10
UNIVERSITÀ DI PAVIA giuseppe bozzi in collaboration with Alessandro Bacchetta, Cristian Pisano, Alexei Prokudin, Marco Radici (Towards a new formalism for the study of) Azimuthal asymmetries in unpolarised SIDIS

(Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

Embed Size (px)

Citation preview

Page 1: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

In questo manuale sono illustrate le regole base per la corretta applicazione del marchio Università di Pavia. Il logo, i caratteri tipografici e i colori scelti sono infatti gli elementi che partecipano alla costruzione dell’identità visiva di qualsiasi attore che voglia presentarsi al mercato, sia esso un prodotto mass market, un’Istituzione o un ateneo. Sono il suo volto commerciale ma anche istituzionale, quello che permetterà all’Università di Pavia di essere riconoscibile nel tempo agli occhi del suo pubblico interno, ma anche esterno. Proprio per il ruolo centrale che rivestono, tali elementi devono essere rappresentati e utilizzati

secondo regole precise e inderogabili, al fine di garantire la coerenza e l’efficacia dell’intero sistema di identità visiva. Per questo è importante che il manuale, nella sua forma cartacea o digitale, venga trasmesso a tutti coloro che in futuro si occuperanno di progettare elementi di comunicazione per l’Università di Pavia.

INTRODUZIONE: L’IMMAGINE UNIVERSITÀ DI PAVIA

UNIVERSITÀ DI PAVIA

giuseppe bozzi

in collaboration withAlessandro Bacchetta, Cristian Pisano, Alexei Prokudin, Marco Radici

(Towards a new formalism for the study of) Azimuthal asymmetries in unpolarised SIDIS

GDR Juljan Rushaj

Prog

etta

zion

e Lo

go3D

Spi

n

[email protected]

Colore 01 Colore 03Colore 02

%UXVVHOV�����-DQXDU\�����$UHV������������

5HYLHZ�VHVVLRQ��6WHS��

'HDU�'U��%DFFKHWWD�

6XEMHFW��2XWFRPH�RI�WKH�HYDOXDWLRQ�RI�SURSRVDOV�VXEPLWWHG�WR�WKH�&DOO�IRU�3URSRVDOV�(5&�&R*�������3URSRVDO�Qp���������'63,1

,�DP�YHU\�SOHDVHG�WR�LQIRUP�\RX�WKDW�WKH�(5&�HYDOXDWLRQ�SDQHOV��FRPSRVHG�RI�LQGHSHQGHQW�H[SHUWV��KDYHIDYRXUDEO\�UHYLHZHG�DQG�UHFRPPHQGHG�IRU�IXQGLQJ�\RXU�SURSRVDO�HQWLWOHG�����'LPHQVLRQDO�0DSV�RI�WKH6SLQQLQJ�1XFOHRQ���'LPHQVLRQDO �0DSV�RI �WKH�6SLQQLQJ�1XFOHRQ���'LPHQVLRQDO �0DSV�RI �WKH�6SLQQLQJ1XFOHRQ� �VXEPLWWHG�WR �WKH�DERYH�PHQWLRQHG�(5&�&R*������&DOO�

)RU�\RXU�LQIRUPDWLRQ��\RX�ZLOO�ILQG�HQFORVHG�WKH�(YDOXDWLRQ�5HSRUW��GRFXPHQWLQJ�WKH�UHVXOWV�RI�WKH�SHHU�UHYLHZRI �\RXU �SURSRVDO� �,W �FRQWDLQV �WKH �LQGLYLGXDO �DVVHVVPHQWV �DQG �WKH �ILQDO �VFRUH �DZDUGHG �E\ �WKH �SDQHO�DFFRPSDQLHG�E\�D�SDQHO�FRPPHQW��7KH�SDQHO�KDV�EDVHG�LWV�MXGJHPHQW�RQ�UHPRWH�UHYLHZV�IROORZHG�E\�DSDQHO�GLVFXVVLRQ�DQG�GHFLVLRQ��<RX�ZLOO�DOVR�ILQG�HQFORVHG�D�OHWWHU�IURP�WKH�3UHVLGHQW�RI�WKH�(5&�JLYLQJ�\RXJHQHUDO�EDFNJURXQG�LQIRUPDWLRQ�DERXW�WKH�UHYLHZ�SURFHVV��)RU�\RXU�LQIRUPDWLRQ��WKH�WRS�����RI�WKH�SURSRVDOVHYDOXDWHG�LQ�SDQHO�3(��LQ�6WHS���ZHUH�IXQGHG�

,Q�WKH�QHDU�IXWXUH�WKH�(5&�([HFXWLYH�$JHQF\��(5&($��ZLOO�VHQG�\RX�WKH�IXOO�GHWDLOV�RI�WKH�VWHSV�LQYROYHG�LQFRQFOXGLQJ�WKH�*UDQW�$JUHHPHQW��ZKLFK�ZLOO�EH�HVWDEOLVKHG�EHWZHHQ�\RXU�KRVW�RUJDQLVDWLRQ�DQG�WKH�(5&($�,Q�SUHSDULQJ�WKH�JUDQW�DJUHHPHQW��WKH�(5&($�LQWHQGV�WR�IROORZ�WKH�UHFRPPHQGDWLRQV�RI�WKH�SDQHO� �DVGRFXPHQWHG�LQ�WKH�SDQHO�FRPPHQW�RI�WKH�(YDOXDWLRQ�5HSRUW�

,Q�RUGHU�IRU�DOO�SURSRVHG�UHVHDUFK�DFWLYLWLHV�WR�EH�LQ�FRPSOLDQFH�ZLWK�IXQGDPHQWDO�HWKLFDO�SULQFLSOHV��DQ�HWKLFDOUHYLHZ�RI�\RXU�SURSRVDO�PD\�EH�UHTXLUHG�GHSHQGLQJ�RQ�WKH�VXEMHFW�PDWWHU��,I�WKLV�LV�WKH�FDVH�IRU�\RXU�SURSRVDO\RX�ZLOO�KHDU�IURP�XV�LQ�WKLV�UHJDUG�DV�VRRQ�DV�WKH�UHVXOWV�RI�WKLV�UHYLHZ�DUH�NQRZQ��RU�LI�FODULILFDWLRQV�IURP\RXU�VLGH�DUH�UHTXLUHG�

$W�WKLV�VWDJH�WKLV�OHWWHU�VKRXOG�LQ�QR�ZD\�EH�FRQVLGHUHG�DV�D�FRPPLWPHQW�RI�ILQDQFLDO�VXSSRUW�E\�WKH�(XURSHDQ8QLRQ�

7HO������������������_�)D[������������������_�$JQHV�.8/&6$5#HF�HXURSD�HX�_�KWWS���HUF�HXURSD�HX(5&�([HFXWLYH�$JHQF\��3ODFH�5RJLHU�����&29����������%(������%UXVVHOV��%HOJLXP

Page 2: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

Acos 2�hUU =

"F cos 2�hUU

FUU,T + "FUU,L

.Acos�hUU =

p2"(1 + ")F cos�h

UU

FUU,T + "FUU,L

.

Azimuthal Asymmetries

d�

d�hdP 2

h?/ ↵2

Q2

{FUU,T + "FUU,L +

p2 "(1 + ") cos�h F

cos�hUU + " cos(2�h)F

cos 2�hUU }

Differential cross section

y

z

x

hadron plane

lepton plane

ll S

Ph

Phφh

φS

Unpolarised SIDIS

Page 3: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

Do they describe the same dynamics or two competing mechanisms

in the intermediate region?

(i.e., interpolation or sum?)

