17
Bologna Section Transparent conducting graphene electrodes for photovoltaic applications Luca Ortolani 1 , Caterina Summonte 1 , Rita Rizzoli 1 , Meganne Christian 1 , Isabella Concina 2,3 , Gurpreet S. Selopal 2,3 , Riccardo Milan 2,3 , Alberto Vomiero 3,4 , Vittorio Morandi 1 1. CNR-IMM, Via Gobetti 101, 40129, Bologna, Italy . 2. SENSOR Lab, Department of Information Engineering, University of Brescia, Via Valotti 9, 25133 Brescia, Italy. 3. CNR-INO SENSOR Lab, Via Branze 45, 25123 Brescia, Italy. 4. Luleå University of Technology, 971 98 Luleå, Sweden.

Transparent conducting graphene electrodes for ... · Compatibility of graphene based TCE with high temperature processes has been proven • Successful dye loading on G -coated electrode

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Bologna Section

    TransparentconductinggrapheneelectrodesforphotovoltaicapplicationsLucaOrtolani1,CaterinaSummonte1,RitaRizzoli1,Meganne Christian1,IsabellaConcina2,3,Gurpreet S.Selopal2,3,RiccardoMilan2,3,AlbertoVomiero3,4,VittorioMorandi1

    1.CNR-IMM,ViaGobetti 101,40129, Bologna, Italy.2.SENSORLab,Department ofInformation Engineering, UniversityofBrescia, ViaValotti 9,25133Brescia, Italy.3.CNR-INOSENSORLab,ViaBranze 45,25123Brescia, Italy.4.Luleå UniversityofTechnology, 97198Luleå,Sweden.

  • 2Bologna Section

    2

    Grapheneastransparentconductiveelectrode

    [F.Bonaccorso etal.NaturePhotonics 4 (2010),611] [S.Bae etal.NatureNanotechnology 5 (2010),574]

    Graphenevs.differentTCEs Graphenetypes

    R□ ≈ 102 Ω/□T ≈ 90 - 95 %

    Grapheneis2Dcrystalmadeofsp2hybridizedCarbonatoms.

    Graphene hasremarkablephysicalandchemicalpropertiesfromflatspectrumtransparency,highelectrical andthermalconductivity.

    It isanexcellent candidatetoreplaceMOfilmastransparentconductiveelectrodes(TCEs) inmanytechnological applications.

    LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 3Bologna Section

    3

    Graphenekeypropertiesfortechnologicalexploitation

    [ L.G. de Arco et al. ACS Nano 5 (2010), 2865 ]Bendingangle(2θ)

    Cond

    uctance(mS)

    Bendingangle(2θ)

    Cond

    uctance(mS)

    Flexibility

    [Thomas Swan Corp. – Elicarb® graphene ]

    (inair)

    High-temperatureresistant

    ITOstructurechangesover500°C

    ChemicalStability

    Graphenecansustainhighinplanestrainswithoutdamaging, itcansustaintemperatureabove800Canditsstructureprovidesexcellent chemical stability overawiderangeofharshenvironments.

    LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 4Bologna Section

    CVDsynthesisandcharacterization

    SEM TEM Raman

    CVDGrapheneGrowth

    GrapheneisgrownusingCVDovereitherfoilsorfilmsofCuat1000Cusingmethane asCprecursor.

    Samplesmax.dim.:30x60mm2 (60x100mm2 forfoils)P regimes:APCVD,LPCVDGaslines: Ar,N2,H2,NH3,CH4,C2H2,O2

    Polycrystallinegrapheneisgrownonbothsubstratetypes,withtypicaluniformthicknessof1-4layersoverthewholesurface.Grainsizeisover10µm.

    APCVDsamplesonCufilmshavesmallergrainsizeandhighernumberofdefects.

    LPCVD

    APCVD

    4LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • Bologna Section

    Grapheneelectrodesfordye-sensitizedsolarcells.IncollaborationwithA.Vomiero group,CNR-INOBrescia(IT)&LuleaTU(SE).

