7

Click here to load reader

Trends Ecol Evol (Amst) 2015 Dall SR

Embed Size (px)

Citation preview

Page 1: Trends Ecol Evol (Amst) 2015 Dall SR

8/9/2019 Trends Ecol Evol (Amst) 2015 Dall SR

http://slidepdf.com/reader/full/trends-ecol-evol-amst-2015-dall-sr 1/7

Genes as cues: phenotypic  integrationof  genetic and epigenetic  information

from a Darwinian perspectiveSasha R.X. Dall1, John M. McNamara1,2, and Olof Leimar3

1Centre  for  Ecology  and  Conservation,  Biosciences,  College  of   Life  and  Environmental   Sciences,  University  of   Exeter,

Penryn   Campus,   Tremough,   Penryn  TR10  9EZ,  UK2School

 

of  

Mathematics, 

University 

of  

Bristol, 

University 

Walk, 

Bristol 

BS8 

1TW, 

UK3Department  of   Zoology,   Stockholm  University,  SE-106  91  Stockholm,  Sweden

The 

development 

of 

multicellular 

organisms 

involves 

a

delicate  interplay  between  genetic  and  environmental

influences.  It  is  often  useful  to  think  of  developmental

systems  as  integrating  available  sources  of  informationabout  current  conditions  to  produce  organisms.  Genes

and  inherited  physiology  provide  cues,  as  does  the  state

of  the  environment  during  development.  The  integration

systems 

themselves 

are 

under 

genetic 

control 

and 

sub-

ject to  Darwinian  selection,  so  we  expect  them  to  evolve

to  produce  organisms  that  fit  well  with  current  ecologi-

cal 

(including 

social) 

conditions. 

We 

argue 

for 

the 

scien-

tific value  of  this  explicitly  informational  perspective  by

providing  detailed  examples   of  how  it  can  elucidate

taxonomically 

diverse 

phenomena. 

We 

also 

present 

a

general  framework  for  linking  genetic  and  phenotypic

variation  from  an  informational  perspective.  This  appli-

cation 

of 

Darwinian 

logic 

at 

the 

organismal 

level 

canelucidate  genetic  influences  on  phenotypic  variation  in

novel  and  counterintuitive  ways.

Development 

and 

cue 

integration

The 

textbook  

depiction 

of  

genes 

as 

‘recipes’ 

that 

determine

organismal  phenotypes  is  increasingly   difficult  to  sustain

in the 

modern 

biological 

sciences 

[1,2]. 

Phenotypic 

plastic-

ity  

– 

the 

ability  

of  

genotype 

to 

produce 

distinct 

pheno-

types  as  a  result  of   nongenetic  influences  during 

development 

– 

may  

be 

ubiquitous 

in 

multicellular 

organ-

isms  [1,3].  Such  nongenetic  influences  (here  referred  to

collectively   as  epigenetic)  can  include  environmental  cues

and ‘parental  effects’  (including    vertical  cultural  inheri-

tance 

and 

DNA-methylation 

patterns) 

[1,3,4], which 

often

reflect 

parental 

experience 

of  

the 

local 

selective 

environ-

ment  [5]. However,  it  is  underappreciated  that  genes

themselves 

can 

also 

act 

as 

cues 

of  

the 

current 

environment

[5–9]. If  

there 

is 

restricted 

gene 

flow 

among  

local 

environ-

ments  with  differential  fitness  effects  of   alleles  in  different

environments, 

allele 

frequencies 

will 

 vary  

spatially 

[10]. Therefore, 

an 

individual’s 

genotype 

will 

statistically 

contain 

information 

about 

(correlate 

with) 

local 

environ-

mental  conditions  and  can  be  regarded  as  a  genetic  cue.  In

effect,  genes  at  polymorphic  loci  provide  information  thatthe  phenotypic  states  they   trigger  have  had  local  success

[5–7,10]. Furthermore, 

at 

the 

level 

of  

developmental 

mech-

anisms,  there  is  considerable  overlap  in  how  environmen-

tal 

cues 

and 

genetic 

 variation 

determine 

phenotypes 

[1,11].

Here 

we 

aim 

to 

provide 

general 

framework  

for 

think-

ing   about  how  potential  cues  are  integrated  during   devel-

opment 

to 

maximise 

the 

fit 

of  

the 

phenotype 

to 

current

ecological 

(including  

social) 

conditions. 

Such 

integration

will  be  favoured  by   Darwinian  selection  if the  cue  integra-

tion 

system 

is 

itself  

under 

genetic 

control 

[7]. 

For 

instance,

a  polymorphic  ‘genetic  cue’  locus  might  influence  the  hor-

monal 

regulation 

of  

phenotypes, 

either 

by  

encoding  

tran-

scription 

factors 

that 

modulate 

gene 

expression 

at 

otherloci  [12]  and  influence  circulating   hormone  levels  or  by 

influencing  

hormone 

receptors 

[11,13]. Similarly, 

develop-

ing   phenotypes  can  be  modulated  by   epigenetic  parental

effects 

(e.g., 

genomic 

imprints, 

maternal 

effects) 

and 

the

state 

of  

the 

local 

environment. 

By  

influencing  

transcription

in  target  tissues,  hormone  receptors  can  ‘integrate’  these

inputs 

[14,15], thereby  

guiding  

phenotypic 

development

[14]. In 

summary, 

evolutionary  

change 

of  

developmental

systems 

occurs 

 via 

selection 

on 

modifier 

loci 

(e.g., 

that

influence 

tissue-specific 

hormone 

receptor 

densities), 

fi-

ne-tuning   responses  to  developmental  cues.  Modifiers

might 

often 

be 

regulatory  

genes.

 Adaptive 

cue-integration 

systems 

of  

the 

sort 

outlinedabove will  take  any   available  sources  of   information  (epi-

genetic 

and 

genetic) 

into 

account 

in 

determining  

pheno-

types.  Our  framework   predicts  that  the  relative  weights

put on 

each 

source 

of  

information 

should 

depend 

on 

envi-

ronmental 

characteristics, 

such 

as 

its 

temporal 

stability,

and  on  cue  accuracies.  If   correlations  among   allele  frequen-

cies 

at 

cue 

locus 

and 

local 

ecological 

conditions 

provide

greater  predictive  accuracy   than  environmental  cues,  ge-

netic 

polymorphism 

can 

be 

favoured, 

along  

with 

genes 

that

are 

selected 

to 

modify  

phenotypic 

development 

appropri-

ately for   each   genetic  morph  [7]  (such  ‘specific’  modifiers

are known; 

e.g., 

from 

studies 

of  

sex 

determination 

[16]).

