12
The physiology and biochemistry of the Paleolithic Diet for weight reduction David C. Pendergrass, Ph.D. University of Kansas

The physiology and biochemistry of the Paleolithic Diet for weight reduction

  • Upload
    pravat

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

The physiology and biochemistry of the Paleolithic Diet for weight reduction. David C. Pendergrass, Ph.D. University of Kansas. Glycolysis to Lipogenesis. TRPV1 Hypothesis. Nociceptor. Sensory Neuron. monocyte. β - cell. TRPV1 – Physiological Mediator. Nociception Inflammation - PowerPoint PPT Presentation

Citation preview

Page 1: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

The physiology and biochemistry of the Paleolithic Diet for weight reductionDavid C. Pendergrass, Ph.D.University of Kansas

Page 2: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

Glycolysis to Lipogenesis

Page 3: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

Sensory Neuron

monocyte

β- cell

Nociceptor

TRPV1 Hypothesis

Page 4: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

TRPV1 – Physiological Mediator• Nociception• Inflammation• Infection• Immunity: Exposure to TRPV1 agonists• Keratinocytes PGE2 & IL-8• PBMC apoptosis

• Alimentary tract:• Metabolism• Hair growth regulation • Cancer development

• Reduced obesity• Smooth muscle cell regulation• Anorexigenic signaling

Page 5: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

TRPV1 - • Agonists• Thermosensing >43C; pain• Protons (pH < 5.2)• Capsaicin• Depolarizing voltage > + 60 mv (outwardly rectifying)• Stretch

Page 6: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

TRPV1 -• Sensitizing molecules

• 17-β-estradiol• Anandamide• Olvanil• Omega-3 polyunsaturated FA• 12-hydroperoxyeicosatetranoic acid (12-HPETE)• N-arachidonyl dopamine (NADA)• 2-aminoethoxydiphenyl borate (2-APB)• Inflammatory mediators

• Growth factors• Neurotransmitters: bradykinin, serotonin, histamine, prostaglandins• Peptides and small proteins• Lipids• Chemokines• Cytokines

• Intracellular phosphorylation• PKC• PKA• Tyrosine receptors kinases • Ca2+/CAM Kinase

Page 7: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

TRPV1• Desensitizing molecules• PIP2

Page 8: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction
Page 9: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction
Page 10: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction
Page 11: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

Sing-a-long

• If you’re healthy and you know it:

• If you’re healthy and you know it, Modern People gotta show it, if you’re healthy and you know it:

• Eat GOOD meat• Don’t eat wheat• Eat GOOD fish• Make the switch• Eat your greens• Buy new jeans

Page 12: The physiology and biochemistry of the  Paleolithic  Diet for weight reduction

Bibliography• • Ahren, B. and M. Pettersson. "Calcitonin Gene-Related Peptide (Cgrp) and Amylin and the Endocrine Pancreas." Int J Pancreatol 6, no. 1 (1990): 1-15.• • Akiba, Y., S. Kato, K. Katsube, M. Nakamura, K. Takeuchi, H. Ishii and T. Hibi. "Transient Receptor Potential Vanilloid Subfamily 1 Expressed in Pancreatic Islet Beta Cells Modulates Insulin Secretion in Rats." Biochem Biophys Res Commun 321, no. 1 (2004): 219-25.• • Burcelin, R., W. Dolci and B. Thorens. "Glucose Sensing by the Hepatoportal Sensor Is Glut2-Dependent: In Vivo Analysis in Glut2-Null Mice." Diabetes 49, no. 10 (2000): 1643-8.• • Gao, H., K. Miyata, M. D. Bhaskaran, A. V. Derbenev and A. Zsombok. "Transient Receptor Potential Vanilloid Type 1-Dependent Regulation of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus Diminished in the Type 1 Diabetic Mouse." Diabetes 61, no. 6 (2012): 1381-90.• • Gonzalez, J. A., F. Reimann and D. Burdakov. "Dissociation between Sensing and Metabolism of Glucose in Sugar Sensing Neurones." J Physiol 587, no. Pt 1 (2009): 41-8.• • Gram, D. X., B. Ahren, I. Nagy, U. B. Olsen, C. L. Brand, F. Sundler, R. Tabanera, O. Svendsen, R. D. Carr, P. Santha, N. Wierup and A. J. Hansen. "Capsaicin-Sensitive Sensory Fibers in the Islets of Langerhans Contribute to Defective Insulin Secretion in Zucker Diabetic Rat, an Animal Model for Some Aspects

of Human Type 2 Diabetes." Eur J Neurosci 25, no. 1 (2007): 213-23.• • Guillot, E., A. Coste and I. Angel. "Involvement of Capsaicin-Sensitive Nerves in the Regulation of Glucose Tolerance in Diabetic Rats." Life Sci 59, no. 12 (1996): 969-77.• • Hu, S. S., H. B. Bradshaw, V. M. Benton, J. S. Chen, S. M. Huang, A. Minassi, T. Bisogno, K. Masuda, B. Tan, R. Roskoski, Jr., B. F. Cravatt, V. Di Marzo and J. M. Walker. "The Biosynthesis of N-Arachidonoyl Dopamine (Nada), a Putative Endocannabinoid and Endovanilloid, Via Conjugation of Arachidonic Acid

