Tolga Ques

Embed Size (px)

Citation preview

  • 7/29/2019 Tolga Ques

    1/23

    Asymptotically Optimal Control of Many-server Heterogeneous

    Service Systems with H2

    Service Times

    Tolga Tezcan

    Simon School of Business

    University of Rochester

    Rochester, NY

    [email protected]

    June 16, 2011

    Abstract

    Optimal control of many-server heterogenous service systems with service times that havea special hyper-exponential distribution, denoted by H

    2, which is a mixture of an exponential

    distribution and a unit point mass at 0, is considered. A static priority policy that assignspriorities to server pools based on their service time distributions is proposed. This policy isshown to be asymptotically optimal in the many-server heavy traffic regime in minimizing thetotal number of customers in the system or in the queue under two different assumptions onservice time distributions.

    Keywords: Heterogeneous servers; Many servers; Heavy traffic; Halfin-Whitt regime; Asymptoticoptimality

    1 Introduction

    The heavy-traffic analysis approach has been successfully used to analyze complex queueing systemsthat cannot be analyzed using standard queueing techniques for exact analysis; e.g., see [21, 8, 4].In this approach, the queue lengths in a heavily loaded system are shown to be close to a diffusionprocess under reasonable scheduling policies. The many-server heavy-traffic analysis, initiated bythe seminal paper of [20], has been used to analyze queueing systems with many servers in heavy-traffic. Unlike the conventional heavy-traffic analysis, the many-server analysis is more suitable forsystems with several servers working in parallel, see [16] for a comparison of these two regimes.In this paper we establish asymptotically optimal policies for a service system with heterogenous

    servers in a many-server heavy traffic regime. We consider service times with a special hyper-exponential distribution in order to gain some insights for the optimal control of many-serversystems under non-exponential service times.

    The heterogenous service systems we study consist of a single customer class and multiple serverpools. In each server pool there are several servers and two servers that belong to the same pool

    Research supported by NSF Grant CMMI-0954126.

    1

    nuscript

    k here to download Manuscript: rev4_11_06_10.pdf Click here to view linked Refe

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://www.editorialmanager.com/ques/download.aspx?id=16584&guid=3b1d3d37-c07b-4d4b-a238-453cc6f2cf32&scheme=1http://www.editorialmanager.com/ques/viewRCResults.aspx?pdf=1&docID=847&rev=3&fileID=16584&msid={F09F14C6-6E4D-484C-9E43-B1CE9467C345}http://www.editorialmanager.com/ques/viewRCResults.aspx?pdf=1&docID=847&rev=3&fileID=16584&msid={F09F14C6-6E4D-484C-9E43-B1CE9467C345}http://www.editorialmanager.com/ques/download.aspx?id=16584&guid=3b1d3d37-c07b-4d4b-a238-453cc6f2cf32&scheme=1http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    2/23

    are assumed to have the same service time distribution. These systems are known as inverted-Vsystems; see [16] and [1]. Our main goal is to devise control policies that minimize the congestionin these systems. The control of inverted-V systems consists of two parts. First, if an arrivingcustomer finds idle servers in different pools, the control policy must specify which server pool thearriving customer will be routed to. It is also possible to hold the customer in queue even though

    there are idle servers. Second, when a server finishes serving a customer and there are customerswaiting in the queue at that time point, the control policy must specify whether the server shouldstart serving another customer or it should idle.

    We assume that the service times have H2 distribution, that is, a customer that is routed toserver j has an exponential service time distribution with rate j with probability pj or customersservice time is equal to zero. Although, having service times equal to zero is not possible in most ofthe real systems, it may be used to approximate very short service times. In addition it provides uswith additional insights on the control of inverted-V systems when service times are not exponential.

    Before we explain our proposed policy we first introduce our assumption on service time distri-butions.

    Assumption 1. One of the following conditions hold.

    i. Xj st X1, for all j = 2, . . . , J ,ii. 1 j, for all j = 2, . . . , J ,

    where Xj is a random variable which has the same distribution with the service times in pool j.

    Although they look similar, these two conditions are different. Because

    P(Xj > t) = pj exp{jt}, (1.1)

    it is easy to verify that Assumption 1(i) holds if and only ifj 1 and pj p1, for all j = 2, . . . J .Therefore, the first assumption implies the second one but the second one does not imply the first

    one in general. We propose the following static priority policy

    At the time of a customer arrival, route the arriving customer to one of the server pools withj 2 with available servers, if there is an available server in those pools. For asymptoticanalysis it is immaterial which server pool is chosen but for concreteness we choose the highestindexed server pool. Otherwise, if there is an available server in pool 1, route the customerto server pool 1. If all the servers are busy, the arriving customer joins the queue and startswaiting.

    At the time of a service completion, the server finishing service picks the longest waitingcustomer in the queue (so our policy is non-idling). If there are no customers waiting theserver idles after finishing service of a customer.

    We denote this policy by . The main result of this paper is that, under Assumption 1, isasymptotically optimal as the arrival rate and the number of servers get large and the load on thesystem approaches its capacity at a certain rate (see Section 2 for a detailed definition). Specifically,we show that asymptotically minimizes the average number of customers in the system underAssumption 1(i) and in the queue under Assumption 1(ii) over any finite time interval in the senseof stochastic ordering or expected value in the limit.

    2

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    3/23

    In [1], inverted-V systems with exponential service times have been analyzed in a similar asymp-totic regime as we consider. It is shown that the fastest-server-first (FSF) policy, which routes anarriving customer to one of the available servers with the smallest expected service time, is asymp-totically optimal in minimizing the number of customers in the system over finite time intervalsand in steady state. In our model, if the service times are exponential, i.e., pj = 1 for each pool

    j, the proposed policy

    reduces to the fastest-server-first (FSF) policy (if we assume in additionthat servers with lower mean service time are given priority. For asymptotic optimality this is notnecessary). Note that if service times are exponential, Assumption 1(ii) and Assumption 1(i) areequivalent. Optimality under Assumption 1(i) is very intuitive since service times are assumedto be stochastically ordered. On the other hand, only the distribution of the non-zero part of theservice times matters in Assumption 1(ii) when pj < 1. It is possible to construct examples where aserver pool having priority over another one may have service times with higher mean and variance(see Section 4.2 for details).

