90
http://www.ebook.edu.vn 1 CHƯƠNG 1 ...................................................................................................................................... 7 TNG QUAN VTRUYN HÌNH SQUA VTINH ............................................................. 7 1.1. Tng quan vtruyn hình squa vtinh ................................................................................ 7 1.2. Tiêu chun DVB -S (EN 300 421) [4] ......................................................................................11 1.2.1. Thích nghi đầu vào và phân tán năng lượng (MUX Adaptation and Energy Dispersal) ...........................................................................................................................................................12 1.2.2. Mã hóa ngoài (Outer coding) ...............................................................................................17 1.2.3. Khi xáo trn bit (Forney Convolutional Interleaver) ......................................................18 1.2.4. Mã hóa trong-mã chp (Inner Coding - Convolutional Coding) ......................................21 1.2.5. Lc băng gc và điu chế tín hiu (Baseband Shaping & Modultation) ..........................25 1.3. Các thông skthut đường truyn ca tiêu chun DVB-S ...............................................28 1.4. Tiêu chun truyn hình vtinh lưu động DVB-DSNG (EN 301 210) [5] ............................30 1.4.1. Sơ lược vđiu chế mã lưới (Trellis Code Modulation) ....................................................30 1.4.2. Tiêu chun DVB-DSNG (EN 301 210).................................................................................32 CHƯƠNG 2 .....................................................................................................................................36 TIÊU CHUN DVB-S2 VÀ MT SNG DNG ....................................................................36 2.1. Gii thiu vtiêu chun DVB -S2 (EN 302 307) [6] ..............................................................36 2.1.1. Khi thích nghi kiu truyn dn (Mode Adaptation) ........................................................34 2.1.2. Khi thích nghi dòng truyn ti (Stream Adaptation).......................................................38 2.1.3. Khi mã hóa sa li trước FEC ...........................................................................................39 2.1.4. Khi ánh xbit lên chòm sao điu chế (Bit Mapping Into Constellation) .......................43 2.1.5. To khung lp vt lý (PL Framing).....................................................................................46 2.1.6. Lc băng gc và điu chế cu phương (Baseband Shaping & Quadrature Modultation) ...........................................................................................................................................................50 2.2. Đim li tiêu chun DVB-S2...................................................................................................50 2.3. Mt sđim đáng chú ý vthông skthut ca tiêu chun DVB-S2 ..............................52 2.4. Kết lun .....................................................................................................................................62 CHƯƠNG 3 .....................................................................................................................................64 MT SĐỀ XUT VDCH VVÀ THÔNG STRM THU PHÁT KHI SDNG DVB-S2 CHO ĐÀI THVN ..............................................................................................................64 3.1. Hin trng sdng thông tin vtinh ca Đài Truyn hình Vit Nam ................................64 3.1.1. Hin trng truyn dn và phát sóng các chương trình truyn hình qung bá và truyn hình lưu động qua vtinh...............................................................................................................64 3.1.2. Hin trng truyn dn và phát sóng các chương trình truyn hình trtin qua vtinh65

Truyền hình số vệ tinh

Embed Size (px)

DESCRIPTION

một số thông tin cơ bản về DVB S

Citation preview

http://www.ebook.edu.vn 1

CHƯƠNG 1 ...................................................................................................................................... 7

TỔNG QUAN VỀ TRUYỀN HÌNH SỐ QUA VỆ TINH ............................................................. 7

1.1. Tổng quan về truyền hình số qua vệ tinh ................................................................................ 7

1.2. Tiêu chuẩn DVB -S (EN 300 421) [4] ......................................................................................11

1.2.1. Thích nghi đầu vào và phân tán năng lượng (MUX Adaptation and Energy Dispersal) ...........................................................................................................................................................12

1.2.2. Mã hóa ngoài (Outer coding) ...............................................................................................17

