility’sexpensesduringa

pastorfuturetestyear,hearstestimoniesfromallinterestedparties,and

determinesarevenuerequirement,ortherevenuenecessarytocovertheutility’s

expensesandtaxesandtogiveafairrateofreturnoninvestment(Lazer,Weston,

andShirley2011,OhioPUCO2011,WisconsinPSC2001).Fixedcostsandcosts

associatedwithdepreciationareincludedinthedeterminationofutilityexpenses

(EPA2007).Thethirdpartyregulatoroftenholdsformalhearingtohear

testimoniesofallinterestedparties,includingutilityrepresentatives,customers,

andinvestors.Inmanystates,theutilitiescanapplyforarehearingiftheyare

9

dissatisfiedwiththeregulator’sdecision.Insomeextremecases,utilitiescaneven

bringratecasestothestatesupremecourt(OhioPUCO2011).

Oncearevenuerequirementisfinalized,theallowedrevenueisthendivided

bythenumberofunitsofelectricitysold(orexpectedtobesold)duringthetest

periodinordertodeterminetheutility’saverageelectricityrateforthenextperiod.

Theaverageratesareoftencomputedseparatelyforeachcustomerclass2.These

averageratesareessentiallyconstantuntiltheutilitynextundergoesaratecase.

(Lazer,Weston,andShirley2011)

Onenotableaspectofanelectricutility’scoststructureisthattheutility

incursvirtuallynonetmarginalcostsperunitofelectricityproduced.Thepotential

marginalcostsofautilitywouldbelabor,distribution,andfuelcosts.However,

laboranddistributioncostsvarywithnumberandlocationofcustomersandare

essentiallynotaffectedbyper‐customerenergyuse.Theonlycostsrelatedto

energyusearefuelcosts,butthesearepass­throughs,orcoststhataredirectly

transferredtocustomers.Variationinfuelcostsusuallyappearsasamonthlytariff

orcreditoncustomerbills,oftenreferredtoasfueladjustmentclausesorpowercost

adjustments(EnerStar2012).Eachmonth,theutilityrecalculatesthefuelcost

associatedwitheachcustomerbasedonthemonth’sfuelpricesandthecustomer’s

electricityconsumptionandchargesthecustomerexactlythatamount.

Anothernotableaspectofatraditionallyregulatedutility’sratestructureis

thatifactualrevenueduringthetimeperiodbetweenratecasesdiffersfrom

expectedrevenueforanyreasonnotcoveredbyadjustmentclauses,theutilitygains

aprofitorsuffersaloss.Utilitieshavesubstantialfixedcoststhatrequireadequate

revenuetofinance.Theseincludesunkcapitalcostsassociatedwithincreasing

generationcapacity,buildingtransmissionlines,andDSMinvestments.Ifrevenue

doesnotreachthethresholdvalueofcoveringfixedcosts,theutilitysuffersaloss.

(CSI2008)

2Manyutilitiesvaryrateschedulesbycustomerclass.Customerclassesgroupcustomerswithsimilardemandcharacteristicstogether(ex‐small,residentialcustomers).

10

Underthetraditionalstructureofregulation,utilitiesaredeterredfrom

investinginenergyefficiencyandevenhaveincentivestoactivelylobbyagainst

energyefficiencyinfavorofdecreasingefficiency.Brennan(2008)arguesthat

utilitiesonlyhaveincentivestopromoteenergyefficiencyandotherdemand‐

reductionsifpricecapscausepricestofallbelowmarginalcostsbutthatwhen

pricesaregreaterthanmarginalcosts,utilitieshaveincentivestoincrease

throughputi.e.electricityusage.Inalmostallinstances,regulatedretailpricesdo

surmountmarginalcosts(EIA1997).Thus,intheperiodsbetweenratecases,the

utilityhasanincentivetoincreaserevenuesabovewhathadbeenexpectedbythe

ratessetbyincreasingelectricitysold.Thisisknownasathroughputincentiveand

isamajorbarriertotheutilitypromotionofenergyefficiency(EPA2007).

Increasedenergyefficiencydecreasesthroughput,sotheutilitieshaveanincentive

toactivelyopposeenergyefficiencyprograms.Ifutilitiesneverthelessdocreate

programstopromoteenergyefficiency,notonlydotheyloserevenuesfrom

electricitysales,buttheyalsohavetocoverspendingonprogramimplementation.

Thiscanleadtolosses(knownaslostmarginrecovery).AninvestigationbyIdaho

PowerCompanyfoundthat,inpractice,revenuelossfromenergyefficiency

programsdoesindeeddecreaseautility’srecoveryoffixedcosts,whichproduces

barrierstoutilityinvestmentindemand‐reducingenergyefficiencyprograms(EPA

2007).

SuggestedSolutionsConcerningtheThroughputIncentiveandEnergyEfficiency

Thissectionbrieflydiscussesthemeritsanddrawbacksoffourprominent

proposalsforaddressingthethroughputincentiveproblem:governmentmonetary

incentives,othertypesofthirdpartypromotionmechanisms,straightfixed‐variable

ratedesigns,andreal‐timepricing.

Oneproposalisthatthegovernmentshouldprovidemonetaryincentivesto

utilitiesforinvestinginenergyefficiency.Whilethiswouldassistincoveringthe

costsofutility‐sponsoredDSMprograms,monetaryincentivesalonewould

probablynotbeeffective,astheincentivemustbesufficienttocoverthecostsof

11

programimplementationandcompensateforlostmargins.Suchincentives,ifnot

designedwithadequatecare,mayalsocauseutilitiestoinvestalotofmoneyin

energyefficiencyprogramsthatarenotparticularlycost‐effective(Lazer,Weston,

andShirley2011).

Moregenerally,manypromotersofenergyefficiencyarguethatathirdparty,

andnotutilities,shouldberesponsibleforencouragingenergyefficiency.They

contendthatutilitiesareinnatelynotinthebestpositiontopromoteenergy

efficiency.Utilitieshaveanadvantageoverthird‐partyenergy‐efficiencyproviders,

however,astheyhavemorecompleteinformationandrecordsaboutenergyuse.

Moreimportantly,athird‐partyenergy‐efficiencyproviderwouldbemosteffective

iftheutility’sthroughputincentivecouldbeeliminated(bydecoupling,for

instance),asthiswoulderadicatelobbyingagainstthethirdpartyandwould

increasethelikelihoodofrelevantinformationdisclosure.InVermontandOregon,

third‐partyenergy‐efficiencyprovidersfounddecouplingtobeahelpfuladditionto

theirownencouragementofenergyefficiency(Lazer,Weston,andShirley2011).

Anotherproposalisimplementationofastraightfixed‐variable(SFV)rate

design(Lesh2009).UnderSFV,thereisalargemandatory,non‐volume‐based

chargeforallcustomersthatcoversallormostoftheutility’sfixedcosts,rendering

variablecostsclosertothetruemarginalcostofproducingelectricity.This

decreasesandcaneveneliminatethethroughputincentive.However,SFVrate

designssimultaneouslydiscourageenergyefficiencybydecreasingtheincentivefor

consumerstoreducetheirenergyusethroughlowerusage(marginal)costs.In

addition,SFVisregressive(EPA2007).Sincelow‐incomehouseholdstendto

consumelessenergy,alargerfixedchargewilldisproportionatelyburdenlow‐

incomehouseholds.Boonin(2009)promotesaSFVdesigncombinedwitha

Revenue‐NeutralEnergyEfficiencyFeebate(REEF),whichtheoreticallycounteracts

theregressivenatureoftheSFVdesignandreestablishescustomerincentivesto

decreaseenergyuse.Unfortunately,itmaybedifficultandadministrativelycostlyto

constructafeebatesystemthataccuratelydeterminesindividualenergyefficiency

andappropriatelycounteractstheregressivenatureofSFV.

12

Realtimepricing(RTP)ofelectricityhasbeensuggestedasamethodof

increasingenergyefficiency,limitingmarketpowerofutilities,andreducing

electricitydemandvariance(HollandandMansur2008).WithRTP,utilitiesset

pricesasafunctionofactualdemandatthegiventime.Accordingtoeconomic

theory,thiscausesadisincentivetouseelectricityduringhoursofpeakdemand,

which,duetovariabilityinefficiencyofgenerationequipment,shouldhavea

disproportionatepositiveeffectontheenvironment(HollandandMansur2008).In

contrast,Ito(2010)foundthatactualhousehold‐electricity‐usedatasuggeststhat

consumersrespondtoaveragepricesinsteadofmarginalprices,whichlowers

projectedestimatesofdecreasesinpeakdemandduetoRTP.

DecouplingMechanisms­Overview

Decouplingmechanismsaddressthethroughputincentivebyfullyor

partiallydetachingutilityrevenuesfromsales.Underadecouplingmechanism,the

allowedrevenuesaresetduringageneralratecase,andratesareadjustedduring

regular,periodictrue­upsthatkeeplongrunrevenueequaltoallowedrevenueby

changingprices.Iftheutilitymakeslessrevenuethanexpectedinagivenperiod,

thenratesareincreasedorasurchargeisaddedinthefollowingperiod.Conversely,

ifthereisasurplusinrevenue,themoneyisrefundedtothecustomersintheform

oflowerrates,lumpsumtariffs,orotherreconciliationmechanisms(EPA2007).

Notethatnoreassessmentsofcostsorallowedrevenueareperformedduringtrue‐

ups(Lazer,Weston,andShirley2011).

Thereareavarietyofdecouplingmechanisms.Onedifferencebetweenthem

istheeffectofincreasingtheutility’scustomerbase.Understraightrevenue

decoupling,anincreaseincustomersdoesnotchangeautility’sallowedrevenues

and,asaresult,tendstohurtratherthanhelptheutility.Revenuepercustomer

(RPC)decoupling,however,fixesallowedrevenuepercustomer.Thusallowed

revenueduringanygiventimeperiodisdeterminedbythefollowingformula:

AllowedRevenue=(AllowedRevenuesperCustomer)*(#ofCustomers)

13

RPCdecouplingcoulddiscourageutilitiesfromincreasingtheircustomerbaseif

newcustomerswerehigherenergyusers.SomeRPCdecouplingmechanisms

addressthisissuebyincludingdifferentallowedRPC’sfornewandexisting

customers.(Lazer,Weston,andShirley2011)

Decouplingmechanismsalsodifferwithregardtothefrequencyoftrue‐ups.

Utilitieswithaccrualdecouplingmechanismsonlyundergoannualtrue‐ups,while

thosewithcurrentdecouplingexperiencetrue‐upseverybillingperiod.True‐upsfor

otherdecoupledutilitiesmayoccuronaquarter‐orsemi‐annualbasis(Lazer,

Weston,andShirley2011).

Anotherwaydecouplingschemesdifferisbythereasonsallowedfor

revenueadjustmentsduringtrue‐ups.Afullydecoupledutilityadjustsforany

deviationofactualrevenuesfromallowedrevenues,regardlessofthecauseofthese

deviations.Autilitywithpartialdecouplingadjustsforacertain,fixedpercentageof

thedepartureofactualrevenuefromallowedrevenuesduringtrue‐ups.Partial

decouplingmechanismsalsodonotdiscriminatebasedoncauseofrevenue

deviations.Partialdecouplingreducesthethroughputincentivewithoutcompletely

eliminatingit.Duringatrue‐upforautilitywithlimiteddecoupling,disparities

betweenactualrevenuesandallowedrevenuesmayormaynotleadtoadjustments

dependingonthecauseofthedisparities.Onecommonexampleoflimited

decouplingisutilitiesthathaveonlylost­marginmechanisms,whereadjustmentsfor

revenuedecreasesareonlymadeifthedecreasescanbeexplicitlyidentifiedasthe

resultofDSMprograms.Ifexecutedcorrectly,limiteddecouplingeliminatesthe

throughputdisincentiveassociatedwithenergyefficiencyprogramswithout

eliminatingutilityresponsibilitytoprovidecoverageandassumeriskduetoother

causes,suchaseconomicfluctuations.Thelargestdrawbackoflimiteddecouplingis

itsrelativelyhighadministrativeandmonitoringcostscomparedtootherformsof

decoupling(Lazer,Weston,andShirley2011).

Otherdecouplingmechanismsincludeattritionadjustments,inflationminus

productivityadjustments,andKfactoradjustments.Attritionadjustmentsare

14

essentiallyannualabbreviatedratecaseswhenallowedrevenuesarereassessed

andalteredslightlyinresponsetoknownandmeasurablechangesinautility’s

costs.Thismechanismdecreasestheneedforfrequentfullratecasesifautility

doesnotundergoalargestructuralchange.Inflationminusproductivityadjustments

alterallowedrevenuesinresponsetoshiftsininflationorproductivity.This

mechanism,alongwithregulartrue‐ups,alsodecreasestheneedforfrequentfull

ratecases.Anothermechanismtochangeallowedrevenuesbetweenratecasesis

knownasK­factoradjustment.AKfactoradjustmentisapredetermined,usually

annual,rateincreaseordecreasebetweenratecases.Forexample,autilitymight

receivea1%annualincreaseinallowedrevenuesbetweenratecases.TheKfactor

itselfcanbedesignedtochangeovertimeifgrowthisnotpredictedtobelinear,or

canbeappliedtoallowedrevenuespercustomerinsteadoftotalallowedrevenues.

Althoughallthreeofthesemechanismsaimtoreducetheneedforfrequentrate

cases,occasionalratecasesarestillnecessarywithallthreeofthesedecoupling

mechanisms.

ArgumentsfortheImplementationofDecouplingMechanisms

Decouplingmechanismsareattractiveforseveralreasons.Theyare

beneficialtotheenvironment(GraniereandCooley1994)andaremorepolitically

feasiblethanmanymechanismstopromoteenergyefficiency.Theyencourage

energyefficiencybyeliminatingapoliticalbarriertoenergyefficiencypromotion,

removinganeconomicbarriertoutilityenergyefficiencyinvestment,andpartially

shiftingtheresponsibilityofmakingenergyefficiencydecisionsfromconsumersto

suppliers.Decouplingmechanismsarepoliticallyfeasible,astheyinvolverelatively

lowadministrativecostsandarestructuredinawaythatfostersutilitysupport.

Fromanenergy‐efficiencystandpoint,thedecoupling‐causedeliminationor

reductionintheutilitythroughputincentiveisessentialforutilityorthird‐party

promotionenergyefficiency.Forone,theremovalofathroughputdisincentive

decreasesoreliminatesutilities’politicaloppositiontopublicenergyefficiency

programsandgovernmentmeasures(Brennan2009a).Moreover,thedecoupling

15

incentivestructurealsorendersutilitiesmorewillingtotakeactionsthemselves

thatencourageenergyefficiency.Forinstance,underdecouplingmechanisms,

utilitiesaremorewillingtoinstituteratedesignsthatencourageenergyefficiency

(Lazer,Weston,andShirley2011).