    Optimal control of queueing systems with non-exponential service times in the many-serverheavy traffic regime has not been treated in the literature to the best of our knowledge (paper [28],which appeared after the first version of this paper, considers the control of V-model systems usingfluid models). We take a first step to treat this problem. Although the domain of the systems

    we consider may seem to be too limited, the results and ideas in [1] for inverted-V-systems withexponential service times have served as a stepping stone for understanding the control of complexsystems with many servers; see for example [18] and [7].

    The general idea of our proof of asymptotic optimality has now become standard in heavy trafficanalysis; see [8, 9, 4, 13, 12]. We first establish an asymptotic lower bound for the total numberof customers in the system (or the queue length) and then show that the relevant process under achieves the lower bound in the limit. When the service times have exponential distributionit is common in the literature to first determine an asymptotically optimal preemptive policyand then show that the values of the objective function under a similar non-preemptive optimalpolicy converges to the same limit; see [6, 1]. Such an approach is not possible when the servicetimes have hyper-exponential distributions; see Section 4.3 for more details. Hence, to study the

    optimal control of inverted-V models, we define a mapping with an appropriate domain and rangeand show that the the total number of customers in the system (or the queue length) under thismapping is minimized among all feasible mappings. We only consider H2 service times becausea direct extension of our optimality proof does not seem possible to more general distributionssuch as phase-type. However, we believe that our results can be extended to the case with generalhyper-exponential service times under Assumption 1(i) or under a slightly different version ofAssumption 1(ii).

    We close this section with a review of the related literature. The many-server asymptoticregime we focus on is first proposed by [20]. The optimal control of parallel-server systems inthe many-server regime have been studied in [2, 3, 1, 13, 12, 18, 19, 17, 6, 5, 7]. The maindifference between our work and the existing literature is that we do not restrict our attention

    to exponential service times. Although our research is the first to address the optimal control insystems with non-exponential service times, diffusion and fluid limits of systems with general servicetimes distributions have been established; see [25] for the treatment of phase-type distributions andsee [26, 22] for general distributions. Also, [28] considers the control of V-model systems in many-server regime with general service times using a fluid scaling.

    The rest of this paper is organized as follows. In Section 2 we present the details of the

    3

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    4/23

    queueing model and the asymptotic regime we study. We define a regulator mapping and establishits properties in Section 3. We present our main results in Section 4. In addition, we present thedetails of simulation results and discuss the differences between preemptive and non-preemptivescheduling in our setting. The remaining sections are devoted to the proof of our main results. Inthe next section we collect the notation and terminology used in the rest of this paper.

    1.1 Notation

    Let |x| denote the max norm on Rd given by |x| = maxi=1,2...,d{|xi|}. For x R, x = (x) 0and x+ = x 0. For each positive integer d, Dd[0, ) denotes the d-dimensional Skorohod pathspace; see [14]. For x, y Dd[0, ) and 0 s < T we set

    x() y()[s,T] = supstT

    |x(t) y(t)|.

    and we write x() y()T = x() y()[0,T] for notational convenience. We also setx() y()(s,T] = sup

    s 0 and f(0) = f(0) by convention.The space Dd[0, ) is endowed with the Skorohod J1 topology and the weak convergence in

    this space is considered with respect to this topology. For a sequence of functions {xr} in Dd[0, ),the sequence is said to converge uniformly on compact sets to x Dd[0, ) as r , denoted byxr x u.o.c., if for each T > 0

    xr() x()T 0 as r .

    2 The queueing model and asymptotic framework

    In this section we first describe the details of the queueing model and the asymptotic framework

    we consider. Then we present the queueing equations.We consider an inverted-V system with J 2 server pools (we set J= {1, . . . , J }). We assume

    that servers in the same pool have the same service time distribution. The service times are assumedto have a special distribution, denoted by H2 as in [30]. To recap, the service times in pool j aremixtures of an exponential distribution with rate j with probability 0 < pj 1 and a unit pointmass at 0 with probability 1 pj.

    In our asymptotic analysis, we consider a sequence of inverted- V-systems indexed by r withthe same structure. The arrival rate and the number of servers go to infinity in this sequence; inthe rth system the arrival rate is given by

    r = r (2.1)

    and the number of servers, Nrj , in the jth pool is given by

    Nrj = jr, for j J, (2.2)for some j > 0. (One might require N

    rj to be an integer by rounding and this does not affect our

    analysis. For notational simplicity we do not use rounding.) Let mj(= pj/j) denote the averageservice time in pool j.

    4

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    5/23

    Let Qr(t) denote the number of customers in the queue, Zrj (t) denote the number of customersbeing served in pool j and Yr(t) denote the total number of customers in the system at time t inthe rth system. The diffusion scaled processes are defined by

    Qr(t) =Qr(t)

    rand Zrj (t) =

    Zrj (t) Nrjr

    , for j J, (2.3)

    and

    Yr(t) = Qr(t) +J

    j=1

    Zrj (t).

    Obviously these quantities depend on the policy, , used. When we want to make this dependenceexplicit we append to these quantities as a subscript.

    The arrival process in the rth system Ar() is defined by

    Ar(t) = sup{m 0 :m=0

    u() rt}, (2.4)

    where {u(l) : l = 1, 2, . . .} is a sequence of i.i.d. nonnegative random variables with mean 1 andvariance 2 [0, ) and u(0) is an arbitrary nonnegative random variable. By convention, emptysums are set to be zero.

    As described in the introduction, control policies are needed to determine how inverted-V modelsoperate. In search of an optimal control policy, we restrict our attention to admissible controlpolicies that are non-idling, head-of-line, non-preemptive and Markovian as described in [13].

    We make the following (so called) many-server heavy traffic assumption; for R,J

    j=1

    Nrjmj

    = r +

    r, for r 2. (2.5)

    We also assume that the following holds for the sequence of initial conditions;

    (Qr(0), Zr(0)) (Q(0), Z(0)), as r , (2.6)

    where denotes weak convergence, (Q(0), Z(0)) is a random vector and Zr =

    Zrj , j J

    .