M2 � q2T � Q2

Intermediate

collinear PDF

M2 � q2T

High

TMD

q2T � Q2

Low

q2T

Q2M2

3 physical scales - 2 theoretical tools

Page 4: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

Example of a MISMATCH: M2F (qT , Q) ⇠ M2(M2

q4T+

1

Q2) ⇠ l2,4 + l4,2

l2,4 = h4,2 leading for low qT, subleading for high qTl4,2 = h2,4 leading for high qT, subleading for low qT

Example of a MATCH: M2F (qT , Q) ⇠ M2(1

q2T+

1

Q2) ⇠ l2,2 + l4,2

l2,2 = h2,2 leading in both casesl4,2 = h2,4 subleading in both cases

ln,k = hk,nsame twist only if k=n

M⌧qT⌧Q=

1

M2

X

n,k

hn,k (M

qT)n (

qTQ

)k�2F (qT , Q)M⌧qT=

1

M2

X

n

(M

qT)n hn(

qTQ

)High qT

M⌧qT⌧Q=

1

M2

X

n,k

ln,k (qTQ

)n�2 (M

qT)kF (qT , Q)

qT⌧Q=

1

M2

X

n

(qTQ

)n�2 ln(M

qT)Low qT

Matches and mismatches Bacchetta, Boer, Diehl, Mulders JHEP08(2008)

F cos 2�hUU

FUU,T

Page 5: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

Mismatch of non-logarithmic terms

No matching in the intermediate region

l2,2

l3,2l2,4

l4,2h2,2

h2,3

h2,4

h2,4

JHEP08(2008)023

low-qT calculation high-qT calculation leading powers

observable twist order power twist order power match

FUU,T 2 αs 1/q2T 2 αs 1/q2

T yes

FUU,L 4 2 αs 1/Q2

F cos φh

UU 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F cos 2φh

UU 2 αs 1/q4T 2 αs 1/Q2 no

F sinφh

LU 3 α2s 1/(QqT ) 2 α2

s 1/(QqT ) yes

F sinφh

UL 3 α2s 1/(QqT )

F sin 2φh

UL 2 αs 1/q4T

FLL 2 αs 1/q2T 2 αs 1/q2

T yes

F cos φh

LL 3 αs 1/(QqT ) 2 αs 1/(QqT ) yes

F sin(φh−φS)UT,T 2 αs 1/q3

T 3 αs 1/q3T yes

F sin(φh−φS)UT,L 4 3 αs 1/(Q2 qT )

F sin(φh+φS)UT 2 αs 1/q3

T 3 αs 1/q3T yes

F sin(3φh−φS)UT 2 α2

s 1/q3T 3 αs 1/(Q2 qT ) no

F sinφS

UT 3 αs 1/(Qq2T ) 3 αs 1/(Qq2

T ) yes

F sin(2φh−φS)UT 3 αs 1/(Qq2

T ) 3 αs 1/(Qq2T ) yes

F cos(φh−φS)LT 2 αs 1/q3

T

F cos φS

LT 3 αs 1/(Qq2T )

F cos(2φh−φS)LT 3 αs 1/(Qq2

T )

Table 2: Leading power behavior of SIDIS structure functions in the intermediate region M ≪qT ≪ Q, corresponding to the expansions in (1.2) and (1.4), respectively. Empty fields indicatethat no calculation is available. The specification of twist 4 for FUU,L and F sin(φh−φS)

UT,L reflects thatthese observables are zero when calculated at twist-two and twist-three accuracy.

only conclude that these low-qT results can potentially match with those of a high-qT

calculation at twist-three accuracy.

In table 2 we collect the results for the leading power behavior of all structure functions

we have discussed. We notice that for several observables the twist of the low-qT and the

high-qT calculation is not the same, which is reminiscent of a similar observation we made

for the high-pT behavior of distribution functions in section 5.3.

6.1 Interpolating from low to high qT

Let us now see how one can practically proceed when the leading terms in the low- and high-

qT descriptions of an observable do not match in the intermediate region. As an example

we take the unpolarized structure function F cos 2φh

UU . We denote its low-qT approximation

– 41 –

The situation for unpolarised SIDIS

Page 6: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

JHEP08(2008)023

• γ∗g → qq

CUU,T = 2TR!x2 + (1 − x)2

"!z2 + (1 − z)2

" 1 − x

xz2

Q2

q2T

, (4.16)

Ccos φh

UU = −4TR (2x − 1) (2z − 1)1 − x

z

Q

qT, (4.17)

Ccos 2φh

UU = 8TR x (1 − x), (4.18)

CLL = 2TR (2x − 1)!z2 + (1 − z)2

" 1 − x

xz2

Q2

q2T

, (4.19)

Ccos φh

LL = −4TR (2z − 1)1 − x

z

Q

qT(4.20)

with CF = 4/3 and TR = 1/2. The relation CUU,L = 2Ccos 2φh

UU holds for each individual

subprocess. Our results agree with those in [40, 32].

The behavior of the above results in the region q2T ≪ Q2 can be obtained by rewriting

the δ function in eq. (4.4) as [41]

δ

#q2T

Q2−

(1 − x)(1 − z)

xz

$= δ(1 − x) δ(1 − z) ln

Q2

q2T

+x

(1 − x)+δ(1 − z)

+z

(1 − z)+δ(1 − x) + O

#q2T

Q2ln

Q2

q2T

$,

(4.21)

where the plus-distribution is as usual defined by

% 1

zdy

G(y)

(1 − y)+=

% 1

zdy

G(y) − G(1)

1 − y− G(1) ln

1

1 − z. (4.22)

We have written the hard-scattering coefficients in (4.6) to (4.20) in a way that allows for

an easy extraction of the leading power behavior at small qT /Q. The result is

FUU,T =1

q2T

αs

2π2z2

&

a

xe2a

'fa1 (x)Da

1(z)L

#Q2

q2T

$+ fa

1 (x)(Da

1 ⊗ Pqq + Dg1 ⊗ Pgq

)(z)

+(Pqq ⊗ fa

1 + Pqg ⊗ f g1

)(x)Da

1 (z)

*, (4.23)

FUU,L = 2F cos 2φh

UU , (4.24)

F cos φh

UU = −1

QqT

αs

2π2z2

&

a

xe2a

'fa1 (x)Da

1 (z)L

#Q2

q2T

$+ fa

1 (x)(Da

1 ⊗ P ′qq + Dg

1 ⊗ P ′gq

)(z)

+(P ′

qq ⊗ fa1 + P ′

qg ⊗ f g1

)(x)Da

1 (z)

*, (4.25)

F cos 2φh

UU =1

Q2

αs

2π2z2

&

a

xe2a

'fa1 (x)Da

1(z)L

#Q2

q2T

$+ fa

1 (x)(Da

1 ⊗ P ′′qq + Dg

1 ⊗ P ′′gq

)(z)

+(P ′′

qq ⊗ fa1 + P ′′

qg ⊗ f g1

)(x)Da

1 (z)

*, (4.26)

– 17 –

JHEP08(2008)023• γ∗g → qq

CUU,T = 2TR!x2 + (1 − x)2

"!z2 + (1 − z)2

" 1 − x

xz2

Q2

q2T

, (4.16)

Ccos φh

UU = −4TR (2x − 1) (2z − 1)1 − x

z

Q

qT, (4.17)

Ccos 2φh

UU = 8TR x (1 − x), (4.18)

CLL = 2TR (2x − 1)!z2 + (1 − z)2

" 1 − x

xz2

Q2

q2T

, (4.19)

Ccos φh

LL = −4TR (2z − 1)1 − x

z

Q

qT(4.20)

with CF = 4/3 and TR = 1/2. The relation CUU,L = 2Ccos 2φh

UU holds for each individual

subprocess. Our results agree with those in [40, 32].