Brennan(2008,2009a)arguesthatdecouplingisfundamentallyabout

transferringresponsibilityforenergyefficiencydecisionsfromconsumersto

suppliers.Asdiscussedabove,manyconsumersdonothavethetoolstomake

rationaldecisionsregardingenergyefficiency,bututilityandgovernmentDSM

programscanreducesomeofthecognitivebarriersbyusingconsumerfinancial

incentivestopromotemoreefficientlevelsofenergyconsumptionandbysupplying

informationaboutspecificenergyefficiencymeasuresandtheircalculatedeffects.

Fullandpartialdecouplingmechanismstendtobepoliticallyfeasible,

partiallybecausetheyrequirerelativelylowadministrativecost.Unlikesome

alternativeenergy‐efficiencypromotionmethods,decouplingmechanismsdonot

requireregulatorstoevaluatetheefficacyofenergyefficiencyprograms.

Furthermore,decouplingmechanismsreducetheneedforfrequentratecasesand

avoidtheassociatedcosts(EPA2007).Theonlypubliccostofadecoupling

mechanismisthetimeittakesstateemployeestolearnaboutthenewsystemand

establishproperregulations(CSI2008).

Anotherreasonforthepoliticalfeasibilityofdecouplingmechanismsistheir

tendencytoattainutilitysupport.Utilitiestendtosupportdecouplingbecauseit

stabilizestheirrevenuesandthusreducestheirrisksassociatedwithrevenue

volatility.Thisdecreasestheircostsofcapital,bothintermsofinterestratesand

equityreturnsrequired(Lazer,Weston,andShirley2011).Inaddition,utilities

oftenpreferdecouplingtotraditionalregulationbecausetheybelievethatthe

traditionalratecasesdonottakeallreal‐worldfactorsintoaccountintheir

predictionsandcalculationsofraterequirements,leadingtoearningsthatarelower

thanauthorizedearningsafewyearsaftertheratecase(Costello2011).

16

ArgumentsAgainsttheImplementationofDecouplingMechanisms

Opponentsofdecouplinghavevoicedseveralconcernsaboutdecoupling

mechanisms.Theyareskepticalabouttheefficacyofdecouplingmechanismsin

promotingenergyefficiency.Thissectiondiscussesthecurrentdebatessurrounding

thesepotentialdrawbacksofdecouplingmechanismsandincludespolicy

suggestionstomitigatethesedrawbacks,whenapplicable.

Onecategoryofcritiquesofdecouplingmechanismsisthattheyfailto

provideanincentiveforenergyefficiencyinvestment.Manyexpertsarguethat,

althoughdecouplingmechanismswilleliminatetheincentivetoactivelyincrease

energyconsumption,utilitieswillstillfailtopursueenergyefficiencybecause

supply‐sideinvestmentswillcontinuetobemoreattractivetothemthanDSM

investments(Kihm2009).Historically,utilitieshavegainedfromsupply‐side

investmentsbecausetraditionalratesettinghasdefactoallowedmorethana

normalrateofreturnontheseinvestments.IfinvestmentsinDSMdonotprovide

comparablereturns,forinstancebecausetheycausedecreasedfuturedemandfor

utilityservice,itwouldpresumablybemoredifficultforautilitytoattractfunding

forDSMinvestmentsthanforsupply‐sideinvestments(EPA2007).

Kihm(2009)arguesthatevenifDSMperformanceincentivesforutilities

werelargeenoughtoprovidecomparableratesofreturnforDSMandsupply‐side

investments,manyutilitieswouldcontinuetoprefersupply‐sideinvestments

becausetheyarelargerinscale.Utilitieshavehistoricallypreferredlargerscale

investmentstosmallerscaleinvestments,aconceptknownastheAverch‐Johnson

(A‐J)hypothesis.Thispreferenceoftenremainsevenwithchoicesinvolvingalarge‐

scaleinvestmentwithalowerrateofreturnthananalternativesmall‐scale

investmentsuchasDSMinvestments.Kihmarguesthatdecouplingonlyworksfor

utilitiesnotsubjecttotheA‐Jeffect,orutilitieswithallowedratesofreturncloseto

thecostofcapital,anditisunlikelythatmostutilitiesfallintothiscategory.Finally,

utilitymanagersandregulatorshavehistoricallybackedexpansionsinfuture

electricitygenerationcapacitybecausetheriskstotheutilityoffutureinadequate

electricitysuppliesarehigherthantheriskofhavingexcesscapacity.(Kihm2009)

17

Ontheotherhand,thereareseveralreasonsthatadecoupledutilitymay

preferDSMinvestmentstosupply‐sideinvestments,evenwithoutthepresenceof

performanceincentives.Fromacustomerservicestandpoint,DSMinvestments

improvethepublic’sviewoftheutility,enablemorepositiveutility‐customer

interactionthansupply‐sideinvestments,andgeneratelesspoliticaloppositionthan

supply‐sideinvestments.Supply‐sideinvestmentsusuallyinvolvebuilding

pollution‐emittingpowerplantsnearspecificcommunities,whomayresistthe

projectorrequestcompensationforitsundesirableeffects(Bloomquist1974).

Conversely,DSMinvestmentsdonotseverelyadverselyimpactaconcentrated

groupofpeople;theyusuallysubstantiallyhelpaconcentratednumberofpeople–

thecustomerswhochoosetoparticipateintheDSMprograms–ataminutecostto

many(ECW1997).Asaresult,DSMinvestmentswilloftengeneratelesspolitical

oppositionthansupply‐sideinvestments.Theutilitycanevencapitalizeonthis

distributionofcostsandbenefitsandimproveitspublicratingsbypublicizingthe

savingsofthecustomerswhobenefitthemost.

Moreover,withtheuncertaintyofthefutureenergyregime,DSM

investmentsmayactuallyattractinvestmentmorethansupply‐sideinvestments

duetotherelativeeffectsonriskandenergysecurity.Reducedenergyconsumption

anddecreaseddependenceonenergyfromout‐of‐stateoroverseasourcesrenders

autilitylesssusceptibletounexpectedfuturechanges.Theseincludeunanticipated

capitalcostincreases,increasesinenergyregulationstringency,transportationcost

increases,andpoliticallyoreconomically‐inducedfossilfuelsupplyshortages.

(Hurleyetal.2008,EPA2007)

Opponentsofdecouplingarealsoskepticalofitsefficacyinpromoting

energyefficiencybecauseitcreatesadisincentiveforconsumerenergyefficiency

investments.Theyarguethatdecouplingmechanismsdiscouragecustomersto

decreaseelectricityusebecausedoingsowillcauseafutureincreaseinelectricity

rates(GraniereandCooley1994).However,eachindividual’seffectonthepriceis

trivial.Thus,fortheindividual,decreasedconsumptionoutweighsanyeffectoftheir

ownbehavioronrates(NARUC2007).Themonetarybenefitsofreducing

18

consumptionareveryconcentrated,whilethecorrespondingcostsfromthe

associatedrateincreasearewidespread.Asaresult,eachcustomernotonlyhasan

incentivetoreduceconsumption,butalsohasanincentivetoreduceconsumption

evenmoresubstantiallythantheothercustomers(ECW1997).

Finally,decouplingmechanismshavelimitedefficacybecausetheyfailto

addresssomeimportantcausesofenergyinefficiency.Theprincipal‐agentproblem

stillexistsinthepresenceofdecouplingmechanismssinceconsumerswhodonot

payfortheirenergyusestilllackincentivestodecreasethisuseunderdecoupling

(Gillingham,Newell,andPalmer2009).Similarly,theadoptionofdecouplingdoes

notsolveconsumerchoicefailuresandmanyconsumerswhowouldbenefitfrom

energyefficiencychangeswillnotmakethosechanges,whetherornottheirutility

possessesadecouplingmechanism(Brennan2008).

Inaddition,opponentsofdecouplingworrythatthemechanismwillincrease

thevolatilityofelectricityratesandcausefrequent,significantrateincreases(Lesh

2009).GraniereandCooley(1994)didanumericalstudyonthisissueand

concludedthat,“ratepayersmighthavetodealwithsubstantialvolatility.”Onthe

otherhand,Eto,Stoft,andBelden(1994)foundthatERAM,California’decoupling

mechanism,reducedratevolatilityandhadanegligibleeffectonratelevels.

Similarly,Lesh(2009)foundthatdecouplingadjustmentstendtobeverysmall

relativetoresidentialretailrates,withnosignificantupwardordownwardtrendin

rates.Comparedtootheradjustmentfactorsonbills,suchasfuelandpurchased‐

poweradjustmentclauses,volume‐balancingdecouplingadjustmentstendtoalter

rateslessdrastically(Lazer,Weston,andShirley2011).

Moreover,evenifelectricityratesdoincrease,thereisabeneficialaspectto

thisinthatitadjustsforthenegativeexternalitiesontheenvironment.Michelfelder

(1993)foundthatelectricityratesareconsistentlybelowmarginalsocialcostsof

producingelectricity.Thus,increasingelectricitypricesactuallybringsthemcloser

tothelong‐runmarginalsocialcostofelectricityproduction,whichultimately

benefitsratepayers(GraniereandCooley1994).Furthermore,Bholeetal.(2011)

foundsignificantpositivecorrelationbetweenelectricitypricesandstateenergy

19

efficiencyexpenditures,especiallyaboveathresholdpricelevel.Heproposedthat

higherelectricitypricesincreasethecost‐effectivenessofDSMprograms.In

addition,Linn(2008)contendsthathigherenergypricesincreasetheprobability

thatplantsadoptnewenergyefficiencytechnologies,especiallyfornewplants,

althoughKahnandMansur(2011)suggestthatnewplantsinenergy‐intensive

industrieswouldfactorelectricitypricesintotheirlocationdecisionandspecifically

chooseageographicallocationwhereelectricitypriceswerelower.TheCenterfor

StateInnovation(2008)arguesthat,whiledecouplingmechanismsmayincrease

energycostsforsomecustomersintheshortrun,thediminishedneedfornew

powerplantsduetoreducedenergydemandwillultimatelylowerratestoall

customers.

Opponentsofdecouplingareparticularlyconcernedaboutdecoupling

mechanismsshiftingweatherandeconomicrisksfromutilitiestoconsumersinthe

formofratevolatility(Meneken2007).Theyarguethatutilitiesbearnoneofthe

costsassociatedwithextremeweatheroreconomicrecessionsunderdecoupling.

TheypointtoMaine’sbriefexperiencewithadecouplingmechanismasanexample.

ShortlyafterCentralMainePoweradoptedafulldecouplingmechanismin1991,

Mainefellintoarecession.Requiredrevenuesweretoohigh,astheyhadbeenset

basedonatrialperiodduringathrivingeconomy.Thus,pricesincreaseddrastically

asenergyconsumptionfell,andcustomersborethefullburdenoftherecession

whileCentralMainePoweremergedunscathed.Thedecouplingmechanismwas

ultimatelyterminatedduetoanimositytowardsthemechanismproducedbythis

incident.Manycustomersbelievedthetruepurposeofthemechanismwastoshift

riskfromutilitiestocustomers.(EPA2007)

AreportfromtheEPA(2007)conteststhatthisriskshiftisinherentto

decouplingandarguesthattheexistenceandmagnitudeofthisriskshiftvarieswith

thedecouplingdesign.Lazer,Weston,andShirley(2011)completelydismissthe

argumentthatdecouplingshiftsweatherriskstoconsumersunderfullandpartial

decouplingmechanismsandarguethatdecouplingdecreasestheriskforutilities

andconsumers.Ifanextremeweathereventcausespeopletoconsumemore

20

electricity,decouplingcausesratestodecrease,makingtheenergyconsumption

moreaffordableforconsumers.Lazer,Weston,andShirley(2011)doadmitthat

decouplingexacerbateseffectsofrecessions,buttheyarguethatgeneralratecases

dosoaswell.Theysuggestcombiningdecouplingwithacaponrateincreasesto

preventsituationsliketheonethatoccurredinMaine.

Someopponentsofdecouplingmayarguethatdecouplingisregressive.Low‐

incomecustomerstendtohavelesselectricityreductionpotentialthanhigher‐

incomeusers.Whiletheydonotreapmanyofthebenefitsofreducedelectricityuse

duetoenergyefficiencyprograms,theyarestillsubjecttothehigherratescaused

bytheoverallreduceddemand(Lesh2009).Toaddressthepotentialconcernof

increasedshortruncostsforlow‐incomecustomers,mostdecoupledutilitiesoffer

lowerratestolow‐incomecustomersanddofundingandsurchargingonacustomer

class,orrateschedule,basis(Lesh2009).

Otherconcernsregardingdecouplingincludethelackofincentiveforutilities

torestoreserviceafterastormandincreasedregulatorycostsduetofrequenttrue‐

ups.Thesearebothfoundedyetnotparticularlycompellingconcerns.Thefirstissue

caneasilybeaddressedthroughadditionalrequirementsorincentivesinthedesign

ofthedecouplingmechanism(Lazer,Weston,andShirley2011).Periodictrue‐ups

doproduceadministrativeandregulatorycosts,buttrue‐upsareless

administrativelycostlythanratecases.Theincreasedregulatorycostduetotrue‐

upsisoffsettosomedegreebyareductionintheneedforfrequentratecasesand

theirassociatedcosts(EPA2007).

BriefHistoryofDecouplingAdoptionintheU.S.

DecouplingmechanismshavebeenoperationalintheUnitedStatessince

1978,whenPacificGas&Electricdecouplednaturalgassales(AGA2007).Four

yearslater,PG&EalsoimplementedadecouplingmechanismknownastheElectric

RateAdjustmentMechanism(ERAM),forelectricitysales(McCarthy2009).Other

Californianutilitiesadoptedsimilarmechanismsshortlythereafter.Intheearly

1990’s,Maine,NewYork,andWashingtonalsoadopteddecouplingmechanisms,

21

althoughMainediscontinueditsmechanismafterabrieftrialperiod(Etoetal.1994,

EPA2007).BySeptember2007,atleastonenaturalgasorelectricutilityin16

stateshadimplementedadecouplingmechanism,anddecouplingmechanismswere

pendingin12morestates(EPA2007).AsofJune2011,utilitiesinabout28states

hadadoptedadecouplingmechanism,anddecouplingmechanismimplementation

decisionswerependingin12morestates(Lazer,Weston,andShirley2011,ACEEE

2011).

MeasuringtheEffectsofDSMandDecouplingonEnergyEfficiency

Thereexistsmuchdebateintheliteratureabouthowtomeasuretheefficacy

ofDSMprograms.Thetrueprogrameffectscannotbemeasuredbysolelyanalyzing

theobservedchangeinenergyconsumptionofcustomerswhoparticipateinthe

DSMprograms.Ononehand,JoskowandMarron(1992)arguethatsavingsofutility

DSMprogramstendtobeoverstatedduetooverlyoptimisticequipmentlifetimes

andtheexistenceoffreeriders,orprogramparticipantswhowouldhaveinvestedin

energyefficiencyevenwithoututilityinvolvement.Ontheotherhand,manyDSM

programanalystsworryabouttheopposite:understatingthebenefitsofDSM

programs.Programparticipantsmaydiscussenergyefficientbehaviorand

technologywithnon‐participants,whoconsequentlydecreasetheirenergyuse

withoutanyadditionaldirectutilityinvestment.Forexample,acustomermight

experiencehugereductionsinheatingandcoolingcostsafterusingautilityrebate

toaddatticinsulationinherhome,raveaboutthisexperiencetoafriendwhoisnot

eligiblefortherebate,andconvincethefriendtoinstallatticinsulationaswell.