    Queueing processes: Next we provide the details of the queueing processes. Let Sj denote aPoisson process with rate j, j J, and assume that Sjs, j J, are independent. We use Arj(t),j J, to denote the number of customers whose service started in server pool j before time t. Wenote that Arj(t) is nondecreasing for all j J because we only consider non-preemptive policies.Let Drj (t), j J, denote the number of service completions by time t in server pool j whose servicetimes were not equal to 0. We can write

    Drj (t) = Sj

    t0

    Zrj (s)ds

    , for j J,

    for any admissible policy, see Theorem 2.1 in [13] for details. We set

    Ar =

    Ar, Arj : j J

    , Zr =

    Zrj : j J

    , and Dr =

    Drj : j J

    .

    5

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    6/23

    Let Xr = (Ar, Zr, Qr, Dr). Note that Xr depends on the control policy, , used. When we want tomake this dependence explicit we append to the process Xr or its components.

    Let {j(n), n 1} be a sequence binomial i.i.d. random variables such that j(1) is equal to 1with probability pj and equal to zero with probability 1 pj. We can write the evolution of thequeuing processes as follows;

    Qr(t) = Qr(0) + Ar(t) Jj=1

    Arj(t), (2.7)

    Zrj (t) = Zrj (0) +

    Arj(t)

    n=0

    j(n) Drj (t) for j J. (2.8)

    Next, we write the queueing equations (2.7)-(2.8) in a form more amenable to analysis. Thefluid scaling is defined by

    Xr = Xr/r.

    We define the diffusion scaled departure processes by

    Drj (t) =

    r

    Sj t0 Zrj (s)dsr

    j

    t

    0Zrj (s)ds

    , j J (2.9)and the diffusion scaled arrival process by

    Ar(t) = r1/2 (Ar(t) rt) .Let

    Crj (t) =

    t=1

    j() and Crj (t) = r

    1/2

    Crj (rt) rtpj

    , j J.

    We set Cr = Cr1 , . . . , CrJ and definearj(t) = C

    rj (A

    rj(t)), j J. (2.10)

    Also let

    urj(t) = r1/2

    Arj(t)

    Nrjmj

    t

    , j J (2.11)

    and ur =

    urj ;j J

    . The process urj can be interpreted as the diffusion scaled deviation of

    number of customers routed to queue j from its nominal value. For notational convenience weset

    wrj (t) = Zrj (0) + a

    rj(t)

    Drj (t), j

    Jand wrq(t) = Q

    r(0) + r1/2 (Ar(t)

    rt) + t. (2.12)

    By (2.7)(2.12),

    Zrj (t) = wrj (t) j

    t0

    Zrj (s)ds +pjurj(t), j J, (2.13)

    Qr(t) = wrq(t) jJ

    urj(t), (2.14)

    6

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    7/23

    and

    0 Qr(t) and Zrj (t) 0 for j J. (2.15)

    The non-idling condition implies that

    Qr(t)J

    j=1

    Zrj (t) = 0, for all t 0. (2.16)

    Depending on the policy used additional equations are added to (2.13)-(2.15). Under the pro-posed policy the following condition also holds;

    Jj=j

    Arj(t) Arj(s)

    = Ar(t) Ar(s), (2.17)

    if

    Jj=j Z

    rj (u) < 0 for all u [s, t] and for j J.

    3 Mapping

    In this section we define the mapping that we later use to characterize the optimal limitingqueueing processes and to study the limit of queuing processes under the proposed policy . Letx = (xq, xj : j J) DJ+1[0, ), u = (uj : j J) DJ[0, ), z = (zj : j J) DJ[0, ) andq D[0, ). Consider the following equations

    zj(t) = xj(t) jt0

    zj(s)ds +pjuj(t), for all j J, (3.1)

    q(t) = xq(t)

    J

    j=1

    uj(t), (3.2)

    zj(t) 0, for all j J, (3.3)q(t) 0, (3.4)

    q(t)

    Jj=1

    zj(t) = 0, (3.5)

    for t 0. We highlight the fact that equations (2.13)-(2.16) are very similar to (3.1)(3.5). Theprocesses Arj s, hence u

    rj s, see (2.11), determine how a queueing system is controlled. In this setting

    the control is determined by u. We start with defining feasible controls in this context.

    Definition 1. Given x DJ+1

    [0, ), u DJ

    [0, T] is said to be a feasible control if there existz DJ[0, ) and q D[0, ) that satisfy (3.1)(3.5).Given x and a feasible control u, the process (z, q) satisfying (3.1)(3.5) is unique; see Theo-

    rem 4.1 in [24]. In order to make this dependence explicit we write ( zu, qu) to denote these processesassociated with a feasible control u when the control is not explicit from the context.

    7

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    8/23

    Next we define the mapping . Let : DJ+1[0, ) DJ[0, )D[0, )DJ[0, ) be definedfor x DJ+1[0, ) by

    (x) = (1(x), 2(x), 3(x)) = (z, q, u),

    where (z, q, u) satisfies (3.1)(3.5) and the following condition

    zj(t) = 0, for j 2, and t 0. (3.6)

    Note that by (3.1) this implies

    uj(t) = xj(t)/pj, for j 2 and t 0. (3.7)

    In words, mapping makes sure that all the servers in pools j = 2, . . . , J (those that havepriority over the first pool) are busy at all times, see (3.6). Obviously depends on p but we donot explicitly indicate this dependence in our notation because we assume that p is fixed throughoutthe paper. Next we show that is well defined.

    Lemma 2. For each x DJ+1

    [0, ), there exists a unique (z, q, u) that satisfies (3.1)(3.6).Therefore, the mapping is well defined. In addition, is continuous provided that the functionspaces DJ+1[0, ) and DJ[0, ) D[0, ) DJ[0, ) are endowed with either the topology ofuniform convergence over compact intervals or with the Skorohod-J1 topology.

    Proof. Let x DJ+1[0, ). Clearly, uj for j 2 is well defined by (3.7). Let : DJ+1[0, ) D[0, ) be defined by (x) = y1, where

    y1(t) = y1(0) + xq(t) +

    Jj=1

    xj(t)

    pj+ 1

    t0

    (y1(s))ds.