The behavior of the above results in the region q2T ≪ Q2 can be obtained by rewriting

the δ function in eq. (4.4) as [41]

δ

#q2T

Q2−

(1 − x)(1 − z)

xz

$= δ(1 − x) δ(1 − z) ln

Q2

q2T

+x

(1 − x)+δ(1 − z)

+z

(1 − z)+δ(1 − x) + O

#q2T

Q2ln

Q2

q2T

$,

(4.21)

where the plus-distribution is as usual defined by

% 1

zdy

G(y)

(1 − y)+=

% 1

zdy

G(y) − G(1)

1 − y− G(1) ln

1

1 − z. (4.22)

We have written the hard-scattering coefficients in (4.6) to (4.20) in a way that allows for

an easy extraction of the leading power behavior at small qT /Q. The result is

FUU,T =1

q2T

αs

2π2z2

&

a

xe2a

'fa1 (x)Da

1(z)L

#Q2

q2T

$+ fa

1 (x)(Da

1 ⊗ Pqq + Dg1 ⊗ Pgq

)(z)

+(Pqq ⊗ fa

1 + Pqg ⊗ f g1

)(x)Da

1 (z)

*, (4.23)

FUU,L = 2F cos 2φh

UU , (4.24)

F cos φh

UU = −1

QqT

αs

2π2z2

&

a

xe2a

'fa1 (x)Da

1 (z)L

#Q2

q2T

$+ fa

1 (x)(Da

1 ⊗ P ′qq + Dg

1 ⊗ P ′gq

)(z)

+(P ′

qq ⊗ fa1 + P ′

qg ⊗ f g1

)(x)Da

1 (z)

*, (4.25)

F cos 2φh

UU =1

Q2

αs

2π2z2

&

a

xe2a

'fa1 (x)Da

1(z)L

#Q2

q2T

$+ fa

1 (x)(Da

1 ⊗ P ′′qq + Dg

1 ⊗ P ′′gq

)(z)

+(P ′′

qq ⊗ fa1 + P ′′

qg ⊗ f g1

)(x)Da

1 (z)

*, (4.26)

– 17 –

JHEP08(2008)023

scattering coefficients with collinear parton distribution and fragmentation functions,

FUU,T =1

Q2

αs

(2πz)2

!

a

xe2a

" 1

x

dx

x

" 1

z

dz

#q2T

Q2−

(1 − x)(1 − z)

x z

$

×%fa1

&x

x

'Da

1

&z

z

'C(γ∗q→qg)

UU,T +fa1

&x

x

'Dg

1

&z

z

'C(γ∗q→gq)

UU,T +f g1

&x

x

'Da

1

&z

z

'C(γ∗g→qq)

UU,T

(,

(4.4)

as we have already seen in section 3.2. We recall that a runs over flavors of quarks and

of antiquarks. Analogous expressions with different kernels C give the structure functions

FUU,L, F cos φh

UU , and F cos 2φh

UU . At order αs (but not at higher order) one finds the relation

FUU,L = 2F cos 2φh

UU . (4.5)

The structure functions FLL and F cos φh

LL for longitudinal target and beam polarization

are also given by expressions analogous to (4.4), with different kernels C and with the

unpolarized parton densities fa1 and f g

1 replaced by their polarized counterparts ga1 and gg

1 .

The hard-scattering coefficients for the partonic processes γ∗q → qg, γ∗q → gq, γ∗g → qq

can be computed from the respective diagrams (a, a′), (b, b′), (c, c′) in figure 2, and those

for γ∗q → qg, γ∗q → gq, γ∗g → qq are identical to their counterparts obtained by charge

conjugation. Process by process we have

• γ∗q → qg

CUU,T = 2CF

#(1 − x)(1 − z) +

1 + x2z2

xz

Q2

q2T

$, (4.6)

Ccos φh

UU = −4CF)xz + (1 − x)(1 − z)

* Q

qT, (4.7)

Ccos 2φh

UU = 4CF xz, (4.8)

CLL = 2CF

#2(x + z) +

x2 + z2

xz

Q2

q2T

$, (4.9)

Ccos φh

LL = −4CF (x + z − 1)Q

qT, (4.10)

• γ∗q → gq

CUU,T = 2CF

#(1 − x) z +

1 + x2(1 − z)2

xz

1 − z

z

Q2

q2T

$, (4.11)

Ccos φh

UU = 4CF)x (1 − z) + (1 − x) z

* 1 − z

z

Q

qT, (4.12)

Ccos 2φh

UU = 4CF x (1 − z), (4.13)

CLL = 2CF

#2x + 2(1 − z) +

x2 + (1 − z)2

xz

1 − z

z

Q2

q2T

$, (4.14)

Ccos φh

LL = 4CF (x − z)1 − z

z

Q

qT, (4.15)

– 16 –

• convolution of PDFs and FFs with hard scattering coefficients

• expansion of delta function for small qT/Q

• extraction of leading behaviour

From high to intermediate qT

Page 7: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

JHEP08(2008)023F sin 2φh

UL ∼M2

q4T

αs F!h⊥(1)

1L H⊥(1)1 , . . .

", (5.84)

FLL ∼1

q2T

αs F!g1D1

", (5.85)

F cos φh

LL ∼1

QqTαs F

!g1D1

", (5.86)

F sin(φh−φS)UT,T ∼

M

q3T

αs F!f⊥(1)1T D1, . . .

", (5.87)

F sin(φh+φS)UT ∼

M

q3T

αs F!h1H⊥(1)

1 , . . .", (5.88)

F sin(3φh−φS)UT ∼

M

q3T

α2s F

!h1H⊥(1)

1 , . . .", (5.89)

F sin φS

UT ∼M

Qq2T

αs F!f⊥(1)1T D1, h1H⊥(1)

1 , . . .", (5.90)

F sin(2φh−φS)UT ∼

M

Qq2T

αs F!f⊥(1)1T D1, . . .

", (5.91)

F cos(φh−φS)LT ∼

M

q3T

αs F!g(1)1T D1, . . .

", (5.92)

F cos φS

LT ∼M

Qq2T

αs F#g(1)1T D1, h1

E

z, . . .

$, (5.93)

F cos(2φh−φS)LT ∼

M

Qq2T

αs F!g(1)1T D1, . . .

". (5.94)

Here either the parton distributions or the fragmentation functions are convoluted with

kernels Ki or Li :

F!fD

"=

1

z2

%

a,i

e2a

&'Ki ⊗ f i

((x)Da(z) + fa(x)

'Di ⊗ Li

((z)

), (5.95)

where the sum runs over quarks and antiquarks for a and over quarks, antiquarks and

gluons for i. As we will see in section 8, these kernels contain logarithms of Q/qT . Their

origin is the dependence of f1(x, p2T ) or D1(z, k2

T ) on ζ or ζh, which we tacitly omitted

in (5.75). When resummed to all orders in αs in the way we sketched in section 3, these

logarithms can lead to a substantial modification of the power laws in (5.79) to (5.94).

A numerical study of these effects on azimuthal asymmetries in Drell-Yan production has

been performed in [58].

We note that for the 1/Q suppressed structure functions in (5.79) to (5.94), contribu-

tions from U(l2T ) taken at lT ≈ −qT are power suppressed or have the same power behavior

as contributions where either pT ≈ −qT or kT ≈ qT . For these structure functions, the

power behavior at high qT hence remains the same if we simply ignore the soft factor and

work with the tree-level convolution (5.52) instead of (5.75).

6. Comparing results at intermediate qT

We can now compare the results for the region M ≪ qT ≪ Q obtained in the low-qT

calculation of the previous section with those obtained in the high-qT calculation. As we

– 37 –

JHEP08(2008)023

to our accuracy. Likewise, the integral over lT gives unity up to αs-corrections according

to (5.76). Since we are considering the region where kT and lT are small compared with

qT the integrals over these momenta should be suitably cut off, as is required for (5.21)

and (5.76) to make sense. Repeating these arguments for the cases where kT or lT are

large, we obtain!

d2pT d2kT d2lT δ(2)

"pT − kT + lT + qT

#f(x, p2

T )D(z, k2T )U(l2T )

≈ f(x, q2T )

D(z)

z2+ f(x)D(z, q2

T ) + f(x)D(z)

z2U(q2

T ) .

