45
Theoretische Simulation und Modellierung Axel Groß Institut f¨ ur Theoretische Chemie Universit¨ at Ulm, 89069 Ulm Raum O25/342 Email [email protected] http://www.uni-ulm.de/theochem 1. Einf¨ uhrung 2. Lehrplan 3. Vorlesung Simulation und Modellierung

Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Theoretische Simulation und Modellierung

Axel Groß

Institut fur Theoretische ChemieUniversitat Ulm, 89069 Ulm

Raum O25/342Email [email protected]

http://www.uni-ulm.de/theochem

1. Einfuhrung

2. Lehrplan

3. Vorlesung

Simulation und Modellierung

Page 2: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Contents

1. Introduction

2. Molecular Modeling

3. Statistical Mechanics and Monte Carlo methods

4. Molecular dynamics

5. Quantum Mechanics

6. Multiscale Modeling

Simulation und Modellierung

Page 3: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Computational Quantum chemistry

Virtual chemistry lab

Inst. f. Theoretische Chemie, O25

Computational Chemistry

• Evaluation of the electronic, geometric andchemical porperties of molecules, surfaces andsolids with modern methods of electronicstructure theory

• Quantum chemical program packages(Gaussian, NWChem, . . . ) and Plane-Wave-Methods (VASP, Abinit, . . . )

• Empirical programs, e.g. force fields and codedevelopment

• Analysis and visualisation of the results

Simulation und Modellierung

Page 4: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Adsorption of organic moleculesStudy of the electronic, chemical, catalytic and optic properties of organic molecules on

anorganic substrates

Structure of oligopyridine on graphite

Close collaboration with experimental groups

Simulation und Modellierung

Page 5: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Surface reactions: Methanol oxidation on O(2×2)/Cu(110)S.Sakong and A. Groß, J. Catal. 231, 420 (2005).

bE =1.44 eV

bE = 0.73 eV

CH3OH(g)

CH 3 OH(a) CH 3 O(a) +H

+H+HO2CH

0.35 eV 0.21 eV

1.20 eV

(g)

a) clean Cu(110)

*E b

CH 2 O(a) +H

+CH3 O(a) +H2 O

2CH3 +H2O

32CH OH(g) +O(a)

CH 3 O(a) +OH (a) +CH3 OH(g)

(2x2)c

(g)

(a)

O(a)

(g)

1.53 eV1.07 eV

=1.44 eV0.19 eV 0.84 eV

b) O(2x2)/Cu(110)

Energy scheme of the partial oxidation of CH3OH on clean and (2×2) oxygen-precovered Cu(110)

Simulation und Modellierung

Page 6: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Methanol oxidation on Cu:Analysis of the electronic structure

S.Sakong and A. Groß, J. Catal. 231, 420 (2005).

CH2O/Cu(110): Chemical interaction analyzed using electronic orbitals and charge densities

Partial charges Electronlocalisation

Density of states

-8 -6 -4 -2 0 2Energy ε - ε

F (eV)

LD

OS

(arb

. uni

ts)

Clean surface Cu d-structureSurface Cu d-structureOxygen p-state (Adsorbate)Oxygen p-state (Gas)

-20 -15 -10

1b2/5a1

1b12b2

(b)

π*CO

3a1

4a1

Detection of the electronic factors that determine the reactivity

Simulation und Modellierung

Page 7: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Exhaust catalyst

Structure of the exhaust catalyst

H.-J. Freund, Surf. Sci. 500, 271 (2002)

Elementary steps in the CO oxidation

Without movies

Schematic animation of the CO oxidation

(C.Stampfl, FHI Berlin)

Simulation und Modellierung

Page 8: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Subsurface penetration for H2/(3×3)7H/Pd(100)

Dissociation

Without movies

Energy redistribution

0 200 400 600 800 1000

Run time (fs)