    By Theorem 4.1 in [24], is well defined, i.e., there exits a unique y1D[0,

    ), and it is

    continuous provided that the function spaces DJ+1[0, ) and D[0, ) are endowed with either thetopology of uniform convergence over compact intervals or the Skorohod J1 topology. Let

    q(t) = (y1(t))+ and z1(t) = p1(y1(t)). (3.8)

    Hence,

    y1(t) = q(t) +z1(t)

    p1. (3.9)

    Clearly q and z1 satisfy (3.3)(3.5). Define

    u1

    (t) =z1(t) x1(t) + 1

    t0 z1(s)ds

    p1.

    Note that z1 and u1 satisfy (3.2). Also q satisfies (3.2) by (3.7) and (3.9). This proves existence.Continuity and measurability follows from the continuity of and (3.8).

    8

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    9/23

    Now we prove that the mapping is optimal in a certain sense. Given a feasible control u andassociated processes q, z satisfying (3.1)(3.5) with u, let

    y(t) = q(t) +J

    j=1zj(t).

    We write yu instead of y when we want to make the dependence on the control u explicit.

    Theorem 3. Fix x DJ+1[0, ) and let u = 3(x). Then for any other feasible control u andfixedT > 0,i. if Assumption 1(i) holds then

    yu(t) yu(t), t [0, T], (3.10)

    ii. if Assumption 1(ii) holds then

    (yu(t))+ (yu(t))+, t [0, T]. (3.11)

    Proof. Fix x DJ+1[0, ). Let u be a feasible control and denote by (z, q) associated processessatisfying (3.1)(3.5). First we prove (ii). Define

    yu(t) = q(t) +J

    j=1

    zj(t)

    pj.

    By (3.3)(3.5)

    (yu(t))+ = q(t) and (yu(t))

    = J

    j=1

    zj(t)

    pj. (3.12)

    We also have by (3.1) and (3.2)

    yu(t) = yu(0) + xq(t) +J

    j=1

    xj(t)

    pj

    Jj=1

    j

    t0

    zj(s)

    pjds.

    We use Lemma 4.4 in [12] to complete the proof. We define

    r(t) =

    t0

    q(s)ds and vj(t) =

    t0

    zj(s)

    pjds. (3.13)

    We also set

    w(t) = y(0) + xq(t) +

    J

    j=1

    xj(t)

    pj.

    (This quantity is not related to wrq defined in (2.12).) We have

    yu(t) = w(t) J

    j=1

    jvj(t).

    9

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    10/23

    By (3.12) and (3.13), y, r and vj, j J, satisfy the conditions of Lemma 4.4 in [12], henceyu(t) yu(t), t [0, T]. (3.14)

    This inequality gives (3.11) by (3.5) and (3.12).We prove (3.10) using (3.14), Assumption 1(i) and (3.11). Note that Assumption 1(i) implies

    by (1.1) thatp1 pj, for all j = 2, . . . , J . (3.15)

    Therefore,

    (yu(t)) (a)=J

    j=1

    zj(t)(b)

    p1J

    j=1

    1

    pjzj(t)

    (c)= p1 (yu(t))

    (d)

    p1 (yu(t)) (e)= (yu(t)) , (3.16)

    where (a) follows from (3.3) and (3.4), (b) follows from (3.3) and (3.15), (c) follows from (3.12), (d)follows from (3.14) and (e) follows from (3.6). Because Assumption 1(i) implies Assumption 1(ii),(3.10) still holds (see the discussion after Assumption 1). Hence, combined with (3.11), (3.16) gives(3.10).

    4 Main results and Insights

    In this section, we first present our main results. Then we present the results of simulation experi-ments in Section 4.2 and comment on our proof technique in Section 4.3.

    4.1 Main Results

    Let B = (Wq, W), where Wq and W = (Wj : j J) are independent Brownian motions with drifts and 0, variances 2 and (jj(2 pj) : j J), respectively, and initial states

    Wq(0) = Q(0) and Wj(0) = Zj(0) for j

    J.

    Let

    (Z, Q, u) = (B)

    and

    Y(t) = Q(t) +J

    j=1

    Zj (t).

    First we prove that Q and Y provide a lower bound for all the admissible policies.

    Theorem 4. Consider a sequence of inverted-V systems. Assume that (2.1), (2.2), (2.5) and (2.6)hold. For any sequence of admissible policies {r} and for any T > 0,i. under Assumption 1(i)

    lim infr

    P

    T0

    Yrr(t)dt > x

    P

    T0

    Y(t)dt > x

    (4.1)

    for any x > 0 and

    liminfr

    E

    T0

    Yrr(t)dt

    E

    T0

    Y(t)dt

    , (4.2)

    10

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    11/23

    Setting 1 p1 2 (E[X1] ,E[X2]) (Var[X1] ,Var[X2])

    1 3 0.7 4 (0.233,0.25) (0.101,0.0625)2 3 0.5 4 (0.166,0.25) (0.083,0.0625)3 3 0.3 4 (0.1,0.25) (0.056,0.0625)

    Table 1: Service time parameters

    ii. under Assumption 1(ii)

    lim infr

    P

    T0

    Qrr(t)dt > x

    P

    T0

    Q(t)dt > x

    (4.3)

    for any x > 0 and

    liminfr

    E

    T0

    Qrr(t)dt

    E

    T0

    Q(t)dt

    . (4.4)

    Next we show that the cost under the proposed policy coincides with the lower bound in thelimit.

    Theorem 5. Consider a sequence of inverted-V systems. Assume that (2.1), (2.2), (2.5) and (2.6)hold. Under policy , for any T > 0,i. under Assumption 1(i)

    limr

    P

    T0

    Yr(t)dt > x

    = P

    T0

    Y(t)dt > x

    (4.5)

    for any x > 0 and

    limr

    ET

    0Yr(t)dt = E

    T

    0Y(t)dt , (4.6)

    ii. under Assumption 1(ii)

    limr

    P

    T0

    Qr(t)dt > x

    = P

    T0

    Q(t)dt > x

    (4.7)

    for any x > 0 and

    limr

    E

    T0

    Qr(t)dt

    = E

    T0

    Q(t)dt

    . (4.8)

    Remark 6. The main difference between parts (i) and (ii) in Theorems 4 and 5 is that underAssumption 1(i) we prove a slightly stronger result; the total number of customer in the system is

    minimized (in the appropriate sense). Whereas only the number of customers in queue is shown tobe minimized under the proposed policy under Assumption 1(ii).