Thus  by   taking   such  an  explicitly   informational  approach

Opinion

0169-5347/ 

2015Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tree.2015.04.002

Corresponding author: Dall, S.R.X. ([email protected]).

 Keywords: development; information; genetic cues; epigenetic effects; environmental

cues.

TREE-1935;   No.  of   Pages  7

Trends in Ecology & Evolution xx (2015) 1–7 1

Page 2: Trends Ecol Evol (Amst) 2015 Dall SR

8/9/2019 Trends Ecol Evol (Amst) 2015 Dall SR

http://slidepdf.com/reader/full/trends-ecol-evol-amst-2015-dall-sr 2/7

we 

can 

predict 

epistatic 

effects 

among  

genes 

determining 

the cue 

integration 

(developmental) 

system 

and 

other

genes 

that 

provide 

cues.

This  informational  perspective  offers  a  powerful  way   to

understand 

how 

genetic 

and 

epigenetic 

influences 

are

integrated 

during  

development. 

Since 

this 

perspective

was  introduced  [6,7,10]  it  is  increasingly   being   used  to

interpret 

wide 

 variety  

of  

biological 

phenomena 

[3,5,17–21]. Here  we  promote  the  scientific   value  of   this  approach

by  

outlining  

the 

underlying  

logic 

and 

detailing  

how 

it 

can

elucidate 

taxonomically  

widespread 

phenomena. 

We 

show

how  rigorously   applying   Darwinian  logic  at  an  organismal

level 

(i.e., 

assuming  

selection 

favours 

developing  

pheno-

types  that  process  information  to  maximise  their  fit  to  their

local 

environment) 

can 

help 

to 

explain 

genetic 

influences

on phenotypic 

 variation 

in 

novel 

and 

counterintuitive

ways.

Being  alive  can  be  informative

Central  to  the  idea  that  genes  can  be  used  as  developmen-

tal 

cues 

of  

the 

forthcoming  

environment 

is 

the 

existence 

of 

persistent  genetic   variation  with  alleles  differing   in  fre-quency 

 

in 

different 

environments 

[7,22]. 

If  

the 

ability  

to

cope  with  local  environments  is  (to  some  degree)  controlled

genetically  

and 

conditions 

remain 

stable 

enough 

across

generations 

(e.g., 

individuals 

are 

likely  

to 

inherit 

parental

environments  and  do  not  disperse  too  far  away   to  repro-

duce), 

the 

fact 

that 

an 

individual 

exists 

suggests 

that 

it 

is

likely  

to 

be 

in an 

environment 

to 

which 

it 

is 

well 

adapted.

This is  because  most  of   the  individuals  of   its  genotype  are

likely  

to 

be 

born 

into 

such 

‘good’ 

habitats 

precisely  

because

genotype 

fitness 

(the 

rate 

at 

which 

it 

is 

copied) 

is 

max-

imised  where  it  is  best  matched  to  environmental  condi-

tions. 

Thus, 

over 

generations, 

genotype 

members 

will

accumulate 

disproportionately  

in 

environments 

to 

whichthey 

 

are 

well 

suited 

[10,21]. We 

call 

this 

demographic

accumulation  the  ‘Multiplier  Effect’  (ME)   and  have  dem-

onstrated 

how 

it 

can 

explain 

the 

evolution 

and 

mainte-

nance of  

ostensibly  

paradoxical 

unconditional 

strategies

such as  natal  philopatry   (attempting   to  breed  in  natal

habitats) 

[10]. We 

briefly  

illustrate 

the 

main 

insights

(modelling  

details 

can 

be 

found 

in 

[10]).

Case  

study:  

natal  

philopatry 

Consider  an  organism  with  discrete,  non-overlapping   gen-

erations  with  a  1-year  generation  time.  The  environment

contains  many   breeding   sites,  some  of   which  are  good  (it  is

well 

suited 

to), 

others 

poor. 

Sites 

change 

quality  

over 

time

but 

site 

quality  

(good 

or 

poor) 

is 

positively  

correlated

between  years.  During   development  individuals  receive

environmental 

cues 

of  

current 

site 

quality. 

Individuals

can either 

attempt 

to 

breed 

on 

their 

birth 

site 

or 

choose

another  breeding   site  at  random.   After  breeding   the  indi-

 vidual 

dies 

and 

its 

offspring  

face 

the 

same 

decision.

Consider 

first 

genotype 

that 

ignores 

environmental

cues  and  always  attempts  to  breed  at  its  birth  site  (i.e.,  is

natally  

philopatric). 

Since 

good 

sites 

produce 

more 

surviv-

ing offspring  

than 

poor 

sites, 

by being  

natally  

philopatric

individuals 

of  

the 

genotype 

increase 

their 

chances 

of  

breed-

ing   on  a  good  site.  Over  generations  this  effect  amplifies

(the 

ME 

[10]). This 

results 

in 

higher 

proportion 

of 

individuals 

breeding  

on 

good 

sites 

at 

demographic 

equilib-

rium 

than 

would 

be 

expected 

by  

chance 

given 

the 

frequency 

of  

good 

sites 

in the 

environment. 

Therefore, 

breeding  

on

birth sites  is  the  best  thing   for  individuals  to  do  unless

environmental 

cues 

provide 

 very  

strong  

evidence 

that 

sites

are 

poor. 

In 

other 

words, 

natal 

philopatry  

maximises

fitness  unless  environmental  cues  are  highly   accurate

(Figure 1). In 

informational 

(Bayesian) 

terms 

[23,24],the  probability   that  an  offspring   came   from  a  good  site

acts 

as 

the 

Bayesian 

prior 

and 

the 

posterior 

probability  

is

the 

probability  

of a 

good 

site 

given 

this 

prior 

and 

the 

cue.

Since  an  individual  that  does  not  attempt  to  breed  at  its

natal 

site 

chooses 

site 

at 

random, 

natal 

philopatry  

is

optimal  provided  the  posterior  probability   exceeds  the

proportion 

of  

good 

sites 

in 

the 

environment.

 As 

Figure 

shows, 

the 

likelihood 

that 

natally  

philopa-

tric  individuals  came  from  good  sites  (the  Bayesian  prior)

depends 

strongly  

on 

the 

ratio 

of  

surviving  

offspring  

on 

the

two 

site 

types. 

