39
TRATAMIENTOS TERMICOS DEL ACERO HERNANDO TELECHE VARELA VLADIMIR TELECHE VARELA GUSTAVO CALDERON INSTITUTO TÉCNICO AGRÍCOLA TECNOLOGÍA ELÉCTRICA

Tratamientos Termicos

Embed Size (px)

Citation preview

Page 1: Tratamientos Termicos

TRATAMIENTOS TERMICOS DEL ACERO

HERNANDO TELECHE VARELAVLADIMIR TELECHE VARELA

GUSTAVO CALDERON

INSTITUTO TÉCNICO AGRÍCOLATECNOLOGÍA ELÉCTRICA

GUADALAJARA DE BUGA, ABRIL 10 DE 2010

Page 2: Tratamientos Termicos

TRATAMIENTOS TERMICOS DEL ACERO

HERNANDO TELECHE VARELAVLADIMIR TELECHE VARELA

GUSTAVO CALDERON

Semestre: IV

En la Asignatura de:FUNDAMENTOS MECANICOS

Presentado al Profesor:WALTER MONTOYA

INSTITUTO TÉCNICO AGRÍCOLATECNOLOGÍA ELÉCTRICA

GUADALAJARA DE BUGA, ABRIL 10 DE 2010

Page 3: Tratamientos Termicos

INTRODUCCIÓN

El tratamiento térmico del acero constituye uno de los procesos proporciona al metal las cualidades físicas imprescindibles para su rendimiento. Aún no hace mucho (a principios de los 90) el tratamiento térmico se realizaba sometiendo el acero rápido a temperaturas en hornos de sales, una operación extremadamente delicada que requería de un profundo conocimiento del material y de la clase de esfuerzo mecánico que se exigiría a la herramienta.

Para conocer acerca lo que es el tratamiento térmico del acero, sus procesos, importancia y ventajas, a continuación se elabora un marco teórico sobre el tema que servirá de soporte al entendimiento del tema.

Page 4: Tratamientos Termicos

OBJETIVOS

1 Conocer e investigar que es el tratamiento térmico del acero

2 Investigar la historia sobre la fundición del acero

3 Identificar los diferentes tratamientos térmicos que existen del acero

4 Investigar las ventajas sobre los diferentes tratamientos térmicos del acero

5 Identificar los tratamientos termoquímicos del acero

Page 5: Tratamientos Termicos

Contenido

1. Definicion

2. Historia

3. Formación del acero

4 Otros elementos en el acero

5. Impurezas en el acero

6. Mejora de las propiedades a través del tratamiento térmico

7. Propiedades mecánicas del acero

8. Tratamiento térmico

9. Propiedades mecánicas

10. Mejora de las propiedades a través del tratamiento térmico

11. Tratamientos térmicos del acero

12. Tratamientos termoquímicos del acero

12.1 Ejemplos de tratamientos

12.1.1 Endurecimiento del acero

12.1.2 Temple y revenido: Bonificado

12.1.3 Recocido

12.1.4 Recocido de Regeneración

12.1.5 Recocido de Globulización

12.1.6 Recocido de Subcrítico

12.1.7 Recocido isotérmico

Page 6: Tratamientos Termicos

12.1.8Normalización

12.1.9 Cementado

12.1.10 Carburización por empaquetado

12.1.11 Carburización en baño líquido

12.1.12 Carburización con gas

13. Tratamientos del acero

13.1 Tratamientos superficiales

14. Conclusión

15. Bibliografía

Page 7: Tratamientos Termicos

Acero

Puente fabricado en acero

1. Definición

El acero es una aleación de hierro y carbono, donde el carbono no supera el 2,1% en peso1 de la composición de la aleación, alcanzando normalmente porcentajes entre el 0,2% y el 0,3%. Porcentajes mayores que el 2,0% de carbono dan lugar a las fundiciones, aleaciones que al ser quebradizas y no poderse forjar —a diferencia de los aceros—, se moldean.

La Ingeniería Metalúrgica trata al acero a una familia muy numerosa de aleaciones metálicas, teniendo como base la aleación hierro-carbono. El hierro es un metal, relativamente duro y tenaz, con diámetro atómico dA = 2,48 Å (1angstrom Å = 10-10 m), con temperatura de fusión de 1.535 °C y punto de ebullición 2.740 °C. Mientras el carbono es un metaloide, con diámetro mucho más pequeño (dA = 1,54 Å), blando y frágil en la mayoría de sus formas alotrópicas (excepto en la forma de diamante en que su estructura cristalográfica lo hace el más duro de los materiales conocidos). Es la diferencia en diámetros atómicos lo que va a permitir al elemento de átomo más pequeño difundir a través de la celda del otro elemento de mayor diámetro. El acero es el más popular de las aleaciones, es la combinación entre un metal (el hierro) y un metaloide (el carbono), que conserva las características metálicas del primero, pero con propiedades notablemente mejoradas gracias a la adición del segundo y de otros elementos metálicos y no metálicos. De tal forma no se debe confundir el hierro con el acero, dado que el hierro es un metal en estado puro al que se le mejoran sus propiedades físico-químicas con la adición de carbono y demás elementos.

Page 8: Tratamientos Termicos

2. Historia

Histórico horno Bessemer.

Aunque no se tienen datos precisos de la fecha en la que se descubrió la técnica de fundir mineral de hierro para producir un metal susceptible de ser utilizado, los primeros utensilios de este metal descubiertos por los arqueólogos en Egipto datan del año 3000 a. C. También se sabe que antes de esa época se empleaban adornos de hierro.