    4.2 Simulation experiments

    In this section we focus on inverted-V model systems with J = 2 and carry out some simulationexperiments. (The reader who wants to see the details of the proofs first can skip this section

    11

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    12/23

    Exp No N 1 p1 2 Q

    1 (50,50) 407 3 0.7 4 1.70 (1.31)2 (50,50) 480 3 0.5 4 0.63 (0.03)3 (50,50) 685 3 0.3 4 5.87 (5.31)4 (200,200) 1643 3 0.7 4 3.35 (2.08)5 (200,200) 1985 3 0.5 4 4.19 (

    3.27)

    6 (200,200) 2770 3 0.3 4 5.38 (3.97)

    Table 2: Simulation results

    and go to Section 5.) We set J = 2, p2 = 1, 1 = 3, and 2 = 4. Therefore, Assumption 1(ii)holds (irrespective of the value of p1 (0, 1]) and the policy that gives priority to the second poolshould be asymptotically optimal. In our experiments, we compare the proposed policy (whichgives priority to the second pool) to the policy that gives priority to the first pool. We considerthree different settings for service times by altering p1 as presented in Table 1. We also presentthe expected service times, under column (E[X1], E[X2]) and the variances of the service times,

    under column (Var[X1],Var[X2]) for pools 1 and 2, respectively, under three different values for p1in Table 1. In all these settings, the expected service time for the first pool is smaller than thatof the second pool. The variance of the service times for pool 1 is higher than that for the secondpool in the first two settings and lower in the last experiment.

    The details and results of the simulation experiments are presented in Table 2. Initially weconsider mid-size systems in Experiments 1 through 3 in Table 2 with 50 servers in each pool andwith the service time distributions given as in each setting in Table 1. We run three additionalexperiments, Experiments 4 through 6 in Table 2, using similar parameters to Experiments 1through 3, respectively, except that the number of servers in each pool in these experiments isequal to 200. The column N is the number of servers in each pool and is the arrival rate. Thelast column, Q, is the difference between the average queue lengths throughout the simulation

    when we give priority to the first and the second pools, respectively. In parentheses, we displaythe 95% confidence interval we obtain from 100 replications. In each replication, we simulate thesystem to allow 1,000,000 arrivals and we start each simulation with an empty system.

    The results of our experiments show that the proposed policy performs better than the policythat gives priority to the first pool and the differences between queue lengths are statisticallysignificant in all the experiments. We emphasize the fact that in Experiments 3 and 6, both themean and variance of service times in the second pool are larger than those in the first pool, but itis still optimal to give priority to the second pool.

    4.3 Preemptive vs. nonpreemptive policies

    We comment on our proof technique before we provide the details of the proofs. In the many-server

    asymptotic analysis, when service times have exponential distribution, a common methodology toshow that a non-preemptive policy is asymptotically optimal is to first show that a similar butpreemptive policy is optimal and then to show that the performance of the non-preemptive policycoincides with that of the optimal preemptive policy in the limit. For example, in [ 1] the followingpreemptive policy is analyzed first; if a faster server idles, the service of a customer in the slowerserver pool (if there is any) is preempted and that customer is re-routed to the faster pool. Then

    12

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    13/23

    it is shown that the policy that does not allow preemptions have the same asymptotic performanceas this preemptive policy.

    However, such an approach cannot be used in the current context. To illustrate, consider aninverted-V model with two server pools. If preemptive policies are allowed, it can be shown that thenumber of customers in queue converges to zero in the many-server heavy traffic regime for certain

    systems as we explain below. Assume that we reserve one tagged server in the first pool and thattagged server is used differently from other servers in a way we explain next. Upon a new customerarrival, we send the arriving customer to the tagged server. Note that with probability 1 p1 thenew customers service time is zero and if so that customer will leave the system immediately. Ifthat customers service time is not zero, we preempt this customers service. If possible we try toassign this customer to a server in pool 2 and then to a server (other than the tagged server) inpool 1. Otherwise, the customer starts waiting in the queue until a server other than the taggedserver becomes available. (Although the policy we describe is idling, a non-idling version can beconstructed similarly.)

    Consider the following parameters, 1 = 2 = 1, p1 = 0.5 and p2 = 1, and Nr1 = N

    r2 = 50.

    Therefore, under the preemptive policy described above 50% of the customers will leave the systemimmediately upon arrival. The total system capacity is 150 customers per unit time by (2.5).

    However if preemption as described above is allowed, the system can handle 200 customers perunit time (50% of them will leave the system immediately and the rest will have average servicetime equal to 1). Therefore, even when (2.5) holds, the system is not under heavy traffic whenpreemptions are allowed. Using this fact, the diffusion scaled queue length can be shown to convergeto zero at all times for large enough r when (2.1), (2.2), (2.5) and (2.6) hold. This is not possibleunder any non-preemptive policy as shown in our main result. Therefore, we work directly withthe mapping defined in Section 3 instead of considering preemptive policies in our proof.

    5 Asymptotic Bounds for admissible policies

    The rest of the paper is devoted to the proofs of Theorems 4 and 5. In this section we providebounds for Qr, Zr and ur under non-idling and non-preemptive policies. These bounds will beused in several places throughout the proofs of our main results. In Sections 6 and 7 we proveTheorems 4 and 5, respectively.

    For a fixed admissible policy , let

    wr =

    wrj , j J

    , br =

    wrq , wr

    , (5.1)

    (recall (2.12)) and

    (Zr, Qr, ur) = (br), (5.2)

    where the mapping is defined as in Section 3. Note that the process br depends on the policy but we ignore this dependence from our notation for simplicity.