1.2.3. Khối xáo trộn bit (Forney Convolutional Interleaver) ......................................................18

1.2.4. Mã hóa trong-mã chập (Inner Coding - Convolutional Coding) ......................................21

1.2.5. Lọc băng gốc và điều chế tín hiệu (Baseband Shaping & Modultation) ..........................25

1.3. Các thông số kỹ thuật đường truyền của tiêu chuẩn DVB-S ...............................................28

1.4. Tiêu chuẩn truyền hình vệ tinh lưu động DVB-DSNG (EN 301 210) [5] ............................30

1.4.1. Sơ lược về điều chế mã lưới (Trellis Code Modulation) ....................................................30

1.4.2. Tiêu chuẩn DVB-DSNG (EN 301 210).................................................................................32

CHƯƠNG 2 .....................................................................................................................................36

TIÊU CHUẨN DVB-S2 VÀ MỘT SỐ ỨNG DỤNG ....................................................................36

2.1. Giới thiệu về tiêu chuẩn DVB -S2 (EN 302 307) [6] ..............................................................36

2.1.1. Khối thích nghi kiểu truyền dẫn (Mode Adaptation) ........................................................34

2.1.2. Khối thích nghi dòng truyền tải (Stream Adaptation) .......................................................38

2.1.3. Khối mã hóa sửa lỗi trước FEC ...........................................................................................39

2.1.4. Khối ánh xạ bit lên chòm sao điều chế (Bit Mapping Into Constellation) .......................43

2.1.5. Tạo khung lớp vật lý (PL Framing) .....................................................................................46

2.1.6. Lọc băng gốc và điều chế cầu phương (Baseband Shaping & Quadrature Modultation) ...........................................................................................................................................................50

2.2. Điểm lại tiêu chuẩn DVB-S2 ...................................................................................................50

2.3. Một số điểm đáng chú ý về thông số kỹ thuật của tiêu chuẩn DVB-S2 ..............................52

2.4. Kết luận .....................................................................................................................................62

CHƯƠNG 3 .....................................................................................................................................64

MỘT SỐ ĐỀ XUẤT VỀ DỊCH VỤ VÀ THÔNG SỐ TRẠM THU PHÁT KHI SỬ DỤNG DVB-S2 CHO ĐÀI THVN ..............................................................................................................64

3.1. Hiện trạng sử dụng thông tin vệ tinh của Đài Truyền hình Việt Nam ................................64

3.1.1. Hiện trạng truyền dẫn và phát sóng các chương trình truyền hình quảng bá và truyền hình lưu động qua vệ tinh ...............................................................................................................64

3.1.2. Hiện trạng truyền dẫn và phát sóng các chương trình truyền hình trả tiền qua vệ tinh65

http://www.ebook.edu.vn 2

3.2.3. Hiện trạng truyền dẫn và phát sóng chương trình truyền hình VTV4 dành cho cộng đồng người Việt Nam ở nước ngoài qua vệ tinh ...........................................................................66

3.3. Hiện trạng các máy phát vệ tinh của Đài THVN ..................................................................67

3.3.1. Hiện trạng máy phát vệ tinh băng C ...................................................................................67

3.2. Một số đề xuất về dịch vụ của DVB-S2 .................................................................................70

3.2.1. Phát sóng kết hợp các chương trình truyền hình quảng bá SDTV và HDTV [7] ...........70

3.2.2. Phân phối chương trình đến các trạm phát truyền hình mặt đất .....................................71

3.2.3. Các ứng dụng lưu động DSNG sử dụng DVB-S2 ...............................................................73

3.2.4. Góp tin truyền hình tới Studio (TV contribution) .............................................................73

3.2.5. Mã hóa và điều chế thích nghi cho các ứng dụng điểm-điểm ............................................74

3.2.6. Dịch vụ IP unicast .................................................................................................................76

3.4.3. Đối với dịch vụ truyền hình lưu động ...................................... Error! Bookmark not defined.