0.0

0.2

0.4

0.6

0.8

1.0

Tot

al k

inet

ic e

nerg

y (e

V) Impinging H2 molecule (eV)

Hydrogen overlayerPd substrate atoms

Concertive motion of two hydrogen atoms during subsurface penetration

Simulation und Modellierung

Page 9: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Elektrochemistry and electro catalysisInteraction O2 with a Zundel ion on Pt(111) in an aqueous environment

Initial configuration Adsorbed OOH Adsorbed O + OH

Presence of water leads to activation barriers for the oxygen reduction on Pt(111)

Study of systems that are relevant for the electrochemical energy conversion and storage

Simulation und Modellierung

Page 10: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Ab initio molecular dynamics simulations of H2 dissociationon water-covered Pt(111)

Trajectory

Without movies

Discussion

H2 dissociation through thermalizeddisordered water layer

After dissociation, H atoms can movealmost freely beneath the water layer

H atoms end up at top sites

Disordered water layer rearranges uponH adsorption

Simulation und Modellierung

Page 11: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Quantum Mechanics: Hamiltonian

Chemistry:Only electrostatic interaction taken into account ⇒ Hamiltonian:

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el (1)

Simulation und Modellierung

Page 12: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Quantum Mechanics: Hamiltonian

Chemistry:Only electrostatic interaction taken into account ⇒ Hamiltonian:

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el (1)

Tnucl =

L∑I=1

~P 2I

2MI=

L∑I=1

−~2

2MI

~∇2I , (2)

Tel =

N∑i=1

~p2i

2m=

N∑i=1

−~2

2mi

~∇2i , (3)

Vnucl−nucl =1

2

1

4πε0

∑I6=J

ZI ZJ e2

|~RI − ~RJ|, (4)

Vnucl−el = − 1

4πε0

∑i,I

ZI e2

|~ri − ~RI|, (5)

Vel−el =1

2

1

4πε0

∑i 6=j

e2

|~ri − ~rj|. (6)

Simulation und Modellierung

Page 13: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Schrodinger Equation

Nonrelativistic Schrodinger Equations:

H Ψ(~R,~r) = E Ψ(~R,~r). (7)

i~∂Ψ(~R,~r, t)

∂t= H Ψ(~R,~r). (8)

Solution: Eigen and initial value problem, respectively, of ahigh-dimensional partial differential equation taking into account the

appropriate quantum statistics (→ Pauli principle)

In principle we are ready here, however

Simulation und Modellierung

Page 14: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Schrodinger Equation

Nonrelativistic Schrodinger Equations:

H Ψ(~R,~r) = E Ψ(~R,~r). (7)

i~∂Ψ(~R,~r, t)

∂t= H Ψ(~R,~r). (8)

Solution: Eigen and initial value problem, respectively, of ahigh-dimensional partial differential equation taking into account the

appropriate quantum statistics (→ Pauli principle)

In principle we are ready here, however

Solution of Schrodinger equation in closed form not possible

⇒ Hierarchy of approximate and numerical methods

Simulation und Modellierung

Page 15: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Theoretical Chemistry

P.A.M Dirac (1930):

“The underlying physical lawsnecessary for the mathematical theoryof a large part of physics andthe whole of chemistry are thuscompletely know, and the difficultyis only that the exact application ofthese laws leads to equations muchtoo complicated to be soluble.”

Simulation und Modellierung

Page 16: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Born-Oppenheimer approximationAtoms 104 to 105 heavier than electrons

(except for hydrogen and helium)

⇒electrons are 102 to 103 times faster than the nuclei

Born-Oppenheimer of adiabatic approximation:

electrons follow motion of the nuclei instantaneously

Simulation und Modellierung

Page 17: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Born-Oppenheimer approximationAtoms 104 to 105 heavier than electrons

(except for hydrogen and helium)