    Lemma 7. For any admissible policy and T > 0

    Qr()T Zr()T ur()T CTbr()

    T+Ar()

    T

    ,

    for some CT > 0, independent of the policy and for all j J.

    13

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    14/23

    The following result can be proved similarly to Lemma 7 hence the proof is omitted.

    Lemma 8. Fix an admissible policy and let (Zr, Qr, ur) be defined as in (5.2). For T > 0

    Qr()T Zr()T urT CT

    br()T

    +

    Ar()T

    ,

    for some CT > 0, independent of the policy.

    Proof of Lemma 7. Fix an admissible policy and T > 0. First note that by (2.15), (2.13) gives

    pjk urj(t) wrj (t) + j

    t0

    Zrj (s)ds wrj (t). (5.3)

    Also, if Qr(t) = 0, then by (2.14) jJ

    urj(t) = wrq(t).

    Hence by (5.3) for t [0, T] urj(t) br()T

    (5.4)

    if Qr(t) = 0.Now assume that Qr(t) > 0. Also assume there exists 0 < u < t such that Qr(u) = 0 (we

    comment on the case Qr(u) > 0 for all u [0, t] below) and define

    s = sup{u < t : Qr(u) = 0}. (5.5)

    First assume that 0 < s < t (we comment on the case s = t below). Note that Qr() > 0 for all

    (s, t], because it is right continuous by definition, and so Zr(u) = 0 for all u

    [s, t] by (3.5).

    By (2.13)

    Zrj (t) Zrj (s) = arj(t) arj(s)

    Drj (t) Drj (s)

    jts

    Zrj (s)ds

    +pj

    urj(t) urj(s)

    . (5.6)

    We show below that for any 0 < u < T

    urj(u) urj(u) 2br()T

    +Ar()

    T

    . (5.7)

    This inequality also implies by (2.13) and the fact that Zj

    D[0, T],Zrj (u) Zrj (u) 3br()

    T+Ar()

    T

    . (5.8)

    Note that because Zrj (s) = 0, (5.8) implies thatZrj (s) 3br()T

    +Ar()

    T

    .

    14

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    15/23

    Because Zrj (u) = 0 for all u (s, t]

    j

    ts

    Zrj (s)ds = 0. (5.9)

    Also by (5.4) and the fact that urj has left limits we haveurj(s) br()T

    . (5.10)

    By combining (5.6)(5.10), for some CT > 0pjurj(t) Zrj (s) + 2 arj(t) + 2 Drj (t) +pj urj(s) CTbr()T

    +Ar()

    T

    .

    This inequality gives the desired result for ur (when there exists 0 < u < t such that Qr(u) = 0).If Qr(u) > 0 for all u > 0, the result follows by setting s = 0 in (5.6) and from (2.6). Ifs = t in(5.5), the result follows from (5.7).

    The result for Zr

    follows from the bound for ur, (2.13) and Gronwalls inequality (see Corollary

    11.2 in [23]). The result for Qr follows trivially from the bounds for ur and (2.14).To prove (5.7), we note that the number of customers whose service started in pool j (including

    those whose service times are equal to zero) in an interval [s, t] is bounded by the summation of thenumber of customers whose service is completed by that server pool and the total number of arrivalsto the system in that interval. This follows from (2.7), (2.8) and the fact under an admissible policyAj is non-decreasing. Therefore

    Arj(t) Arj(s) Ar(t) Ar(s) + Drj (t) Drj (s) +Arj(t)

    n=Arj(s)+1

    (1 j(n)),

    which implies

    Arj(t)

    n=Arj(s)+1

    j(n) Ar(t) Ar(s) + Drj (t) Drj (s).

    This inequality gives (5.7) combined with (2.11) and the fact that

    r1/2

    A

    rj (t)

    n=Arj(s)+1

    j(n)

    = r1/2 Arj(t) Arj(s) + arj(t) arj(s),

    which follows from (2.10).

    6 Proof of Theorem 4

    The proof follows similarly to Theorem 3.2 in [29] using Lemma 7 (see also Step 1 of Proposition 1in [5]).

    15

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    16/23

    Proof. Assume that (2.1), (2.2), (2.5) and (2.6) hold. We mainly focus on the case where Assump-tion 1(i) holds. Fix a sequence of admissible policies r. All the queueing processes below dependon the policy r but we drop it from our notation for simplicity. We show below that for any T > 0

    Qr(t),Zr(t)

    r T 0, as r

    . (6.1)

    Let br be defined as in (5.1). By (6.1), Theorem 4.4 in [10] and random time change theorem (seeTheorem 5.3 in [11])

    br B as r , (6.2)

    where B is defined as in Section 4.Let (Zr, Qr, ur) be defined as in (5.2). (We note that the process br depends on the policy ,

    hence so is (Zr, Qr, ur).) Also set

    Yr(t) = Qr(t) +J

    j=1

    Zr

    j(t). (6.3)

    By Theorem 3(i), under Assumption 1(i) for any T > 0

    Yr(t) Yr(t) for all t [0, T]. (6.4)

    Result (4.1) follows from (6.2), (6.4) and continuous mapping theorem. Result (4.2) follows from(4.1) and Fatous lemma. Part (ii) of Theorem 4 follows similarly using Theorem 3(ii) instead ofTheorem 3(i) to arrive at

    Yr(t)

    +

    Yr(t)

    +

    for all t [0, T]

    instead of (6.4) and proceeding in a similar way as above.We finish the proof by establishing (6.1) using Lemma 7. Fix T > 0. Recall the definition

    of wj and wrq in (2.12). By functional strong law of large numbers (see Theorem 5.10 in [11]),Ar(t)

    T 0 a.s. as r . Therefore by Lemma 7, it is enough to show that

    (wr, wrq) 0, as r , (6.5)

    where wr = wr/

    r and wrq = wrq/

    r. For wrq , the result immediately follows from (2.6) and the

    fact that Ar is a delayed renewal process, see (2.4). Next we focus on wr.By (2.12),

    wrj (t) =Zr

    j(0)

    r + arj(t)/r Drj (t)/r. (6.6)

    We have Zrj (0)/

    r 0 as r by (2.6). By (2.10)

    arj(t)/

    r =Crj

    rArj(t)

    r

    rpjArj(t).