Thesenon‐programparticipantsarecommonlyreferredtoasfreedrivers

(Gillinghametal.2009).Duemostlikelytomeasurementdifferences,Parformak

andLave(1996)foundthat99%ofutility‐reportedestimatesofsavingsfromDSM

arefairlyaccurateifonecontrolsforprice,weather,&economicactivity,while

LoughranandKulick(2004)foundthatutilityestimatesofelectricitysavingsdueto

DSMinvestmentaremuchlargerthanthetruesavings.Gowever,Auffhammeretal.

22

(2008)pointedoutflawsinLoughranandKulick’smethods.Thus,thereisno

consensusonthereliabilityofutilitysavingsestimatesfromDSM.

Thecurrentliteraturelacksexpostempiricalanalysisthatusesrecentdatato

measuretheeffectsofdecouplingmechanismsonenergydemand.Paststudieson

theimpactsofdecouplingmechanismsonenergydemandhavebeenalmost

exclusivelybasedonexanteeconomicmodeling.PaststudiesofDSMprograms,

however,haveincludedbothexanteeconomicmodelingandexpostempirical

studiesoftheimpactofDSMprogramsonenergyefficiency.Probablyduetothe

uncertaintiessurroundingmeasuringsavingsfromenergyefficiency,thereappears

tobeadiscrepancyindemandreductionestimatesbetweentheseexpostandex

antestudies.Forexample,studiesofthecost‐effectivenessofutilityDSMprograms

thatuseexpostempiricalanalysistendtofindprogramslesscost‐effectivethan

thosethatrelyprimarilyonexantemethods(Arimuraetal.2011).Intermsof

researchontheimpactofdecouplingmechanismsonenergyefficiency,thissuggests

thatresultsfromexantemodelsmaydiffersignificantlyfromthetrueeffects.Thus,

thereisaneedforexpostempiricalstudiesontheimpactofdecouplingmechanisms

onenergydemand.

Factorsthatarecommonlybelievedtoaffectresidentialelectricitydemand

includeDSMspendingincurrentandpreviousyears,economicactivitylevel,energy

prices,weatherconditions,andenvironmentalsensitivity,orthegenerallevelof

concernofcustomersabouttheenvironment(Delmasetal.2005,Arimuraetal.

2011).JaffeandStavins(1995)developedafunctionalformfortherelationbetween

DSMspendingandelectricitydemandthattakesintoaccountthenonlinearrelation.

Arimuraetal.(2009)pointedoutapossibleendogeneityissueinmodelsof

electricitydemandwithDSMspendingconsideredanexogenousvariable.They

wereconcernedthatlevelofDSMspendingmaybecorrelatedwithunexplained

fluctuationsindemand.TheyattemptedtouseTwo‐StageLeastSquares(2SLS)

estimationandinstrumentforDSMspending.However,theirresultsdonotsupport

thehypothesisthatDSMspendingisendogenous(Arimuraetal.2011).

23

Arimuraetal.(2011)conductedafairlythoroughanalysisonthecost‐

effectivenessofelectricityenergyefficiencyprogramsandsomeofitsdeterminants,

includingdecouplingmechanisms.Theresultsofthisstudysuggestthatdecoupling

mechanismsmaystrengthenthedemand‐reducingeffectofDSMspending.

Unfortunately,duemostlikelytoinsufficientdatafromdecoupledelectricutilities,

thesefindingswereinsignificant.

Thepresentstudyaimstobuildonthepreviousliteratureandthemethods

ofArimuraetal.(2011)tomorethoroughlyexploretherelationbetween

decouplingmechanismsandelectricitydemand.Itfirstmodelstheeconomic

incentivesbehindDSMinvestmentundertraditionalregulationandundera

decouplingmechanismandthenempiricallyanalyzestheeffectsofdecoupling

mechanismsonenergyconsumptionpercustomer.Thisstudydisregardsthe

potentialissueofendogeneityduetocorrelationofDSMspendingwithunexplained

demand,asArimuraetal.(2011)’sresultsdonotsuggestthatthisissueof

endogeneityexists.Finally,robustnesschecksareperformedontheresultsofthe

empiricalanalyses.

ModelingDSMInvestmentIncentives

Introduction

Thesituationinwhichtheregulatorsetsarequiredpriceorrevenueforthe

utilityandtheutilitydecideshowmuchandhoweffectivelytoinvestinDSM

programscanberepresentedasaprincipal‐agentgame.Theregulatoristhe

principal,andtheutilityistheagent.Asinallprincipal‐agentgames,theprincipal

hasanobjectivefunction,butdoesnothavealltheinformationitneedstobest

maximizethisfunction.Theagenthastheinformationnecessarytobettermaximize

thisfunction,butitactsonlyinitsownself‐interest.Duetothisasymmetric

information,theprincipalneedstheagentinordertoreachitsobjective,butitruns

theriskthattheagent’sobjectiveswilldifferfromtheoptimalattainmentofthe

principal’sobjective.Theregulatormustdesignthegameinsuchawaythatthe

incentivesofthetwopartiesalign.

24

Inthisgame,theregulator(principal)wantstomaximizeasocialwelfare

function,whiletheutility(agent)isonlyconcernedwithitsprofits.Theutilityhas

moreinformationthantheregulatordoesabouttheDSMoptionsavailableand

abouttheprojectedefficacyofeachoption.Theutilitycanusethisinformation

asymmetrytoincreaseitsprofitsbyactingstrategically.

Inasimpleversionofaprincipal‐agentgameonDSMprograminvestment

undertraditionalregulation,theregulatorwantstomaximizesocialwelfare.Social

welfareisdefinedastheintegralofdemand,ormarginalsocialbenefitofconsuming

oneunitofelectricity,lessthemarginalsocialcostofproducingandconsumingthat

electricity.Itisafunctionoftheexogenous,regulator‐determinedprice(p),quantity

ofelectricityconsumed(q),andthemarginalnetsocialbenefitelectricity

consumptionschedule.Itisassumedthatmarginalsocialcostofelectricity

consumptionisgreaterthanmarginalprivatecost,sincetheGHGemissions,air

pollution,andotherenvironmentalcostsassociatedwithelectricityarenot

internalizedintheprivatecostofelectricity.Forthesamereasons,itisalso

assumedthatthequantityofelectricityconsumedisabovetheefficientquantity.

Theregulator,therefore,wantstodecreasequantityofelectricitysoldby

encouragingDSMspending.Theregulatorcandosoby:

A. Requiring$XofDSMspending

B. Adjustingtherateofreturnoninvestmentviaaspecificprice(p)orrevenue

(R)basedontheutility’sreportedDSMspendinginthepreviousperiod

or

C. AdjustingtherateofreturnoninvestmentviaaspecificporRbasedon

perceivedDSMinvestmentefficacy.

Forthepurposeofthisexercise,itisassumedthattheregulatorcanchoose

oneoftwoallowedratesofreturn,ahighrewardrate(associatedwithpHorRH)and

alowpunishmentrate(associatedwithpLorRL).Strategy(B)assumesthatthe

rewardpriceissetiftheutilityinvestsatleast$XinDSMandthatthepunishment

25

priceissetotherwise.Strategy(C)assumesthattheregulatoruseselectricity

consumptioninthepreviousperiod(i.e.sincethelastratecase)todeterminewhich

p(orR)tosetinthecurrentperiod.Foranygivenperiod,theregulatorcantryto

encouragetheutilitytoinvestinDSMbypromisingtosetitspriceinafutureperiod

pt+1(orRt+1)asafunctionofestimateddemand‐reducingeffectofDSMinvestment

inthepreviousperiod.ThevalueofthisdemandreductionduetoDSMishenceforth

denotedEDSM.

Understrategy(C),whiletheregulatorcannotpreciselymeasuretheefficacy

ofaDSMprogramrelativetootherpotentialprograms,itcanestimatetheefficacy

byobservingenergyconsumptionpercapita.Theregulatorcanexaminemarket

trendsandrelevantfactorstoestimateprojectedconsumption,qp,tinthegiven

period.ItcannotconfidentlyattributechangesinrealizeddemandtoDSM

investmentorlackthereof;yetitknowsthatactualenergyconsumption(qa,t)equals

qp,t–EDSMt+ε t,whereε tcapturesunexpectedvariationandhasmeanzero.The

regulatorcan,therefore,setprice(pt+1)orrevenue(Rt+1)inthenextperiodasa

functionofqp,t‐qa,tsoastoalterprojectedrevenuesforperiodt+1asaresultof

actualquantityofelectricityconsumedinthepreviousperiod(dpt+1qt+1/dqa,t<0).

Forsimplicity,itisassumedthattheregulatordeterminesacutoffqc,,tsuchthatqc,,t

≤qc,,t.Foranygivenperiodt,theregulatorsetstherateaspH,torRH,tiftheprevious

periodresultedinaqa,t­1≤qc,t­1andsetstherateaspL,torRL,totherwise.Whenthe

regulatorchoosestosetprices,itsetstheratesbasedonprojectedrevenuesand

associatedquantities(qHandqLrespectively),suchthatpHqH>pLqL.Thus,the

regulatortakesthedemand‐reducingeffectofDSMintoaccountwhensettingthese

rates.

Thisisacrediblestrategyforsomerewardrate(pHorRH),punishmentrate

(pLorRL),andqcbecausetheprospectofincreasedfutureconsumersurplusdueto

decreasedconsumptionoutweighsthepotentialdecreaseinconsumersurplusasa

resultofahigherprice,forsomesufficiently‐largeconsumptionreductionandsome

sufficiently‐smallpriceincrease.Notethatthismodeldoesnotattempttouncover

thespecificvalueofX,therewardrate,thepunishmentrate,ortheqc.Itsimply

26

demonstratesthedifferencesineffectsofregulator‐orthirdparty‐imposedDSM

standardsandincentivesonutilityDSMinvestmentundertraditionalregulation

versusdecouplingmechanisms.

PartA–TraditionalRegulation

Undertraditionalregulation,theutility’sobjectivefunctionisdenoted:

Maxπ t=ptqt–ft–St

whereftisthefixedcostsassociatedwithsupplyingelectricitytothecurrent

customersandStistheamountthattheutilityspendsonDSMinperiodt.Notethat

thismodelassumesnomarginalcostsofelectricitydistribution.Foranygivenp,set

bytheregulator,theutilitywantstomaximizeq.Thefirstorderderivativeofthe

aboveequationwithrespecttoDSMspendingisthefollowing:

idπidS

= p idq

idS−1

withdqt/dSt≡EDSMt<0.

IftheregulatordoesnotinstituteanyrulesorincentivesconcerningDSM

andsetspricesexogenously,itisevidentfromtheaboveequationthattheutility

willmaximizeqandwillnotinvestinDSMatall.Iftheregulatorchoosesstrategy

(A)andrequirestheutilitytospend$XonDSM,theutilityhasanincentivetosteer

awayfromeffectiveDSMprograms.Theutilitywouldprefertoburnthemoneythan

spenditonDSM.Similarly,iftheregulatorchoosesstrategy(B)andbasespriceson

theamountofDSMspendinginthepreviousperiod,theutilityhasanincentiveto

spend$XonDSMifthepresentvalueofthebenefitsofdoingsoisgreaterthanthe

costs,butitwillchoosetodosoasineffectivelyaspossible.Iftheutilitycanspend

$XonDSMwithoutactuallyaffectingenergyconsumptionatall(dQ/dS=0),itwill

choosetodosoifδ(pHqH–pLqL)>Xwhereδ istheutility’sdiscountfactor(0≤δ≤1).

27

TheutilitymustbebribedorpunishedmoreiftheDSMspendingwereunavoidably

slightlyeffective.

Iftheregulatorusessignalsotherthanspendingtoestimatetheutility’s

effectiveinvestmentinDSMandsetspricesaccordingly(strategyC),theutilitywill

effectively3investanamount,X,inDSMinagivenperiodifthepresentvalueofthe

benefitsofthisinvestmentisgreaterthantheassociatedcost.Thisisrepresentedby

thefollowinginequality:

[θ1(pHqH)+(1­θ1)(pLqL)–θ2(pLqL)–(1­θ2)(pHqH)]*δ ≥X+pt*EDSM,t

whereθ1istheprobabilityoflowdemandbeingrealized(qa<qc)iftheutility

invests$XinDSM,θ2istheprobabilityofhighdemandbeingrealized(qa>qc)ifthe

utilitydoesnotinvestinDSM,,andptisthepriceinthecurrentperiod.

Assumingthattheexpectedvalueofqaisgreateriftheutilitydoesnotinvest

thanifitdoes,(i.e.θ1+θ2>1),thisinequalitycanberearrangedtothefollowing:

(pHqH­pLqL)≥[X+ptEDSM,t]*[1/(δ(θ1+θ2­1))]

Theutilitywillonlyeffectivelyinvest$Xinenergyefficiencyifthe

punishmentpriceisassociatedwitharevenuesufficientlylessthantherevenue

associatedwiththerewardprice.Thesufficientdifferencedecreasesifthedirect

costoftheDSMinvestmentdecreases,ifthepriceinthecurrentperiodissmaller,if

theexpecteddemand‐reducingefficacyoftheinvestmentissmaller,iftheutility

valuesthefuturerelativelymore(δ isgreater),oriftheprobabilityofthedemand

realizationcorrectlyreflectingtheutility’sactionsisgreater(i.e.thevariabilityofε

islower).

3Forsimplicity,efficacyisconstrainedheretotakingonevalue(1)iftheinvestmentiseffectiveand0otherwise.

28

PartB–Decoupling

Underafulldecouplingmechanism,theregulatorchoosestheutility’s

requiredrevenue(R).TheutilitystillchooseswhethertoinvestinDSMandwhether

todosoeffectively.Inthiscase,however,theutility’sprofitisonlyafunctionof

requiredrevenues(andanychangesinfixedcosts).Anyshort‐termexcessor

shortageofrevenueisquicklyoffsetbypricetrue‐upsinthenextperiod.The

utility’sobjectivefunctionisrepresentedas:

Maxπ =R­f–S

Notethatquantityofenergysolddoesnotinfluencetheutility’sprofitsadverselyor

favorably(dR/dS=0).

WithnoregulationsorincentivesforDSMinvestment,thedecoupledutility

hasanincentivenottoinvestinDSM(dπ/dS=‐1).Iftheregulatorchoosesstrategy

(A)andrequirestheutilitytospend$XonDSM,theutilityisindifferenttoefficacy

oftheinvestment.Similarly,iftheregulatoroffersahigherallowedrevenueifthe

utilityspendsatleast$XinDSM(B),theutilitywilldosoifthepresentvalueofthe

benefitsoutweighsthecosts,δ(RH­RL)>S,andwillagainbeindifferenttotheefficacy

oftheinvestment.Theutilityhasnoprivateincentivetoinvestmorethanthe

requiredamountineitherofthesecases.