3.5. Kết luận chương 3 ....................................................................................................................83

KẾT LUẬN ......................................................................................................................................84

TÀI LIỆU THAM KHẢO ..............................................................................................................86

http://www.ebook.edu.vn 3

DANH MỤC CÁC BẢNG

http://www.ebook.edu.vn 4

DANH MỤC CÁC HÌNH VẼ

http://www.ebook.edu.vn 5

MỞ ĐẦU

Truyền hình vệ tinh bắt đầu sử dụng tại Việt Nam từ những năm 1990

để truyền dẫn tín hiệu các chương trình truyền hình đến các trạm phát lại mặt

đất ở các tỉnh, thành trong cả nước. Ban đầu là sử dụng vệ tinh băng tần C,

công nghệ tương tự, sau đó đã tiến đến công nghệ số băng tần C, Ku. Sau đó

truyền dẫn vệ tinh được sử dụng để truyền hình trực tiếp các chương trình như

kỷ niệm các ngày lễ lớn, các sự kiện thể thao, văn hóa trong và ngoài nước,

cầu truyền hình, …. đã đem lại hiệu quả kinh tế, kỹ thuật cao và phát huy

những ưu điểm của truyền hình số qua vệ tinh.

Ngoài nhiệm vụ truyền dẫn, từ năm 2002 Đài Truyền hình Việt Nam đã

sử dụng vệ tinh vào dịch vụ truyền hình đến từng nhà (DTH-Direct To Home)

với ưu điểm có thể sử dụng anten thu kích thước nhỏ gọn trên băng tần Ku.

Hiện nay, số lượng thuê bao DTH đã tăng lên đáng kể và số lượng cũng như

chất lượng chương trình không ngừng được nâng cao nhằm đáp ứng nhu cầu

của thuê bao và cạnh tranh với các loại hình truyền dẫn khác.

Toàn bộ hệ thống truyền hình số qua vệ tinh của Truyền hình Việt Nam

hiện nay sử dụng tiêu chuẩn nén video MPEG-2 và tiêu chuẩn truyền hình qua

vệ tinh DVB-S. Tiêu chuẩn DVB-S2 ra đời từ năm 2003 với những ưu điểm

so với chuẩn DVB-S như: khả năng sử dụng băng tần hiệu quả hơn, các kiểu

điều chế, mã hóa linh hoạt hơn và không bị hạn chế với kiểu mã hoá MPEG-2

mà mềm dẻo hơn khi chấp nhận bất kì dạng đầu vào, bao gồm dòng bit liên

tục, dòng truyền tải MPEG đơn hoặc đa chương trình, IP hay ATM. Đặc tính

này cho phép các dòng dữ liệu khác và các cấu hình dữ liệu trong tương lai có

thể sử dụng được với DVB-S2 mà không cần tới một tiêu chuẩn mới. Tiêu

chuẩn DVB-S2 đã bắt đầu được đưa vào sử dụng tại Đài THVN trong truyền

dẫn lưu động từ đầu năm 2010. Trong những năm tới, việc đưa vào sử dụng

chuẩn DVB-S2 trong truyền dẫn, phát sóng các chương trình truyền hình là

http://www.ebook.edu.vn 6

cần thiết. Tuy nhiên cần có sự nghiên cứu tìm hiểu một cách khoa học để việc

áp dụng đạt hiệu quả kinh tế, kỹ thuật cao và tận dụng tốt các thiết bị hiện tại.

Với mục tiêu này tác giả đã thực hiện đề tài “Nghiên cứu một số vấn

đề của truyền hình số vệ tinh theo tiêu chuẩn Châu Âu thế hệ thứ 2

(DVB-S2) và khả năng ứng dụng tại Việt Nam”.