This 

ratio 

might 

depend 

on 

other 

aspects 

of 

the  genome.  If   variation  in  these  other  aspects  were  main-

tained, 

it 

would 

be 

adaptive 

to 

have 

cue 

integration 

(e.g.,

developmental)  system  that  based  its  ‘decision’  on  whetherto disperse

 

on 

both 

the 

cue 

 value 

and 

cues 

provided 

by 

these  other  genetic  elements.  In   other  words,  one  might

expect 

epistasis 

between 

the 

genes 

controlling  

the 

cue

integration 

system 

and 

those 

affecting  

the 

ratio 

of  

surviv-

ing offspring   produced  on  different  patches.

There 

has 

been 

recent 

effort 

to 

link  

ideas 

about 

the 

ME

[10] 

to 

branch 

of  

population 

genetics 

theory  

that 

has

its  roots  in  Fisher’s  thinking   about  mutation–selection

balance 

[21]. According  

to 

the 

Reduction 

Principle 

(RP),

0

0.2

0.4

0.6

0.8

1  1.5  2 2.5 3  3.5  4

   P   r   o    b   a    b   i    l   i   t   y

   p   a   t   c    h

    i   s   g   o   o    d

Gain rao (good/poor)

e = 0.2

e = 0.025

e = 0.05

e = 0.1

TRENDS in Ecology & Evolution

Figure 1.   Effect of the ratio of the numbers of surviving offspring on good sites to

numbers on poor sites on natal philopatry and the ‘Multiplier Effect’. The broken

line shows the probability that a randomly chosen site is good. The curves show

the posterior probability that the natal site is good given that the developmental

cue indicates a bad site (i.e., is 0; see below). It is optimal to ignore this cue if the

posterior probability exceeds the probability that a  randomly chosen site is good.

Good sites remaingoodfor 10 yearson averagebeforeturning poor and poor sites

persist for 40 years before becoming good; the proportion of good sites in the

environment is 0.2. During development each population member receives a cue

thatis either0 or1. Ifthe siteis poor, the cue is0 withprobability1 – e and is1 with

probability e  (where 0 < e < 0.5). If the site is good, the cue value is 0 with

probability e and is 1 with probability 1 – e .   If e is greater than thecriticalcue error,

probability fitness is maximised by ignoring cues and being natally philopatric.

Individuals that attempt natalphilopatryfail to do sowith probability0.04. Thereis

no density dependence acting, althoughMcNamara andDall [10] showthat similar

results can be obtained if it is included. Adapted from [10].

Opinion   Trends   in   Ecology   &  Evolution   xxx 

xxxx, 

Vol. 

xxx, 

No. 

x

TREE-1935;   No.  of   Pages  7

2

Page 3: Trends Ecol Evol (Amst) 2015 Dall SR

8/9/2019 Trends Ecol Evol (Amst) 2015 Dall SR

http://slidepdf.com/reader/full/trends-ecol-evol-amst-2015-dall-sr 3/7

populations 

near 

an 

equilibrium 

between 

selection 

and 

any 

‘transformation 

processes’ 

(e.g., 

mutation, 

dispersal, 

re-

combination) 

will 

evolve 

less 

transformation 

because 

at

such  an  equilibrium  any   change  in  phenotypic  state  (e.g.,

where 

individuals 

are, 

what 

alleles 

they  

express) 

is 

likely 

to 

be 

change 

away  

from 

matching  

the 

selective 

environ-

ment  (i.e.,  maladaptive)  as  most  individuals  will  already   be

in 

conditions 

to 

which 

they  

are 

suited 

[21]. It 

can 

be 

shownthat  the  conditions  under   which  the  ME  operates  are

equivalent 

to 

those 

specified 

by  

the 

RP 

[21]; therefore,

the genetic 

cue 

approach 

is 

also 

likely  

to 

provide 

insight

into  the  evolution  of   a  wide  range  of   population  genetic

phenomena 

including  

modifier 

loci, 

linkage 

disequilibri-

um,  recombination,  evolvability,  and  dispersal  or  migra-

tion 

(reviewed 

in 

[21]). Thus, 

we 

might 

expect 

lower

mutation 

or 

recombination 

rates 

to 

evolve 

when 

fitness

landscapes  are  rugged  and  do  not   vary   much  between

generations 

as 

this 

makes 

it 

likely  

that 

any  

phenotypic

change 

would 

be 

maladaptive 

[10,21].

Applying the  ‘genetic  cue’  perspective

Phenomena  involving   cue  integration  are  taxonomically widespread.

 

To 

further 

illustrate 

the 

 value 

of  

the 

genetic

cue  perspective,  we  discuss  two  examples  where  predation

or 

herbivory  

intensity  

 varies 

and 

individuals 

can 

invest 

in

costly  

defences 

based 

on 

information 

from 

 various 

sources.

For  instance,  defences  in both  crustaceans  and  plants  can

be 

induced 

by  

individual 

experience 

and 

maternal 

cues.

Here 

we 

show 

that 

genetic 

cues 

are 

also 

likely  

to 

play  

a

role.

Many  

species of    Daphnia  

develop distinct 

defensive

morphologies 

against predators, 

usually in response 

to

waterborne chemical cues of    predator presence (e.g.,

predatory  

phantom 

midge larvae kairomones). For  Daph-

nia pulex these 

defences include 

dorsal 

‘neck  

teeth’ andtheir induction has been

 

studied in considerable detail

[25–30].  Phantom  midge  larvae are gape-limited  preda-

tors and it is mainly juvenile daphnids 

(up 

to 

the 

fourth

instar) 

that are vulnerable 

to 

them.Correspondingly, the

neck teeth  arepresent during instars  one   to  four and tend

to 

bemost 

strongly  

expressed 

in the third instar 

[27]. 

The

development 

of  

neck teeth 

in response 

to 

kairomones 

can

be viewed  as cue  integration. If mothers  experience kair-

omones, 

but not their offspring, offspring  

express neck 

teeth  mainly in the second  instar  [27].  Furthermore,

offspring   have  a  developmental window  for   induction of 

neck teeth,  during the late  embryonic   stage  [29] while in

maternal brood 

chambers. Without 

exposure to 

kairo-

mones 

then, 

neck teeth 

are not expressed. 

If  

offspring 

experience   kairomones   in time, the degree  of   neck tooth

expression 

depends 

on 

the strength 

and 

duration 

of  

kai-

romone 

exposure [27,29]. Thus, 

from 

developmental cue

integration  perspective,   there should be an early   indica-

tion 

that defence 

is needed, 

through maternal or 

embry-

onic experience, 

and, 

given 

this, the strength 

of  

defence

investment depends  on   continued evidence  that it is

needed. We 

can extend 

this to 

include 

genetic cues 

as

follows.