Theregulatorcantrystrategy(C)andencouragetheutilitytoinvestinDSM

inarepeatedgamebysettingarequiredrevenueeachperiod,RHorRL(with

RH>RL),asafunctionofactualenergyconsumptionqainthepreviousperiod.The

utilitywillchoosetoefficientlyinvest$XinDSMifandonlyifthepresentvalueof

thebenefitsofinvesting$XinDSMoutweighthecosts.Inthecaseofadecoupled

utility,thissituationisrepresentedbythefollowinginequality:

[θ1(RH)+(1­θ1)(RL)–θ2(RL)–(1­θ2)(RH)]*δ ≥X

29

whereδ ,θ1,andθ2arespecifiedastheywereinpartA.Underadecoupling

mechanism,theutilityexperiencesnocostofdecreasedconsumptionduetoDSM

investment.AssumingtheexpectedvalueofqaisloweriftheutilityinvestsinDSM,

thesituationadherestotheaboveinequalityifandonlyif:

(RH–RL)≥X*[1/(δ(θ1+θ2­1))]

Theonlyfactorsthatdeterminewhetherornottheutilitywillinvest$Xin

DSMaretherelativeeffectsofdoingsoonfuturerevenues,theutility’sdiscount

factor,andtheprobabilityoftheregulatorcorrectlyassessingtheutility’sactions.

Onceagain,themoretheregulatorwantstheutilitytoinvestinDSM,thelargerthe

rewardrevenuemustberelativetothepunishmentrevenue.Thisrevenuedisparity

canbesmalleriftheutilityvaluesthefuturerelativelymoreorifthevarianceofεis

low.

Conclusions

ComparingParts(A)and(B)suggeststhefollowingconclusionsaboutthe

relativelevelsandefficaciesofDSMinvestmentunderdecouplingmechanismsand

traditionalregulationinthespecifiedscenarios:

1. Withnoregulatorincentivesorstandards,neitherdecouplednor

traditionallyregulatedutilitieswillinvestinDSM

2. WithregulatorstandardsonrequiredDSMspending,decoupledutilitieswill

investmoreeffectivelyinDSMthantraditionallyregulatedutilities

3. WithregulatorincentivesbasedonamountofDSMspendingonly,decoupled

utilitieswillbemorelikelytoinvestinDSMandwilldosomoreeffectively

thantraditionallyregulatedutilities

4. WithregulatorincentivesbasedonperceivedDSMinvestmentefficacyas

inferredfromenergydemand,decoupledutilitieswillproducemoreeffective

DSMinvestmentthantraditionallyregulatedutilities

30

Thefirstthreeconclusionshavebeenpreviouslydiscussed,butthefourthisnot

immediatelyapparent.Understrategy(C),theregulatormustofferalarger

reward/punishmentdiscrepancytoautilitythatisregulatedtraditionallythanit

mustoffertoadecoupledutilityinordertoencouragethesameamountofeffective

DSMinvestment.Thisisapparentbycomparingtheinequalitiesthatrepresentthe

sufficientconditionsforregularutilityinvestment$XinDSMundereachtypeof

regulation.SincepHqHisessentiallyanalogoustoallowedrevenues,RH,thesufficient

conditionis:

(RH­RL)>[X+p0EDSM]*[1/(δ(θ1+θ2­1))]

undertraditionalregulation.Underafulldecouplingmechanism,thesufficient

conditionis:

(RH­RL)≥X*[1/(δ(θ1+θ2­1))]

SincepHandEDSMtakeonlypositivevalues,itisevidentthat:

[X+p0EDSM]*[1/(δ(θ1+θ2­1))]>X*[1/(δ(θ1+θ2­1))]

Thus,thesufficientreward/punishmentstructuretoencourageDSMinvestmentof

$Xisgreaterundertraditionalregulationthanunderadecouplingmechanism.

Furthermore,itisreasonabletoassumethatincreasingRH‐RLiscostlyforthe

regulator,asitisboundedbyaminimumrevenuethatwillcausetheutilitytoshut

downandwouldcausedecreasedconsumersurplusduetohigherenergypriceson

theotherextreme.Asaresult,regulatorswillprobablynotofferreward/

punishmentstructuresthatincentivizecomparableDSMinvestmentsunderthetwo

typesofregulation.Thereward/punishmentstructureassociatedwiththe

decoupledutilitywillprobablyinducemoreDSMinvestment.Thus,utilitieswill

probablyinvestmoreinDSMunderdecouplingthanundertraditionalregulation.

31

Itisimportanttonotethatthismodelisnotaperfectrepresentationofthe

interactionsbetweenutilitiesandregulatorsconcerningDSMinvestment.

Furthermore,theseincentivemodelsonlycompareincentivesunderdecoupling

mechanismstothoseundertraditionalregulation.Utilitiesunderregulationtypes

thatareneithertraditionalregulationnordecouplingmechanismsmaypossess

differentincentivesthantraditionallyregulatedordecoupledutilities.Nonetheless,

thispapercautiouslyextendstheimplicationsofthismodeltoformhypotheses

abouthowdecouplingmechanismsaffectutilityDSMinvestmentsandelectricity

consumptioncomparedgenerallytoallotherutilities.

TheoryandMethods

HypothesestobeTested

ThepreviousmodelssuggestthattheeffectofdecouplingonDSMcanbe

brokendownintoatleasttwoeffects:itseffectonthelevelofDSMexpenditureand

itseffectontheefficacyofDSMexpenditure,givenafixedlevelofinvestment.

Accordingtothemodels,eachofthetwoeffectsshouldreduceenergyconsumption

ifdecouplingiscombinedwithDSMincentivesorenergy‐efficiencystandards.

Furthermore,underdecouplingmechanisms,reducedconsumptioninherently

affectsprice.Combiningthiswithdownward‐slopingdemandproducesathird

pathwaybywhichdecouplingandDSMreducedemand.

Therefore,thisstudyinvestigatesthehypothesisthatdecoupling

mechanismsdecreaseresidentialelectricityconsumption,butonlythroughtheir

effectonthelevel,directdemand‐reducingeffects,andindirectdemand‐reducing

effectsthroughpriceofDSMinvestment.Thishypothesisisrepresentedgraphically

32

below:

Specifically,totestthisoverallhypothesis,thispaperexploresthefollowing

subordinatehypotheses:

1.Decouplingmechanismsonlyaffectresidentialelectricity

consumptionandretailpricethroughtheireffectsonDSM

investment.

2.DecouplingmechanismsareassociatedwithincreasedutilityDSM

expenditure.

3.Decouplingmechanismsincreasethedirectdemand‐reducingeffectof

residentialDSMprograms.

4.DecouplingmechanismsincreasetheefficacyofDSMinvestment

throughtheindirecteffectofDSMonconsumptionthroughprice.

Analysesofthesesubordinatehypothesesallowforabetterunderstandingofthe

natureandpotentialmagnitudesoftheeffectsofdecouplingmechanismsonenergy

efficiency.Duetothelimitedtimeframeofthedata,onlyveryshort‐term

realizationsofthesehypothesescanbeanalyzedinthisstudy.Asdiscussedlater,

33

however,itisreasonabletobelieveveryshortruneffects(1‐4yrs)willindeed

translateintoslightlylonger‐termeffects(≈5‐10yrs).

DataandMethods

ThispaperbuildsonpreviousanalysesofenergyefficiencyandDSM

investmenttomodeltheeffectsofdecouplingmechanismsonelectricity

consumption.LoughranandKulick(2004)conductedatime‐seriescross‐

section/time‐seriesanalysisontheeffectofDSMinvestmentonelectricity

consumption,andArimuraetal.(2011)similarlymodeledthecost‐effectivenessof

electricityenergyefficiencyprograms.Contrarytothesepreviousstudies,the

presentpaperincludespost‐2006data4,recognizestheendogeneityissuesof

includingutility‐levelelectricitypricesasaright‐hand‐sidevariable,andincludesa

vectoroftimefixedeffectstobettercontrolfornationaltimetrendsandstructural

breaksinelectricityconsumption.

DuetodiscrepanciesinfrequencyofreportinginEIAforms,twoprimary

datasetswereassembledforthisanalysis:onewithmonthlyobservationsandone

withannualobservations.Theformerisusedforthemajorityoftheanalysis,while

thelatterisusedforanalyzingthesecondsubordinatehypothesis–theeffectof

decouplingmechanismsonlevelofDSMspending–only.Theentirestudyfocuses

ontheresidentialsectorandusesdatafromJanuary2001toDecember2010.

Forthemonthlydataset,dataonmonthlyelectricityconsumptionbysector

foreachUSelectricutilitywereretrievedfromtheEnergyInformation

Administrationdatabase(FormEIA‐826).Thesedatawerecombinedwithannual

customerdatabysectorforeachutility(FormEIA‐861)toobtainelectricity

consumptionpercustomerbysectorforeachutility.Utilitiesthatservecustomers

inmultiplestateswereseparatedintomultipleutilities,oneperstate,because

utilitydecouplingregulationlawsvarybystate.

Fourhundredfourutilities,eachwith50‐120monthlyobservations,were

includedintheanalysesonmonthlydata.Seventyutilitieswithfewerthan50

4ThevastmajorityofdecoupledUSutilitiesdidsopost‐2006.

34

monthsofdatawereexcludedfromthemonthlyanalysis.Extremeobservations,or

consumptionobservationsthatvariedfromthepriormonthbyafactoroffiveor

greaterwereexaminedandalteredorexcludedfromthedata,asappropriate.These

observationsarelikelyresultsofmergersoracquisitions,temporaryutility

shutdowns,humanerrorinreporting,ornaturaldisasterssuchashurricane

Katrina.Inthecaseofsupposedmergersoracquisitions,utilitieswerelabeledas

multiple,uniqueutilitiesbeforeandaftertheevent.Afewobservationsthat

portrayednegativesaleswerealsodiscardedfromtheanalysis.Intotal,eleven

observationswerediscardedduetonegativesalesorsuspicionofutilityshutdowns,

humanerror,ornaturaldisasters.

DSMspendingdataisonlyavailableontheannuallevelfromFormEIA‐861.

Therefore,anannualdatasetwascreatedtoanalyzeDSMspending.Inthisanalysis,

utilitieswithfewerthanfiveyearsofdatawerediscarded.Datafromutilitiesthat

residedinmultiplestateswerealsoexcludedfromtheanalysissincedistinguishing

betweenspendingineachstatewasnotfeasiblefortheseutilities.Itisnotablethat

manyutilitiesarecompletelyexcludedfromFormEIA‐861.Only161utilitiesand

1,502annualobservationswereincludedinthispartoftheanalysis,primarilydue

tolackofDSMspendingdata.

Somethird‐partyDSMspendingthroughutilitiesisalsoreportedbyutilities

onEIAForm861.Asshownintheliterature,thisisreasonable,astheexistenceofa

decouplingmechanismaffectsathird‐partyenergyefficiencyprovider‘sabilityto

effectivelyinvestinDSM(Lazer,Weston,andShirley2011).Theinclusionof

ratepayer‐funded“third‐party”DSMspendingreducesbiasresultingfromthe

geographicalheterogeneityinstructureandexistenceofregulatoryinstitutions

responsibleforpromotingDSM.

Thispaperreplicatesmanyofthecontrolvariablesandusesseveralofthe

datasourcesfrompreviousstudies.Asadeparturefromsomeoftheprevious

35

literature,thispapercontrolsfortheexistenceofastateenergyefficiencyresource

standard(EERS),statequarterlypersonalincome,andtimefixedeffects.5

OLSand2SLScross‐section/time‐seriesanalysesareusedtoinvestigatethe

statedhypotheses.First,theeffectofadecouplingmechanismonresidential,per‐

customerelectricityconsumptionisfirstestimatedusingthefollowingOLSmodel:

Equation1:

Electusmt=B0+B1Decouplingusmt+B2Res.Customersust+B3NatGasPricesmt+

B4FuelOilPricemt+B5GDPst+B6Popst+B7Incomest+B8EERSst+

B9EnvSensitivityst+B10CDDsmt+B11HDDsmt+αu+γsm+εusmt

whereElect=thenaturallogarithmofresidential,per‐customerelectricity

consumption,EERS=adummyvariableforwhetherornotthestatehadanEnergy

EfficiencyResourceStandardinplace,EnvSensitivity=anstateenvironmental

sensitivitymeasure,CDD=coolingdegreedays,HDD=heatingdegreedays,u=

utility,s=state,m=month,andt=year.αandγarevectorsofutility‐levelandtime

fixedeffects,respectively.SeeAppendixBforfulldescriptionsofthevariables.The

naturallogarithmofresidentialelectricityconsumptionisusedasadependent

variabletocapturepercentage,asopposedtoabsolute,changesinconsumption.

Byincludingavectorofutility‐levelfixedeffects,oradummyindicator

variableforeachutility,theanalysiscontrolsforallsystematicdifferencesbetween

utilities,suchassize,thatdonotvarywithinthedecade.Theinclusionofavectorof

timefixedeffectsnormalizesoutanynationwidetimetrendsandtime‐specific

changesthatwouldaffectthedependentvariable.Utilitycustomerbaseandstate‐

andtime‐specificindicatorsofweather,economicgrowth,populationgrowth,

5IncontrasttoArimuraetal.’sstudy,thispaperdoesnotattempttomodeltherelationbetweenbuildingcodes,housingstarts,andenergyconsumption.Arimuraetal.neglecttoaccountforthetimelaginimportanceofbuildingcodes.Withoutamechanismtocapturethiscomplicatedrelation,thesevariablesseemtopickupotherpoliticalandenvironmentalsensitivityfactorsandmayactuallyconfoundresults.

36

income,environmentalstandards,anddemonstratedenvironmentalconcernare

exogenouscontrolvariables.Withallofthesecontrols,theonlyremainingvariation

fortheexistenceofdecouplingandotherpotentialomittedvariablestoexplainis

utility‐specificchangesinconsumptionpercustomerovertimethatarenotaresult

ofchangesinsizeofthecustomersbase.

Thefullmodeloftheeffectofdecouplingmechanismsonresidential,per‐

customerelectricityconsumptionincludesDSMspendingandaninteraction

betweenDSMspendingandthedecouplingdummyvariable.This2SLSmodelalso

controlsforaninstrumentedutility‐levelretailelectricityprice:

Equation2:

Electusmt=B0+B1Decouplingusmt+B2Res.Customersust+B3ElectricityPricemt+

B4NatGasPricesmt+B5FuelOilPricemt+B6GDPst+B7Popst+B8Incomest

+B9EERSst+B10EnvSensitivityst+B11CDDsmt+B12HDDsmt+B13DSMust+

B14DecouplingxDSMusmt+αu+γsm+εusmt

withalltermsdefinedastheywereinthepreviousmodel.IntheRobustnessTests

section,thisstudyexploresthepotentialissueofendogeneityofdecouplinginthis

equation.