(5.77)

For nontrivial functions w(pT ,kT ) the calculation is slightly more involved. Instead of

approximating e.g. pT = kT − lT − qT ≈ −qT , we need to Taylor expand the functions of

pT around −qT . We take as an example the convolution C$"

kT ·pT

#h⊥

1 H⊥1

%appearing in

F cos 2φh

UU and consider the region where pT is large. We perform the integral over pT using

the δ function and obtain!

d2kT d2lT H⊥1 (z, k2

T )U(l2T )"k2

T − kT · lT − kT ·qT

#h⊥

1

"x, (kT − lT − qT )2

#

≈!

d2kT d2lT H⊥1 (z, k2

T )U(l2T )

×"k2

T − kT · lT − kT ·qT

# &h⊥

1

"x, q2

T ) − 2"kT ·qT − lT ·qT

# ∂

∂q2T

h⊥1

"x, q2

T )

'+ · · ·

≈!

d2kT H⊥1 (z, k2

T )

&k2

T h⊥1

"x, q2

T ) + 2"kT ·qT

#2 ∂

∂q2T

h⊥1

"x, q2

T )

'+ · · ·

= 2M2h

H⊥(1)1 (z)

z2

&h⊥

1

"x, q2

T ) + q2T

∂q2T

h⊥1

"x, q2

T )

'+ · · · (5.78)

where both terms in square brackets behave as 1/q4T . The . . . represent contributions from

the regions where kT or lT is large, which are of the same order in 1/qT .

As we see in (5.47), (5.48), and (5.50), the leading power behavior of some distribution

or fragmentation functions comes with a factor α2s. At this order, one must also take into

account regions of integration in (5.75) where two out of the three momenta pT , kT , lT are

large, but it turns out that these do not contribute to the α2s terms given in the following.

Using the high-transverse-momentum behavior in (5.44) to (5.48) and (5.50), we obtain

FUU,T ∼1

q2T

αs F$f1D1

%, (5.79)

F cos φh

UU ∼1

QqTαs F

$f1D1

%, (5.80)

F cos 2φh

UU ∼M2

q4T

αs F$h⊥(1)

1 H⊥(1)1 , . . .

%, (5.81)

F sin φh

LU ∼1

QqTα2

s F$f1D1

%, (5.82)

F sin φh

UL ∼1

QqTα2

s F$g1D1

%, (5.83)

– 36 –

JHEP08(2008)023

Compared with their analogs (5.46), the convolutions

F!D

"=

1

z2

#Da ⊗ Kq + Dg ⊗ Kg

$(5.51)

have an additional factor 1/z2, which reflects the corresponding factor in (5.21).

5.4 Results for structure functions

Let us begin this section by recalling the expressions for SIDIS structure functions at low

qT in terms of transverse-momentum-dependent distribution and fragmentation functions.

Extending earlier work in [11, 12], the study [14] has given a complete set of results at

leading and first subleading order in 1/Q, i.e., at twist-two and twist-three accuracy. A

detailed investigation of color gauge invariance and the appropriate choice of gauge links

has been given in [13]. The calculations just quoted take into account tree-level graphs,

where gluons are restricted to be collinear to the target or to the observed hadron h and

only appear when they are attached to the distribution or fragmentation correlators (see

figure 2 in [14]).

For a compact presentation of the results, we introduce the unit vector h = −qT /|qT |and the transverse-momentum convolution

C!wfD

"=

%

a

xe2a

&d2pT d2kT δ

(2)'pT −kT + qT

(w(pT ,kT ) fa(x, p2

T )Da(z, k2T ), (5.52)

where w(pT ,kT ) is an arbitrary function and the sum runs over quarks and antiquarks.

The results for the structure functions appearing in (2.3) then read [14]

FUU,T = C!f1D1

", (5.53)

FUU,L = O)

M2

Q2,q2T

Q2

*, (5.54)

F cos φh

UU =2M

QC+−

h ·kT

Mh

)xhH⊥

1 +Mh

Mf1

D⊥

z

*−

h ·pT

M

)xf⊥D1+

Mh

Mh⊥

1H

z

*,, (5.55)

F cos 2φh

UU = C+−

2'h ·kT

( 'h ·pT

(− kT ·pT

MMhh⊥

1 H⊥1

,, (5.56)

F sin φh

LU =2M

QC+−

h ·kT

Mh

)xeH⊥

1 +Mh

Mf1

G⊥

z

*+

h ·pT

M

)xg⊥D1+

Mh

Mh⊥

1E

z

*,, (5.57)

F sin φh

UL =2M

QC+−

h ·kT

Mh

)xhLH⊥

1 +Mh

Mg1L

G⊥

z

*+

h ·pT

M

)xf⊥

L D1 −Mh

Mh⊥

1LH

z

*,,

(5.58)

F sin 2φh

UL = C+−

2'h ·kT

( 'h ·pT

(− kT ·pT

MMhh⊥

1LH⊥1

,, (5.59)

FLL = C!g1LD1

", (5.60)

F cos φh

LL =2M

QC+h ·kT

Mh

)xeLH⊥

1 −Mh

Mg1L

D⊥

z

*−

h ·pT

M

)xg⊥L D1 +

Mh

Mh⊥

1LE

z

*,,

(5.61)

– 33 –

JHEP08(2008)023

E

z=

E

z−

m

MhD1, (5.73)

H

z=

H

z+

k2T

M2h

H⊥1 . (5.74)

Using (5.50) and neglecting the small contributions proportional to the quark mass m, we

readily see that the behavior for kT ≫ M is the same for corresponding functions with and

without a tilde.

The tree-level calculations in [11, 13, 14] do not take into account soft gluon exchange or

virtual corrections involving hard loops, so that the soft and hard factors we encountered

in (3.3) and (3.22) do not appear in the convolution (5.52). Detailed investigations of

factorization for SIDIS with measured qT have recently been given in [26, 36] and [50, 27],

extending the seminal work of Collins and Soper [24]. The factorization formulae discussed

in these papers have the form (3.22) and are valid at all orders in αs but restricted to the

leading order in 1/Q. Although a number of subtle issues remain to be fully clarified [27], we

will use (3.22) in the following. Since we aim at deriving expressions at lowest nonvanishing

order in αs, we can neglect the hard factor |H|2 = 1 + O(αs). The convolution in (5.52)

should then be extended to

C!wfD

"=

#

a

xe2a

$d2pT d2kT d2lT δ

(2)%pT − kT + lT + qT

&

× w(pT ,kT ) fa(x, p2T )Da(z, k2

T )U(l2T ) .

(5.75)

At high transverse momentum lT ≫ M the soft factor behaves as U(l2T ) ∼ αs/l2T , with a

coefficient we shall give in (8.51) below. Our normalization convention is

$d2lT U(l2T ) = 1 + O(αs) , (5.76)

where it is understood that the integral must be suitably regularized at large lT .

Whether Collins-Soper factorization can be extended to structure functions that are

of order 1/Q is not known. We note that the study of color gauge invariance in [13]

was limited to qT -integrated observables in this case, and that a problem with twist-three

factorization has been found in a spectator model calculation [15]. In the following we

adopt the working hypothesis that the twist-two factorization formula can simply be taken

over at twist-three accuracy, using the convolution (5.75) also for evaluating the high-qT

behavior of the 1/Q suppressed structure functions in (5.53) to (5.70). We will return to

this point at the end of section 8.3.

We now show how to calculate the high-qT behavior of the convolution (5.75). At

order αs, only one of the factors f(x, p2T ), D(z, k2

T ), U(l2T ) can be taken at high transverse

momentum. Let us first consider the simple case where w(pT ,kT ) = 1. In the region where

pT is large, we use the δ function in (5.75) to perform the pT integral and approximate

pT = kT − lT −qT ≈ −qT in f(x, p2T ). The remaining integrals over kT and lT can then be

carried out independently. According to (5.21) and our discussion after (5.16), the integral

over kT gives a collinear fragmentation function, up to αs-corrections that can be neglected

– 35 –

• transverse-momentum convolution of TMD PDFs and FFs with kinematical functions

• Taylor-expand the functions of pT in the integrand and use the delta function to perform the integral

• extraction of leading behaviour

From low to intermediate qT

Page 8: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

3

B. Tentative full TMD formula

To take into account pQCD corrections to the tree-level expression, we propose to replace the involved TMDs withthe following expressions AB: the collinear parts of the chiral odd ones are just preliminary guesses. •

bfa

1

(x, ⇠2T

;Q2) =X

i=q,q,g

Ca/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa

1NP

(x, ⇠2T

) , (22)

bh?a

1

(x, ⇠2T

;Q2) =X

i=q,q,g

�C1a/i

⌦ h?(1)i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bh?a

1NP

(x, ⇠2T

) , (23)

x bf?a(x, ⇠2T

;Q2) =1

2

X

i=q,q,g

C 0

a/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa?