    5LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 6Bologna Section

    6

    GrapheneDSSCdesign

    Lightharvester Dye:usually aRucomplex (calledN719)

    Photoanode: TiO2 NPs (transparent:10-15nmNPs);scattering (150-200nmNPs)

    Electrolyte:iodine redoxcouple

    Counter electrode:Pt (about 5nmthick)onTCOglass

    Graphenecanprovidesuperioropticalpropertiesandimprovedchemicalstability

    towards electrolyteetching

    GrapheneTCEmustprovideadhesionduringtitaniaannealingandduringwetoperation.

    LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 7Bologna Section

    7

    • TransparentTiO2 layer(forphotogeneration purposes)

    • Depositionofonesinglelayeroftransparent20nm-sizedTiO2nanoparticles (Dyesol)atatime

    • TiO2 annealed@500oCfor30mins forsinteringpurposes• Graphenehastomaintainconductivity,transparencyandadhesion

    tothesubstrateafterannealing

    DSSCbased ongraphene-coated frontcontact

    Grapheneonglassoveralargearea(15×25mm2)

    graphene

    FTOITO

    Graphene-glasselectrodeshowssuperioropticalpropertiesandthedyecouldbesuccessfullyloadedontheTiO2-graphenesubstrate.

    Dyeband

    GrapheneTCE

    Graphene+TiO2

    Graphene+TiO2+Dye

    [G.Singh Selopal, L.O.etal. Sol.En.Mat.Sol.Cell135(2015)99–105]

    LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 8Bologna Section

    DSSC cellscharacterization

    J-VcharacteristicsasafunctionoftheTiO2 filmthickness under

    simulatedsunlight(AM1.5G, 100mW cm-2)

    OptimalTitania layerthickness isreportedtobe15µm…

    rGO TCEinanallsolid-stateDSSC,PCEat0.26%(Wangetal.,Nano Lett.2008)

    2%PCEfor4µmPCElinearincreaseisrelatedto

    JSC linearincrease.FFandVOC playaminorroleinboostingPCE

    Graphene-DSSChigherseriesresistance(420ohm)compared

    toFTO(10ohm)limitstheperformancesofthefinaldevice

    [G.Singh Selopal, L.O.etal. Sol.En.Mat.Sol.Cell135(2015)99–105]

    8LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • Bologna Section

    GrapheneasTCEinthird-generationPVcellsIncollaborationwithC.Summonte groupinCNRIMM-Bologna

    9LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 10Bologna Section

    Thirdgenerationphotovoltaicswithnanostructuredabsorbers

    ThirdGenerationPhotovoltaics goal istoachievehigherefficiencyusingthinfilmtechnologyas inSecondGenerationPV(p-i-n a-Si:H thinfilmsolarcells):

    • useofabundant andlowcostmaterial(asa-Si:H)• betteruseofthesolarspectrum

    • reductionofallopticallosses

    NASCEnT:SILICONNANODOTSFORSOLARCELLTANDEM

    FabricationofSinanocrystalsbymeansofhigh-Tthermaltreatment ofSirichSiO2/SiC

    Transparent ConductiveElectrodeshouldsustainprocessesupto1100°C

    10LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 11Bologna Section

    AttemptsofintroducingSi-NCswithinaPVdeviceshavebeenreportedintheliterature.

    However,allreporteddevicesareusefulformaterialcharacterization,buttheintroducedconstraintsmake

    Wu,SEMSC128(2014)435

    ConibeerProgPhotov19(2011)813Perez-WulfSEMSC2012

    Perez-Wulf,APL95(2009)153506

    Janz28thEPVSECParis2013SongSEMSC92(2008)474

    LöperAPL102(2013)033507LöperAdv.Mater24(2012)3124

    TheproblemoftheTCEhasbeencircumventedbymodifyingthe

    design,exposingtheTCEtolow-Tannealing

    Atthemomentnoneoftheapproachessucceededin

    producingaworking device

    11

    Issues ontheintroductionofSi-NCswithinaphotovoltaic(PV)device

    LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 12Bologna Section

    Testprocesstocheckhigh-TresistanceofgrapheneTCE

    Graphene

    Quartz

    1.Graphenetransferonquartz

    Graphene

    Quartz

    a-Si

    2.Protectivecappingofgraphene

    3.Anneala1100CinN2

    1100C

    Graphene

    Quartz

    4.CappingremovalinTMAH

    1. PECVDdeposition of40nma-Si:H capping2. AnnealingatdifferentTinflowingN23. Capping removalin2%diluted tetramethyl

    ammonium hydroxide(TMAH)