El acero era conocido en la antigüedad, y quizá pudo haber sido producido por el método de boomery —fundición de hierro y sus óxidos en una chimenea de piedra u otros materiales naturales resistentes al calor, y en el cual se sopla aire— para que su producto, una masa porosa de hierro (bloom) contuviese carbón.6

Page 9: Tratamientos Termicos

Algunos de los primeros aceros provienen del Este de África, fechados cerca de 1400 a. C.7

En el siglo IV a. C. armas como la falcata fueron producidas en la península Ibérica.

La China antigua bajo la dinastía Han, entre el 202 a. C. y el 220 d. C., creó acero al derretir hierro forjado junto con hierro fundido, obteniendo así el mejor producto de carbón intermedio, el acero, en torno al siglo I a. C.8 9

Junto con sus métodos originales de forjar acero, los chinos también adoptaron los métodos de producción para la creación de acero wootz, una idea importada de India a China hacia el siglo V10

El acero wootz fue producido en India y en Sri Lanka desde aproximadamente el año 300 a. C. Este temprano método utilizaba un horno de viento, soplado por los monzones

También conocido como acero Damasco, el acero wootz es famoso por su durabilidad y capacidad de mantener un filo. Originalmente fue creado de un número diferente de materiales, incluyendo trazas de otros elementos en concentraciones menores a 1.000 partes por millón o 0,1% de la composición de la roca. Era esencialmente una complicada aleación con hierro como su principal componente. Estudios recientes han sugerido que en su estructura se incluían nanotubos de carbono, lo que quizá explique algunas de sus cualidades legendarias; aunque teniendo en cuenta la tecnología disponible en ese momento fueron probablemente producidos más por casualidad que por diseño.

Los métodos antiguos para la fabricación del acero consistían en obtener hierro dulce en el horno, con carbón vegetal y tiro de aire. Una posterior expulsión de las escorias por martilleo y carburación del hierro dulce para cementarlo. Luego se perfeccionó la cementación fundiendo el acero cementado en crisoles de arcilla y en Sheffield (Inglaterra) se obtuvieron, a partir de 1740, aceros de crisol.5

Fue Benjamin Huntsman el que desarrolló un procedimiento para fundir hierro forjado con carbono, obteniendo de esta forma el primer acero conocido.

En 1856, Sir Henry Bessemer, hizo posible la fabricación de acero en grandes cantidades, pero su procedimiento ha caído en desuso, porque solo podía utilizar hierro que contuviese fósforo y azufre en pequeñas proporciones.

En 1857, Sir William Siemens ideó otro procedimiento de fabricación industrial del acero, que en la actualidad ha caído en desuso, el procedimiento Martin Siemens, por descarburación de la fundición de hierro dulce y óxido de hierro, calentando con aceite, gas de coque, o una mezcla da gas de alto horno y de coque. Siemens había experimentado en 1878 con la electricidad para calentar los hornos de

Page 10: Tratamientos Termicos

acero, pero fue el metalúrgico francés Paul Héroult —coinventor del método moderno para fundir aluminio— quien inició en 1902 la producción comercial del acero en hornos eléctricos a arco.

El método de Héroult consiste en introducir en el horno chatarra de acero de composición conocida haciendo saltar un arco eléctrico entre la chatarra y unos grandes electrodos de carbono situados en el techo del horno.

En 1948 se inventa el proceso del oxígeno básico L-D. Tras la segunda guerra mundial se iniciaron experimentos en varios países con oxígeno puro en lugar de aire para los procesos de refinado del acero. El éxito se logró en Austria en 1948, cuando una fábrica de acero situada cerca de la ciudad de Linz, Donawitz desarrolló el proceso del oxígeno básico o L-D.

En 1950 se inventa el proceso de colada continua que se usa cuando se requiere producir perfiles laminados de acero de sección constante y en grandes cantidades. El proceso consiste en colocar un molde con la forma que se requiere debajo de un crisol, el que con una válvula puede ir dosificando material fundido al molde. Por gravedad el material fundido pasa por el molde, el que está enfriado por un sistema de agua, al pasar el material fundido por el molde frío se convierte en pastoso y adquiere la forma del molde. Posteriormente el material es conformado con una serie de rodillos que al mismo tiempo lo arrastran hacia la parte exterior del sistema. Una vez conformado el material con la forma necesaria y con la longitud adecuada el material se corta y almacena.

En la actualidad se utilizan algunos metales y metaloides en forma de ferroaleaciones, que, unidos al acero, le proporcionan excelentes cualidades de dureza y resistencia.

Actualmente, el proceso de fabricación del acero, se completa mediante la llamada Metalurgia Secundaria. En esta etapa, se otorgan al acero líquido las propiedades químicas, temperatura, contenido de gases, nivel de inclusiones e impurezas deseadas. La unidad más común de Metalurgia Secundaria es el Horno Cuchara. El acero aquí producido está listo para ser posteriormente colado, en forma convencional o en colada continua.

El uso intensivo que tiene y ha tenido el acero para la construcción de estructuras metálicas ha conocido grandes éxitos y rotundos fracasos que al menos han permitido el avance de la ciencia de materiales. Así, el 7 de noviembre de 1940 el mundo asistió al colapso del puente Tacoma Narrows al entrar en resonancia con el viento.