Trong luận văn này tác giả trình bày tổng quan về truyền hình số qua vệ

tinh và đi sâu vào nghiên cứu và thử nghiệm chuẩn DVB-S2, cũng như một số

ứng dụng của chuẩn DVB-S2 với ngành truyền hình và cuối cùng là đề xuất

của tác giả về dịch vụ và thông số trạm thu phát khi sử dụng DVB-S2 cho Đài

THVN. Nội dung của luận văn bao gồm:

- Chương 1: Tổng quan về truyền hình số qua vệ tinh.

- Chương 2: Tiêu chuẩn DVB-S2 và một số ứng dụng.

- Chương 3: Một số đề xuất về dịch vụ và thông số trạm thu phát khi

sử dụng DVB-S2 cho Đài THVN.

Xin chân thành cảm ơn PGS.TS. Trương Văn Cập đã tận tình hướng

dẫn, giúp đỡ trong quá trình thực hiện luận văn này.

http://www.ebook.edu.vn 7

CHƯƠNG 1

TỔNG QUAN VỀ TRUYỀN HÌNH SỐ QUA VỆ TINH

Truyền hình qua vệ tinh là một phương pháp phủ sóng có hiệu quả so

với các phương pháp khác. Trong hệ thống truyền hình mặt đất, để phủ sóng

toàn bộ lãnh thổ sẽ cần đến rất nhiều trạm phát truyền hình mặt đất với chất

lượng tín hiệu không đồng đều, nhất là với địa hình nhiều đồi núi như nước ta.

Truyền hình qua vệ tinh có những ưu điểm mà các hệ thống phát sóng truyền

hình khác như truyền hình cáp hay truyền hình mặt đất không thể có được.

Với ưu điểm có vùng phủ sóng rộng, không phụ thuộc vào địa hình đồi

núi, để phủ sóng cả lãnh thổ Việt Nam chỉ cần một trạm phát lên vệ tinh,

những trạm mặt đất đặt trong vùng phủ sóng đều thu được tín hiệu trực tiếp từ

vệ tinh. Một số ưu điểm nữa là chất lượng tín hiệu ổn định, dung lượng đường

truyền lớn, cường độ trường tại điểm thu ổn định truyền hình qua vệ tinh đã

được sử dụng rộng rãi trên toàn cầu.

1.1. Tổng quan về truyền hình số qua vệ tinh

Truyền hình số qua vệ tinh phát triển vào năm 1995 nhưng vào thời

điểm đó chỉ chiếm một thị phần nhỏ. Đến cuối năm 1998 chỉ có 0.3% hộ gia

đình thu tín hiệu truyền hình số vệ tinh DTH. Đến nay số hộ gia đình sử dụng

truyền hình số qua vệ tinh đã phát triển tại hầu hết các nước trên thế giới. Chỉ

tính đến cuối năm 2004 riêng khu vực Châu Á đã có trên 25 triệu hộ gia đình

sử dụng truyền hình số qua vệ tinh.

Dịch vụ DTH sử dụng công nghệ truyền dẫn số nên đảm bảo chất lượng

tín hiệu hình ảnh cũng như âm thanh, có thể truyền dẫn được nhiều chương

trình truyền hay một chương trình truyền hình có độ phân giải cao HDTV

(HDTV-High Definition Television) và độ phân giải tiêu chuẩn (SDTV-

Standard Definition Television) trên một bộ phát đáp, hệ thống âm thanh

Stereo hay âm thanh lập thể AC-3. Ngoài ra hệ thống truyền hình số còn

http://www.ebook.edu.vn 8

tương thích với nhiều loại dịch vụ khác như truyền dữ liệu, internet, truyền

hình tương tác...

Hình 1.1: Tình hình phát triển DTH tại khu vực châu Á

Do đặc điểm phân bố địa hình và dân cư trên lãnh thổ Việt Nam, nhiều

đồi núi, mật độ dân cư phân bố không đồng đều, nên việc lựa chọn phương

thức truyền dẫn tín hiệu truyền hình qua vệ tinh để phủ sóng toàn quốc là có

hiệu quả cao nhất. Truyền hình Việt Nam bắt đầu sử dụng công nghệ truyền

hình số qua vệ tinh từ tháng 4-1998 với chương trình VTV3 phát trên băng

tần Ku qua vệ tinh Thaicom 2. Đến nay, toàn bộ các chương trình của truyền

hình Việt Nam đã sử dụng công nghệ truyền dẫn tín hiệu truyền hình số qua

vệ tinh.