DespitetheresearchofJaffeandStavins(1995)regardingthelingering

effectsofDSMinvestmentonconsumption,thisanalysisfindsthatalinear

relationshipbetweenthelogarithmsofthisyear’sDSMinvestmentand

consumptionisthebest‐fittingmodeloftherelationbetweenrecentDSM

investmentandthisyear’sconsumption.LaggedvaluesofDSMinvestmentarenot

significant.

Toaddresstheendogeneityofelectricitypricethrough2SLS,2005state‐

leveldataonthepercentofelectricitygenerationfromoil,naturalgas,andcoalare

interactedwithmonthlycitygate(wholesale)naturalgasprice,monthlyUSoil

refinercosts,andtheaverageannualpriceofcoal,respectively.State‐levelpercent

37

generationfromrenewablesourcesisalsointeractedwithUScoalprice6.Thereis

noreasontobelievethatthesevariableswouldimpactelectricitydemandexcept

throughtheireffectonelectricitypriceandpotentiallythroughtheireffectonretail

naturalgasprice.Atestofjointsignificanceonthecoefficientsoftheseinstruments

inthefirst‐stageregressionproducesanF‐statisticof45.8,whichisassociatedwith

ap‐valueoflessthan.0001.Thisconfirmsthevalidityoftheseinstruments.

Thefollowingcross‐section/time‐seriesmodeloftotalutilityannualDSM

spendingperresidentialcustomerisusedtoexploretheeffectofdecouplingon

levelofDSMspending:

Equation3:

DSMust=B0+B1Decouplingust+B2Res.Customersust+B3GDPst+B4Popst+B5Incomest

+B6EERSst+B7EnvSensitivityst+B8CDDst+B9HDDst+αu+γt+εust

whereDSM=thenaturallogarithmofannualDSMspending,u=utility,s=state,

andt=year.αandγarevectorsofutility‐levelandtimefixedeffects,respectively.

Standarderrors,clusteredonutility,wereusedinallregressionstoaccount

forheteroskedasticityandautocorrelation.Evenwhenavectoroftimefixedeffects

isincluded,aWoodridgetestforautocorrelationinpaneldatageneratedan

F(1,403)statisticof355,whichisassociatedwithalessthan.1%chancethatthe

datadoesnotsufferfromautocorrelation.Theclusteredstandarderrorsaremuch

morerobusttoissuesofautocorrelationandheteroskedasticitythanthetraditional

standarderrors.Thetrueautocorrelationstructureofthedatacouldnotbe

captured,sothisapproachisthebestavailableoption.Notethatthepresenceof

autocorrelationsolelyaffectsthepredictedstandarderrorsofpointestimates,while

inaccurateeffortstocapturetheautocorrelationstructurewouldcauseendogeneity

issuesandbiasthepointestimates.6Interactiontermsbetweenpercentrenewablegenerationandotherfuelpricesaswellastheinteractionbetweenmonthlyuraniumpriceandpercentgenerationfromnuclearenergywereexcludedbecausetheywerefoundtobeirrelevantinthefirststage.

38

Results

OverallEffectsofDecouplingonConsumptionandPrice

Consistentwithsubordinatehypothesis#1,thissectionshowsthat

decouplingmechanismsarecorrelatedwithelectricityconsumptionandpriceonly

throughtheirrelationwithDSMinvestment.Thesefindingsarerobusttoexclusion

oftheenvironmentalsensitivityindicatorvariableandthedummyvariableof

existenceofastateenergyefficiencyresourcestandard.

Thefirstmodel(Equation1)includesdecouplingbutnotprice,DSMorits

interactionwithDSM.Thus,thecoefficientondecouplinginthismodelcanbe

understoodasthefulleffectofDSMthroughitsvariouschannels.AsColumn1of

Table1indicates(SeeAppendixA),thecoefficientofdecoupling(B1)inthismodelis

‐.05.Thiscoefficientrepresentsthedifferenceintheexpectedmeansofthenatural

logarithmofconsumptionbetweendecoupledutilitiesandnon‐decoupledutilities.

Alternatively,theratioofthemeanofconsumptionfordecoupledutilitiesovernon‐

decoupledutilitiesise‐.05,orabout.95.Allelseequal,ifautilityswitchestohavinga

decouplingmechanismfromhavingnone,expectedresidential,per‐customer

electricityconsumptiondecreasesbyabout5%.Thesignofthisresultissignificant

atthe2%levelforatestofthenullhypothesisthatdecouplingmechanismshasno

effectonresidentialelectricityconsumption.

Whentheeffectsofdecouplingonconsumptionworkingthroughpriceand

DSMinvestmentareeliminated,however,thissignificancedisappears.Totestthe

effectsofeliminatingthesepotentialcausalavenues,Equation2(Column2Table1–

AppendixA)addsascontrolsresidentialelectricityprice,utilitylogannualDSM

spending,andaninteractiontermofDSMspendingandadummyforadecoupling

mechanismtothemodeldescribedbyEquation1.Becauseelectricitypricemaybe

endogenous,thisequationwasestimatedwith2SLS.Thefirststageregressionis

giveninColumn1ofTable3(AppendixA).

Withtheinclusionofthesevariables,thecoefficientonthedecoupling

dummyshrinksto‐.007andisnotsignificantlydifferentfromzero.Sincethemodel

39

controlsforlevelofDSMinvestmentandfortheincreaseddemand‐reducingeffects

ofDSMinvestmentassociatedwithdecoupledutilities,thiscoefficientestimatesthe

effectofdecouplingmechanismsnotrelatedtoDSMinvestmentorpriceon

electricitydemand.FordecoupledutilitiesthatdonotparticipateinanyDSM

investment,themodelfindsnosignificanteffectofhavingdecoupledonelectricity

consumption.

Thisresultisrobusttoexclusionoftheenvironmentalsensitivityrating

variableandthevariableforexistenceofanenergyefficiencyresourcestandard

(Column3Table1).Becauseenvironmentalsensitivityratingsandtheexistenceof

anenergyefficiencyresourcestandardarecorrelatedwiththepresenceofa

decouplingmechanism(r=.26and.30,respectively),onemightbeconcernedwith

thepresenceofthesecontrolsinthemodel.Whenthesevariablesareexcludedfrom

theanalysis,decouplingstillshowsnosignificantrelationtoconsumptionother

thanthroughitseffectonDSMinvestmentandprice.Thepointestimateand95%

confidenceintervalontheisolateddecouplingcoefficientbarelychange.

Consistentwiththeliteratureandcontrarytothefearofmanyopponentsof

decoupling,decouplingmechanismsalonedonotappeartoinherentlysignificantly

increaseprices.Column2ofTable3rerunsthefirststageanalysiswithoutthe

variablesofDSMinvestmentanditsinteractionwithdecoupling.Withoutholding

thesevariablesconstant,decouplingdoesappeartoincreaseprices.Specifically,

decouplingisassociatedwitha1%increaseinpricewhenDSMinvestmentis

ignored,andthisrelationissignificantatthe10%level.

IftheeffectsofDSMinvestmentareproperlyaccountedfor,however,these

resultsdisappear(Column1Table3–AppendixA).HoldingDSMinvestment

constant,ifautilityhasadecouplingmechanismbutnoDSMinvestment,the

decouplingmechanismispredictedtohavenosignificanteffectonprice.The

coefficientondecouplingis.004andisnotsignificantatanyconventionallevel.This

insignificanceremainswhentheenvironmentalsensitivityandEERScontrol

variablesareexcluded(Column3–Table3).Therefore,thisstudyconcludesthat

decouplingmechanismsonlyaffectpricethroughtheireffectonDSMspending.

40

Thestrikingdifferenceinmagnitudeandsignificanceofthecoefficient

associatedwithdecouplingbetweenmodelsofelectricityconsumptionthatinclude

DSMspendingandthosethatdonotisexploredinthefollowingsections.

EffectofDecouplingMechanismsonLevelofDSMSpending

Toprovidemoreinsightintotherelationbetweendecouplingmechanisms

andelectricityconsumption,thisstudyanalyzesthreepotentialimpactsthat

decouplingmechanismsmayhaveonDSMinvestment.Thissectioninvestigatesthe

secondsubordinatehypothesis:theeffectofdecouplingmechanismsonthelevelof

DSMspending.Contrarytothehypothesis,anestimateoftheOLSmodelofDSM

spendingoutlinedinEquation3(Column1Table2–AppendixA)suggeststhat

decouplingandlevelofDSMspendingarenotsignificantlycorrelated.

BecauseitisimpossibletoengageinnegativeDSMspendingandbecause

therearemanyutilitieswith$0DSMspending,atobitmodelmaybemore

appropriatethananOLSmodelinthisinstance.Evenwiththismodelspecification,

however,thecoefficientondecouplingisnotstatisticallydifferentthanzero

(Column2Table2–AppendixA).Thisprovidesfurtherevidencethatdecoupling

mechanismsandlevelofDSMspendingareuncorrelated.

Itisimportant,however,toconsiderthedistributionofDSMspending.The

distributionisnotnormalandhasaskewnessof6.99.Therearemanyobservations

withzeroorverylowvaluesofDSMspendingandafewobservationswithvery

extremehighvalues.Toavoidassuminganormaldistributionandtolimitthe

effectsofoutliers,aquantileregressionwasused.Theresultsofthismodelshowa

positiveeffectofdecouplingonlevelofutilityDSMinvestmentthatissignificantat

the10%level(Column2Table2‐AppendixA).Thisregressionsuggeststhat

decouplingdoesencouragehigherutilityDSMspendingandthatthenormal

distributionalassumptionmayhavecausedinaccurateestimatesintheOLSand

tobitmodels.Thequantilemodelestimatesthat,allelseequal,thepossessionofa

decouplingmechanismincreasesautility’spredictedDSMspendingby41%.

41

Becauseofthefailureofthequantilemodeltocontrolforheteroskedasticity

andautocorrelation7,however,cautionshouldbeexercisedwheninterpretingthe

significanceoftheseresults.Furthermore,recallthatsinceDSMinvestmentdatais

onlyavailableannually,thisanalysishasfarfewerobservationsthantheanalysisof

Equation1.Astheremaybesomebiasduetotherelativelysmallsamplesizeofthis

dataset,thisisanotherreasonthatthepointestimategivenbythismodelshouldbe

treatedwithcaution.

EffectofDecouplingMechanismsontheDirectDemand­ReducingEffectsofDSM

Spending

Thethirdsubordinatehypothesisinthispaperisthat,controllingforthe

levelofDSMinvestment,decouplingmechanismsincreasethedemand‐reducing

effectsofDSMspending.Totestthishypothesis,the2SLSmodelofEquation2

(Column2Table1–AppendixA)isagainused.ThismodelcontrolsforlevelofDSM

investmentandfortheinteractionbetweendecouplingandDSMinvestment.The

coefficientonthisinteractiontermrepresentstheincreaseinefficacyofDSM

investmentassociatedwithdecouplingmechanisms.Thiscoefficientisestimatedto

be‐.004andissignificantatthe5%level.Thissupportsthehypothesisthat

decouplingmechanismsincreasedemand‐reducingeffectofutilityDSMinvestment

foragivenlevelofinvestment.GivenafixedlevelofinitialDSMinvestment,this

modelestimatesthata10%increaseinDSMinvestmentofadecoupledutility

decreasesestimatedresidential,per‐customerelectricityconsumptionby.04%

morethana10%increaseinDSMinvestmentofanon‐decoupledutilitywould

decreaseestimatedconsumption.

7Duetoinsufficientobservationsclusteredstandarderrorscouldnotbecomputedinthispartoftheanalysis.

42

EffectofDecouplingMechanismsontheEfficacyofDSMInvestmentduetoitsIndirect

EffectonConsumptionThroughPrice

Besidesincreasingthedemand‐reducingeffectsofDSMinvestment,

decouplingmechanismsmayalsoincreasetheefficacyofDSMinvestmentat

reducingconsumptionthroughtheeffectofDSMinvestmentonprice.Inutilities

withdecoupling,DSMinvestmentispredictedtoincreaseprices,andhigherprices

arepredictedtodecreaseconsumption(Hypothesis4).Thissectionexploresthis

subordinatehypothesisbyconsideringtheestimationoftheeffectofDSM

investmentofdecoupledutilitiesonprice,contrastingthiseffectwiththatofnon‐

decoupledutilitiesthatinvestinDSM,andverifyingthepredictedeffectofincreased

pricesonconsumption.

Aspredicted,resultssuggestthatDSMinvestmentincreasesresidential

electricitypriceunderdecouplingmechanismsandhasnoeffectonpriceunder

othertypesofregulation.Inthefirststageofthe2SLSmodeldepictedinEquation2,

thecoefficientonthevariabledepictingDSMinvestmentisessentiallyzeroand

associatedwithat‐statisticof.17(Column1Table3–AppendixA).Thisindicates

that,fornon‐decoupledutilities,DSMinvestmentdoesnotsignificantlyaffectprice.

Amongonlydecoupledutilities,however,theredoesappeartobeapositiverelation

betweenDSMinvestmentandprice.Theinteractiontermbetweendecouplingand

DSMinvestment(Column1Table3–AppendixA)ispositiveandsignificantatthe

10%level.ThisweaklysupportsthehypothesisthatDSMinvestmentincreases

residentialelectricityprice,atleastintheshortrun,underdecouplingmechanisms.

Consistentwitheconomictheory,thisstudyalsofindsevidencethathigher

pricesdecreaseelectricitydemand.Thecoefficientonpriceinthesecondstageof

this2SLSmodelis‐1.47,whichisstatisticallysignificantatthe.001level(Column2

Table1–AppendixA).Apriceincreaseof$.01/kWhisassociatedwitha1.5%

decreaseindemand.Atameanpriceofabout$.10/kWh,thisimpliesaprice

elasticityofabout.15,whichiswithinthe‐2.001to‐.004range(median=‐.28)of

recentpriceelasticityestimatesofshortrundemandintheliterature(Espeyand

Espey2004).

43

RobustnessTests

ThissectionaddressessomepotentialconcernsabouttheestimatesinTable

1.Itfirstteststhesensitivityoftheresultstoincludingamonthlyratherthanannual

coalpriceasaninstrumentalvariabletopredictelectricityretailprice.Itthen

exploreswhetherthecorrelationbetweenpossessionofadecouplingmechanisms

andelectricityconsumptionispartiallyduetothecontinuationofpre‐existing

trends.Finally,thissectionusesprobitanalysistoexplorethepossibilitythat

electricityconsumptionaffectsautility’sdecisiontodecoupleanddiscussesthe

potentialbiascausedbythepresenceofthisendogeneityissue.