    16

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    17/23

    Because Arj(t) Ar(t) for all t and Ar(t) 2t a.s. for r large enough, for any T > 0

    sup0tT

    Crj

    rArj(t)

    r

    rpjArj(t) sup

    0tT

    Crj (2rt)

    rpj2rt

    (6.7)

    for r large enough. The term on the RHS of (6.7) converges to 0 a.s. for any T > 0 as r byfunctional strong law of large numbers (see Theorem 5.10 in [11]). Because Zrj (t) Nj/r jr,see (2.2), we also have that sup0tT

    Drj (t)/r 0 for any T > 0 by functional strong law oflarge numbers, completing the proof of (6.1) by (6.6).

    7 Proof of Theorem 5

    We first establish two results and then prove Theorem 5 using these results.

    Proposition 9. Assume that (2.1), (2.2), (2.5) and (2.6) hold. Under , for any 0 < s < T and > 0,

    limsupr

    P

    Jj=2

    Zrj ()[s,T]

    >

    = 0.

    Proof. Assume that (2.1), (2.2), (2.5) and (2.6) hold. Fix T > 0. As in [27] we argue below thatfor any > 0 and 0 < s < T

    lim supr

    P

    Jj=2

    Zrj ()[s,T]

    > 2

    limsupr

    P

    supst1t2T|t2t1|

    . (7.1)

    Let Zr(t) = Zrj (t)/

    r. By (2.13),

    Zrj (t) = Zrj (0) + r

    1/2arj(t) r1/2Drj (t) jt0

    Zrj (s)ds + r1/2pju

    rj(t).

    By (6.1) and (6.5), this equation implies that

    r1/2pjurj 0 as r .

    Hence, for any T > 0, by (2.11)

    sup0tT

    Arj(t) jmj t 0 as r .17

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    18/23

    Therefore by the random time change theorem (see Theorem 5.3 in [11])

    arj aj, as r , (7.2)where aj is a driftless Brownian motion with variance (1 pj)jj . Also by (6.1)

    D

    r

    j

    Dj, as r , (7.3)where Dj is a driftless Brownian motion with variance jj. In addition

    Ar A, as r , (7.4)where A is a Brownian motion with variance 2. We get the desired result from (7.1), (7.2)(7.4),the fact that > 0 can be taken to be arbitrarily small and because Brownian motion is continuousa.s.

    We prove (7.1) next. First assume that

    J

    j=2

    Zrj (0) = 0.

    Let

    r1 = inf{t > 0 :J

    j=2

    Zrj (t) > 2}

    and

    r0 = sup{r1 > t > 0 :J

    j=2

    Zrj (t) < }.

    Recall thatZr

    j (t) 0 for all t by (2.15). Also by (2.17), on [r

    0 , r

    1 ],J

    j=2

    pjurj(

    r1 )

    Jj=2

    pjurj(

    r0) Ar(r1 ) Ar(r0) +

    Nr1rm1

    (r1 r0 ) + (r1 r0 ).

    Therefore, by (2.13)

    Jj=2

    Zrj (r1 )

    Jj=2

    Zrj (r0)

    Jj=2

    arj(r1 )

    Jj=2

    arj(r0)

    J

    j=2

    Drj (r1 )

    J

    j=2

    Drj (r0

    ) + Ar(r1 )

    Ar(r0

    ) +

    Nr1rm

    1

    (r1

    r0 ) + (

    r1

    r0 ).(7.5)

    This inequality gives (7.1).Now assume that

    Jj=2

    Zrj (0) < 0.

    18

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    19/23

    Let

    r = inf

    t 0 :

    Jj=2

    Zrj (t) = 0

    .

    Note that the argument (7.5) still holds if we focus on [r

    , T] instead of [0, T], therefore it is enoughto show that r 0 as r . This follows by noticing that (7.5) also holds if we set r1 = r anduse 0 instead of r0.

    Proposition 10 (Convergence). Assume that (2.1), (2.2), (2.5) and (2.6) hold. Under, for any0 < s < T

    sups

  • 7/29/2019 Tolga Ques

    20/23

    Similarly, by (3.3)(3.5)

    Yr1 (t)

    += Qr(t) and

    Yr1 (t)

    = Zr1(t)/p1. (7.11)

    By (2.13) and (2.14)

    Yr1 (t) = wrq(t) +

    wr1(t)

    p1 1

    p1

    t

    0Zr1(s)ds

    Jj=2

    urj(t). (7.12)

    By (3.1) and (3.2)

    Yr1 (t) = wrq(t) +

    wr1(t)

    p1 1

    p1

    t0

    Zr1(s)ds J

    j=2

    urj(t). (7.13)

    By (7.9)(7.12), and Gronwalls inequality (see (11.2) in [23])

    Yr1 (t) Yr1 (t) J

    j=2

    urj(t) urj(t) + C1 t

    0

    urj(s) urj(s) ds (7.14)

    for C1 =1p1

    exp

    1p1

    T

    . First note that urj(0) = 0 andurj(0) Jj=1 Zrj (0). Hence, (7.14)

    implies (7.7), by (7.9)(7.11), Lemma 7 and (6.2).

    We are now ready to prove Theorem 5.

    Proof. Assume that (2.1), (2.2), (2.5) and (2.6) hold. We prove the result using (7.6) and Propo-sition 11 below. We only prove the result under Assumption 1(i), proof under Assumption 1(ii) issimilar.

    Fix > 0 and x > 0. By Proposition 11 we can find > 0 such that for r large enough

    P

    0

    Yr(s)ds >

    < and P

    0

    Y(s)ds >

    < . (7.15)

    Also, by (7.6) and the continuity of the integral operator we have

    P

    T

    Yr(s)ds > x

    PT

    Y(s)ds > x

    ,

    as r . By (7.15), for x > 0 and r large enough

    PT0

    Yr

    (s)ds > x P

    T

    Yr

    (s)ds > x

    +

    PT

    Y(s)ds > x

    + 2 P

    T0

    Y(s)ds > x

    + 3.