⇒electrons are 102 to 103 times faster than the nuclei

Born-Oppenheimer of adiabatic approximation:

electrons follow motion of the nuclei instantaneously

Practical implementation:Define electronic Hamiltonian Hel for fixed nuclear coordinates {~R}

Hel({~R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el. (9)

Nuclear coordinates {~R} do not act as variables but as parameters

The Schrodinger equation for the electrons

Hel({~R}) Ψ(~r, {~R}) = Eel({~R}) Ψ(~r, {~R}). (10)

Simulation und Modellierung

Page 18: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Born-Oppenheimer approximation II

Schrodinger equation for the electrons

Hel({~R}) Ψ(~r, {~R}) = Eel({~R}) Ψ(~r, {~R}). (11)

Eel({~R}) Born-Oppenheimer energy surface: potential for the nuclear motion:

{Tnucl + Eel(~R)} χ(~R) = Enucl χ(~R). (12)

Simulation und Modellierung

Page 19: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Born-Oppenheimer approximation II

Schrodinger equation for the electrons

Hel({~R}) Ψ(~r, {~R}) = Eel({~R}) Ψ(~r, {~R}). (11)

Eel({~R}) Born-Oppenheimer energy surface: potential for the nuclear motion:

{Tnucl + Eel(~R)} χ(~R) = Enucl χ(~R). (12)

If quantum effects negligible: classical equation of motion

MI∂2

∂t2~RI = − ∂

∂ ~RIEel({~R}) . (13)

Simulation und Modellierung

Page 20: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Born-Oppenheimer approximation (BOA) III

In the BOA electronic transitions neglected

Exact derivation: Expansion of Schrodinger equation in the small parameter m/M

BOA very successful, but still its validity hardly directly obvious

Simulation und Modellierung

Page 21: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Born-Oppenheimer approximation (BOA) III

In the BOA electronic transitions neglected

Exact derivation: Expansion of Schrodinger equation in the small parameter m/M

BOA very successful, but still its validity hardly directly obvious

Physical arguments

Systems with a band gap: electronic transitions improbable

Metals: electronic system strongly coupled⇒ short lifetimes and fast quenchening of electronic excitations

Simulation und Modellierung

Page 22: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Interaction between moleculesConsider ions A and B with charge QA and QB, respectively

~RAB = ~RB − ~RA, RAB = |~RAB|

Force of QA acting on QB

~FAB =1

4πε0

QAQBR3AB

~RAB (14)

Force of QB acting on QA

~FBA =1

4πε0

QAQBR3AB

~RBA (15)

FBA =1

4πε0

QAQBR2AB

(16)

Pairwise additive forcesForce of QA and QC acting on QB

~FB =QB4πε0

(Qa

~RABR3AB

+QC~RCBR3CB

)(17)

Charge distribution

QA =

∫ρ(~r)d3r (18)

Force of QA acting on QB

~FAB =QB4πε0

∫ρ(~r)

(~RB − ~r)|~RB − ~r|3

d3r (19)

Simulation und Modellierung

Page 23: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Potential energy

UAB =1

4πε0

QAQBRAB

(20)

Corresponds to the energy it costs to bring the two charges from infinity to the distance RAB

Relation between force and potential energy; Energy in one dimension:

E =m

2v2 + U(x) (21)

Energy conservation, i.e. dE/dt = 0:

F = −dUdx, in three dimensions : ~F = −∇U = −

(∂U

∂x,∂U

∂y,∂U

∂z

)(22)

Force is directed along the steepest decent of U

Simulation und Modellierung

Page 24: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Many-body interactionConsider system of N atoms; If forces are additive

Utot =

n−1∑i=1

n∑j=i+1

Uij =1

2

n,n∑i6=j

Uij (23)

General case

Utot = U(~R1, ~R2, . . . , ~Rn) (24)

Formal expansion

Utot =∑pairs

U (2)(~Ri, ~Rj) +∑

triples

U (3)(~Ri, ~Rj, ~Rk) + . . .+ U (n)(~R1, ~R2, . . . , ~Rn) (25)