UseofanAnnualInstrumentalVariable

Somereadersmayfindtheuseofannualcoalpriceasopposedtomonthly

coalpriceasaninstrumentformonthlyelectricitypricetroubling.Specifically,they

mayworrythattheuseofareplicatedannualvariablemightartificiallyincreasethe

power,ortheperceivedrelevance,oftheinstruments.MonthlyUScoalpriceswere

notavailable.TochecktherobustnessoftheannualUScoalpriceestimate,models

wereestimatedusingamonthlycoalpriceindex,Australianthermalcoal,inplaceof

annualUScoalprice.ThismonthlyindexisfoundtobehighlycorrelatedwithUS

coalprice,butitisfoundtobeaninferiorinstrumentbecauseitisslightlyless

powerfulinexplainingUSretailelectricityprices.

Thereplacementdoesnotaltertherejectionofthenullhypothesisthatthe

instrumentsarerelevant.Itdoeslowerthe95%intervalforthesecondstageeffects

ofa$.01increaseelectricityretailpriceonelectricityconsumption,fromadecrease

ofbetween.6%and2.3%toadecreaseofbetween.2%and1.7%.Whenbothcoal

priceindicatorsareincluded,theeffectoftheAustraliancoalpriceindexon

residentialelectricitypricelosessignificance,andthe95%confidenceintervalof

thedecreaseinconsumptionassociatedwitha$.01priceincreasebecomes.4%to

.9%.Whilethedifferencesintheseintervalsarenontrivial,theoverlapofthe

confidenceintervalsisnotable.Furthermore,theuseofthemonthlyindicator

44

variableinsteadoftheannualUSpricevariablehasanegligibleeffectonthepoint

estimatesandsignificanceoftheotherexogenousvariables.Thisprovidesevidence

forrobustnessoftheanalysesinthisstudytoatheoreticalchangeinannualversus

monthlyUScoalprice.

Pre­ExistingTrends

Becauseofthetime‐seriesnatureofthedata,itisimportanttoconsiderthe

possibilitythatpercustomerelectricityconsumptionwasdecreasingpre‐

decouplingfortheutilitiesthatlaterdecoupled.Becausealloftheutilitiesinthe

datasetthatdecoupledbetweentheyearsof2001and2010didsoafter2005,pre‐

existingtrendscanbecapturedbyanalyzingdatafrom2001‐2005.Utilitiesthat

adopteddecouplingmechanismspriorto2001wereexcludedfromthispartofthe

analysis.

Column4ofTable1(SeeAppendixA)showstheestimationofamodelusing

only2001‐2005dataofresidentialper‐customerelectricityconsumptiononayear

trend,aninteractiontermbetweenayeartimetrend8andwhethertheutility

decoupledbetween2006and2010,controlvariables,andutility‐fixedeffects.The

interactiontimetrendshouldcaptureanysystematicdifferencesinenergyuse

trendsbetweenutilitiesthatlateradopteddecouplingmechanismsandthosethat

didnotdoso.Ifper‐customerenergyconsumptiondecreasedrelativelymoreor

increasedrelativelylessinutilitiesthatlaterdecoupled,thecoefficientofthis

variableshouldbenegative.Infact,asseeninColumn4ofTable1,thecoefficientof

thisinteractiontermisactuallypositiveandsignificantatthe1%level.Controlling

forthevariablesinthepreviousmodel,pre‐2006energyconsumptionwasactually

increasingmoreforutilitiesthatdecoupledduring2006‐2010thanforutilitiesthat

didnotdecoupleduringthistimeperiod.Thus,theperceivedeffectsofdecoupling

mechanismsreducingenergyconsumptiondonotseemtosimplybethe

continuationofpre‐existingutility‐specifictrends.

8Note–thisyeartimetrendisnotusedinmodelswithtimefixedeffectsduetoitsinsignificance.

45

PotentialEndogeneityoftheDecouplingVariable

Theupwardtrendinconsumptionforutilitiesthatlaterdecoupledsuggests

thatincreasesindemandmighthavecausedtheadoptionofdecoupling

mechanisms.Inresponsetothisconcern,thisstudyusesprobitanalysisto

investigatewhatcausesutilitiestodecouple.Column1ofTable4(AppendixA)

showstheresultsofamodelthatpredictswhetherautilitydecoupledbetween

2006and2010asafunctionofJanuary2001valuesofvariousindependent

variablesforthe384utilitieswhohadnotdecoupledby2006.Theseresultsindicate

thatutilitieswithalotofcustomerswhoeachusealotofenergythatarelocatedin

wealthy,environmentally‐consciousstatesaremostlikelytodecouple.Controlling

fortheseJanuary2001characteristics,theresultsinColumn2ofTable4estimate

howtrendsinvariablesbetweenJanuary2001andDecember2005affected

utilities’decisionstodecouple.Theseresultssuggestthattheonly2001‐2005trend

thatissignificantinpredictingdecouplingadoptionwastheinstitutionofastate

energyefficiencyresourcestandard.

Furthermore,thet‐statisticassociatedwiththeincreaseinenergyuseper

customerisabout1,whichsuggeststhat,ifanything,growingenergyuseper

customermayalsoincreasethechancesofautilitydecoupling,althoughthis

relationisnotstatisticallysignificant.Thisfindingisnotsimplydueto

multicollinearitybetweentrendvariables.Thesignandtheinsignificanceofthe

coefficientpersistswhenpercustomerconsumptionistheonlytimetrendincluded

(Column3Table4–AppendixA).

Theresultsoftheprobitmodelssuggestthatthedecouplingdummyvariable

mayormaynotbeendogenousintheper‐customerelectricityconsumptionmodels.

Thefactthatutilitieswithhighper‐customerconsumptiontendtoadoptdecoupling

mechanismsshouldnotcauseendogeneityissuesbecauseutility‐fixedeffectsare

46

includedintheconsumptionmodels.9Incontrast,thesuggestionthattrendsinper‐

customerconsumptionmayaffectautility’sdecisiontodecouple,albeitstatistically

insignificant,provokesconcernaboutpotentialendogeneityissuesinthemodelsof

electricityconsumptionofTable1.Ifthiscausalrelationdoesexist,however,the

resultsoftheTable4probitmodelssuggestthatincreasingper‐customerelectricity

consumptionincreasesthechancesofautilityhavingadecouplingmechanism.This

impliesthatendogeneitywouldbiasthecoefficientofthedecouplingvariableinthe

positivedirection.Thus,thecoefficientsofdecouplingintheelectricityconsumption

modelsareeitherunbiasedorclosertozerothanthetruecoefficient.Thisfurther

strengthenstheargumentthatdecouplingmechanismsreduceper‐customer

residentialelectricityconsumption.

LongRunImplications

Thefindingsinthispaperrepresentshortrunrelationships(<5years)

betweendecouplingmechanismsandefficiencyofresidentialelectricity

consumption.Thereissomereasontobelievethattheserelationshipspersist,in

somemagnitude,foranextendedperiodoftime.AsJaffeandStavins(1995)found,

DSMinvestmentsaffectenergyconsumptionforyears.

ThefindingthatDSMinvestmentofutilitieswithdecouplingmechanisms

causeshigherprices(andthathigherpricesimpactdemand),however,isinnatelya

shortrunresult.ThelinkbetweenDSMinvestmentsofdecoupledutilitiesandprice

isthat,underadecouplingmechanism,reduceddemandwillcausepricetoincrease

withthenextscheduledtrue‐up.Onceanewratecaseoccurs,however,new

revenuetargetsandcorrespondingpricesaresetbyaregulatorandareless

dependentonpreviousconsumption.Decreasedconsumptionitselfmayormaynot

affecttheregulator’spricedecision.Thus,increaseinpricemayonlypersistuntil

thenextratecase(≈3‐6yrs).

9Theerrorterminthesemodelsonlycapturesutilityandtime‐specificchangesinconsumptionandwouldnot,therefore,becorrelatedwithdifferencesinabaselinemonth’sper‐customerelectricityconsumptionacrossutilities.

47

Nonetheless,eveniftheregulatordecidestorestorepricestotheirpre‐true‐

uplevels,consumptionisunlikelytoreturntothe“efficient”marketlevelatthis

price.Energyefficiencyinvestmentsandbehaviorchangescausehysteresis,or

history‐dependent,effects.Ifendusersrespondtohighelectricitypricesbybuying

energyefficientappliancesormakingbehavioralchangestowastelessenergy,

lowerenergypricesmaynotcausethemtogetridoftheirnew,efficientappliances

ortochoosetoswitchbacktowastefulbehaviors.Therefore,theeffectondemand

ofhigherpricesduringtrue‐upsmayverylikelypersistthroughsubsequentrate

cases.

Conclusions

Withwidespreadconcernaboutglobalclimatechangeandenergysecurity,

theefficacyofmechanismstoimproveenergyefficiencyisofconsiderableinterest.

Recentliteratureonthedeterminantsofenergyinefficiency,includingconsumer

choicefailureandutilitythroughputincentives,hasespeciallyincreasedinterestin

promotingutilityinvolvementinDSM.Decouplingmechanismsareanincreasingly

populartechniquetoencourageutilityinvolvementinenergyefficiencyissues,but

littleempiricalanalysishadbeenconductedintotheeffectsanddeterminantsof

decouplingmechanismsonelectricitydemand.Thispaperexploresthisrelation

usingrecentutility‐leveldata.

ModelsoftheinterplaybetweenutilityDSMinvestmentandregulator

incentiveshaveimportantimplicationsontheexpectedeffectsofdecoupling

mechanismsonenergyefficiency.Thesemodelsindicatethatdecoupling

mechanismsonlyaffectinvestmentinDSMinvestmentifadditionalDSMstandards

orincentivesexist.Moreover,inthepresenceofstandardsonDSMspending,

decoupledutilitieswillinvestmoreeffectivelyinDSMthantraditionallyregulated

utilities.Similarly,inthepresenceofincentivesbasedonlyonlevelofDSM

spending,decoupledutilitieswillbemorelikelytoinvestinDSMandwilldoso

moreeffectivelythantraditionallyregulatedutilities.Finally,withregulator

incentivesbasedonperceivedDSMinvestmentefficacy,asinferredfromenergy

48

demand,decoupledutilitieswillproducemoreeffectiveDSMinvestmentthan

traditionallyregulatedutilities

Basedonthesemodels,thispaperexploresthehypothesesthatdecoupling

mechanismsdecreaseresidentialelectricitydemandandthatthisisaccomplished

throughencouragingagreaterlevelofDSMinvestment,alargerdemand‐reducing

effectofanygivenlevelDSMinvestment,andapriceincreasethatfurther

discouragesconsumption.Thispapertheorizesthattheeffectofdecoupling

mechanismsisprimarilyduetoitseffectsonutilityDSMinvestmentanditseffects

onpricethroughDSMinvestment.

Consistentwiththehypotheses,empiricalresultssuggestthatdecoupling

mechanismsarecorrelatedwithelectricityconsumptionandpriceonlythrough

theirrelationwithDSMinvestment.NotcontrollingfortheeffectsofpriceandDSM

investment,pointestimatesofthedecreaseinconsumptionassociatedwith

decouplingmechanismsarequitelargeandsignificantatthe5%level.Whenthe

effectsofdecouplingonconsumptionworkingthroughpriceandDSMinvestment

areeliminated,however,thissignificancedisappears.

Asaresultofasmallsamplesize,thispaperneitheraffirmsnorrejectsthe

hypothesisthatdecouplingmechanismsincreasethelevelofutilityDSMspending.

ThelackofsignificanceinOLSandtobitmodelssuggeststhatdecoupling

mechanismsarenotcorrelatedwithlevelofDSMinvestment.However,theresults

ofaquantileregression,whichaccountsfortheskeweddistributionofDSM

spending,doessuggestthatdecouplingmechanismsmayindeedincreaselevelof

DSMspeding.Moreresearchisneededtothoroughlyexplorethishypothesis.

GivenafixedlevelofDSMspending,resultsstronglysuggestthatdecoupling

mechanismsincreasethedirectdemand‐reducingeffectsofDSMspending.Alarge

estimatedeffectofincreasedDSMinvestmentofdecoupledutilitiesrelativetothat

ofotherutilitiesisfoundtobesignificantatthe5%level.Thissubstantiatesthe

resultofthetheoreticalmodelconcerningefficacyofDSMinvestment.Specifically,

themodelindicatesthatDSMinvestmentofdecoupledutilitiesismoreeffective

thanthatoftraditionally‐regulatedutilitieswhenregulatorsdesignDSMinvestment

49

incentivemechanismsandregulationsthatarebasedprimarilyonlevelofDSM

spending.

Thispaperalsofindsweakevidencethatdecouplingmechanismsincrease

theefficacyofDSMinvestmentinreducingconsumptionthroughtheeffectofDSM

investmentonprice.DSMinvestmentbydecoupledutilitiesissignificantly

negativelycorrelatedwithpriceatthe10%level.Higherpriceswerealsofoundto

beveryhighlycorrelatedwithdecreasedelectricitydemand.

Testsonpre‐2006datademonstratethattheperceivedeffectofdecoupling

mechanismsonelectricityconsumptionisnotduetothecontinuationofpre‐

existingutility‐specifictrendsinelectricityconsumption.Probitanalysessuggest

thatthedecouplingdummyvariablemayormaynotbeendogenousintheper‐

customerelectricityconsumptionmodels.However,thesignofthepointestimates

oftherelationbetweendecouplingandDSMsuggeststhat,ifanything,thetrue

impactofdecouplingonelectricityconsumptionisactuallymorenegativethan

estimatedinthispaper.Thisstrengthenstheargumentthatdecouplingmechanisms

reduceper‐customerresidentialelectricityconsumption.

Whileitisreasonablyclearthatdecouplingmechanismspromotemore

efficientelectricityuseintheresidentialsectorthroughmoreeffectiveutilityDSM

investment,thelinkbetweendecouplingmechanismsandlevelofDSMexpenditure

remainsrelativelyambiguous.CollectingDSMspendingdataformoreutilities

wouldimprovetheestimationoftheeffectofdecouplingmechanismsonlevelof

DSMspending.Morein‐depthresearchofthedeterminantsofDSMinvestmentand

thespecificregulatorpoliciesconcerningDSMinvestmentwouldalsoassistin

understandingtheinterplaybetweenincentivestructure,levelofDSMinvestment,

andefficacyofDSMinvestment.Withthisadditionalresearchwillcomeaneven

greaterunderstandingoftheeffectsofdecouplingmechanismsonenergyefficiency.