    4. Testopticalandelectricalproperties

    The capping is needed to prevent graphene burning due toresidual oxygen in the annealing atmosphere during theannealing step for NPs formation

    TestingofgrapheneTCEresistancetohigh-temperatureannealing

    12LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 13Bologna Section

    13

    Annealed600C2hN2

    a-Siresiduesreduced transparency

    Bestsamplesmaintaintheiropticalpropertiesupto1100C

    Residuesfroma-Sicappingaffectfewsamplesopticalperformances.

    • AspreadisobservedafterG-sheettransferonfusedsilicasubstratesduetothetransfer

    procedure

    • Afterdeposition andremovalofthecappinglayerandafterthermaltreatment,thespread

    doesnotincrease

    CompatibilityofgraphenebasedTCEwithhightemperatureprocesses(1100C)confirmed

    Thermaltreatments:opticalandelectricalstability

    LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 14Bologna Section

    Graphene

    FusedSilica

    PiN fullprocesseddevicewithgrapheneelectrode

    p-aSi:HaSi:H adsorber

    n-aSi:HSilvercontact

    1000°C,30'annealedgraphenehasbeenintroducedasTCEwithinastandardamorphoussiliconp-i-n device(processtemperature:≤ 250°C)

    Measurementundersimulatedsunlight(AM1.5G)shownicedevices.

    IncreasedVOC suggestsimproved bandalignment between grapheneandp-type

    selectivecontact.

    [Fujii 28thEPVSECp.2694]

    AmoderatedecreaseofJsc isobservedforGafter1000°C,probablyduetoincompletea-Sicappingremoval.

    Highseriesresistanceobserved:bettersheetresistancerequired!

    14

    Improvedbandalignment

    HigherSheetResistance

    a-Siresidues

    IntroductionofannealedGinp-i-ndevices:resultsandcomparisonwithITO

    LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 15Bologna Section

    IntroductionofGinanactualn-i-pstructureincluding Si-NCs: issues andopenpoints

    Graphene

    FusedSilica

    PiN fullprocessednanostructureddevicewithgrapheneelectrode

    n-a-Si:Ha-SiC:H /a-SRC

    p-aSi:HSilvercontact

    Processsequence:• PECVDdeposition, throughamask oftheprecursorof

    theSi-nc material(400nm)• Furnaceannealing influentN2.

    – 600°C4h(→hydrogenevolution– neededtoavoidexplosiveevolutionduringcrystallization)

    – 900°C30’– 1100°C30’

    Graphene

    FusedSilica

    p-a-Si:HSiNCinSiC matrix

    n-aSi:HSilvercontact

    1100C30min

    200µm

    StrainduetoHdesorptionandrecrystallizationanddelaminationofthe

    multilayerfilm

    15LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • 16Bologna Section

    Conclusions

    16

    GraphenecanbeappliedinoperatingDSSCsevenafterhightemperaturesintering,withaverygoodPCE(about2%)

    CompatibilityofgraphenebasedTCEwithhightemperatureprocesseshasbeenproven

    • SuccessfuldyeloadingonG-coatedelectrodewithoutdetachingproblemsuptohighTiO2 thicknesslayer.

    • Itwillpossibletofurther increaseTiO2 layerthickenstoimprovetheopticaldensityofthefilm(knownresult:optimumthicknessabout15mm).

    • MeasuredPCEisalmost8timeshigherthanpreviousachievementsincomparabledevices.

    • GrapheneTCEcansustainprocessesupto1100°Cwithoutsignificantdegradation intermsofsheetresistanceandtransmittance(contrarytoITO,whichdeterioratesabove900°C).

    Graphenesheet-resistanceinTCEmustbeimproved

    • Dopingofgraphene,Transferofmultiplegraphenemembranes,atthecostofworseningT%,improvementofthesynthesis,withlargerdomains,reduceddefectsandimpurities.

    LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015

  • Bologna Section

    ThankyouallforyourattentionLucaOrtolani – CNRIMM-BolognaSection–

    17LucaORTOLANI- Nanoitaly2015- 21-23Sept.2015