NP

(x, ⇠2T

) , (24)

xbha(x, ⇠2T

;Q2) =X

i=q,q,g

�C2a/i

⌦ h?(1)i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bha

NP

(x, ⇠2T

) , (25)

x bf?a

3

(x, ⇠2T

;Q2) =X

i=q,q,g

C 00

a/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa?

NP3

(x, ⇠2T

) , (26)

bDa!h

1

(z, ⇠2T

;Q2) =X

i=q,q,g

Ca/i

⌦Di!h

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bDa!h

1NP

(z, ⇠2T

) , (27)

bH?a

1

(z, ⇠2T

;Q2) =X

i=q,q,g

�C1a/i

⌦H?(1)i

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bH?a

1NP

(z, ⇠2T

) , (28)

1

zbD?a!h(z, ⇠2

T

;Q2) =1

2

X

i=q,q,g

C 0

a/i

⌦Di!h

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bD?a!h

NP

(z, ⇠2T

) , (29)

bHa(z, ⇠2T

;Q2) =X

i=q,q,g

�C2a/i

⌦H?(1)i

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bHa

NP

(z, ⇠2T

) , (30)

where the symbol ⌦ denotes the usual convolutions in longitudinal momentum fractions,

Ca/i

⌦ f i

(x, ⇠T

, µ2

b

) =

Z

1

x

dx

xC

a/i

⇣x

x, ⇠

T

,↵S

µ2

b

f i(x;µ2

b

) , (31)

Ca/i

⌦Di!h

(z, ⇠T

, µ2

b

) =

Z

1

z

dz

zC

a/i

⇣z

z, ⇠

T

,↵S

µ2

b

Di!h(z;µ2

b

) . (32)

The coe�cient functions Ca/i

can be expanded as

Ca/i

(x, µb

) = �ai

�(1� x) +1

X

k=1

C(k)

a/i

(x)

↵s

(µb

)

k

, (33)

and an analogous expression holds for Ca/i

. The Sudakov exponent S reads

S(µ2

b

, Q2) = �1

2

Z

Q

2

µ

2b

dµ2

µ2

A⇣

↵S

(µ2)⌘

ln

Q2

µ2

+B⇣

↵S

(µ2)⌘

, (34)

where A and B have a perturbative expansions of the form

A�

↵S

(µ2)�

=1

X

k=1

Ak

↵S

k

, B�

↵S

(µ2)�

=1

X

k=1

Bk

↵S

k

, (35)

with, at leading-logarithm (LL) accuracy, A1

= CF

and B1

= �3CF

/2. More explicitly,

S(⇠2T

, Q2) = �↵S

4⇡C

F

ln2Q2⇠2

T

⇠20

� 3 lnQ2⇠2

T

⇠20

+O(↵2

S

) , (36)

where we have substituted µb

= ⇠0

/⇠T

.

3

B. Tentative full TMD formula

To take into account pQCD corrections to the tree-level expression, we propose to replace the involved TMDs withthe following expressions AB: the collinear parts of the chiral odd ones are just preliminary guesses. •

bfa

1

(x, ⇠2T

;Q2) =X

i=q,q,g

Ca/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa

1NP

(x, ⇠2T

) , (22)

bh?a

1

(x, ⇠2T

;Q2) =X

i=q,q,g

�C1a/i

⌦ h?(1)i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bh?a

1NP

(x, ⇠2T

) , (23)

x bf?a(x, ⇠2T

;Q2) =1

2

X

i=q,q,g

C 0

a/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa?

NP

(x, ⇠2T

) , (24)

xbha(x, ⇠2T

;Q2) =X

i=q,q,g

�C2a/i

⌦ h?(1)i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bha

NP

(x, ⇠2T

) , (25)

x bf?a

3

(x, ⇠2T

;Q2) =X

i=q,q,g

C 00

a/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa?

NP3

(x, ⇠2T

) , (26)

bDa!h

1

(z, ⇠2T

;Q2) =X

i=q,q,g

Ca/i

⌦Di!h

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bDa!h

1NP

(z, ⇠2T

) , (27)

bH?a

1

(z, ⇠2T

;Q2) =X

i=q,q,g

�C1a/i

⌦H?(1)i

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bH?a

1NP

(z, ⇠2T

) , (28)

1

zbD?a!h(z, ⇠2

T

;Q2) =1

2

X

i=q,q,g

C 0

a/i

⌦Di!h

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bD?a!h

NP

(z, ⇠2T

) , (29)

bHa(z, ⇠2T

;Q2) =X

i=q,q,g

�C2a/i

⌦H?(1)i

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bHa

NP

(z, ⇠2T

) , (30)

where the symbol ⌦ denotes the usual convolutions in longitudinal momentum fractions,

Ca/i

⌦ f i

(x, ⇠T

, µ2

b

) =

Z

1

x

dx

xC

a/i

⇣x

x, ⇠

T

,↵S

µ2

b

f i(x;µ2

b

) , (31)

Ca/i

⌦Di!h

(z, ⇠T

, µ2

b

) =

Z

1

z

dz

zC

a/i

⇣z

z, ⇠

T

,↵S

µ2

b

Di!h(z;µ2

b

) . (32)

The coe�cient functions Ca/i

can be expanded as

Ca/i

(x, µb

) = �ai

�(1� x) +1

X

k=1

C(k)

a/i

(x)

↵s

(µb

)

k

, (33)

and an analogous expression holds for Ca/i

. The Sudakov exponent S reads

S(µ2

b

, Q2) = �1

2

Z

Q

2

µ

2b

dµ2

µ2

A⇣

↵S

(µ2)⌘

ln

Q2

µ2

+B⇣

↵S

(µ2)⌘

, (34)

where A and B have a perturbative expansions of the form

A�

↵S

(µ2)�

=1

X

k=1

Ak

↵S

k

, B�

↵S

(µ2)�

=1

X

k=1

Bk

↵S

k

, (35)

with, at leading-logarithm (LL) accuracy, A1

= CF

and B1

= �3CF

/2. More explicitly,

S(⇠2T

, Q2) = �↵S

4⇡C

F

ln2Q2⇠2

T

⇠20

� 3 lnQ2⇠2

T

⇠20

+O(↵2

S

) , (36)

where we have substituted µb

= ⇠0

/⇠T

.

3

B. Tentative full TMD formula

To take into account pQCD corrections to the tree-level expression, we propose to replace the involved TMDs withthe following expressions AB: the collinear parts of the chiral odd ones are just preliminary guesses. •

bfa

1

(x, ⇠2T

;Q2) =X

i=q,q,g

Ca/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa

1NP

(x, ⇠2T

) , (22)

bh?a

1

(x, ⇠2T

;Q2) =X

i=q,q,g

�C1a/i

⌦ h?(1)i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bh?a

1NP

(x, ⇠2T

) , (23)

x bf?a(x, ⇠2T

;Q2) =1

2

X

i=q,q,g

C 0

a/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa?

NP

(x, ⇠2T

) , (24)

xbha(x, ⇠2T

;Q2) =X

i=q,q,g

�C2a/i

⌦ h?(1)i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bha

NP

(x, ⇠2T

) , (25)

x bf?a

3

(x, ⇠2T

;Q2) =X

i=q,q,g

C 00

a/i

⌦ f i

1

(x, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bfa?