Nature of the interaction

U = Ues + Udisp + Urep (26)

Electrostatic plus dispersive interaction plus Pauli repulsion

Simulation und Modellierung

Page 25: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Vibrational potentialsHarmonic potential

Uvib =1

2k(R−Re)2 , Evib = ~ω(v +

1

2) (27)

Morse potential, β = ω2

√2µ/De

Uvib = De [1− exp(−β(R−Re))]2 , Evib = ~ω(v +1

2)− χe~ω(v +

1

2)2 (28)

0 1 2 3 4H-H distance (Å)

-4

-2

0

2

4

Ene

rgy

(eV

)

Morse potentialharmonic potential

Simulation und Modellierung

Page 26: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Molecular mechanics and force fields

Molecular Mechanics:

Application of classical mechanics to determinations of molecular equilibrium properties

Force field: Parametrized interaction potential

U =∑

stretch

UAB +∑bend

UABC +∑

dihedral

UABCD +∑

inversion

UABCD +

+∑

nonbonded

UAB +∑

Coulomb

UAB + (29)

=∑

bonds

1

2kAB(RAB −Re,AB)2 +

∑bends

1

2kABC(ΘABC −Θe,ABC)2

+∑

dihedrals

U0

2(1− cos(n(χ− χ0))) +

∑inversions

k

2 sin2ψe(cosψ − cosψe)

2

+∑

nonbonded

(C12AB

R12AB

− C6AB

R6AB

)+∑

charges

1

4πε0

QAQBRAB

(30)

Simulation und Modellierung

Page 27: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Potential curvesTorsional potential Ethane

Multiple minima

Simulation und Modellierung

Page 28: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Potential curvesTorsional potential Ethane and chlorine-substituted ethane

Multiple minima

Simulation und Modellierung

Page 29: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Potential energy surfaces (PES)Saddle point Two minima Multiple minima

FHI Berlin

Saddle points correspond to transition states in chemical reaction,

minima to (meta)-stable intermediates

Reaction barriers are calculated as the difference between the the lowest saddle pointtowards the product state and the energy minimum corresponding to the reactant state

Ebarr = ETS − Eini (31)

Simulation und Modellierung

Page 30: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Sticking probability of H2 on Pd(100)

Comparison theory-experiment

0,0 0,1 0,2 0,3 0,4 0,5

Kinetic energy Ei (eV)

0,0

0,2

0,4

0,6

0,8

1,0

Stic

king

pro

babi

lity

Experiment6D QD, ji = 0 (Gross et al.)6D QD, beam simulation

0,0 0,1 0,2 0,3 0,4 0,50,0

0,2

0,4

0,6

0,8

1,0

Experiment6D QD, ji = 0 (Eichler et al.)

Exp.: K.D. Rendulic et al., Surf. Sci. 208, 404 (1989),

Theory: A. Groß et al., PRL 75, 2718 (1995).

Steering effect

Surface

lowenergy

highenergy

mediumenergy

pathReaction

Gas phase

Surface coordinate

All six hydrogen degrees of freedom treated quantum dynamically

Initial decrease in S(Ei) caused by the suppression of the steering effect

Oscillations quantum effect: opening of new scattering channels with increasing energy

Simulation und Modellierung

Page 31: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Tight-binding molecular dynamics simulations: O2/Pt(111)A. Groß, A. Eichler, J. Hafner, M.J. Mehl, and D.A. Papaconstantopoulos, Surf. Sci. Lett. 539, L542-L548 (2003).

Sticking probability

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4Kinetic energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

Tra

ppin

g pr

obab

ility

Exp. Luntz et al., Ts = 200 K

Exp. Luntz et al., Ts = 90 K

Exp. Nolan et al., Ts = 77 K

TBMD, Ts = 0 K

TBMD, Ts = 0 K, Erot = 0.1 eV

Comparison of calculated and measured sticking probability as

a function of the kinetic energy

Over the whole energy range stickingprobability is determined by the trappinginto the molecular chemisorption states

Dissociation?