with Dopamine." Prostaglandins Leukot Essent Fatty Acids 81, no. 4 (2009): 291-301.• • Karlsson, S., A. J. Scheurink, A. B. Steffens and B. Ahren. "Involvement of Capsaicin-Sensitive Nerves in Regulation of Insulin Secretion and Glucose Tolerance in Conscious Mice." Am J Physiol 267, no. 4 Pt 2 (1994): R1071-7.• • Kreutter, D. K., S. J. Orena, A. J. Torchia, L. G. Contillo, G. C. Andrews and R. W. Stevenson. "Amylin and Cgrp Induce Insulin Resistance Via a Receptor Distinct from Camp-Coupled Cgrp Receptor." Am J Physiol 264, no. 4 Pt 1 (1993): E606-13.• • Noble, M. D., J. Romac, Y. Wang, J. Hsu, J. E. Humphrey and R. A. Liddle. "Local Disruption of the Celiac Ganglion Inhibits Substance P Release and Ameliorates Caerulein-Induced Pancreatitis in Rats." Am J Physiol Gastrointest Liver Physiol 291, no. 1 (2006): G128-34.• • Pettersson, M. and B. Ahren. "Insulin and Glucagon Secretion in Rats: Effects of Calcitonin Gene-Related Peptide." Regul Pept 23, no. 1 (1988): 37-50.• • Pettersson, M. and B. Ahren. "Calcitonin Gene-Related Peptide Inhibits Insulin Secretion Studies on Ion Fluxes and Cyclic Amp in Isolated Rat Islets." Diabetes Res 15, no. 1 (1990): 9-14.• • Pettersson, M., B. Ahren, G. Bottcher and F. Sundler. "Calcitonin Gene-Related Peptide: Occurrence in Pancreatic Islets in the Mouse and the Rat and Inhibition of Insulin Secretion in the Mouse." Endocrinology 119, no. 2 (1986): 865-9.• • Pettersson, M., I. Lundquist and B. Ahren. "Neuropeptide Y and Calcitonin Gene-Related Peptide: Effects on Glucagon and Insulin Secretion in the Mouse." Endocr Res 13, no. 4 (1987): 407-17.• • Sangiao-Alvarellos, S. and F. Cordido. "Effect of Ghrelin on Glucose-Insulin Homeostasis: Therapeutic Implications." Int J Pept 2010, (2010).• • Suri, A. and A. Szallasi. "The Emerging Role of Trpv1 in Diabetes and Obesity." Trends Pharmacol Sci 29, no. 1 (2008): 29-36.• • Thorens, B. "Brain Glucose Sensing and Neural Regulation of Insulin and Glucagon Secretion." Diabetes Obes Metab 13 Suppl 1, (2011): 82-8.• • Thorens, B. "Sensing of Glucose in the Brain." Handb Exp Pharmacol, no. 209 (2012): 277-94.• • Tsui, H., G. Paltser, Y. Chan, R. Dorfman and H. M. Dosch. "'Sensing' the Link between Type 1 and Type 2 Diabetes." Diabetes Metab Res Rev 27, no. 8 (2011): 913-8.• • Van Buren, J. J., S. Bhat, R. Rotello, M. E. Pauza and L. S. Premkumar. "Sensitization and Translocation of Trpv1 by Insulin and Igf-I." Mol Pain 1, (2005): 17.• • Weller, K., P. W. Reeh and S. K. Sauer. "Trpv1, Trpa1, and Cb1 in the Isolated Vagus Nerve--Axonal Chemosensitivity and Control of Neuropeptide Release." Neuropeptides 45, no. 6 (2011): 391-400.• • Winter, Z., A. Buhala, F. Otvos, K. Josvay, C. Vizler, G. Dombi, G. Szakonyi and Z. Olah. "Functionally Important Amino Acid Residues in the Transient Receptor Potential Vanilloid 1 (Trpv1) Ion Channel - an Overview of the Current Mutational Data." Mol Pain 9, no. 1 (2013): 30.• • Zhang, Z., C. S. Winborn, B. Marquez de Prado and A. F. Russo. "Sensitization of Calcitonin Gene-Related Peptide Receptors by Receptor Activity-Modifying Protein-1 in the Trigeminal Ganglion." J Neurosci 27, no. 10 (2007): 2693-703.• • Zsombok, A. "Vanilloid Receptors--Do They Have a Role in Whole Body Metabolism? Evidence from Trpv1." J Diabetes Complications 27, no. 3 (2013): 287-92.• • Zsombok, A., H. Gao, K. Miyata, A. Issa and A. V. Derbenev. "Immunohistochemical Localization of Transient Receptor Potential Vanilloid Type 1 and Insulin Receptor Substrate 2 and Their Co-Localization with Liver-Related Neurons in the Hypothalamus and Brainstem." Brain Res 1398, (2011): 30-9.• •