NP3

(x, ⇠2T

) , (26)

bDa!h

1

(z, ⇠2T

;Q2) =X

i=q,q,g

Ca/i

⌦Di!h

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bDa!h

1NP

(z, ⇠2T

) , (27)

bH?a

1

(z, ⇠2T

;Q2) =X

i=q,q,g

�C1a/i

⌦H?(1)i

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bH?a

1NP

(z, ⇠2T

) , (28)

1

zbD?a!h(z, ⇠2

T

;Q2) =1

2

X

i=q,q,g

C 0

a/i

⌦Di!h

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bD?a!h

NP

(z, ⇠2T

) , (29)

bHa(z, ⇠2T

;Q2) =X

i=q,q,g

�C2a/i

⌦H?(1)i

1

(z, ⇠T

, µ2

b

) eS(µ

2b ,Q

2)

Q2

Q2

0

gK(⇠T )

bHa

NP

(z, ⇠2T

) , (30)

where the symbol ⌦ denotes the usual convolutions in longitudinal momentum fractions,

Ca/i

⌦ f i

(x, ⇠T

, µ2

b

) =

Z

1

x

dx

xC

a/i

⇣x

x, ⇠

T

,↵S

µ2

b

f i(x;µ2

b

) , (31)

Ca/i

⌦Di!h

(z, ⇠T

, µ2

b

) =

Z

1

z

dz

zC

a/i

⇣z

z, ⇠

T

,↵S

µ2

b

Di!h(z;µ2

b

) . (32)

The coe�cient functions Ca/i

can be expanded as

Ca/i

(x, µb

) = �ai

�(1� x) +1

X

k=1

C(k)

a/i

(x)

↵s

(µb

)

k

, (33)

and an analogous expression holds for Ca/i

. The Sudakov exponent S reads

S(µ2

b

, Q2) = �1

2

Z

Q

2

µ

2b

dµ2

µ2

A⇣

↵S

(µ2)⌘

ln

Q2

µ2

+B⇣

↵S

(µ2)⌘

, (34)

where A and B have a perturbative expansions of the form

A�

↵S

(µ2)�

=1

X

k=1

Ak

↵S

k

, B�

↵S

(µ2)�

=1

X

k=1

Bk

↵S

k

, (35)

with, at leading-logarithm (LL) accuracy, A1

= CF

and B1

= �3CF

/2. More explicitly,

S(⇠2T

, Q2) = �↵S

4⇡C

F

ln2Q2⇠2

T

⇠20

� 3 lnQ2⇠2

T

⇠20

+O(↵2

S

) , (36)

where we have substituted µb

= ⇠0

/⇠T

.

A new expression for twist-3 TMDs

2

Based on Eq. (2.70) of Ref. [? ], we can also assume the validity of a relation of this kind

xf?

3

= xf?

3

+ f1

(10)

In the so-called Wandzura–Wilczek approximation, the “pure twist-3” functions with a tilde are neglected. In thatcase, the formulae for the structure functions considerably simplify and we obtain

F cos�h

UU

=2M

QC

� h · P?

zMh

k2?

M2

h?

1

H?

1

� h · k?

Mf1

D1

, (11)

F cos 2�h

UU

= C

�2�

h · k?

� �

h · P?

�� k?

· P?

zMMh

h?

1

H?

1

+4M2

Q2

2 (h · k?

)2 � k2

?

2M2

f1

D1

. (12)

On the other hand, using Eqs. (4) and (32) of [2] and expanding in 1/Q we obtain, up to relative corrections in 1/Q,the following expressions (see also Ref. [3])

F cos�h

UU

= �2M

QC

h · k?

Mf1

D1

, (13)

F cos 2�h

UU

=4M2

Q2

C

2 (h · k?

)2 � k2

?

2M2

f1

D1

. (14)

Apart from the fact that no chiral-odd (or T-odd) term is present in the previous equations, the rest is the same asEq. (11) and (12).

A. Fourier transform

The structure functions can be written as Fourier transforms in the following way

F cos�h

UU

= �2MMh

QB1

xbh bH?(1)

1

+M

h

Mbf1

bD?(1)

z

+M

Mh

x bf?(1)

bD1

+M

h

Mbh?(1)

1

bH

z

◆�

, (15)

F cos 2�h

UU

= �MMh

B2

bh?(1)

1

bH?(1)

1

+M4

Q2

B2

x bf?(2)

3

bD1

, (16)

where we introduced the following notation

Bn

bf bD⇤

= 2⇡X

a

e2a

x

Z

1

0

d⇠T

⇠n+1

T

Jn

⇠T

|PhT

|/z� bfa(x, ⇠2T

) bDa(z, ⇠2T

) . (17)

The Fourier transforms of a generic TMD PDF denoted by f and a generic TMD FF denoted by D are defined,respectively, as

bf�

x, ⇠2T

� ⌘ 1

2⇡

Z

d2k?

ei⇠T ·k?f�

x,k2

?

;Q2

=

Z

1

0

d|k?

||k?

|J0

⇠T

|k?

|�f�x,k2

?

) , (18)

bD�

z, ⇠2T

� ⌘ 1

2⇡

Z

d2P?

z2ei⇠T ·P?/zD

z,P 2

?

) =

Z

1

0

d|P?

|z2

|P?

|J0

⇠T

|P?

|/z�D�

z,P 2

?

. (19)

Furthermore, we have introduced their ⇠2T

-derivatives [4], namely

bf (n)(x, ⇠2T

) = n!

� 2

M2

@

@⇠2T

n

bf(x, ⇠2T

) =n!

M2n

Z

1

0

d|k?

||k?

| |k?

|n|⇠

T

|n Jn

⇠T

|k?

|�f�x,k2

?

, (20)

bD(n)(z, ⇠2T

) = n!

� 2

M2

h

@

@⇠2T

n

bD(z, ⇠2T

) =n!

M2n

h

Z

1

0

d|P?

|z2

|P?

| |P?

|nzn|⇠

T

|n Jn�

⇠T

|P?

|/z�D�

x,P 2

?

. (21)

2

Based on Eq. (2.70) of Ref. [? ], we can also assume the validity of a relation of this kind

xf?

3

= xf?

3

+ f1

(10)

In the so-called Wandzura–Wilczek approximation, the “pure twist-3” functions with a tilde are neglected. In thatcase, the formulae for the structure functions considerably simplify and we obtain

F cos�h

UU

=2M

QC

� h · P?

zMh

k2?

M2

h?

1

H?

1

� h · k?

Mf1

D1

, (11)

F cos 2�h

UU

= C

�2�

h · k?

� �

h · P?

�� k?

· P?

zMMh

h?

1

H?

1

+4M2

Q2

2 (h · k?

)2 � k2

?

2M2

f1

D1

. (12)

On the other hand, using Eqs. (4) and (32) of [2] and expanding in 1/Q we obtain, up to relative corrections in 1/Q,the following expressions (see also Ref. [3])

F cos�h

UU

= �2M

QC

h · k?

Mf1

D1

, (13)

F cos 2�h

UU

=4M2

Q2

C

2 (h · k?

)2 � k2

?

2M2

f1

D1

. (14)

Apart from the fact that no chiral-odd (or T-odd) term is present in the previous equations, the rest is the same asEq. (11) and (12).

A. Fourier transform

The structure functions can be written as Fourier transforms in the following way

F cos�h

UU

= �2MMh

QB1

xbh bH?(1)

1

+M

h

Mbf1

bD?(1)

z

+M

Mh

x bf?(1)

bD1

+M

h

Mbh?(1)

1

bH

z

◆�

, (15)

F cos 2�h

UU

= �MMh

B2

bh?(1)

1

bH?(1)

1

+M4

Q2

B2

x bf?(2)

3

bD1

, (16)

where we introduced the following notation

Bn

bf bD⇤

= 2⇡X

a

e2a

x

Z

1

0

d⇠T

⇠n+1

T

Jn

⇠T

|PhT

|/z� bfa(x, ⇠2T

) bDa(z, ⇠2T

) . (17)

The Fourier transforms of a generic TMD PDF denoted by f and a generic TMD FF denoted by D are defined,respectively, as

bf�

x, ⇠2T

� ⌘ 1

2⇡

Z

d2k?

ei⇠T ·k?f�

x,k2

?

;Q2

=

Z

1

0

d|k?

||k?

|J0

⇠T

|k?

|�f�x,k2

?