Ya durante los primeros años de la Revolución industrial se produjeron roturas prematuras de ejes de ferrocarril que llevaron a William Rankine a postular la fatiga de materiales y durante la Segunda Guerra Mundial se produjeron algunos hundimientos imprevistos de los cargueros estadounidenses Liberty al fragilizarse

Page 11: Tratamientos Termicos

el acero por el mero descenso de la temperatura, problema inicialmente achacado a las soldaduras.

En muchas regiones del mundo, el acero es de gran importancia para la dinámica de la población, industria y comercio.

3. Formación del acero. Diagrama hierro-carbono (Fe-C)

Fases de la aleación de hierro-carbono

Austenita (hierro-ɣ. duro)Ferrita (hierro-α. blando)Cementita (carburo de hierro. Fe3C)Perlita (88% ferrita, 12% cementita)Ledeburita (ferrita - cementita eutectica, 4,3% carbono)BainitaMartensita

Tipos de acero

Acero al carbono (0,03-2,1% C)Acero corten (para intemperie)Acero inoxidable (aleado con cromo)Acero microaleado («HSLA», baja aleación alta resistencia)Acero rápido (muy duro, tratamiento térmico)

Otras aleaciones Fe-C

Hierro dulce (prácticamente sin carbono)Fundición (>2,1% C)Fundición dúctil (grafito esferoidal)

En el diagrama de equilibro, o de fases, Fe-C se representan las transformaciones que sufren los aceros al carbono con la temperatura, admitiendo que el calentamiento (o enfriamiento) de la mezcla se realiza muy lentamente de modo que los procesos de difusión (homogeneización) tienen tiempo para completarse. Dicho diagrama se obtiene experimentalmente identificando los puntos críticos —temperaturas a las que se producen las sucesivas transformaciones— por métodos diversos.

Fases

El hierro puro presenta tres estados alotrópicos a medida que se incrementa la temperatura desde el ambiente:

Hasta los 911 °C, el hierro ordinario, cristaliza en el sistema cúbico centrado en el cuerpo (BCC) y recibe la denominación de hierro α Alfa o ferrita. Es un material dúctil y maleable responsable de la buena forjabilidad de las aleaciones con bajo

Page 12: Tratamientos Termicos

contenido en carbono y es ferromagnético hasta los 770 °C (temperatura de Curie a la que pierde dicha cualidad). La ferrita puede disolver muy pequeñas cantidades de carbono. Entre 911 y 1.400 °C cristaliza en el sistema cúbico centrado en las caras (FCC) y recibe la denominación de hierro γ gamma o austenita. Dada su mayor compacidad la austenita se deforma con mayor facilidad y es paramagnética.

Entre 1.400 y 1.538 °C cristaliza de nuevo en el sistema cúbico centrado en el cuerpo y recibe la denominación de hierro δ delta que es en esencia el mismo hierro alfa pero con parámetro de red mayor por efecto de la temperatura.

El acero tiene la capacidad de ser templado si contiene más del 0.3% de carbono.

4. Otros elementos en el acero

Elementos aleantes del acero y mejoras obtenidas con la aleación

Aunque la composición química de cada fabricante de aceros es casi secreta, certificando a sus clientes solo la resistencia y dureza de los aceros que producen, sí se conocen los compuestos agregados y sus porcentajes admisibles.

Aluminio: se emplea como elemento de aleación en los aceros de nitruracion, que suele tener 1% aproximadamente de aluminio. Como desoxidante se suele emplear frecuentemente en la fabricación de muchos aceros. Todos los aceros aleados en calidad contienen aluminio en porcentajes pequeñísimos, variables generalmente desde 0,001 a 0,008%. También se utiliza como elemento desoxidante. Boro: en muy pequeñas cantidades (del 0,001 al 0,0015%) logra aumentar la capacidad de endurecimiento cuando el acero está totalmente desoxidado, pues se combina con el carbono para formar carburos proporcionando un revestimiento duro y mejorando la templabilidad. Es usado en aceros de baja aleación en aplicaciones como cuchillas de arado y alambres de alta ductilidad y dureza superficial. Utilizado también como trampa de nitrógeno, especialmente en aceros para trefilación, para obtener valores de N menores a 80 ppm.

Page 13: Tratamientos Termicos

Acería. Nótese la tonalidad del vertido.Cobalto: muy endurecedor. Disminuye la templabilidad. Mejora la dureza en caliente. El cobalto es un elemento poco habitual en los aceros. Se usa en los aceros rápidos para herramientas, aumenta la dureza de la herramienta en caliente. Se utiliza para aceros refractarios. Aumenta las propiedades magnéticas de los aceros. Cromo: es uno de los elementos especiales más empleados para la fabricación de aceros aleados, usándose indistintamente en los aceros de construcción, en los de herramientas, en los inoxidables y los de resistencia en caliente. Se emplea en cantidades diversas desde 0,30% a 30%, según los casos y sirve para aumentar la dureza y la resistencia a la tracción de los aceros, mejora la templabilidad, impide las deformaciones en el temple, aumenta la resistencia al desgaste, la inoxidabilidad (con concentraciones superiores al 12%), etc. Forma carburos muy duros y comunica al acero mayor dureza, resistencia y tenacidad a cualquier temperatura. Solo o aleado con otros elementos, proporciona a los aceros características de inoxidables y refractarios; también se utiliza en revestimientos embellecedores o recubrimientos duros de gran resistencia al desgaste, como émbolos, ejes, etc.

Estaño: es el elemento que se utiliza para recubrir láminas muy delgadas de acero que conforman la hojalata.