Việc chuyển đổi sang phát truyền hình số qua vệ tinh sẽ tạo ra nhiều

dịch vụ mới kết hợp với việc truyền dẫn tín hiệu truyền hình qua vệ tinh

trong tương lai như:

http://www.ebook.edu.vn 9

• Truyền hình trực tiếp từ vệ tinh tới các hộ gia đình (DTH): Cung cấp

các kênh truyền hình mà người xem có thể thu trực tiếp chương trình

truyền hình từ vệ tinh bằng anten thu có đường kính từ 60cm đến 90cm.

• Truyền dẫn tín hiệu đến các trạm phát lại mặt đất: Phương thức này

đang được áp dụng hiệu quả tại Đài THVN để đưa tín hiệu các chương

trình VTV1, VTV2, VTV3, VTV5 đến khoảng hơn 100 trạm phát lại

mặt đất của THVN tại các tỉnh thành phố và hàng ngàn máy phát lại

công suất nhỏ khác tại các huyện, xã trong cả nước.

• Truyền hình độ phân giải cao (HDTV): Cung cấp các kênh truyền hình

có độ phân giải cao HDTV trên độ rộng băng tần của 1 bộ phát đáp mà

hệ thống tương tự không thể thực hiện được.

• Truyền dẫn tín hiệu truyền hình lưu động (SNG): Truyền tin nhanh từ

hiện trường về studio, truyền hình trực tiếp các chương trình ca nhạc,

thể thao, các sự kiện chính trị, văn hóa, …

Hình 1.2: Một số ứng dụng của truyền hình số qua vệ tinh

SMATV

Đầu cuối CATV

DTH Máy phát mặt đất

Truyền hình lưu động

http://www.ebook.edu.vn 10

• Internet: Cung cấp đường truyền số liệu tốc độ cao từ nhà cung cấp

dịch vụ đến các thuê bao dịch vụ ….

• Cung cấp dịch vụ truyền hình đến các tòa nhà lớn, khu chung cư

(SMATV-Satellite Master Antenna Television).

• Cung cấp tín hiệu truyền hình đến các đầu cuối dịch vụ truyền hình cáp

(CATV-Cable Television) để đưa đến các thuê bao truyền hình cáp.

Khác với các phương pháp truyền dẫn khác như truyền hình mặt đất

hay truyền hình cáp, phương pháp truyền dẫn tín hiệu qua vệ tinh cũng có

nhưng đặc điểm riêng phụ thuộc vào mục đích truyền dẫn tín hiệu qua vệ tinh.

Do đặc điểm của truyền dẫn tín hiệu qua vệ tinh có đặc điểm là truyền dẫn

trong tầm nhìn thẳng, hệ số định hướng của anten lớn, tín hiệu ít bị ảnh hưởng

của phản xạ nhiều đường. Tuy nhiên do công suất trên vệ tinh là hữu hạn,

đồng thời cự ly thông tin lớn, suy giảm đường truyền lớn, dễ bị ảnh hưởng

của mưa nhất là băng tần Ku vì vậy tỷ số C/N của đường truyền không cao so

với các phương pháp truyền dẫn khác, ví dụ như truyền hình cáp hay truyền

hình số mặt đất. Chính vì những lý do đó mà hiệu suất sử dụng băng thông

không cao so với các phương pháp truyền dẫn khác.

