33
Acknowledgments for Collaboration: G. Mourou, W. Brocklesby, K. Nakajima, R. Hajima, S. Gales, K. Homma, M. Kando, S. Bulanov, T. Esirkepov, , F. Krausz, W. Leemans, B. LeGarrec, J. Miquel, D. Payne, P. Martin, A. Suzuki, R. Assmann, R. Heuer, M. Spiro, W. Chou, M. Velasco, J.P. Koutchouk, X. Q. Yan, M. Yoshida, T. Massard, G. Cohen-Tannoudji, V. Zamfir, C. Barty, T. Ebisuzaki, R.X. Li, K. Abazajian, S. Barwick, J. Limpert, D. Payne, K. Koyama, A. Suzuki, Y. Okada ASEPS Chiba, Japan July 16, 2013 The Future is Fiber Laser Accelerators* T. Tajima IZEST and UCI * Nature Photon. 7, 258 (2013)

The Future is Fiber Laser Accelerators* 3 Tajima.pdfBrief History of ICUIL – ICFA Joint Effort– ICUIL Chair (Tajima) sounded on A. Wagner (Chair ICFA) and Suzuki (incoming Chair)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Acknowledgments for Collaboration: G. Mourou, W. Brocklesby, K. Nakajima, R. Hajima, S. Gales, K. Homma, M. Kando, S. Bulanov, T. Esirkepov, , F. Krausz, W. Leemans, B. LeGarrec, J. Miquel, D. Payne, P. Martin, A. Suzuki, R. Assmann, R. Heuer, M.

Spiro, W. Chou, M. Velasco, J.P. Koutchouk, X. Q. Yan, M. Yoshida, T. Massard, G. Cohen-Tannoudji, V. Zamfir, C. Barty, T. Ebisuzaki, R.X. Li, K. Abazajian, S. Barwick, J. Limpert, D. Payne, K. Koyama, A. Suzuki, Y. Okada

ASEPS Chiba, JapanJuly 16, 2013

The Future is Fiber Laser Accelerators*

T. Tajima IZEST and UCI

* Nature Photon. 7, 258 (2013)

content• High fields that break matter, but keep order

Guiding principle for order: not atomic cohesion (quantum coherence), but relativistic coherence

• High energy accelerators by laser• Low luminosity opportunities in high energies• Luminosity issue for collider---ICUIL-ICFA Joint Task• Answer to high rep rate and high efficiency fiber laser (CAN)• Laser (not charged particles) collider for Dark Fields search• CAN lasers : enabling technology also for industrial and societal

applications: compact radiation oncology, directed gamma beams (nuclear medicine and pharmacology), homeland security, transmutation of nuclear wastes (ADS, etc.) , ….

• Movie: about the future of CAN lasers

High Field Science Supporters:CERN

Rolf HeuerCERN Director General

New Paradigm

PeV

TeV

Standard ModelQuarksLeptons

Extra dimensionDark matterSupersymmetry

LeptogenesisSUSY breaking

Atsuto Suzuki:KEK Director General,

Former ICFA Chair

IZEST’s Mission:Responding to Suzuki’s Challenge

Greetings from Michel Spiro(Former) President of CERN Council

As President of the CERN Council, I would like to express our interest and warm support in developing new ultra highgradient techniques of particle acceleration.Plasma acceleration seems a very promising avenue. The IZEST project is a bold and fierce adventure. It willopen the way to a new generation of ultra high energyand compact accelerator and give access to totally new physics like probing quantum vacuum and testing thebasic laws of physics. I wish great success to the IZEST conference and to the IZEST project.

Best wishes,Michel

[Court. A. Oeftinger(CERN]

(http://tesla.desy.de/~rasmus/media/Accelerator%20physics/slides/Livingston%20Plot%202.html)

Livingston Chart and Recent Saturation

(Suzuki, 2009; further corrected 2013)

ICUIL 2012 Mourou

Vacuum PolarizationIZEST C3

Extreme Light Road Map

MeV

eV

MeV

GeV

TeV

J

MJ

kJ

mJ

p pEp=mpc2

e 0Ee=m0c2

LMJ/NIF, 2MJ, 3B€

ELI, kJ 0.3 B€

Brief History of ICUIL – ICFA Joint Effort– ICUIL Chair (Tajima) sounded on A. Wagner (Chair ICFA) and Suzuki

(incoming Chair) of a common interest in laser driven acceleration, Nov. 2008

– ICFA GA invited Tajima for presentation by ICUIL and endorsed initiation of joint efforts on Feb. 13, 2009

– Joint Task Force formed of ICFA and ICUIL members, W. Leemans, Chair, Sept, 2009