) , (18)

bD�

z, ⇠2T

� ⌘ 1

2⇡

Z

d2P?

z2ei⇠T ·P?/zD

z,P 2

?

) =

Z

1

0

d|P?

|z2

|P?

|J0

⇠T

|P?

|/z�D�

z,P 2

?

. (19)

Furthermore, we have introduced their ⇠2T

-derivatives [4], namely

bf (n)(x, ⇠2T

) = n!

� 2

M2

@

@⇠2T

n

bf(x, ⇠2T

) =n!

M2n

Z

1

0

d|k?

||k?

| |k?

|n|⇠

T

|n Jn

⇠T

|k?

|�f�x,k2

?

, (20)

bD(n)(z, ⇠2T

) = n!

� 2

M2

h

@

@⇠2T

n

bD(z, ⇠2T

) =n!

M2n

h

Z

1

0

d|P?

|z2

|P?

| |P?

|nzn|⇠

T

|n Jn�

⇠T

|P?

|/z�D�

x,P 2

?

. (21)

A new Fourier-transformed expression for the structure functions

Our work

Page 9: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

5

The dominant terms in high-transverse momentum region of the structure function F cos�h

UU

in Eq. (15) are given by

F cos�h

UU

= �4⇡M2

Q

X

a

e2a

x

Z

1

0

d⇠T

⇠2T

J1

⇠T

|PhT

|z

◆✓

M2

h

M2

bfa

1

bD?(1)a!h

z+ x bf?(1)a

bDa!h

1

= � 1

QqT

↵S

2⇡2z2

X

a

e2a

x

Z

1

0

d⇠T

J1

⇠T

|PhT

|z

◆✓

2CF

lnQ2⇠2

T

⇠20

� 3CF

fa

1

(x)Da!h

1

(z) , (49)

where, in the last step, we have substituted the leading-order expressions for bfa

1

and bDa!h

1

in Eqs. (43) and (46),

respectively, and the ones for x bf?(1)a and bD?(1)a!h in Eqs. (44) and (47). Moreover, by means of the equalities

Z

1

0

d⇠T

Jn

⇠T

|PhT

|z

=1

qT

, (50)

Z

1

0

d⇠T

J1

⇠T

|PhT

|z

lnQ2⇠2

T

⇠20

=1

qT

lnQ2

q2T

, (51)

with ⇠0

= 2e��E and qT

= |PhT

|/z, we obtain

F cos�h

UU

= � 1

QqT

↵S

2⇡2z2

X

a

e2a

x fa

1

(x)Da!h

1

(z)L

Q2

q2T

, (52)

in agreement with the logarithmic term of Eq. (37).Similarly, from Eq. (16) in the limit |P

hT

|/z � M ,

F cos 2�h

UU

=2⇡M4

Q2

X

a

e2a

x

Z

1

0

d⇠T

⇠3T

J2

⇠T

|PhT

|z

x bf?(2)

bD1

=1

2

1

Q2

↵S

2⇡2z2

X

a

e2a

x

Z

1

0

d⇠T

⇠T

J2

⇠T

|PhT

|z

◆✓

2CF

lnQ2⇠2

T

⇠20

� 5CF

fa

1

(x)Da!h

1

(z)

=1

2

1

Q2

↵S

2⇡2z2

X

a

e2a

xfa

1

(x)Da!h

1

(z)L

Q2

q2T

, (53)

where the final result has been derived by means of the following relations

Z

1

0

d⇠T

⇠T

Jn

⇠T

|PhT

|z

=1

n, (54)

Z

1

0

d⇠T

⇠T

J2

⇠T

|PhT

|z

lnQ2⇠2

T

⇠20

=1

2

lnQ2

q2T

+ 1

. (55)

III. DRELL–YAN

According to [5], the expression for the structure functions assuming TMD factorization is

F cos�

UU

=2

QC(

(h · k1T

)h⇣

(1� c)x1

f?a + c x1

f?a

f a

1

� M2

M1

h?a

1

c x2

ha + (1� c)x2

ha

⌘i

(56)

� (h · k2T

)h

fa

1

c x2

f?a + (1� c)x2

f?a

� M1

M2

(1� c)x1

ha + c x1

ha

ha?

1

i

)

(57)

with c = 0 for the GJ frame and c = 1/2 for the CS frame.The convolution is defined as

C⇥wfaga⇤

=X

a

e2a

Z

d2k1T

d2k2T

�(2) (qT

� k1T

� k2T

)w(k1T

,k2T

)fa(x1

, k21T

)ga(x2

, k22T

) (58)

5

The dominant terms in high-transverse momentum region of the structure function F cos�h

UU

in Eq. (15) are given by

F cos�h

UU

= �4⇡M2

Q

X

a

e2a

x

Z

1

0

d⇠T

⇠2T

J1

⇠T

|PhT

|z

◆✓

M2

h

M2

bfa

1

bD?(1)a!h

z+ x bf?(1)a

bDa!h

1

= � 1

QqT

↵S

2⇡2z2

X

a

e2a

x

Z

1

0

d⇠T

J1

⇠T

|PhT

|z

◆✓

2CF

lnQ2⇠2

T

⇠20

� 3CF

fa

1

(x)Da!h

1

(z) , (49)

where, in the last step, we have substituted the leading-order expressions for bfa

1

and bDa!h

1

in Eqs. (43) and (46),

respectively, and the ones for x bf?(1)a and bD?(1)a!h in Eqs. (44) and (47). Moreover, by means of the equalities

Z

1

0

d⇠T

Jn

⇠T

|PhT

|z

=1

qT

, (50)

Z

1

0

d⇠T

J1

⇠T

|PhT

|z

lnQ2⇠2

T

⇠20

=1

qT

lnQ2

q2T

, (51)

with ⇠0

= 2e��E and qT

= |PhT

|/z, we obtain

F cos�h

UU

= � 1

QqT

↵S

2⇡2z2

X

a

e2a

x fa

1

(x)Da!h

1

(z)L

Q2

q2T

, (52)

in agreement with the logarithmic term of Eq. (37).Similarly, from Eq. (16) in the limit |P

hT

|/z � M ,

F cos 2�h

UU

=2⇡M4

Q2

X

a

e2a

x

Z

1

0

d⇠T

⇠3T

J2

⇠T

|PhT

|z

x bf?(2)

bD1

=1

2

1

Q2

↵S

2⇡2z2

X

a

e2a

x

Z

1

0

d⇠T

⇠T

J2

⇠T

|PhT

|z

◆✓

2CF

lnQ2⇠2

T

⇠20

� 5CF

fa

1

(x)Da!h

1

(z)

=1

2

1

Q2

↵S

2⇡2z2

X

a

e2a

xfa

1

(x)Da!h

1

(z)L

Q2

q2T

, (53)

where the final result has been derived by means of the following relations

Z

1

0

d⇠T

⇠T

Jn

⇠T

|PhT

|z

=1

n, (54)

Z

1

0

d⇠T

⇠T

J2

⇠T

|PhT

|z

lnQ2⇠2

T

⇠20

=1

2

lnQ2

q2T

+ 1

. (55)

III. DRELL–YAN

According to [5], the expression for the structure functions assuming TMD factorization is

F cos�

UU

=2

QC(

(h · k1T

)h⇣

(1� c)x1

f?a + c x1

f?a

f a

1

� M2

M1

h?a

1

c x2

ha + (1� c)x2

ha

⌘i

(56)

� (h · k2T

)h

fa

1

c x2

f?a + (1� c)x2

f?a

� M1

M2

(1� c)x1

ha + c x1

ha

ha?