Manganeso: aparece prácticamente en todos los aceros, debido, principalmente, a que se añade como elemento de adición para neutralizar la perniciosa influencia del azufre y del oxigeno, que siempre suelen contener los aceros cuando se

Page 14: Tratamientos Termicos

encuentran en estado líquido en los hornos durante los procesos de fabricación. El manganeso actúa también como desoxidante y evita, en parte, que en la solidificación del acero que se desprendan gases que den lugar a porosidades perjudiciales en el material. Si los aceros no tuvieran manganeso, no se podrían laminar ni forjar, porque el azufre que suele encontrarse en mayor o menor cantidad en los aceros, formarían sulfuros de hierro, que son cuerpos de muy bajo punto de fusión (981 °C aproximadamente) que a las temperaturas de trabajo en caliente (forja o laminación) funden, y al encontrarse contorneando los granos de acero crean zonas de debilidad y las piezas y barras se abren en esas operaciones de transformación. Los aceros ordinarios y los aceros aleados en los que el manganeso no es elemento fundamental, suelen contener generalmente porcentajes de manganeso variables de 0,30 a 0,80%.

Molibdeno: es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión.

Nitrógeno: se agrega a algunos aceros para promover la formación de austenita.

Níquel: una de las mayores ventajas que reporta el empleo del níquel, es evitar el crecimiento del grano en los tratamientos térmicos, lo que sirve para producir en ellos gran tenacidad. El níquel además hace descender los puntos críticos y por ello los tratamientos pueden hacerse a temperaturas ligeramente más bajas que la que corresponde a los aceros ordinarios. Experimentalmente se observa que con los aceros aleados con níquel se obtiene para una misma dureza, un límite de elasticidad ligeramente más elevado y mayores alargamientos y resistencias que con los aceros al carbono o de baja aleación. En la actualidad se ha restringido mucho su empleo, pero sigue siendo un elemento de aleación indiscutible para los aceros de construcción empleados en la fabricación de piezas para máquinas y motores de gran responsabilidad, se destacan sobre todo en los aceros cromo-níquel y cromo-níquel-molibdeno. El níquel es un elemento de extraordinaria importancia en la fabricación de aceros inoxidables y resistentes a altas temperaturas, en los que además de cromo se emplean porcentajes de níquel variables de 8 a 20%. Es el principal formador de austenita, que aumenta la tenacidad y resistencia al impacto. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión.

Plomo: el plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje oscila entre 0,15% y 0,30% debiendo limitarse el contenido de carbono a valores inferiores al 0,5% debido a que dificulta el templado y disminuye la tenacidad en caliente.se añade a algunos aceros para mejorar mucho la maquinabilidad.

Silicio: aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.

Page 15: Tratamientos Termicos

Titanio: se usa para estabilizar y desoxidar el acero, mantiene estables las propiedades del acero a alta temperatura.

Tungsteno: también conocido como wolframio. Forma con el hierro carburos muy complejos estables y durísimos, soportando bien altas temperaturas. En porcentajes del 14 al 18 %, proporciona aceros rápidos con los que es posible triplicar la velocidad de corte de los aceros al carbono para herramientas.

Vanadio: posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.

Zinc: es elemento clave para producir chapa de acero galvanizado.

Los porcentajes de cada uno de los aleantes que pueden configurar un tipo determinado de acero están normalizados.

5. Impurezas en el acero

Se denomina impurezas a todos los elementos indeseables en la composición de los aceros. Se encuentran en los aceros y también en las fundiciones como consecuencia de que están presentes en los minerales o los combustibles. Se procura eliminarlas o reducir su contenido debido a que son perjudiciales para las propiedades de la aleación. En los casos en los que eliminarlas resulte imposible o sea demasiado costoso, se admite su presencia en cantidades mínimas.

Azufre: límite máximo aproximado: 0,04%. El azufre con el hierro forma sulfuro, el que, conjuntamente con la austenita, da lugar a un eutéctico cuyo punto de fusión es bajo y que, por lo tanto, aparece en bordes de grano. Cuando los lingotes de acero colado deben ser laminados en caliente, dicho eutéctico se encuentra en estado líquido, lo que provoca el desgranamiento del material.

Se controla la presencia de sulfuro mediante el agregado de manganeso. El manganeso tiene mayor afinidad por el azufre que el hierro por lo que en lugar de FeS se forma MnS que tiene alto punto de fusión y buenas propiedades plásticas. El contenido de Mn debe ser aproximadamente cinco veces la concentración de S para que se produzca la reacción. El resultado final, una vez eliminados los gases causantes, es una fundición menos porosa, y por lo tanto de mayor calidad. Aunque se considera un elemento perjudicial, su presencia es positiva para mejorar la maquinabilidad en los procesos de mecanizado. Cuando el porcentaje de azufre es alto puede causar poros en la soldadura.

Fósforo: límite máximo aproximado: 0,04%. El fósforo resulta perjudicial, ya sea al disolverse en la ferrita, pues disminuye la ductilidad, como también por formar FeP (fosfuro de hierro). El fosfuro de hierro, junto con la austenita y la cementita, forma un eutéctico ternario denominado esteadita, el que es sumamente frágil y posee

Page 16: Tratamientos Termicos

punto de fusión relativamente bajo, por lo cual aparece en bordes de grano, transmitiéndole al material su fragilidad.

Aunque se considera un elemento perjudicial en los aceros, porque reduce la ductilidad y la tenacidad, haciéndolo quebradizo, a veces se agrega para aumentar la resistencia a la tensión y mejorar la maquinabilidad.