There 

is 

substantial 

 variation 

in 

how 

readily  

individua-

ls induce  defences,  even  among   clones  collected  from  the

same 

ponds 

[26,28]. Given 

that 

daphnids 

go 

through 

bouts

of asexual reproduction 

interspersed 

with 

episodes 

of 

sex, 

there is ample opportunity  

for 

locally adapted 

ge-

netic variation 

to 

accumulate 

at different times 

and in

different  microhabitats. Thus,  prevailing   genotypes are

likely to 

cue (correlate with) local conditions (e.g., local

abundance of  

predators) 

in a 

similar way as 

maternal

cues  [5].  For instance,   D. pulex clones   taken  when phan-

tom midge larval densities were at their highest fre-quently   induced  defensive  morphologies at very low

kairomone concentrations, 

while clones 

taken when

phantom 

midge 

larvae 

were 

rare and fish predators

predominated showed  weaker   responses  (few individuals

induced 

defences, and only at higher 

kairomone concen-

trations)  [26].  The informational interpretation is that

the former clones 

had high 

inherited (genetic) 

expecta-

tions of   

predation 

risk  

by  

phantom midge 

larvae 

and

therefore did not need much corroboration from  environ-

mental cues to 

develop 

defences, 

while the latter clones

had very  

low 

phantom midge predation risk  

expectations

and therefore  required   stronger  environmental evidence

to 

induce defences. To date there have been 

no empirical

tests of   this explanation for   variation in the   inducibility of defences

 

in 

daphnids. 

In 

the field, 

clones 

could be

sampled  across   their spatiotemporal  niches  (different

places 

and different 

seasons) 

to 

ascertain whether they 

show 

reaction norms that 

on 

average are 

favourable 

for

the conditions encountered. Laboratory manipulations of 

the requisite spatial 

and temporal variation in predation

risk would also 

be 

feasible.

Plants  often  induce  biochemical  defences  in  response  to

insect 

herbivory  

[31]. In 

addition, 

it 

has 

been 

suggested

that 

antiherbivore 

defences 

might 

commonly  

be 

induced

transgenerationally   [32,33]. One  reason  to  expect  adaptive

maternal 

effects 

to 

evolve 

in 

plants 

is 

that 

pollen 

dispersal

often 

occurs 

over 

much 

greater 

distances 

than 

seed 

dis-persal,

 

possibly  

inhibiting  

local 

genetic 

adaptation 

and

favouring   epigenetic  signalling   from  mother  plants  to

seeds 

[9,34,35]. 

There 

are 

numerous 

molecular 

mecha-

nisms 

of  

the 

induction 

of  

plant 

defences 

involving  

the

 jasmonate  signalling   pathway   that  are  being   actively   ex-

plored. 

These 

include 

direct 

responses 

to 

plant 

tissue

wounding  

[31] 

and 

transgenerational 

induction 

involving 

small-RNA   signalling   from  mother  plant  to  seeds  [32,33]  as

well 

as 

genetic 

(ecotypic) 

 variation 

in 

defence 

[36]. Box 

1

illustrates  how  integration  of   these  different  effects  can

evolve,  if   they   are  explicitly   regarded  as  potentially   infor-

mative  cues  during   development.  See  [5,9]  for  other  exam-

ples 

of  

similar 

evolutionary  

models.

The novel 

interpretation 

we 

argue 

for 

in 

both 

cases

above  –  that  an  individual’s  genotype  can  serve  as  a  cue

of  

the 

risk  

of  

predation 

or 

herbivory  

in 

the 

near 

future 

– 

has

so 

far 

not 

been 

tested 

empirically. 

Such 

tests 

would 

be

important,  because  they   can  increase  our  understanding   of 

the 

circumstances 

that 

favour 

genetic 

 versus 

environmen-

tal 

determination 

of  

phenotypes 

and, 

more 

generally, 

the

integration  of   information  during   development.  In  contrast

to 

traditional 

approaches 

to 

the 

study  

of  

phenotypic 

plas-

ticity  

and 

genetic 

polymorphism, 

our 

approach 

allows

these 

phenomena 

to 

be 

conceptualised 

within 

common

framework,  thereby   facilitating   predictions  of   the  use  and

integration 

of  

cues.

Opinion   Trends   in   Ecology   &  Evolution   xxx 

xxxx, 

Vol. 

xxx, 

No. 

x

TREE-1935;   No.  of   Pages  7

3

Page 4: Trends Ecol Evol (Amst) 2015 Dall SR

8/9/2019 Trends Ecol Evol (Amst) 2015 Dall SR

http://slidepdf.com/reader/full/trends-ecol-evol-amst-2015-dall-sr 4/7

Box  1.  Plant   defence   induction   against   herbivory

Figure I i llustrates a simulation model of the induction of plant

resistance against herbivory as motivated in the main text, which

follows the general scheme outlined by Holeski et al. [33]. Local

patches vary spatially and temporally in the expected intensity of 

herbivore attack, which can be either low or high. The defence

phenotype expressed in the mature plant u  protects the plant by

changing herbivore consumption by a factor 1 – u but has the cost of 

changing the 

reproductive output of the unconsumed parts of theplant by 1 – u  /2. In the model, herbivore attack acts both as an

environmental cue that induces defence and as a selective factor

(Figure IA). A maternal cue can also beproducedby the plant, priming

the seeds for defence induction, and it is possible for herbivory

intensity-correlated genetic variation in u  (‘genetic cues’) to accumu-

late under certain conditions (see below). Performing evolutionary

simulations under various conditions, we explore the 

extent to

which u  is influenced by genetic, maternal, and direct environmental

cues (see the supplementary material online for modelling details).

We show  that defences can be induced as a response to a

combination of maternal and environmental cues (Figure IB), a

combination of genetic and environmental cues (Figure IC),  or just

environmental cues (Figure ID). These outcomes depend on which

influences can  convey information  about the likely  herbivory

intensity, given temporal and spatial variation in conditions andgeneflow, and on the availability of mechanisms of cue transmission.

‘Genetic cue use’ (genetically polymorphic antiherbivore defences) is

predicted when there is substantial genetic variation among patches

at evolutionary equilibrium (e.g., Figure IC:  very high patch temporal

stability and very limited seed andpollendispersal) and therefore cue

locus allele frequencies better predict the risk of herbivory than noisy

maternal cues.