– First Workshop by Joint Task Force held @ GSI, Darmstadt, April, 2010– Report to ICFA GA (July,2010) and ICUIL GA (Sept, 2010) on the findings– EuroNNAc Workshop on Novel Accelerators (CERN, May, ’11)– Publication of Joint Task Force Report (Dec. 2011)– Start of ICAN Workshop Series @ CERN (Feb., 2012)– US DOE AAC Workshop on advanced laser tech (2013)– Final ICAN Conference @ CERN (June, 2013) next phase ICAN-B

Laser Wakefield (LWFA): nonlinear optics in plasma

Kelvin wake

Wave breaks at v<cNo wave breaks and wake peaks at v≈c

(The density cusps.Cusp singularity)

(Plasma physics vs.String theory)

← relativityregularizes

(relativistic coherence)

Maldacena (string theory) method: QCD wake (Chesler/Yaffe 2008)

Hokusai

Maldacena

Laser driven collider concept

High-density design (Xie,97; Leemans,09)ICFA-ICUIL Joint Task Force on Laser Acceleration(Darmstadt,10)

a TeV colliderLaser energy: UL ~ n0

-3/2

Total wall plug power (Low-density Nakajima: Pwall ~ n0

3/2 )

210nPNP avgstagewall

12

Density scalings of LWFA

for collider

_______________________ _____

(Nakajima, PR STAB, 2011) 1018 /cc (conventional) → 1016 /cc

_________________________________________ _________

Etat de l’Art (HEEAUP 2005): collider consideration

LIL

1 J

1 k J

100 J

10 J

10 k J

100 k J

1 M J

10 M J

0,1 J

LULI

LMJ/NIF

10 210110 -110 -210 -310 -410 -5

LULI 100TW

Commercial

LULI 2000pico 2000

Taux de répetition (Hz)

100J/10HzLuli

150J/.1HzJena

104

Laser Fusion15MW Linear Accelerator

100MW

Mourou (2005)Mourou/ICAN (2013); Nakajima (2011)

IZEST(International Center for Zetta- Exawatt Science and Technology)

aspires to push the average powerof ultraintense laser from Watt to MW

(ICAN-International Coherent Amplification Network)

polar. controller

1W PMEDFAs

16 × 4-channels PLZT phase modulators far-field

observation

laser output

Phase processing and feedback loop

1×2 splitters

1×16 splitters

1W PM EDFA

Laser diode1.55µm

2:1image relay

fiber array

lenslet array

QWLSI

J. Bourderionnet, A. Brignon (Thales), C. Bellanger, J. Primot (ONERA)

Coherent Fiber Combining

Achievement 201164 phase-locked fibers

ICUIL 2012 Mourou

ICUIL 2012 Mourou

Smart control of laser

Emittance (and thus luminosity) of the particle beamrapidly increases with the jitters of laser [in multi-stage acceleration]smart control of laser contains jitters

We see:CAN laser property of smartness

higher rep rate, easier to operate CAN laserhigher rep rate, easier to feed-forward controlfeedforward control quality of beamsCAN laser : coherently connected (both in parallel, but also in tandem)each fiber (digital unit): coherently and digitally controllable

digitally controlled smart laser : a new paradigm

Linear collider (ILC @ 250GeV x 250GeV)~8MW (in beams), cost for accelerators ~ 4GEuro

~500Euro / W (beam)Laser-driven collider (if we design @ 250GeV x 250GeV)

same at 8MW (in beams)diode 7*Euro / W x 3 (to give total optics) = 21Euro/W

assume efficiencies: laser/wallplug =0.5, compressor=0.4, excitation of wake=0.4, acceleration=0.5. total efficiency = 0.04~500Euro/W (beam)

however, (1) far less other cost s.a. civil eng., (2) *could come down substantially(a) yet to be demonstrated. [laser path after the current plan]

Laser-driver for γ-γ collider (@80 x 80GeV)5J x 100kHz ~50MEuro (times ~2 for the total system)

Cost estimates (trial)

ICAN ConferenceCERN Geneva Switzerland

June 27 & 28, 2013ICAN Applications

Scientific : - Laser acceleration toward TeV- Higgs factory with γ-γ collider- Physics beyond the Standard Model: Dark Matter search with laser- ZeV astrophysics (astrophysical manifestation of wakefields)

(see T. Ebisuzaki and T. Tajima.: arXiv: 1306.0970 [astro-ph.HE] )

Societal: - Laser proton acceleration and applications:

- Neutron sources- Accelerator Driven System(ADS) for transmutation of

nuclear waste - Accelerator Driven Reactor(ADR) for safer energy production

- Laser-driven gamma beam applications:- Fukushima- Homeland security

Opportunities Enabled by CANCAN Fiber Laser Collider requirements

Average power luminosity rep rate x peak power

Efficiency costSmartness (digital control) emittanceIntensity gradient

γ-γ collider requirements1-50kHz rep rate (other reqs are easier)

Dark matter search average power luminosity

Proton accelerationintensity (energy of beam), smartness (beam quality), average power (fluence)R.