6. Mejora de las propiedades a través del tratamiento térmico

Las propiedades mecánicas de las aleaciones de un mismo metal, y en particular de los aceros, reside en la composición química de la aleación que los forma y el tipo de tratamiento térmico a los que se les somete. Los tratamientos térmicos modifican la estructura cristalina que forman los aceros sin variar la composición química de los mismos.

Esta propiedad de tener diferentes estructuras de grano con la misma composición química se llama polimorfismo y es la que justifica los tratamientos térmicos. Técnicamente el poliformismo es la capacidad de algunos materiales de presentar distintas estructuras cristalinas, con una única composición química, el diamante y el grafito son polimorfismos del carbono. La α-ferrita, la austenita y la δ-ferrita son polimorfismos del hierro. Esta propiedad en un elemento químico puro se denomina alotropía.

7. Propiedades mecánicas del acero

El acero es una aleación de hierro y carbono que contiene otros elementos de aleación, los cuales le confieren propiedades mecánicas especificas para su utilización en la industria metalmecánica.

Los otros principales elementos de composición son el cromo, tungsteno, manganeso, níquel, vanadio, cobalto, molibdeno, cobre, azufre y fósforo. A estos elementos químicos que forman del acero se les llama componentes, y a las distintas estructuras cristalinas o combinación de ellas constituyentes.

Los elementos constituyentes, según su porcentaje, ofrecen características específicas para determinadas aplicaciones, como herramientas, cuchillas, soportes, etcétera. La diferencia entre los diversos aceros, tal como se ha dicho depende tanto de la composición química de la aleación de los mismos, como del tipo de tratamiento térmico a los que se les somete.

8. Tratamiento térmico

Page 17: Tratamientos Termicos

Se conoce como tratamiento térmico el proceso al que se someten los metales u otros sólidos con el fin de mejorar sus propiedades mecánicas, especialmente la dureza, la resistencia y la tenacidad. Los materiales a los que se aplica el tratamiento térmico son, básicamente, el acero y la fundición, formados por hierro y carbono. También se aplican tratamientos térmicos diversos a los sólidos cerámicos.

El tratamiento térmico proporciona al metal las cualidades físicas imprescindibles para su rendimiento. Aún no hace mucho (a principios de los 90) el tratamiento térmico se realizaba sometiendo el acero rápido a temperaturas en hornos de sales, una operación extremadamente delicada que requería de un profundo conocimiento del material y de la clase de esfuerzo mecánico que se exigiría a la herramienta. En la actualidad la tecnología basada en hornos de vacío ha sustituido a los hornos de sales, con grandes adelantos respecto a la precisión, regularidad y eficiencia de todo el proceso. EL tratamiento térmico tiene como objetivo disolver parte de los carburos que el acero rápido contiene. Ello proporciona unas cualidades únicas en cuanto a tenacidad, resistencia en caliente, perfectamente adaptadas a la función específica que desarrollará la herramienta, garantizando así un rendimiento óptimo.

Page 18: Tratamientos Termicos

Rodamiento de acero templado.

9. Propiedades mecánicas

Propiedades mecánicas de los materiales

Las características mecánicas de un material dependen tanto de su composición química como de la estructura cristalina que tenga. Los tratamientos térmicos modifican esa estructura cristalina sin alterar la composición química, dando a los materiales unas características mecánicas concretas, mediante un proceso de calentamientos y enfriamientos sucesivos hasta conseguir la estructura cristalina deseada.

Entre estas características están:

Resistencia al desgaste: Es la resistencia que ofrece un material a dejarse erosionar cuando está en contacto de fricción con otro material. Tenacidad: Es la capacidad que tiene un material de absorber energía sin producir fisuras (resistencia al impacto).

Maquinabilidad: Es la facilidad que posee un material de permitir el proceso de mecanizado por arranque de viruta.

Dureza: Es la resistencia que ofrece un acero para dejarse penetrar. Se mide en unidades BRINELL (HB) o unidades ROCKWEL C (HRC), mediante el test del mismo nombre.

10. Mejora de las propiedades a través del tratamiento térmico

Las propiedades mecánicas de las aleaciones de un mismo metal, y en particular de los aceros, reside en la composición química de la aleación que los forma y el tipo de tratamiento térmico a los que se les somete. Los tratamientos térmicos modifican la estructura cristalina que forman los aceros sin variar la composición química de los mismos.

Esta propiedad de tener diferentes estructuras de grano con la misma composición química se llama polimorfismo y es la que justifica los tratamientos térmicos. Técnicamente el poliformismo es la capacidad de algunos materiales de presentar distintas estructuras cristalinas, con una única composición química, el diamante y el grafito son polimorfismos del carbono. La α-ferrita, la austenita y la δ-ferrita son polimorfismos del hierro. Esta propiedad en un elemento químico puro se denomina alotropía.

11. Tratamientos térmicos del acero

Page 19: Tratamientos Termicos

Introducción a los tratamientos térmicos

El tratamiento térmico en el material es uno de los pasos fundamentales para que pueda alcanzar las propiedades mecánicas para las cuales está creado. Este tipo de procesos consisten en el calentamiento y enfriamiento de un metal en su estado sólido para cambiar sus propiedades físicas. Con el tratamiento térmico adecuado se pueden reducir los esfuerzos internos, el tamaño del grano,

Page 20: Tratamientos Termicos

incrementar la tenacidad o producir una superficie dura con un interior dúctil. La clave de los tratamientos térmicos consiste en las reacciones que se producen en el material, tanto en los aceros como en las aleaciones no férreas, y ocurren durante el proceso de calentamiento y enfriamiento de las piezas, con unas pautas o tiempos establecidos.