Pollen  Ovule

Maternal cueSeed

Seed dispersal

Growing plant  Herbivory

Jasmonate signalling

Mature plant   Herbivory

(A)

 –1.0 

0.0 

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Maternal cue

   D   e    f   e   n   s   e

   p    h   e   n   o   t   y

   p   e

(B)

 –1.0 

0.0 

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Genec cue

   D   e    f   e   n   s   e

   p    h   e   n   o   t   y   p   e

(C)

0.0  1.0

0.0

0.2

0.4

0.6

0.8

1.0

Herbivory cue

   D   e    f   e   n   s   e

   p    h   e   n   o   t   y   p   e

(D)

TRENDS in Ecology & Evolution

Figure I. Evolution of inducible defences against herbivory in diploid hermaphroditic plants. See the supplementary material online for further details. (A) 

Sketchof the

life history and information flow to themature plant.Ovules arefertilisedby dispersingpollen and seeds receive genetic cues (alleles at a cuelocus) from each parentas

well as small RNA-mediated epigenetic cues from themother plant. After seed dispersal the growing plant might be fedupon,which influences the level of jasmonate

signalling and is a cue of the risk of herbivory for the mature plant. (B–D) Evolutionaryequilibria in defence levels. (B) High temporal stability of herbivory, very limited

seeddispersal, and freeamong-patchpollendispersal. Thegreycurve shows the average induceddefenceas a functionof thematernalepigenetic cue.The points show

induceddefencesof individual plants in low (blue) andhigh(red) expectedherbivory patches. Thedeviationof thepoints from thegreylineis a responseto theintensity

of herbivory on thegrowing plant. There is little genetic variation in defence. (C) Very high temporal stability and very limited seed and pollen dispersal, together with

very noisy transmission of thematernal cue, results in an equilibrium with substantial genetic variationat thecue locus,whichapproximately correspondsto the three

genotypes of an additive two-allele locus. Deviations from the grey line are responses to the intensity of herbivory on the growing plant. There is little maternal

influence on thelevel of defence.(D) High temporal instabilitywith lowand high herbivory intensity varying randomlyacross generations,in which case only thedirect

environmental cue (herbivory on the growing plant) influences induced defences.

Opinion   Trends   in   Ecology   &  Evolution   xxx 

xxxx, 

Vol. 

xxx, 

No. 

x

TREE-1935;   No.  of   Pages  7

4

Page 5: Trends Ecol Evol (Amst) 2015 Dall SR

8/9/2019 Trends Ecol Evol (Amst) 2015 Dall SR

http://slidepdf.com/reader/full/trends-ecol-evol-amst-2015-dall-sr 5/7

New  perspectives  on  dominance,  epistasis,  and  genetic

conflict

For genes 

that encode developmental systems, 

the geno-

type at a  genetic  cue locus can  play a  similar role as

environmental cues, in thesense 

of providing  

information

to 

the organismabout selectively relevant circumstances.

Based on  this view  of   genes as cues of the selective

environment, 

we should expect systems that fine-tunedevelopment  to   genetic variation to  evolve  [7,22].  This

can occur 

 via selection 

for 

genetic modifiers that adjust

developmental 

trajectories 

[12,15]. For 

instance, if the

different homozygotes  at a  two-allele locus  are adapted to

markedly different 

environmental conditions and 

there is

substantial gene flow in the population, the phenotype  of 

the heterozygote 

is likely to 

evolve 

to 

match one of   

the

homozygotes (e.g., 

the most commonly  

adaptive one).

This will  occur  through the invasion  of modifier loci that

change 

the phenotype of   

the heterozygote 

[37]. 

Thus

dominance 

can be viewed 

as evolving via the fine-tuning 

of the developmental influence of genetic cues of the

selective environment [22].

 Another consequence   of viewing   developmental sys-tems as potentially 

 

using genetic cues 

is that genetic

conflict [38]   is likely   to   play a  significant  role in the

evolution of  

these 

systems 

[7]. 

To see why this is so,

consider 

two 

habitats 

with 

different phenotypes 

being 

optimal in each  habitat and,  for   simplicity,  haploid indi-

 viduals that reproduce sexually. If  

there is a 

two-allele

locus with 

alleles 

producing  

phenotypes that are suitable

for   each habitat, depending   on   the intensities  of   selection

and gene flow allele frequencies 

will differ 

between habi-

tats. 

Potential modifiers that 

are fully linked 

to 

an allele

that  is common  in one  habitat and rare  in  the other   will

mainly experience 

one of   

the habitats, so 

their evolution-

ary ‘interest’ 

will be to 

produce 

phenotype 

that is 

suc-cessful in that habitat.

 

For 

unlinked 

modifiers, however,

thesituation  canbe radically different.  Amodifier allele   at

an unlinked 

locusmight be present 

at similar frequencies

in both 

habitats 

and its 

evolutionary interest will be to

produce  phenotypes  that do  well   overall. Therefore, un-

linked 

modifiers 

that produce 

less extreme 

phenotypes

will be favoured. 

It 

is even 

possible that 

unlinked 

modi-

fiers favour  genetically monomorphic  generalist  pheno-

types whereas fully linked 

modifiers favour genetic

polymorphisms.  Such differences  in the evolutionary 

interests of   modifier  genes  with contrasting linkage to  a

genetic  cue   locus represent  genetic  conflict [38];  evolution-

ary change 

favoured 

by linked 

modifiers (increased 

phe-

notypic divergence 

between morphs) selects 

for unlinked

modifiers   to   reverse  this change.Aswell asless  phenotypic

differentiation, unlinked modifiers can 

favour 

develop-

ment that 

is sensitive 

to 

environmental cues [7], 

in effect

favouring   phenotypic plasticity over  genetic polymor-

phism. The evolutionary outcomes 

of  

such ecologically 

driven 

genetic conflicts will depend 

on 

the mechanisms

of regulation of    development  and gene  expression. In

general, 

the genetic cue 

approach highlights the need

for 

further work on 

ecologically driven 

genetic conflicts,

having the potential 

to 

predict 

patterns 

of  

linkage 

and

epistasis  in phenotype  determination  from  Darwinian

first principles.

A Darwinian  framework  for  development:

ecoevolutionary 

feedback 

is 

key

Since 

the 

informational 

interpretation 

of  

genotypes 

was

introduced  in  the  literature  [6,7],  it  has  attracted  the

interest 

of  

researchers 

exploring  

range 

of phenomena,

including  

phenotypic 

polymorphisms 

(polyphenisms 

[39]),

transgenerational  epigenetic  influences  on  development

[9,40], 

mechanisms 

of  

ageing  

[17], sex-determination 

sys-tems  [20,41], early-life  influences  on  health  and  disease

[18], genetic 

 variation 

in 

stress 

sensitivity  

[19], and 

eco-

logical 

responses 

to 

anthropogenic 

environmental 

change

[42]. To  encourage  wider  application,  we  encapsulate  its

basic 

logic 

in 

a general 

informational 

(Bayesian) 

frame-

work   [23]   for  development  in  Figure  2. Such  approaches

embody  

fundamental 

Darwinian 

logic 

since 

fitness 

is 

max-

imised 

by  

phenotypes 

that 

maximise 

their 

fit 

to 

current

conditions  by   utilising   any   sources  of   information  available

when 

it 

is 

cost-effective 

to 

do 

so 

[43].