    Since > 0 is arbitrary this proves (4.7) by Theorem 4. The result (4.8) follows from (4.7) and theuniform integrability of

    0 Y

    r(s)ds by Proposition 11 below.

    20

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    21/23

    Proposition 11. Assume that (2.1), (2.2), (2.5) and (2.6) hold. For any admissible policy andT > 0

    EQr()2T

    E

    Zr()2T

    Eur()2T CT and

    EQr()2T EZr()2T Eur()2T CTfor some CT > 0, independent of the policy.

    Proof. The first result follows from Lemma 7 and combining (52) in [15] with Lemmas 2 and 3 in[5] and the fact that interarrival times are assumed to have finite mean and variance. The secondresult follows from Lemma 8 and a similar argument.

    References

    [1] M. Armony. Dynamic routing in large-scale service systems with heterogenous servers. Queue-ing Systems: Theory and Applications, 51:287329, 2005.

    [2] M. Armony and C. Maglaras. Contact centers with a call-back option and real-time delayinformation. Operations Research, 52:527545, 2004.

    [3] M. Armony and C. Maglaras. On customer contact centers with a call-back option: Customerdecisions, routing rules and system design. Operations Research, 52:271292, 2004.

    [4] B. Ata and S. Kumar. Heavy traffic analysis of open processing networks with complete re-source pooling: asymptotic optimality of discrete review policies. Annals of Applied Probability,15:331391, 2005.

    [5] R. Atar. A diffusion model of scheduling control in queueing systems with many servers.Annals of Applied Probability, 15:820852, 2005.

    [6] R. Atar. Scheduling control for queueing systems with many servers: asymptotic optimalityin heavy traffic. Annals of Applied Probability, 15:26062650, 2005.

    [7] R. Atar, A. Mandelbaum, and M. Reiman. Scheduling a multi-class queue with many exponen-tial servers: Asymptotic optimality in heavy-traffic. Annals of Applied Probability, 14:10841134, 2004.

    [8] S. L. Bell and R. J. Williams. Dynamic scheduling of a system with two parallel servers inheavy traffic with resource pooling: asymptotic optimality of a threshold policy. Annals ofApplied Probability, 11:608649, 2001.

    [9] S. L. Bell and R. J. Williams. Dynamic scheduling of a parallel server system in heavy traffic

    with complete resource pooling: Asymptotic optimality of a threshold policy. Electronic J. ofProbability, 10:10441115, 2005.

    [10] P. Billingsley. Convergence of probability measures. Wiley, New York, 1968.

    [11] H. Chen and D. Yao. Fundamentals of queueing networks : Performance, asymptotics, andoptimization. Springer, New York, 2001.

    21

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 Tolga Ques

    22/23

    [12] J. Dai and T. Tezcan. Optimal control of parallel server systems with many servers in heavytraffic. Queueing Systems Theory and Applications, 59:95134, 2008.

    [13] J. G. Dai and T. Tezcan. State space collapse in many server diffusion limits of parallel serversystems. To appear in math of or, School of Industrial and Systems Engineering, GeorgiaInsitute of Technology, 2011.

    [14] S. Ethier and T. Kurtz. Markov Processes: Characterization and Convergence. John Wileyand Sons, New York, 1986.

    [15] D. Gamarnik and A. Zeevi. Validity of heavy traffic steady-state approximations in openqueueing networks. Annals of Applied Probability, 16:5690, 2006.

    [16] N. Gans, G. Koole, and A. Mandelbaum. Telephone call centers: Tutorial, review and researchprospects. Manufacturing and Service Operations Management, 5:79141, 2003.

    [17] I. Gurvich, M. Armony, and A. Mandelbaum. Service-Level Differentiation in Call Centerswith Fully Flexible Servers. Management Science, 54:279294, 2008.

    [18] I. Gurvich and W. Whitt. Service-level differentiation in many-server service systems: Asolution based on fixed-queue-ratio routing. Operations Research, 29:567588, 2007.

    [19] I. Gurvich and W. Whitt. Scheduling flexible servers with convex delay costs in many-serverservice systems. Manufacturing & Service Operations Management, 11(2):237253, 2009.

    [20] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers. Oper-ations Research, 29:567588, 1981.

    [21] J. M. Harrison. Brownian models of queueing networks with heterogeneous customer popu-lations. In W. Fleming and P. L. Lions, editors, Stochastic Differential Systems, StochasticControl Theory and Their Applications, volume 10 of The IMA Volumes in Mathematics and

    Its Applications, pages 147186, New York, 1988. Springer-Verlag.

    [22] H. Kaspi and K. Ramanan. Law of large numbers limits for many-server queues. Annals ofApplied Probability, 21:33114, 2011.

    [23] A. Mandelbaum, W. Massey, and M. Reiman. Strong approximations for Markovian servicenetworks. Queueing Systems: Theory and Applications, 30:149201, 1998.

    [24] G. Pang, R. Talreja, and W. Whitt. Martingale proofs of many-server heavy-traffic limits forMarkovian queues. Probability Surveys, 4:193267, 2007.

    [25] A. Puhalskii and M. Reiman. The multiclass GI/PH/N queue in the Halfin-Whitt regime.Advances in Applied Probability, 32:564595, 2000.

    [26] J. E. Reed. The G/GI/N queue in the Halfin-Whitt regime. Annals of Applied Probability,19:22112269, 2009.

    [27] M. Reiman. Some diffusion approximations with state space collapse. In Proceedings Interna-tional Seminar On Modeling And Performance Evaluation Methodology, pages 209240, Berlin,1983. Springer-Verlag.

    22

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62

    63

    64

    65

  • 7/29/2019 Tolga Ques

    23/23

    [28] G. Shaikhet. A fluid control problem in queueing networks with general service times. Technicalreport, Carleton University, 2010.

    [29] T. Tezcan and J. G. Dai. Dynamic control of N-systems with many servers: Asymptoticoptimality of a static priority policy in heavy traffic. Operations Research, 58:94110, 2010.

    [30] W. Whitt. Heavy-traffic limits for the G/H2/n/m queue. Mathematics of Operations Research,30:127, 2005.

    23

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    3839

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

    56

    57

    58

    59

    60

    61

    62