Para conocer a que temperatura debe elevarse el metal para que se reciba un tratamiento térmico es recomendable contar con los diagramas de cambio de fases como el de hierro–hierro–carbono. En este tipo de diagramas se especifican las temperaturas en las que suceden los cambios de fase (cambios de estructura cristalina), dependiendo de los materiales diluidos.

Los tratamientos térmicos han adquirido gran importancia en la industria en general, ya que con las constantes innovaciones se van requiriendo metales con mayores resistencias tanto al desgaste como a la tensión. Los principales tratamientos térmicos son:

Temple: Su finalidad es aumentar la dureza y la resistencia del acero. Para ello, se calienta el acero a una temperatura ligeramente más elevada que la crítica superior Ac (entre 900-950 °C) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua, aceite, etcétera. Revenido: Sólo se aplica a aceros previamente templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento.

Recocido: Consiste básicamente en un calentamiento hasta temperatura de austenitización (800-925 °C) seguido de un enfriamiento lento. Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas.

Normalizado: Tiene por objeto dejar un material en estado normal, es decir, ausencia de tensiones internas y con una distribución uniforme del carbono. Se suele emplear como tratamiento previo al temple y al revenido.

Entre los factores que afectan a los procesos de tratamiento térmico del acero se encuentran la temperatura y el tiempo durante el que se expone a dichas condiciones al material. Otro factor determinante es la forma en la que el acero vuelve a la temperatura ambiente. El enfriamiento del proceso puede incluir su inmersión en aceite o el uso del aire como refrigerante.

Page 21: Tratamientos Termicos

El enfriamiento para el proceso de templado puede efectuarse a diferentes velocidades de acuerdo a los fines perseguidos y del tipo de acero (cantidad de carbono y otros elementos aleantes) los más usados son:

Agua. Aceite. Sales fundidas.Soluciones salinas.Y hasta el aire para ciertos aceros aleados.

El método del tratamiento térmico, incluyendo su enfriamiento, influye en que el acero tome sus propiedades comerciales.

Según ese método, en algunos sistemas de clasificación, se le asigna un prefijo indicativo del tipo. Por ejemplo, el acero O-1, o A2, A6 (o S7) donde la letra "O" es indicativo del uso de aceite (del inglés: oil quenched), y "A" es la inicial de aire; el prefijo "S" es indicativo que el acero ha sido tratado y considerado resistente al golpeo (Shock resistant).

12. Tratamientos termoquímicos del acero

Los tratamientos termoquímicos son tratamientos térmicos en los que, además de los cambios en la estructura del acero, también se producen cambios en la composición química de la capa superficial, añadiendo diferentes productos químicos hasta una profundidad determinada. Estos tratamientos requieren el uso de calentamiento y enfriamiento controlados en atmósferas especiales.

Entre los objetivos más comunes de estos tratamientos están aumentar la dureza superficial de las piezas dejando el núcleo más blando y tenaz, disminuir el rozamiento aumentando el poder lubrificante, aumentar la resistencia al desgaste, aumentar la resistencia a fatiga o aumentar la resistencia a la corrosión.

Cementación (C): aumenta la dureza superficial de una pieza de acero dulce, aumentando la concentración de carbono en la superficie. Se consigue teniendo en cuenta el medio o atmósfera que envuelve el metal durante el calentamiento y enfriamiento. El tratamiento logra aumentar el contenido de carbono de la zona periférica, obteniéndose después, por medio de temples y revenidos, una gran dureza superficial, resistencia al desgaste y buena tenacidad en el núcleo. Nitruración (N): al igual que la cementación, aumenta la dureza superficial, aunque lo hace en mayor medida, incorporando nitrógeno en la composición de la superficie de la pieza. Se logra calentando el acero a temperaturas comprendidas entre 400 y 525 °C, dentro de una corriente de gas amoníaco, más nitrógeno.

Cianuración (C+N): endurecimiento superficial de pequeñas piezas de acero. Se utilizan baños con cianuro, carbonato y cianato sódico. Se aplican temperaturas entre 760 y 950 °C.

Page 22: Tratamientos Termicos

Carbonitruración (C+N): al igual que la cianuración, introduce carbono y nitrógeno en una capa superficial, pero con hidrocarburos como metano, etano o propano; amoníaco (NH3) y monóxido de carbono (CO). En el proceso se requieren temperaturas de 650 a 850 °C y es necesario realizar un temple y un revenido posterior.

Sulfinización (S+N+C): aumenta la resistencia al desgaste por acción del azufre. El azufre se incorporó al metal por calentamiento a baja temperatura (565 °C) en un baño de sales.

Máquinas para el lavado, desengrase y tratamiento de superficies de todo tipo de piezas (fosfatado, pasivado, decapado, secado, etc.

12.1 Ejemplos de tratamientos

12.1.1 Endurecimiento del acero

El proceso de endurecimiento del acero consiste en el calentamiento del metal de manera uniforme a la temperatura correcta (ver figura de temperaturas para endurecido de metales) y luego enfriarlo con agua, aceite, aire o en una cámara refrigerada. El endurecimiento produce una estructura granular fina que aumenta la resistencia a la tracción (tensión) y disminuye la ductilidad. El acero al carbono para herramientas se puede endurecer al calentarse hasta su temperatura crítica, la cual se adquiere aproximadamente entre los 790 y 830 °C, lo cual se identifica cuando el metal adquiere el color rojo cereza brillante. Cuando se calienta el acero la perlita se combina con la ferrita, lo que produce una estructura de grano fino llamada austenita. Cuando se enfría la austenita de manera brusca con agua, aceite o aire, se transforma en martensita, material que es muy duro y frágil.