 A  

crucial 

feature 

of  

an 

ecologically  

consistent 

[44,45]

informational  framework   for  development  is  that  it  must

incorporate 

 various 

ecoevolutionary  

feedbacks. 

Two 

are

illustrated  in  Figure  2. If 

 

an 

environmentvaries 

spatially, 

thedistribution 

across

habitats of   individuals  can be  regarded as  a  Bayesian

prior distribution 

for 

the developmental 

system they 

possess. Local cues 

during  

development 

provide further

information   on  local   conditions. However,  the manner

in 

which 

such 

cues 

modify  

development 

affects 

how the

survival 

and 

reproduction 

of  

individuals 

depend 

on

local  conditions,  determining   the spatial distribution of 

individuals and hence the prior 

distribution 

itself.

Developmental

system   Phenotype

Distribuon of 

individuals acrosslocal habitats

Correlaon between

cue genes and

environment

Local

habitat

Cue genes

Parental

states

TRENDS in Ecology & Evolution

Figure 2. 

A Darwinian framework for integrating genetic and epigenetic

information during development. We envisage environments comprising local

habitats linked by dispersal. Conditions can vary among habitats and over time.

Thelocal habitat, parental states, and genes allprovide cues that areintegrated by

the developmental system to determine the mature phenotype. The

developmental system is under selection to match phenotypes to environments.

The distribution of individuals across habitat types is determined by the

demographic processes of survival, reproduction, and dispersal. It is thus

influenced by the developmental system itself, through the phenotypes that

develop in different conditions. At phenotypic determination (during

development), this distribution acts as a Bayesian prior distribution on habitat

type. Given a cueof local conditions during development, the posterior probability

that the local habitat is of a given type depends on the developmental system.

Thus, selection on the developmental system to change its responses to

environmental cues depends on its existing configuration.

Opinion   Trends   in   Ecology   &  Evolution   xxx 

xxxx, 

Vol. 

xxx, 

No. 

x

TREE-1935;   No.  of   Pages  7

5

Page 6: Trends Ecol Evol (Amst) 2015 Dall SR

8/9/2019 Trends Ecol Evol (Amst) 2015 Dall SR

http://slidepdf.com/reader/full/trends-ecol-evol-amst-2015-dall-sr 6/7

 At  evolutionary stability the developmental  system will

integrate 

prior 

information 

anddevelopmental 

cues 

in 

an

optimal 

way  

given 

the prior 

distribution resulting from

its  particular mechanism for  phenotype  determination.

 

The 

correlation 

between 

cue 

genes 

and 

the 

local

selective  environment  imposes  selection  on  the  cue

genes 

themselves 

and 

how 

they  

are 

integrated 

by  

the

developmental 

system. 

The 

correlation 

depends 

on 

the

developmental  process  itself;  it  will  typically   be  low

when  developmental  systems  ignore  genetic  cues,  sincecue

 

genes 

are 

then 

under 

weak  

selection, 

and 

higher

when phenotypes 

depend 

more 

on 

such 

cues. 

Thus 

the

information 

content 

of  

genetic 

cues, 

and 

hence 

the

selection  pressure  on  developmental  systems  to  inte-

grate 

these 

cues, 

depends 

on 

the 

developmental 

system

itself.   Again,  at  evolutionary   stability   the  developmen-

tal system  should  be  optimal  given  the  selection

pressures 

it 

generates.

Such 

feedback  

raises 

the 

possibility  

that 

there 

might 

be

more 

than 

one 

evolutionarily  

stable 

developmental 

system

in  any   given  environment.

Concluding 

remarks: 

empirical 

and 

philosophical

prospects

Substantial  empirical  effort  remains  to  fully   understand

any developmental 

process 

underpinning  

phenotypic 

 vari-

ation 

from 

an 

adaptive 

perspective. 

Our 

framework 

(Figure 2) lends  itself   naturally   to  generating   hypotheses

that 

are 

testable 

using  

the 

‘modern 

toolkit’ 

of  

approaches

for 

studying  

adaptation 

in 

evolutionary  

biology. 

To 

illus-

trate 

how 

it 

could 

be 

applied 

we 

give 

few 

examples 

of 

promising   areas  of   inquiry   in  Box  2.

 A major 

challenge 

in 

modern 

biology  

remains 

to 

fully 

understand 

how 

genetic 

 variation 

maps 

to 

phenotypic

 variation.  We  offer  our  developmental  cue  integration

framework  

(Figure 2) as 

powerful 

basis 

for 

theorising 

about 

the 

links 

between 

genotype 

and 

phenotype 

in 

Dar-

winian  systems.  There  are  important  philosophical  impli-

cations 

of  

this 

perspective 

[8,46,47]. 

The 

idea 

that 

both

genetic  and  environmental  cues  are  ‘read’  by   the  mecha-

nisms 

of  

development 

to 

maximise 

phenotypic 

‘fit’ 

to 

the

environment  demonstrates  that  thinking   of   inheritance

systems  such  as  the  genome  as  representing   (biased  sub-

sets  of)  environments  has  considerable  explanatory   utility in biology   [47]. We  are  confident  that  explicitly   informa-

tional 

approaches 

to 

understanding  

biological 

systems,

centred 

on 

phenotypes 

as 

evolved 

information-processing 

systems,  can  offer  profound  new  insights.

Acknowledgements

The authors thank Angus Buckling, Brian Charlesworth, Tim Coulson,

Peter Hammerstein, Andrew Higginson, Dave Hosken, Dustin Ruben-

stein, Judy Stamps, Tom Tregenza, Tobias Uller, and Nina Wedell for

helpful feedback. This work was supported by a Leverhulme Trust

International Network Grant to S.R.X.D., Peter Hammerstein, O.L., and

J.M.M., as well as grants from the Swedish Research Council (621-2010-

5437) 

and the Strategic Research Program 

Ekoklim at Stockholm

University to O.L.

Appendix  A.  Supplementary  dataSupplementary data associatedwith thisarticle canbe found,in theonline

 version, at http://dx.doi.org/10.1016/j.tree.2015.04.002.