50

References

ACEEE(AmericanCouncilforanEnergy‐EfficientEconomy)(2011).“StateEnergyEfficientPolicyDatabase”.AmericanCouncilforanEnergy‐EfficientEconomy.Availableat:http://www.aceee.org/sector/state‐policy

Ackerman,FrankandElizabethA.Stanton(2008).“WhatWe’llPayifGlobal

WarmingContinuesUnchecked.”NaturalResourceDefenseCouncilReportMay2008.Availableat:http://www.nrdc.org/globalwarming/cost/cost.pdf

AGA(AmericanGasAssociation)(2007).“UpdateonRevenueDecoupling

Mechanisms.”NaturalGasRateRound‐UpApril2007.Availableat:www.epa.state.il.us/air/climatechange/documents/subgroups/power‐energy/aga‐update‐on‐revenue‐decoupling‐mechanisms.pdf

Arimura,ToshiH.,ShanjunLi,RichardG.Newell,andKarenPalmer(2011).“Cost‐

EffectivenessofElectricityEnergyEfficiencyPrograms.”ResourcesfortheFutureDiscussionPaperRFFDP09‐48‐REVrevisedApril2011.Availableat:http://www.rff.org/RFF/Documents/RFF‐DP‐09‐48‐REV.pdf

Asif,M.andT.Muneer(2007).“Energysupply,itsdemandandsecurityissuesfor

developedandemergingeconomies.”RenewableandSustainableEnergyReviews11(7):1388‐1413

Auffhammer,Maximilian,CarlBlumstein,andMeredithFowlie(2008).“Demand

SideManagementandEnergyEfficiencyRevisited.”EnergyJournal29(3):91–104

Baumann,David(2008).“TheEffectsofGovernmentalEnergyEfficiencyActivities

onElectricityConsumption–AnEconometricAnalysis.”LBJSchoolofPublicAffairs

Bhole,BhuratandSunitaSurana(2011).“ElectricityPricesandStateCommitment

toEnergyEfficiencyintheU.S.”EnergyEfficiency4:9‐16Blomquist,Glenn(1974).“TheEffectofElectricUtilityPowerPlantLocationonArea

PropertyValue.”LandEconomics50(1):97‐100Boonin,DavidM.(2009).“ARateDesigntoIncreaseEfficiencyandReduceRevenue

Requirements”ElectricityJournal22(4):68‐78Brennan,Tim(2009).“TheChallengesofClimateforEnergyMarkets.”RFF

DiscussionPaperNo.09‐32.

51

Brennan,Tim(2008)."’NightoftheLivingDead’or‘BacktotheFuture’?ElectricUtilityDecoupling,RevivingRate‐of‐ReturnRegulation,andEnergyEfficiency.”RFFDiscussionPaperNo.08‐27.

Brennan,Tim(2009)."OptimalEnergyEfficiencyPoliciesandRegulatoryDemand‐

SideManagementTests:HowWellDoTheyMatch?"RFFDiscussionPaperNo.08‐46

Brookings(2011).“EnergySecurityInitiative.”AccessedNov2011.Availableat:

http://www.brookings.edu/projects/energy‐security.aspxBryce,Robert(2010).“ABadBetOnCarbon.”TheNewYorkTimes.Availableat:

http://www.nytimes.com/2010/05/13/opinion/13bryce.htmlBureauofEconomicAnalysis(2011).“RegionalData:GDP&PersonalIncome.”U.S.

DepartmentofCommerceaccessedNov2011.Availableat:http://www.bea.gov/iTable/iTable.cfm?reqid=70&step=1&isuri=1&acrdn=1

Costello,Ken(2011).“SomeAdvicetoRegulatorsonFormulaRatePlans.”

ElectricityJournal24(2):44‐54CSI(CenterforStateInnovation)(2008).“UtilityRateDecoupling:Conserving

Energy:APolicyBriefbytheCenterforStateInnovation”CenterforStateInnovation.Availableat:http://www.stateinnovation.org/Publications/All‐Publications/Utility‐Rate/UtilityRates.aspx

Costa,DoraL,andMathewE.Kahn(2010).“WhyHasCalifornia’sResidentialElectricityConsumptionBeenSoFlatSincethe1980’s?AMicroeconometricApproach.”NationalBureauofEconomicResearchWorkingPaper15978.

Edelstein,PaulandLutzKilian(2009).“Howsensitiveareconsumerexpendituresto

retailenergyprices?”JournalofMonetaryEconomics56(6):766‐779ECW(EnergyCenterofWisconsin)(1997).“Market‐BasedUtilityDSMPrograms.”

Report,Aug1997.Availableat: www.ecw.org/ecwresults/162‐1.pdf

EIA(U.S.EnergyInformationAdministration)(1997).“ElectricityPricingina

CompetitiveEnvironment:MarginalCostPricingofGenerationServicesandFinancialStatusofElectricUtilities.”EnergyInformationAdministration–OfficeofIntegratedAnalysisandForecasting.Availableat:ftp://ftp.eia.doe.gov/electricity/0614.pdf

52

EIA(U.S.EnergyInformationAdministration)(2011).“FormEIA‐826DataMonthlyElectricUtilitySalesandRevenueData.”DepartmentofEnergy/EnergyInformationAdministration.Availableat:http://www.eia.gov/cneaf/electricity/page/eia826.html

EIA(U.S.EnergyInformationAdministration)(2011).“FormEIA‐861FinalDataFile

for2010.”DepartmentofEnergy/EnergyInformationAdministration.Availableat:http://www.eia.gov/cneaf/electricity/page/eia861.html

EnerStar(2012).“PowerCostAdjustment–FrequentlyAskedQuestions.”Accessed

Apr2012.Availableat:http://www.enerstar.com/ms_power_cost_adj.html

EnergyStar(2012).“LightBulbsforConsumers.”AccessedFeb2012.Availableat:

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=LB

EPA(EnvironmentalProtectionAgency)(2007).“AligningUtilityIncentiveswith

InvestmentinEnergyEfficiency:AResourceoftheNationalActionPlanforEnergyEfficiency.”EnvironmentalProtectionAgency.Availableat:http://www.epa.gov/cleanenergy/documents/suca/incentives.pdf

Espey,JamesA.,Espey,Molly,(2004)“TurningontheLights:AMeta‐analysisof

ResidentialElectricityDemandElasticities,”JournalofAgriculturalandAppliedEconomics,36(1):pp.65‐81

Eto,Joseph,StevenStoft,andTimothyBelden(1994).“TheTheoryandPracticeof

Decoupling.”LawrenceBerkeleyLaboratory.Availableat:http://escholarship.org/uc/item/9gp741dm;jsessionid=5E68872CEE40922AE7945995A9724D59#page‐1

GIllingham,Kenneth,RichardNewell,andKarenPalmer(2009).“EnergyEfficiency

EconomicsandPolicy.”ResourcesfortheFutureDiscussionPaper09‐13April2009

GIllingham,Kenneth,RichardNewell,andKarenPalmer(2006).“EnergyEfficiency

Policies:ARetrospectiveExamination.”AnnualReviewEnvironmentalResources31:161‐92

Glaeser,EdwardL,andMathewE.Kahn(2008).“TheGreennessofCities:Carbon

DioxideEmissionsandUrbanDevelopment.”WorkingPaper14238NationalBureauofEconomicResearchAug2008

53

Graniere,RobertJ,Cooley,Anthony(1994).“DecouplingandPublicUtilityRegulation.”TheNationalRegulatoryResearchInstituteReportNRRI94‐14Aug1994.Availableat:http://nrri.org/pubs/electricity/94‐14.pdf

Hausman,Jerry(1979).“IndividualDiscountRatesandthePurchaseand

UtilizationofEnergy‐UsingDurables.”BellJournalofEconomics,10(1):33–54

Hansen,D.G.(2007).“AReviewofNaturalGasDecouplingMechanismsand

AlternativeMethodsforAddressingUtilityDisincentivestoPromoteConservation.UtahDepartmentofPublicUtilities,DocketNo.05‐057‐T01,DPUExhNo.6.1(DGH‐A.1)

Holland,S.P.,Mansur,E.T.(2008).“IsReal‐TimePricingGreen?:TheEnvironmental

ImpactsofElectricityDemandVariance.”ReviewofEconomicsandStatistics90(3):550‐561

Hurley,Doug,KenjiTakahashi,BruceBlewald,JenniferKallay,andRobinMaslowski

(2008).“CostsandBenefitsofElectricUtilityEnergyEfficiencyinMassachusetts.”SynapseEnergyEconomics,IncFinalReport.August2008.Availableat:http://www.synapse‐energy.com/Downloads/SynapseReport.2008‐08.0.MA‐Electric‐Utility‐Energy‐Efficiency.08‐075.pdf

IPCC(IntergovernmentalPanelonClimateChange)(2007).“ClimateChange2007:

SynthesisReport.”IPCCFourthAssessmentReport:ClimateChange2007.Availableat:http://www.ipcc.ch/publications_and_data/ar4/syr/en/mains2‐1.html

IMF(InternationalMonetaryFund)(2012).WorldEconomicOutlookdata.Accessed

2012.Ito,Koichiro(2010).“Doconsumersrespondtomarginaloraverageprice?Evidence

fromnonlinearelectricitypricing.”UniversityofCalifornia,BerkeleyDraftPaper.Availableat:http://ecnr.berkeley.edu/vfs/PPs/ItoKoi/web/JMP_Koichiro_Ito_UC_Berkeley_2010_1122.pdf

Jaffe,AdamB.,andRobertN.Stavins(1995).“DynamicIncentivesofEnvironmental

Regulations:TheEffectsofAlternativePolicyInstrumentsonTechnologyDiffusion.”JournalofEnvironmentalEconomicsandManagement29(3):43–63

54

Joskow,Paul,andDonaldMarron(1992).“WhatDoesaNegawattReallyCost?EvidencefromUtilityConservationPrograms.”EnergyJournal13(4):41–74

Kahn,MathewE.andErinT.Mansur(2011).“DoLocalEnergyPricesandRegulation

AffecttheGeographicConcentrationofEmployment?ABorderPairsApproach.”NationalBureauofEconomicResearchWorkingPaper16538Jun2011.Availableat:ei.haas.berkeley.edu/pdf/working_papers/WP209.pdf

Kihm,Steven(2009).“WhenRevenueDecouplingWillWork…AndWhenItWon’t.”

ElectricityJournal22(8):19‐28Kotchen,MathewJandMichaelR.Moore(2007).“Privateprovisionof

environmentalpublicgoods:Householdparticipationingreen‐electricityprograms.”JournalofEnvironmentalEconomicsandManagement53:1‐16

Lazer,Jim,FrederickWeston,andWayneShirley(2011).“RevenueRegulationand

Decoupling:AGuidetoTheoryandApplication.”TheRegulatoryAssistanceProject(RAP)Jun2011.Availableat:www.raponline.org/document/download/id/902

LeagueofConservationofVoters(2010).“NationalEnvironmentalScorecard09:

SecondSession111thCongress,”LeagueofConservationofVoters.Availableat:http://www.lcv.org/scorecard/past‐scorecards/pdf/scorecare‐2010.pdf

LeagueofConservationofVoters(2011).“PastScorecards.”LeagueofConservation

ofVoters.Availableat:http://www.lcv.org/scorecard/past‐scorecards/

Lesh,PamelaG.(2009).“RateImpactsandKeyDesignElementsofGasandElectric

UtilityDecoupling:AComprehensiveReview.”ElectricityJournal22(8):65‐71

Linn,Joshua(2008).“EnergyPricesandtheAdoptionofEnergy‐SavingTechnology.”

TheEconomicJournal118(533):1986‐2012Loughran,DavidS.,andJonathanKulick(2004).“Demand‐SideManagementand

EnergyEfficiencyintheUnitedStates”.EnergyJournal25(1):19–41MagaliDelmas,MichaelV.Russo,MariaJ.Montes‐Sancho(2005)."Deregulationand

ResourceReconfigurationInTheElectricUtilityIndustry"UniversityofCaliforniaEnergyInstituteApril2005.Availableat:http://www.ucei.berkeley.edu/PDF/EPE_012.pdf

55

McCarthy,KevinE.(2009).“ElectricRateDecouplinginOtherStates.”OLRResearchReportJan2009.Availableat:http://www.cga.ct.gov/2009/rpt/2009‐R‐0026.htm

McKinsey&Company(2007).“ReducingU.S.GreenhouseGasEmissions:HowMuch

atWhatCost?”US.GreenhouseGasAbatementMappingInitiativeExecutiveReport

MenekenH.L.(2007).“RevenueDecoupling:APolicyBriefoftheElectricity

ConsumersResourceCouncil.”TheElectricityConsumersResourceCouncilJan2007

Michelfelder,Richard(1993).“EvolvingElectricUtilityRegulatoryPolicy:

InternalizingtheSocialCostsofProduction.”TheAmericanJournalofEconomicsandSociology52(2)227‐239.Availableat:http://www.jstor.org/stable/3487062

Moore,ThomasG.(1970).“TheEffectivenessofRegulationofElectricUtilityPrices.”

SouthernEconomicJournal36(4):365‐375Musti,Sashank,KatherineKortum,andKaraM.Kockelman(2011).“Household

energyuseandtravel:Opportunitiesforbehavioralchange.”TransportationResearchPartD1649‐56.]

NARUC(NationalAssociationofRegulatoryUtilityCommissioners)(2007).

“DecouplingofElectric&GasUtilities:FrequentlyAskedQuestions(FAQ).”NationalAssociationofRegulatoryUtilityCommissioners2007.Availableat:http://www.naruc.org/Publications/NARUCDecouplingFAQ9_07.pdf

NationalWeatherServiceClimatePredictionCenter(2012).“DegreeDaysStatistics.”

AccessedFeb2012.Availableat:http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/

Parformak,PaulW.,andLesterB.Lave(1996).“HowManyKilowattsAreina

Negawatt?Verifying‘ExPost’EstimatesofUtilityConservationImpactsattheRegionalLevel.”EnergyJournal17(4):59–88

PSC(DelawarePublicServiceCommission)(2007).“BeforethePublicService

CommissionoftheStateofDelaware,intheMatteroftheInvestigationofthePublicServiceCommissionintoRevenueDecouplingMechanismsforPotentialAdoptionandImplementationbyElectricandNaturalGasUtilitiesSubjecttotheJurisdictionofthePublicServiceCommission”.PSCRegulationDocketNo.59Mar2007

56

PSC(PublicServiceCommissionofWisconsin)(2001).“TypicalStepsinaMajorRateCase.”PublicServiceCommissionofWisconsin.Availableat:psc.wi.gov/thelibrary/publications/general/general04.pdf

PUCO(PublicUtilitiesCommissionofOhio)(2011).“RateCaseProcess.”Public

UtilitiesCommissionofOhioaccessedOct2011.Availableat:http://www.puco.ohio.gov/puco/index.cfm/consumer‐information/consumer‐topics/rate‐case‐process/

Saad,Lydia(2011).“InU.S.,ExpandingEnergyOutputStillTrumpsGreenConcerns.”