Page 23: Tratamientos Termicos

12.1.2 Temple y revenido: Bonificado

Después que se ha endurecido el acero es muy quebradizo o frágil lo que impide su manejo pues se rompe con el mínimo golpe debido a la tensión interior generada por el proceso de endurecimiento. Para contrarrestar la fragilidad se recomienda el temple del acero (en algunos textos a este proceso se le llama revenido y al endurecido temple).

Este proceso hace más tenaz y menos quebradizo el acero aunque pierde algo de dureza. El proceso consiste en limpiar la pieza con un abrasivo para luego calentarla hasta la temperatura adecuada (ver tabla), para después enfriarla con rapidez en el mismo medio que se utilizó para endurecerla.Tabla de temperaturas para revenido de acero endurecido

Color Grados C Tipos de aceros

Paja claro 220 Herramientas como brocas, machuelos

Paja mediano 240 Punzones dados y fresas

Paja obscuro 255 Cizallas y martillos

Morado 270 Árboles y cinceles para madera

Azul obscuro 300 Cuchillos y cinceles para acero

Azul claro 320 Destornilladores y resortes

12.1.3 Recocido

El recocido es el tratamiento térmico que, en general, tiene como finalidad principal el ablandar el acero, regenerar la estructura de aceros sobrecalentados o

Page 24: Tratamientos Termicos

simplemente eliminar las tensiones internas que siguen a un trabajo en frío. (Enfriamiento en el horno).

12.1.4 Recocido de Regeneración

También llamado normalizado, tiene como función regenerar la estructura del material producido por temple o forja. Se aplica generalmente a los aceros con más del 0.6% de C, mientras que a los aceros con menor porcentaje de C sólo se les aplica para finar y ordenar su estructura

Ejemplo:

Después de un laminado en frío, donde el grano queda alargado y sometido a tensiones, dicho tratamiento devuelve la microestructura a su estado inicial.

12.1.5 Recocido de Globulización

Usado en aceros hipoeutectoides para ablandarlos después de un anterior trabajo en frío. Por lo general se desea obtener globulización en piezas como placas delgadas que deben tener alta embutición y baja dureza. Los valores más altos de embutición por lo general están asociados con la microestructura globulizada que solo se obtiene en un rango entre los 650 y 700 grados centígrados. Temperaturas por encima de la crítica producen formación de austenita que durante el enfriamiento genera perlita, ocasionando un aumento en la dureza no deseado. Por lo general piezas como las placas para botas de protección deben estar globulizadas para así obtener los dobleces necesarios para su uso y evitar rompimiento o agrietamiento. Finalmente son templadas para garantizar la dureza. Es usado para los aceros hipereutectoides, es decir con un porcentaje mayor al 0,89 % de C, para conseguir la menor dureza posible que en cualquier otro tratamiento, mejorando la maquinabilidad de la pieza. La temperatura de recocido está entre AC3 y AC1.

Ejemplo

- El ablandamiento de aceros aleados para herramientas de más de 0.8% de C.

12.1.6 Recocido de Subcrítico

Para un acero al carbono hipoeutectoide: La microestructura obtenida en este tratamiento varía según la temperatura de recocido. Por lo general las que no excedan los 600 grados liberarán tensiones en el material y ocasionaran algún crecimiento de grano (si el material previamente no fue templado). Generalmente mostrando Ferrita-Perlita. Por encima de los 600 y bajo los 723 se habla de recocido de globulización puesto que no sobrepasa la temperatura crítica. En este caso no hay grano de perlita, los carburos se esferoidizan y la matriz es totalmente ferrítica. Se usa para aceros de forja o de laminación, para lo cual se usa una

Page 25: Tratamientos Termicos

temperatura de recocido inferior a AC1, pero muy cercana. Mediante este procedimiento se destruyen las tensiones internas producidas por su moldeo y mecanización. Comúnmente es usado para aceros aleados de gran resistencia, al Cr-Ni, Cr-Mo, etcétera. Este procedimiento es mucho más rápido y sencillo que los antes mencionados, su enfriamiento es lento.

12.1.7 Recocido isotérmico

Otros recocidos se efectúan para modificar la repartición de los componentes de la estructura cristalina (transformación de la perlita laminar), a éste recocido denominado isotérmico el cual es muy frecuente en piezas estampadas para la industria de automoción.

Aparte de los tratamientos indicados existe un gran número de otros muy específicos como envejecimiento, boronizado, sulfinizado, desgasificado, oxidación, recristalización, reducción sinterizado, etc.

12.1.8 Normalización

La estructura que surge después del calentamiento hasta las temperaturas que corresponden a la zona de austenita y enfriamiento en el aire, se considera como normal en el acero. Por eso la normalización corresponde a un recocido supercrítico con enfriamiento al aire.

La cantidad de ferrita o cementita sobrante, después del normalizado, es menor que después del recocido y la perlita está más dispersa. Por eso el acero normalizado tiene resistencia y tenacidad un poco más alta y una maquinabilidad más baja que el acero recocido.