Ale

ksan

(Cou

rt. A

. Oef

tinge

r(CE

RN))

(γγ collider) (W. Chou et al.)

M. Velasco (Court. A. Oeftinger)

22

Beyond QED photon-photon interaction

√g

√g

M-1

mass m

M-1

√g

√g

FFgM 1

FFgM ~1

Resonance in quasi-parallel collisions in low cms energy

If M~MPlanck, Dark Energy

QCD-instanton, Dark Matter

])~(7)(4[3601 22

2

4 FFFFm

LQED

Away from 4 : 7 = QCD , low-mass scalar f , or pseudoscalar s(unlike Higgs, which is heavy fields for photon-photon interaction,)

FFFF ~

K.Homma, D.Habs, T.Tajima (2011)

arXiv:1006.1762 [gr-qc]Y. Fujii and K.Homma

Quantum anomaly

e.g. xw = 1w

Degenerate Four-Wave Mixing (DFWM)

Decay into (4-x)ω can be induced by frequency-mixing

.

23

K.Homma, D.Habs, T.TajimaAppl. Phys. B (2011)

Laser-induced nonlinear optics in vacuum (cf. Nonlinear optics in crystal)

Wirth et al. (Science 2011: synthesized light transients)

Sweep by arbitraryfrequency xw

Photon mixer’s road to unknown fields:dark matter and dark energy

24

Log

g/M

[1/

GeV]

K.Homma, D.Habs, T.Tajima (2011)

(Court. A. Oeftinger)

Mountain of Radioactive Junk at Nuclear Facility

B. Carluec(Court. A. Oeftinger(CERN))

Detection of nuclei in waste and/or containers

4618keV

28Si

1779keV 1322keV

79Se

1257keV

energy

intensity(ln)

Bremsstrahlung

Comptonγ線

励起 脱励起

Gamma at given energy level⇒ sensitive detection

Nuclear Resonance Fluorenscence Clearance 20B$(quantityreduction)

Segregation by radioactivity⇒ cost reduction

midlevel

deep

shallow

8MY/drum

3MY/drum

270kY/drum

光陰極電子銃

High fluence γ

High fluence laser

ERL

鉛スリット被測定物

Ge半導体検出器

散乱ガンマ線

フラックスモニタNaI検出器

Enhancement of γ flux over the conventional method by 107

廃棄物

SPring-8 experiment

~ 30m

Hajima(2007)

Sharp discriminatory capability of monoenergetic gamma rays

vs

Bremsstrahlung gamma rays Laser Compton gamma rays

C. Barty and T. Tajima (2008)

Nuclear Resonance fluorescence signal

TeV proton acceleration by LWFA

Ε i = (1/6) a02 (nc /ne) mc2

Snowplow LWFAof ions injected by RPAas injector at multi-GeV

0.5TeV overdephasing length of 1cm

Zheng et al., 2011

High Intensity regimeI = 1023 W/cm2

(using ELI type laser)

early Radiation PressureAcceleration of ions

Later setting up wakefield

↑ elec

↓ ions↓ saturation

stable LWFA of ions

10GeV-TeV proton Energy Scalings(RPA x LWFA )TeV over cm @ 1023W/cm2 (Zheng et al, 2012)10GeV over mm @ 1022W/cm2 (Zheng et al, 2013)200MeV @1021W/cm2 (Wang et al, 2013)

ICUIL 2012 Mourou

Superintense Alfven Shock in the Blackhole Accretion DiskWakefield Acceleration toward ZeV Cosmic Rays

Ebisuzaki and Tajima, submitted to Ap.J.(2013)

High field science frontier expandingLarge fluence, high efficiency of CAN lasers important for

many new scientific and societal applicationssmart laser : highly controllableLaser-driven accelerators for high energy physics collider in

particularHiggs factory by γ-γ collider emergingNew weak-coupling field search of vacuum by laserNuclear transmutation by laser-driven neutron sources, ADS,

ADRNon-contact detection of nuclear isotopes via laser

Compton gamma rays (Fukushima)Other industrial applications (auto-industry, chemical

industry, mechanical industry, medical, etc.) with large fluence and high efficiency lasers, as well as to astrophysics

Conclusions

Cosmic wakefield linac?

Thank you!