References1 West-Eberhard, M.J. (2003)  Developmental Plasticity and Evolution,

Oxford University Press

2 Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative

Traits, Sinauer Associates

3 Beldade, P.  et al. (2011) Evolution and molecular mechanisms of 

adaptive developmental plasticity.  Mol. Ecol. 20, 1347–1363

4 Danchin, E.  et al. (2011) Beyond DNA: integrating inclusive

inheritance into an extended theory of evolution.  Nat. Rev. Genet.

12, 475–486

Box  2.  Promising   areas  for  future  applications   of  the  ‘genetic   cue’  perspective

Bacteria often combine activities of genetic elements (e.g., plas-

mids) with social cues (e.g., quorum sensing) in their responses to

local environments [48]. Because these responses often involve

producing some sort of public good (e.g., iron-sequestering side-

rophores [49,50]), cues of the local social environment can be

crucial for controlling such investment [50,51].  It is likely that

frequencies of public good alleles will vary according to the

historical social structure of populations (particularly if they assortindependently of the bacterial genome; e.g., on plasmids); there-

fore, patterns of bacterial ‘cooperation’ might be best understood in

terms of adaptive integration of environmental and genetic cues.

Such logic will be readily testableusing experimental evolution. For

instance, bacterial cultures could be maintained that differ in the

degree to which social structure (e.g., clonal diversity within a

culture) varies across generations. Our ‘genetic cue’ perspective

would predict quorum-sensing strains to predominate in ‘socially

unstable’ cultures.

Males of many fish species express various mating tactics within

populations, from simple differences in mating behaviour to the

development of alternative morphs [52]. Such variation can be

underpinned by genetic differences and/or environmental (includ-

ing social) influences in different species [52–56], which have

traditionally been thought of as representing distinct evolutionary

outcomes (e.g., status/condition-dependent versus mixed evolutio-narily stable strategies 

[52]). 

By contrast, our cue integration

perspective facilitates explicit analysis of the ecological conditions

favouring different forms of cue use (or combinations thereof), as

well as likely evolutionary transitions among systems [56]. This

lends itself   naturally  to  empirical comparative analysis.  For

instance, species in the genus Xiphophorus  (swordtails) show a

range of different alternative male morph-determining systems,

from genetic polymorphisms (e.g., X. nigrensis , X. maculates , X.

mulilineatus  [54,55])  to social determination (e.g., X. variatus [53]).

Given the well-resolved phylogenies for this genus [57,58],  we

would expect closely related species that determine male morphsdifferently to also differ in how stable their population densities

(and therefore operational sex ratios) are.

Understanding the evolution of cooperative breeding in vertebrates

has typically focussed on explaining patterns of dispersal within

and among species [59]. A key driver of delayed dispersal (and

therefore helping by non-breeders) has been suggested to be the

existence of substantial spatial variation in breeding habitat quality

that is likelyto persist acrossgenerations [59]. This is reminiscent of 

theconditions underwhich an inherited state is likely to reliably cue

the best  fit   to  local  conditions  (i.e.,   the ME  operates [10]),

suggesting that the genetic cue perspective is likely to be useful

in elucidating the complex interplaybetween ecological andgenetic

factors underpinning vertebrate societies. Formal cue integration

models would identify key socioecological drivers of patterns of 

helping in facultative cooperative breeders (e.g., stronger habitat

quality differences favouring delayed dispersal [10]). These wouldspecify a priori   statistical models 

for 

existing long-term field

datasets, as well as suggest bespoke manipulations of the key

factors in established field-study systems.

Opinion   Trends   in   Ecology   &  Evolution   xxx 

xxxx, 

Vol. 

xxx, 

No. 

x

TREE-1935;   No.  of   Pages  7

6

Page 7: Trends Ecol Evol (Amst) 2015 Dall SR

8/9/2019 Trends Ecol Evol (Amst) 2015 Dall SR

http://slidepdf.com/reader/full/trends-ecol-evol-amst-2015-dall-sr 7/7

5 Leimar, O. and McNamara, J.M. (2015) The evolution of  

transgenerational integration of information in heterogeneous

environments.  Am. Nat. 185, E55–E69

6 Leimar, O. (2005) The evolution of phenotypic polymorphism:

randomized strategies versus evolutionary branching.  Am. Nat. 165,

669–681

7 Leimar, 

O. etal.(2006) 

 Anew 

perspectiveondevelopmentalplasticityand

the principles  of adaptive morph determination.   Am. Nat.  167,  367–376

8 Rivoire, O. and Leibler, S. (2014) A model for the generation and

transmission of variations in evolution.  Proc. Natl. Acad. Sci. U.S.A.111, E1940–E1949

9   English, S.  et al. (2015) The information value of non-genetic

inheritance in plants and animals.  PLoS ONE 10, e0116996

10 McNamara,J.M. andDall,S.R.X. (2011) Theevolutionof unconditional

strategies via the ‘‘multiplier effect’’.  Ecol. Lett. 14, 237–243

11 Nijhout, H.F. (1999) Controlmechanismsof polyphenicdevelopment in

insects.  Bioscience 49, 181–192

12 Lehner, B. (2011) Molecular mechanisms of epistasis within and

between genes. Trends Genet. 27, 323–331

13 Nijhout, H.F. (2003) Development and evolution of adaptive

polyphenisms.  Evol. Dev. 5, 9–18

14 Flatt, T.  et al. (2005) Hormonal pleiotropy and the juvenile hormone

regulation of  Drosophila development and life history.  Bioessays 27,

999–1010

15 Martin, L.B.  et al. (2011) Integrator networks: illuminating the black 

box linking genotype and phenotype.  Integr. Comp. Biol. 51, 514–52716 Beukeboom, L. and Perrin, N. (2014) The Evolution of Sex

 Determination, Oxford University Press

17 Flatt, T.  et al. (2013) Life-history evolution and the polyphenic

regulation of somatic maintenance and survival. Q. Rev. Biol. 88,

185–218

18 Gluckman, P.D. et al. (2007) Early life events and their consequences

for later disease: a life history and evolutionary perspective.  Am. J.