1.0 2.0 3.01.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

0.2-0.6

1.6

�������������� ���������������������� ������! ���#"�� $�%�&�')( *,+

-/. -0 1 234 5 67 89 : ;Initial O2 kinetic energy Ekin = 0.6 eV

O2 does not directly dissociate on Pt(111)→ dissociation of O2/Pt(111) is a two-stepprocess involving thermalisation

Simulation und Modellierung

Page 32: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Potential energy surfacesComplex PES, for example describing a polymer or protein

UC Berkeley

Finding minima and saddle points of potential energy surfaces is crucial for thedetermination of energy minimum structures and reaction barriers

Simulation und Modellierung

Page 33: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Characterization of potential energy surfacesp = 3n− 6 degrees of freedom, Coordinates q and gradient g :

q =

q1

q2...

qp

, g =

∂U∂q1∂U∂q2...∂U∂qp

. (32)

At stationary points, the gradient is zero

Characterization of stationary points: Calculate Hesse matrix at that points:

H =

∂2U∂q2

1. . . ∂2U

∂q1∂qp... . . . ...

∂2U∂qp∂q1

. . . ∂2U∂q2p

. (33)

Eigenvalues all positive ⇒ Minimum, Eigenvalues all negative ⇒ Maximum, ⇒ Maximum

otherwise ⇒ Saddle point

Transition state (barrier): Hesse matrix has exactly one negative eigenvalue

Simulation und Modellierung

Page 34: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Finding minimaFinding minima = Optimization problem

Grid methods: multivariate and univariate grid search

Simulation und Modellierung

Page 35: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Finding minimaFinding minima = Optimization problem

Grid methods: multivariate and univariate grid search

Derivative methods

Green: steepest descent

Green: conjugate gradient

First-order methodsSteepest descent: Search minina along the negative of thegradient Problem: many perpendicular steps

Solution: Conjugate gradient method:

In k-th iteration, move in direction given by

v(k) = −g(k) + γ(k)v(k−1), γ(k) =

(g(k)

)Tg(k)

((g(k−1)

)Tg(k−1)

(34)Conjugate directions: perpendicular in isotropicconfiguration space

Simulation und Modellierung

Page 36: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Finding minimaFinding minima = Optimization problem

Grid methods: multivariate and univariate grid search

Derivative methods

Green: steepest descent

Green: conjugate gradient

First-order methodsSteepest descent: Search minina along the negative of thegradient Problem: many perpendicular steps

Solution: Conjugate gradient method:

In k-th iteration, move in direction given by

v(k) = −g(k) + γ(k)v(k−1), γ(k) =

(g(k)

)Tg(k)

((g(k−1)

)Tg(k−1)

(34)Conjugate directions: perpendicular in isotropicconfiguration space

Second-order methods

Computationally more expansive since second derivative is required

Further methods: Simulated annealing, Monte Carlo methods, generic algorithms, . . .

Simulation und Modellierung

Page 37: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Finding transition statesThere is no analytical method that guarentees to find the nearest transition states ⇒

approximate schemes

Simulation und Modellierung

Page 38: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Finding transition statesThere is no analytical method that guarentees to find the nearest transition states ⇒

approximate schemes

Nudged elastic band methodhttp://theory.cm.utexas.edu/henkelman/research/saddle/

The Nudged Elastic Band (NEB) method is used tofind minimum energy path (NEB) when both theinitial and final states are known.G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).

The code works by linearly interpolating a set ofimages between the initial and final states (as a”guess” at the MEP), and then minimizes theenergy of this string of images connected by springs.

Each ”image” corresponds to a specific geometryof the atoms on their way from the initial to thefinal state.

Once the energy of this string of images has beenminimized, the true MEP is revealed.