12.1.9 Cementado

Consiste en el endurecimiento de la superficie externa del acero al bajo carbono, quedando el núcleo blando y dúctil. Como el carbono es el que genera la dureza en los aceros en el método de cementado se tiene la posibilidad de aumentar la cantidad de carbono en los aceros de bajo contenido de carbono antes de ser endurecido. El carbono se agrega al calentar al acero a su temperatura crítica mientras se encuentra en contacto con un material carbonoso. Los tres métodos de cementación más comunes son: empacado para carburación, baño líquido y gas.

12.1.10 Carburización por empaquetado

Page 26: Tratamientos Termicos

Este procedimiento consiste en meter al material de acero con bajo contenido carbónico en una caja cerrada con material carbonáceo y calentarlo hasta 900 a 927 °C durante 4 a 6 horas. En este tiempo el carbono que se encuentra en la caja penetra a la superficie de la pieza a endurecer. Cuanto más tiempo se deje a la pieza en la caja con carbono de mayor profundidad será la capa dura. Una vez caliente la pieza a endurecer a la temperatura adecuada se enfría rápidamente en agua o salmuera. Para evitar deformaciones y disminuir la tensión superficial se recomienda dejar enfriar la pieza en la caja para posteriormente sacarla y volverla a calentar entre 800 y 845 °C (rojo cereza) y proceder al enfriamiento por inmersión. La capa endurecida más utilizada tiene un espesor de 0,38 mm, sin embargo se pueden tener espesores de hasta 0.4 mm.

12.1.11 Carburización en baño líquido

El acero a cementar se sumerge en un baño de cianuro de sodio líquido. También se puede utilizar cianuro de potasio pero sus vapores son muy peligrosos. Se mantiene la temperatura a 845 °C durante 15 minutos a 1 hora, según la profundidad que se requiera. A esta temperatura el acero absorberá el carbono y el nitrógeno del cianuro. Después se debe enfriar con rapidez al acero en agua o salmuera. Con este procedimiento se logran capas con espesores de 0,75 mm.

12.1.12 Carburización con gas

En este procedimiento se utilizan gases carburizantes para la cementación. La pieza de acero con bajo contenido carbónico se coloca en un tambor al que se introduce gas para carburizar como derivados de los hidrocarburos o gas natural. El procedimiento consiste en mantener al horno, el gas y la pieza entre 900 y 927 °C. Después de un tiempo predeterminado se corta el gas carburizante y se deja enfriar el horno. Luego se saca la pieza y se recalienta a 760 °C y se enfría con rapidez en agua o salmuera. Con este procedimiento se logran piezas cuya capa dura tiene un espesor hasta de 0,6 mm, pero por lo regular no exceden de 0,7 mm.

12.1.13 Carburado, cianurado y nitrurado

Existen varios procedimientos de endurecimiento superficial con la utilización del nitrógeno y cianuro a los que por lo regular se les conoce como carbonitrurado o cianurado. En todos estos procesos con ayuda de las sales del cianuro y del amoníaco se logran superficies duras como en los métodos anteriores.

13. Tratamientos del acero

13.1 Tratamientos superficiales

Artículo principal: Tratamiento superficial de los metales

Page 27: Tratamientos Termicos

Debido a la facilidad que tiene el acero para oxidarse cuando entra en contacto con la atmósfera o con el agua, es necesario y conveniente proteger la superficie de los componentes de acero para protegerles de la oxidación y corrosión. Muchos tratamientos superficiales están muy relacionados con aspectos embellecedores y decorativos de los metales.

Los tratamientos superficiales más usados son los siguientes:

Cincado: tratamiento superficial antioxidante por proceso electrolítico o mecánico al que se somete a diferentes componentes metálicos.

Cromado: recubrimiento superficial para proteger de la oxidación y embellecer.

Galvanizado: tratamiento superficial que se da a la chapa de acero.

Niquelado: baño de níquel con el que se protege un metal de la oxidación.

Pavonado: tratamiento superficial que se da a piezas pequeñas de acero, como la tornillería.

Pintura: usado especialmente en estructuras, automóviles, barcos, etc.

Diversas piezas tratadas

Page 28: Tratamientos Termicos

14. CONCLUSIONES

Page 29: Tratamientos Termicos

1 Se investigo que es el tratamiento térmico del acero

2 Se conoció la historia sobre la fundición del acero

3 Se identificaron los diferentes tratamientos térmicos que existen del acero

4 Se investigar las ventajas sobre los diferentes tratamientos térmicos del acero

5 Se identificaron los tratamientos termoquímicos del acero

15. Bibliografía

Page 30: Tratamientos Termicos

Millán Gómez, Simón (2006). Procedimientos de Mecanizado. Madrid: Editorial Paraninfo. ISBN 84-9732-428-5.

Sandvik Coromant (2006). Guía Técnica de Mecanizado. AB Sandvik Coromant 2005.10.

Larbáburu Arrizabalaga, Nicolás (2004). Máquinas. Prontuario. Técnicas máquinas herramientas. Madrid: Thomson Editores. ISBN 84-283-1968-5.

Varios autores (1984). Enciclopedia de Ciencia y Técnica. Salvat Editores S.A. ISBN 84-345-4490-3.

Luis Colasante (2006). L’étude des superficies de l’acier inoxydable austénitique AISI 304 après une déformation plastique et un procédé d’abrasion. Venezuela, merida: universidad de Los Andes.

Dneprospetsstal

Referencias de Internet: es.wikipedia.org/wiki/Tratamiento térmico

Tomado de www.interempresas.net/MetalMecanica/