Gallup.Mar2011.Availableat:http://www.gallup.com/poll/146651/Expanding‐Energy‐Output‐Trumps‐Green‐Concerns.aspx

Smil, Vaclav (2011), Energy Transitions: History, Requirements, Prospects. Praeger. Stern,N.(2008).“TheEconomicsofClimateChange.”AmericanEconomicReview

98(2):1‐37Train,KennethE.andJudiE.Strebel(1987).“EnergyConservationandRebatesin

CommercialFoodEnterprises.”AmericanAgriculturalEconomicsAssociation69(1):106‐114

57

AppendixA–ModelResultsTable1:

Regressions of Log Residential Energy Consumption Per Customer (1) (2) (3) (4)

OLS 2SLS 2SLS -

Robustness Pre-existing

Trend Decoupling -0.05** -0.01 -0.01 x10 (-2.509) (-0.550) (-0.600) DSM x 0.3411** 0.3711** 0.1012 (2.283) (2.390) (0.964) Decoupling*DSM x -0.3911** -0.4111** x (-1.981) (-2.005) Res. Customers -1.00*** -1.00*** -1.00*** -1.00*** (-405.390) (-407.717) (-407.849) (-743.815) Electricity Price x -1.47*** -1.42*** -0.11 (-3.185) (-3.039) (-0.090)

Natural Gas Price -0.1211 0.0811 0.0611 0.1311

(-0.712) (0.444) (0.355) (0.992) GDP 0.25** 0.26*** 0.24*** -0.13 (2.576) (2.785) (2.788) (-0.679) Pop 0.09 0.07 0.07 0.34* (0.941) (0.716) (0.744) (1.913) Personal Income -0.2711 -0.2211 -0.2211 -0.9411*** (-1.610) (-1.296) (-1.219) (-6.909) EERS 0.01 0.02 x 0.01 (0.794) (1.320) (0.786) Env. Sensitivity 0.0311 0.02 x -0.02 (1.208) (0.928) (-1.209) CDD 0.1111*** 0.1111*** 0.1111*** 0.1211*** (13.443) (13.338) (13.368) (27.607) HDD 0.0211*** 0.0211*** 0.0211*** 0.0411*** (5.463) (5.248) (5.243) (28.215) Year x x x 0.02** (2.394) Year*Decoupling x x x 0.01** (2.082) √ √ √ √

Controlled for Utility

√ √ √ x

Controlled for Time

2.70**

Constant (2.465)

N 44,718 44,656 44,656 21,263 R2 0.986 0.977 0.977 0.983 t-statistics clustered on utility in parentheses *** p<0.01, ** p<0.05, * p<0.1

10Omittedbecauseofcollinearity11Coefficientmultipliedby100

58

Table2:Regressions of Log Total Annual Utility DSM

Expenditures (1) (2) (3) OLS Tobit Quantile Decoupling 0.04 0.05 0.34* (0.074) (0.090) (1.855) Res. Customers -0.01 -0.00 -0.00 (-0.147) (-0.084) (-0.169) GDP 1.86 2.51 -0.11 (0.581) (0.668) (-0.204) Pop 1.04 1.39 1.78* (0.250) (0.303) (1.836) Personal Income -0.09 -0.15 0.00 (-0.578) (-0.788) (0.000) EERS 1.96 2.02 0.72*** (1.415) (1.423) (2.804) Env. Sensitivity 0.01 0.01 0.00 (1.004) (1.194) (0.315) CDD 0.00 0.00 -0.00 (0.379) (0.415) (-0.000) HDD -0.00 -0.00 -0.00 (-0.157) (-0.139) (-0.000) Controlled for Utility √ √

Controlled for Time √ √

Constant -13.98 -21.38 9.01 (-0.413) (-0.533) (1.569) N 1,502 1,502 1,501 (Pseudo) R2 0.901 0.291 0.727 t-statistics in parentheses (clustered on utility for OLS and Tobit) *** p<0.01, ** p<0.05, * p<0.1

59

Table3:First-Stage Regressions of Residential Electricity Price (1) (2) (3) Decoupling 0.00 0.01* 0.00 (0.772) (1.849) (0.718) DSM -0.00 x 0.00 (-0.167) (0.050) Decoupling*DSM 0.1012* x 0.1012 (1.699) (1.648) Res. Customers -0.00 -0.00 -0.00 (-0.516) (-0.463) (-0.559) Natural Gas Price 0.0412*** 0.0412*** 0.0412*** (3.761) (3.608) (3.531) GDP 0.00 0.00 -0.00 (0.082) (0.176) (-0.129) Pop -0.02 -0.02 -0.02 (-0.991) (-1.081) (-1.009) Personal Income 0.0312* 0.0312* 0.0312* (1.881) (1.850) (1.949) EERS 0.00 0.00 x (1.141) (1.128) Env. Sensitivity 0.0112 0.0112 x (1.537) (1.512) CDD 0.00 0.00 0.00 (0.287) (0.295) (3.531) HDD -0.0112*** -0.0112*** -0.0112*** (-5.585) (-5.581) (-5.622) 0.0213** 0.0213** 0.0213**

% Gen Coal*Price Coal (2.459) (2.485) (-3.585)

0.0413*** 0.0413*** 0.0413***

% Gen Gas*Price Gas (9.317) (9.316) (2.394)

-0.0213*** -0.0213*** -0.0213*** % Gen Oil*Price Oil (-4.942) (-4.979) (9.319) -0.0313*** -0.0313*** -0.0313***

% Gen Renew*Price Coal (-3.551) (-3.689) (-4.926)

√ √ √

Controlled for Utility

√ √ √

Controlled for Time

0.13 0.12 0.16

Constant (0.996) (0.925) (1.211)

N 44,656 44,656 44,656 R2 0.900 0.900 0.900 t-statistics clustered on utility in parentheses *** p<0.01, ** p<0.05, * p<0.1

12Coefficientmultipliedby10013Coefficientmultipliedby10,000

60

Table4:

Probit Regressions of Probability of Decoupling (1) (2) (3) Res. Sales per Customer - 2001 0.28*** 0.23***

0.23*** (3.097) (3.333) (2.929)

Res. Customers - 2001 0.18*** 0.20*** 0.19*** (2.672) (2.627) (2.668) GDP per capita - 2001 2.28** 2.80*** 2.29** (2.569) (2.690) (2.575) Personal Income - 2001 -0.15 -0.11 -0.14 (-1.138) (-0.712) (-1.094) EERS - 2001 -0.38 0.59 -0.38 (-1.148) (1.203) (-1.130) Env. Sensitivity - 2001 0.01** 0.01** 0.01** (2.141) (2.087) (2.153) CDD - 2001 0.1414 0.1214 0.1314 (1.265) (0.929) (1.269) HDD - 2001 -0.0114 -0.0114 -0.0114 (-0.330) (-0.136) (-0.319) Electricity Price - 2001 5.07 3.20 5.01 (1.220) (0.653) (1.199) % Gen from Coal - 2001 -0.01 -0.01 -0.01 (-1.581) (-1.254) (-1.591) % Gen from Gas - 2001 -0.01 -0.02* -0.01 (-1.314) (-1.724) (-1.310) % Gen from Renewables - 2001 -0.01 -0.01

-0.01 (-0.822) (-0.718) (-0.839)

Δ15 Res. Sales per Customer 0.56 0.02

x (0.995) (0.288)

Δ Res. Customers x 0.56 x (0.978) Δ GDP per capita x 5.21 x (1.522) Δ EERS x 1.67** x (2.313) Δ Env. Sensitivity x 0.01 x (.721) Δ Electricity Price x 9.01 x (1.247)

Constant -26.24*** -32.68*** -26.42***

(-2.783) (-2.898) (-2.793) N 384 384 384 Pseudo R2 0.347 0.421 0.348 z-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1

14Coefficientmultipliedby10015Δ=value2005–value2001

61

AppendixB–VariableDescriptionsResidentialelectricityconsumptionpercustomer~Inaccordancewiththe

techniquesofArimuraetal.(2011)andLoughranandKulick(2004),variableson

monthlyresidentialenergyconsumptionpercustomerforeachutilityandyear

werecalculatedfrommonthlyenergyconsumptiondatafromFormEIA‐826and

annualenergycustomerbysectordatafromFormEIA‐861.Foreachutility,year,

andsector,monthlyconsumptiondataweredividedbythecorrespondingnumber

ofcustomersforthatyeartoattainestimatedelectricityconsumptionpercustomer.

Consumptionismeasuredinmegawatthours(MWh).Thisanalysisusesthenatural

logarithmoftheresidentialelectricityconsumptionpercustomer.Thisstudyuses

nominalconsumption,althoughtheuseofrealconsumptionwouldnotalterthe

resultsduetolinearityofthelogarithmicfunction16.

DSM~DataonannualtotalutilityspendingonDSMprograms(measuredin

dollars)wereextractedfromFormEIA‐861.Thisvariableshouldreflectallofa

utility’snominalspending–directandindirect–inagivenyearonDSMprograms.

Tokeeputilitieswith$0DSMexpenditureinthedata,thevariableusedinthe

analysisisthenaturallogarithmof1+nominalDSMspending.

Intheory,theDSMvariableshouldcaptureonlyspendingonresidentialDSM

andshouldbemeasuredperresidentialcustomer.Unfortunately,DSMspending

wasnotbrokendownbysectorformostoftheyearsinthisstudy.Dataonthe

breakdownofDSMexpendituresbyutilityin2010,however,areavailable.In2010,

lessthanhalfofDSMexpenditureswereusedforprogramsintheresidentialsector.

ThisintroducesconsiderablemeasurementerrorinthemeasureofDSM.

DSMspendingdataismissingforsomeutilitiesinsomeyearsinEIAForm

EIA‐861.Thisispresumablybecausemanyutilitieschosetowithholdinformation

ontheirDSMspendingfromtheEIAduringyearswhentheirspendingislowor16log(realconsumption)=log(nominalconsumption/priceindex)=log(nominalconsumption)–log(priceindex)=log(nominalconsumption)–c1.Iflog(realconsumption)=BX+c2,thenlog(realconsumption)=BX+(c1+c2)=BX+c3wherec’sdenoteconstants.Thus,onlytheconstanttermisaffectedbythischoice.

62

nonexistent.Inthispaper,weassumethatutilitieswhodonotsubmitinformation

ontheirDSMspendinghadnoDSMspending.

Preliminaryanalysisexperimentedwiththenaturallogarithmsof1+total

DSMexpenditureand1+DSMexpenditurepercustomer.Bothhaveobviousflaws.

WhichisbetterdependsonthenatureofchangesinutilityDSMspendingovertime.

TheresultswhenDSMisthedependentvariablearesimilarregardlessofchoiceof

measure.WhenDSMisusedasanexplanatoryvariable,preliminaryanalysis

suggestedthattheformermeasurehadgreaterexplanatorypowerandistherefore

thefocusofthisanalysis.

Decoupling~Adummydecouplingvariablewascreatedusinginformationfrom

ACEEEandfromvariousonlinedockets.Thisvariabletakesthevalue1ifthe

specifiedutilityhadanytypeofdecouplingmechanisminplaceinthegivenmonth

andyear,andittakesthevalue0otherwise.

ResidentialCustomers~Annualdataonnumberofresidentialcustomersper

utilitywereretrievedfromFormEIA‐861.Thenaturallogarithmofnumberof

customerswasusedinthisanalysis.

ElectricityPrice~Monthlyutilityelectricityresidentialretailpriceswere

retrievedfromFormEIA‐826.Pricesareinunitsof$/kWh.

RetailNaturalGasPrice~Followingtheliterature,naturalgaspriceisincludedin

themodelsbecauseitisapotentialsubstituteforelectricity.Monthlyresidential

naturalgaspricesbystatewereacquiredfromtheEIANaturalGasPrices

ResidentialPriceDataSeries.Naturalgaspricesareindollarspercubicfeet.

GDP~InkeepingwithArimuraetal.(2011)andLoughranandKulick(2004),data

onannualnominalGDPpercapitabystatewereretrievedfromtheBureauof

EconomicAnalysisfortheyears2001‐2010.GDPismeasuredinthousandsof

63

currentdollars.ThenaturallogarithmofGDPwasusedintheanalysis.Eachannual

valuewasusedforallmonthlyobservationsinagivenstateandyear.

QuarterlyPersonalIncome~Dataonstatequarterlypersonalincomeinmillions

ofnominaldollarswereobtainedfromtheBureauofEconomicAnalysis.The

naturallogarithmofpersonalincomewasusedinthisanalysis.

Pop~AvariableforannualpopulationwascomputedusingannualstateGDPand

annualper‐capitastateGDPfromtheBureauofEconomicAnalysis.Thenatural

logarithmpopulationwasusedintheanalysis.Eachannualvaluewasusedforall

monthlyobservationsofconsumptioninagivenstateandyear.

EERS~AdummyvariableforwhetherornotthestatehadanEnergyEfficiency

ResourceStandardinplaceduringthegivenmonthandyearwasgeneratedbased

ondatafromACEEEandvariousdockets.

EnvironmentalSensitivity~Usingsimilarmethodstothoseofpreviousstudieson

electricityconsumption(Delmasetal.2005,Arimuraetal.2011),anannual

environmentalsensitivityratingwascalculatedforeachstatebasedonscoresfrom

theLeagueofConservationVoter’sNationalEnvironmentalScorecards.Thisrating

averagestheLeagueofConservationVoter‘smeanscoresofthepoliticiansinthe

houseandinthesenateofeachstate.Theratingsareonascaleof0to100andare

basedonhowthepoliticiansvoteonkeyenvironmentallegislation.

CDDandHDD~Population‐weightedmonthlyheatingandcoolingdegreedaysby

statewerecompiledfromtheNationalWeatherServiceClimatePredictionCenter

archiveddegreedaysstatistics.Experimentswithvariousclimateindicatorsand

functionalformsofCDDandHDDsuggestthattherespectivelinearmodelsbest

capturetherelationbetweenclimateandpercapitaenergyconsumption.

64

%GenerationfromOil/Coal/Gas/Renewables~Thesevariablesrepresentthe

percentageofelectricityinthegivenstatethatwasgeneratedin2005usingeachof

oil,coal,naturalgas,andenergyfromvariousrenewableenergysources,

respectively.ThesedatawereretrievedfromtheEIAwebsite.

USOil/Gas/CoalPrices~Theseseriesreflecttheinputpricesfacedbyproducers

ofelectricity.TheserieswereprocuredfromtheEIAwebsite.USoilrefinerprices

andnaturalgascitygatepriceswereavailableonamonthlylevel.UScoalprices

wereonlyavailableontheannuallevel.

AustralianThermalCoalPrice~MonthlydataonAustralianthermalcoalprice,a

prominentcoalpriceindex,weretakenfromtheInternationalMonetaryFund.

PricesareinU.S.dollarspermetricton.

i.Time~Eachobservationofthevariable,time,representsthemonth(ex‐February

2001)whenthecorrespondingconsumptionoccurred.Thisvariablewas

partitionedinto119variables,oneforeachofthemonthsexceptforJanuary2001.

Together,thesevariablescaptureallnationwidetimeandseasonaldiscrepancies.

i.UtilityID~EachutilityintheU.S.hasauniqueidentificationnumber.Dataonthe

variable,UtilityID,wereretrievedfromFormsEIA‐826andEIA‐861.Itdistinguishes

eachutilityinthedatasetsfromotherutilities.Additional,unofficialID’swere

createdforutilitiesthatextendedtomultiplestatestoenabletheseentitiestobe

treatedasuniqueutilities.Onedummyvariablewascreatedforeachutility.For

eachobservation,thevalueofoneofthesevariablesisoneandthevaluesoftherest

arezero.