Further methods: Dimer method

Simulation und Modellierung

Page 39: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Molecular Mechanics (MM)Molecular Mechanics (MM) useful for the determination of possible equilibrium properties of

molecules

Many software packages available

Commercial products often offer convenient graphical user interfaces (GUI)

GaussView (GAUSSIAN) Materials Visualizer (Materials Studio)

Besides MM programmes, often quantum chemistry codes included in the packages

Simulation und Modellierung

Page 40: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Statistical MechanicsStatistical mechanics provides a relation between microscopic (atomistic) and macroscopic

description of matter using mean values and deviations

Statistical description ⇒ Mean values of significant importance

Mean value < x >:

< x > =1

n

n∑i=1

xi (35)

Root mean square deviations (fluctuations):

σn =

√√√√1

n

n∑i=1

(xi− < x >)2 (36)

Central entity in statistical mechanics: ensemble

Simulation und Modellierung

Page 41: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Self-consistent field (SCF) solutionEffective one-particle Hartree-Fock Hamiltonians contain solution: ⇒ SCF iteration scheme

Initial guess:

n0(~r) −→ v

0eff(~r)

Simulation und Modellierung

Page 42: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Self-consistent field (SCF) solutionEffective one-particle Hartree-Fock Hamiltonians contain solution: ⇒ SCF iteration scheme

Initial guess:

n0(~r) −→ v

0eff(~r)

?

Solve Schrodinger equations:{−~2

2m∇2

+ vjeff

(~r)

(j+1)i (~r) = εiψ

(j+1)i (~r)

Simulation und Modellierung

Page 43: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Self-consistent field (SCF) solutionEffective one-particle Hartree-Fock Hamiltonians contain solution: ⇒ SCF iteration scheme

Initial guess:

n0(~r) −→ v

0eff(~r)

?

Solve Schrodinger equations:{−~2

2m∇2

+ vjeff

(~r)

(j+1)i (~r) = εiψ

(j+1)i (~r)

?

Determine new density:

n(j+1)

(~r) =

N∑i=1

|ψ(j+1)i (~r)|2,

and new effective potential vneweff (~r)

Simulation und Modellierung

Page 44: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Self-consistent field (SCF) solutionEffective one-particle Hartree-Fock Hamiltonians contain solution: ⇒ SCF iteration scheme

Initial guess:

n0(~r) −→ v

0eff(~r)

?

Solve Schrodinger equations:{−~2

2m∇2

+ vjeff

(~r)

(j+1)i (~r) = εiψ

(j+1)i (~r)

?

Determine new density:

n(j+1)

(~r) =

N∑i=1

|ψ(j+1)i (~r)|2,

and new effective potential vneweff (~r)

?

Do vneweff (~r) and v

jeff

(~r) differ by more than ε� 1?

?

����No

?

Ready

Simulation und Modellierung

Page 45: Theoretische Simulation und Modellierung · Computational Quantum chemistry Virtual chemistry lab Inst. f. Theoretische Chemie, O25 Computational Chemistry Evaluation of the electronic,

Self-consistent field (SCF) solutionEffective one-particle Hartree-Fock Hamiltonians contain solution: ⇒ SCF iteration scheme

Initial guess:

n0(~r) −→ v

0eff(~r)

?

Solve Schrodinger equations:{−~2

2m∇2

+ vjeff

(~r)

(j+1)i (~r) = εiψ

(j+1)i (~r)

?

Determine new density:

n(j+1)

(~r) =

N∑i=1

|ψ(j+1)i (~r)|2,

and new effective potential vneweff (~r)

?

Do vneweff (~r) and v

jeff

(~r) differ by more than ε� 1?

?

����No

?

Ready

-����Yes

6

Mixing scheme:

v(j+1)eff

(~r) = αvjeff

(~r)

+ (1− α)vneweff (~r)

with α > 0.9

Simulation und Modellierung