 Hum. Biol. 19, 1–19

19 Del Giudice, M.  et al. (2011) The Adaptive Calibration Model of stress

responsivity.  Neurosci. Biobehav. Rev. 35, 1562–1592

20 Uller, T. and Helantera, 

H. (2011) From the origin of sex-determining 

factors to the evolution of sex-determining systems. Q. Rev. Biol. 86,

163–180

21  Altenberg, L. (2012) The evolution of dispersal in random

environments and the principle of partial control.  Ecol. Monogr. 82,

297–333

22 Leimar, O. (2009) Environmental and genetic cues in the evolution of 

phenotypic polymorphism.  Evol. Ecol. 23, 125–135

23 Dall, S.R.X.  et al. (2005) Information and its use by animals in

evolutionary ecology. Trends Ecol. Evol. 20, 187–193

24 Stamps, J.A. and Krishnan, V.V. (2014) Combining information from

ancestors andpersonal experiences to predict individual differences in

developmental trajectories.  Am. Nat. 184, 647–657

25 Tollrain, R. (1995) Predator-inducedmorphological defenses: costs, life

history shifts, and maternal effects in  Daphnia pulex.  Ecology 76,

1691–1705

26 Hammill, E. et al. (2008)Costs, benefits and the evolution of inducible

defences: a case study with  Daphnia pulex.  J. Evol. Biol. 21, 705–715

27 Imai, M.  et al. (2009) Elaborate regulations of the predator-induced

polyphenism in the water flea  Daphnia pulex: 

kairomone-sensitive

periods and life-history tradeoffs.  J. Exp. Zool. A Ecol. Genet.

 Physiol. 311, 788–795

28 Riessen, H.P. (2012) Costs of predator-inducedmorphological defences

in  Daphnia. 

 Freshw. Biol. 57, 1422–1433

29 Naraki, Y. et al. (2013) Identification of theprecise kairomone-sensitive

period and histological characterization of necktooth formation in

predator-induced polyphenism in  Daphnia pulex.  Zoolog. Sci. 30,

619–625

30 Dennis, S.R.  et al. (2014) Endocrine regulation of predator-induced

phenotypic plasticity. Oecologia 176, 625–635

31 Howe, G.A. andJander, G. (2008)Plant immunity to insect herbivores.

 Annu. Rev. Plant Biol. 59, 41–66

32  Rasmann,  S.    et al.   (2012) Herbivory   in the  previous  generation

primes plants for 

enhanced insect 

resistance.  Plant Physiol. 158,

854–863

33 Holeski, L.M.  et al. (2012) Transgenerational defense induction and

epigenetic inheritance in plants. Trends Ecol. Evol. 27, 618–626

34 Galloway, L.F. (2005)Maternal effects provide phenotypic adaptation

to local environmental conditions.  New Phytol. 166, 93–99

35 Galloway, L.F. and Etterson, J.R. (2007) Transgenerational plasticity 

is adaptive in the wild.  Science 318, 1134–1136

36 Kusnierczyk, A.  et al. (2007) Transcriptional responses of  Arabidopsisthaliana ecotypes with different glucosinolate profiles after attack by 

polyphagous  Myzus persicae and oligophagous  Brevicoryne brassicae.

 J. Exp. Bot. 58, 2537–2552

37 Otto, S.P. 

and Bourguet, D. (1999) Balanced polymorphisms and the

evolution of dominance.  Am. Nat. 153, 561–574

38 Hurst, L.D.  et al. (1996) Genetic conflicts. Q. Rev. Biol. 71, 317

39 Fusco, G. andMinelli, A. (2010) Phenotypic plasticity in development

and evolution: facts and concepts. Introduction. Philos. Trans. R. Soc.

 Lond. B: Biol. Sci. 365, 547–556

40 Uller, T. (2008) Developmental plasticity and the evolution of parental

effects. Trends Ecol. Evol. 23, 432–438

41 Cornwallis, C.K. andUller, T. (2010) Towards an evolutionary ecology 

of sexual traits. Trends Ecol. Evol. 25, 145–152

42 Chown, S.L.  et al. (2009) Population responses within a landscape

matrix: a macrophysiological approach to understanding climate

change impacts.  Evol. Ecol. 24, 601–61643 McNamara, J.M. and Dall, S.R.X. (2010) Information is a fitness

enhancing resource. Oikos 119, 231–236

44 McNamara, J.M. (2013) Towards a richerevolutionarygame theory. J.

 R. Soc. Interface 10, 20130544

45 Houston, A.I. and McNamara, J.M. (2006) John Maynard Smith and

the importance of consistency in evolutionary game theory.  Biol.

 Philos. 20, 933–950

46 Shea, N. (2010) What’s transmitted? Inherited information.  Biol.

 Philos. 26, 183–189

47 Shea,N. (2013) Inherited representationsare read in development. Br.

 J. Philos. Sci. 64, 1–31

48 Lopez, 

D.  et al. (2010) Biofilms. Cold Spring Harb. Perspect. Biol. 2,

a000398

49 Hider,R.C. andKong,X. (2010)Chemistryand biology of siderophores.

 Nat. Prod. Rep. 27, 637–657

50 Taylor, T.B.  et al. (2013) The social evolution of dispersal with public

goods cooperation.  J. Evol. Biol. 26, 2644–2653

51  Van Gestel, J.  et al. (2012) The evolution of cell-to-cell communication

in a sporulating bacterium.  PLoS Comput. Biol. 8, e1002818

52 Gross, M.R. (1996) Alternative reproductive strategies and tactics:

diversity within sexes. Trends Ecol. Evol. 11, 92

53 Borowsky, R. (1978) Social Inhibition of maturation in natural

populations of   Xiphophorus variatus (Pisces: Poeciliidae).  Science

201, 933–935

54 Lampert,K.P. et al. (2010)Determination of onsetof sexualmaturation

andmatingbehavior bymelanocortin receptor 4 polymorphisms.Curr.

 Biol. 20, 1729–1734

55  Volff, J-N. et al. (2013)Geneamplificationand functional 

diversification

ofmelanocortin4 receptorat anextremelypolymorphiclocuscontrolling 

sexual maturation in the platyfish. Genetics 195, 

1337–1352

56 Schwander, T. andLeimar, O. (2011)Genesas leaders and followers in

evolution. Trends Ecol. Evol. 26, 143–151

57 Kang, J.H.  et al. (2013) Comprehensive phylogenetic analysis of all

species of swordtails andplaties (Pisces: Genus Xiphophorus) uncovers

a hybrid origin of a swordtail fish,  Xiphophorus monticolus,  and

demonstrates that the sexually selected sword originated in the

ancestral lineage of the genus, but was lost again secondarily.  BMC

 Evol. Biol. 13, 25

58 Cui, R.  et al. (2013) Phylogenomics reveals extensive reticulate

evolution in  Xiphophorus fishes.  Evolution 67, 2166–2179

59 Koenig, W.D.  et al. (1992) The evolution of delayed dispersal in

cooperative breeders. Q. Rev. Biol. 67, 111

Opinion   Trends   in   Ecology   &  Evolution   xxx 

xxxx, 

Vol. 

xxx, 

No. 

x

TREE-1935;   No.  of   Pages  7

7