1

i

)

(57)

with c = 0 for the GJ frame and c = 1/2 for the CS frame.The convolution is defined as

C⇥wfaga⇤

=X

a

e2a

Z

d2k1T

d2k2T

�(2) (qT

� k1T

� k2T

)w(k1T

,k2T

)fa(x1

, k21T

)ga(x2

, k22T

) (58)

we recover the matching of the 1/Q2 at low and high qTF cos 2�hUU

4

C. High transverse momentum

In the high transverse-momentum region (⇤QCD

⌧ qT

) the structure functions can be computed using collinearfactorization and then approximated in the intermediate transverse-momentum region (⇤

QCD

⌧ qT

⌧ Q) as

F cos�h

UU

= � 1

QqT

↵s

2⇡2z2

X

a

xe2a

fa

1

(x)Da

1

(z)L

Q2

q2T

+ fa

1

(x)�

Da

1

⌦ P 0

qq

+Dg

1

⌦ P 0

gq

(z)

+�

P 0

qq

⌦ fa

1

+ P 0

qg

⌦ fg

1

(x)Da

1

(z)

, (37)

F cos 2�h

UU

=1

Q2

↵s

2⇡2z2

X

a

xe2a

fa

1

(x)Da

1

(z)L

Q2

q2T

+ fa

1

(x)�

Da

1

⌦ P 00

qq

+Dg

1

⌦ P 00

gq

(z)

+�

P 00

qq

⌦ fa

1

+ P 00

qg

⌦ fg

1

(x)Da

1

(z)

, (38)

where the factor L is defined as

L

Q2

q2T

= 2CF

lnQ2

q2T

� 3CF

, (39)

and the splitting functions are defined as

P 0

qg

(x) = 2TR

x (2x� 1) ,

P 0

gq

(z) = �2CF

(1� z) , (40)

P 00

qq

(x) = P 0

qq

(x) , P 00

qg

(x) = 4TR

x2 ,

P 00

gq

(z) = 2CF

z. (41)

These results should be compared to the ones obtained from the TMD formula expended at order ↵S

in theintermediate transverse-momentum region (⇤

QCD

⌧ qT

⌧ Q). Specifically, in the small-⇠T

region, ⇠T

⌧ 1/M , usingEq. (36), to the order ↵

S

we obtain

bfa(x, ⇠2T

) =1

2⇡

(

fa(x) +↵S

X

i

C(1)

a/i

⌦ f i

(x, ⇠2T

)

)

eS(⇠

2T ,Q

2) (42)

=1

2⇡

(

fa(x) +↵S

"

�1

4C

F

ln2Q2⇠2

T

⇠20

� 3 lnQ2⇠2

T

⇠20

fa(x) +X

i

C(1)

a/i

⌦ f i

(x, ⇠2T

)

#)

. (43)

Therefore, from Eq. (20) and neglecting the running of ↵S

since it contributes only at the order ↵2

S

, we find

bf (1) a(x, ⇠2T

) ⌘ � 1

M2

1

⇠T

@

@⇠T

bfa(x, ⇠2T

) =1

M2⇠2T

↵S

4⇡2

CF

2 lnQ2⇠2

T

⇠20

� 3

fa(x) , (44)

bf (2) a(x, ⇠2T

) ⌘ 2

M4

1

⇠T

@

@⇠T

2

bfa(x, ⇠2T

) =1

M4⇠4T

↵S

⇡2

CF

2 lnQ2⇠2

T

⇠20

� 5

fa(x) . (45)

In analogy to Eq. (43), for a generic fragmentation function, we write

bDa!h(z, ⇠2T

) =1

2⇡z2

(

Da!h(z) +↵S

"

�1

4C

F

ln2Q2⇠2

T

⇠20

� 3 lnQ2⇠2

T

⇠20

Da!h(z) +X

i

C(1)

a/i

⌦Di!h

(z, ⇠2T

)

#)

,

(46)

while its first two ⇠T

-derivates are given by

bD(1) a!h(z, ⇠2T

) ⌘ � 1

M2

h

1

z2⇠T

@

@⇠T

bDa!h(z, ⇠2T

) =1

z2M2

h

⇠2T

↵S

4⇡2

CF

2 lnQ2⇠2

T

⇠20

� 3

Da!h(z) , (47)

bD(2) a!h(z, ⇠2T

) ⌘ 2

M4

h

1

z2⇠T

@

@⇠T

2

bDa!h(z, ⇠2T

) =1

z2M4

h

⇠4T

↵S

⇡2

CF

2 lnQ2⇠2

T

⇠20

� 5

Da!h(z) . (48)

5

The dominant terms in high-transverse momentum region of the structure function F cos�h

UU

in Eq. (15) are given by

F cos�h

UU

= �4⇡M2

Q

X

a

e2a

x

Z

1

0

d⇠T

⇠2T

J1

⇠T

|PhT

|z

◆✓

M2

h

M2

bfa

1

bD?(1)a!h

z+ x bf?(1)a

bDa!h

1

= � 1

QqT

↵S

2⇡2z2

X

a

e2a

x

Z

1

0

d⇠T

J1

⇠T

|PhT

|z

◆✓

2CF

lnQ2⇠2

T

⇠20

� 3CF

fa

1

(x)Da!h

1

(z) , (49)

where, in the last step, we have substituted the leading-order expressions for bfa

1

and bDa!h

1

in Eqs. (43) and (46),

respectively, and the ones for x bf?(1)a and bD?(1)a!h in Eqs. (44) and (47). Moreover, by means of the equalities

Z

1

0

d⇠T

Jn

⇠T

|PhT

|z

=1

qT

, (50)

Z

1

0

d⇠T

J1

⇠T

|PhT

|z

lnQ2⇠2

T

⇠20

=1

qT

lnQ2

q2T

, (51)

with ⇠0

= 2e��E and qT

= |PhT

|/z, we obtain

F cos�h

UU

= � 1

QqT

↵S

2⇡2z2

X

a

e2a

x fa

1

(x)Da!h

1

(z)L

Q2

q2T

, (52)

in agreement with the logarithmic term of Eq. (37).Similarly, from Eq. (16) in the limit |P

hT

|/z � M ,

F cos 2�h

UU

=2⇡M4

Q2

X

a

e2a

x

Z

1

0

d⇠T

⇠3T

J2

⇠T

|PhT

|z

x bf?(2)

bD1

=1

2

1

Q2

↵S

2⇡2z2

X

a

e2a

x

Z

1

0

d⇠T

⇠T

J2

⇠T

|PhT

|z

◆✓

2CF

lnQ2⇠2

T

⇠20

� 5CF

fa

1

(x)Da!h

1

(z)

=1

2

1

Q2

↵S

2⇡2z2

X

a

e2a

xfa

1

(x)Da!h

1

(z)L

Q2

q2T

, (53)

where the final result has been derived by means of the following relations

Z

1

0

d⇠T

⇠T

Jn

⇠T

|PhT

|z

=1

n, (54)

Z

1

0

d⇠T

⇠T

J2

⇠T

|PhT

|z

lnQ2⇠2

T

⇠20

=1

2

lnQ2

q2T

+ 1

. (55)

III. DRELL–YAN

According to [5], the expression for the structure functions assuming TMD factorization is

F cos�

UU

=2

QC(

(h · k1T

)h⇣

(1� c)x1

f?a + c x1

f?a

f a

1

� M2

M1

h?a

1

c x2

ha + (1� c)x2

ha

⌘i

(56)

� (h · k2T

)h

fa

1

c x2

f?a + (1� c)x2

f?a

� M1

M2

(1� c)x1

ha + c x1

ha

ha?

1

i

)

(57)

with c = 0 for the GJ frame and c = 1/2 for the CS frame.The convolution is defined as

C⇥wfaga⇤

=X

a

e2a

Z

d2k1T

d2k2T

�(2) (qT

� k1T

� k2T

)w(k1T

,k2T

)fa(x1

, k21T

)ga(x2

, k22T

) (58)

we recover the whole leading term of the high qT expansion F cos�hUU

Preliminary results

Page 10: (Towards a new formalism for the study of) Azimuthal ... · che voglia presentarsi al mercato, ... 2 theoretical tools. ... an easy extraction of the leading power behavior at small

THANK YOU FOR SURVIVING A TALK WITHOUT PLOTS

• Examine all possible twist-4 contributions

• Recover the whole cos2phi result

• Extend the new formalism to Drell-Yan

• Compare with experiment (azimuthal modulations)

Outlook