Hình 1.3: Sơ đồ khối truyền hình số qua vệ tinh

http://www.ebook.edu.vn 11

1/ Khối mã hóa tín hiệu và ghép kênh: Có nhiệm vụ tạo ra dòng truyền

tải TS. Tín hiệu truyền hình tương tự được biến đổi sang tín hiệu số, sau đó

được nén theo tiêu chuẩn MPEG -2. Dòng bit thu được là các dòng cơ sở ES

được phân vào các gói dòng truyền tải TS. Tùy thuộc vào hệ thống mà dòng

truyền tải có thể là đơn chương trình hay đa chương trình. Các biện pháp khóa

mã cũng có thể được áp dụng để tăng tính bảo mật cho hệ thống.

2/ Khối điều chế: Sau khi tạo thành dòng truyền tải MPEG-2, tín hiệu

được đưa đến khối điều chế tín hiệu số. Khối điều chế có nhiệm vụ biến đổi

tín hiệu truyền hình số MPEG-2 thành tín hiệu trung tần IF (Intermediate

Frequency 70/140 MHz). Tùy thuộc vào các tiêu chuẩn khác nhau mà các

kiểu điều chế được sử dụng khác nhau. Các kiểu điều chế được áp dụng trong

tiêu chuẩn DVB-S là QPSK, BPSK, 8PSK hay 16PSK; trong DVB-S2 là

QPSK, 8PSK, 16APSK, 32APSK.

Hệ thống thu có chức năng ngược lại so với hệ thống phát. Tín hiệu RF

sau khi qua anten thu được đưa tới khối LNB (Low Noise Block) hoặc bộ

khuếch đại tạp âm thấp LNA (Low Noise Amplifier) sẽ được chuyển xuống

trung tần. Tín hiệu trung tần sẽ được giải điều chế tương ứng với phương

pháp điều chế bên phát tạo thành dòng truyền tải. Cuối cùng dòng truyền tải

được giải nén, giải ghép kênh để thu được hình ảnh truyền hình.

1.2. Tiêu chuẩn DVB -S (EN 300 421) [4] Tiêu chuẩn DVB-S (EN 300 421) ra đời vào năm 1994, được sử dụng

phổ biến để truyền tín hiệu truyền hình quảng bá qua vệ tinh. Đường truyền

vệ tinh ngoài những ưu điểm còn tồn tại một nhược điểm lớn là cự ly thông

tin lớn, chịu ảnh hưởng mạnh của nhiễu và tạp âm… Bản thân dòng truyền tải

MPEG-2 không có chức năng sửa lỗi, chống nhiễu đường truyền do vậy

không thể truyền trực tiếp dòng truyền tải.

Tiêu chuẩn DVB-S được thiết kế trên cơ sở gia tăng khả năng chống

nhiễu cho dòng truyền tải MPEG-2.

http://www.ebook.edu.vn 12

Theo DVB-S, quá trình xử lý tín hiệu truyền hình vệ tinh gồm các bước

như sau:

- Thích nghi đầu vào và phân tán năng lượng.

- Mã hóa ngoài sử dụng mã Reed-Solomon RS (204,188).

- Xáo trộn bit nhằm tăng khả năng chống lỗi cụm.

- Mã hóa trong sử dụng mã xoắn với các tỷ lệ mã khác nhau.

- Lọc băng gốc và điều chế QPSK.

1.2.1. Thích nghi đầu vào và phân tán năng lượng (MUX Adaptation and

Energy Dispersal)

1.2.1.1. Sự cần thiết phải phân tán năng lượng Dòng bit đầu vào phải được tiến hành phân tán năng lượng, mục đích

của quá trình này là nhằm xáo trộn các bit nhằm tránh hiện tượng các bit

giống nhau tập trung với số lượng lớn. Khi đó sẽ xảy ra hiện tượng tập trung

năng lượng trong phổ, được biết đến như các phổ vạch. Cần tránh xuất hiện

phổ vạch do:

- Sự tập trung năng lượng cao tần sẽ tăng khả năng tạo ra giao thoa

trong các kênh có tần số cạnh nhau.

Mã hóa và ghép kênh MPEG - 2

Khối cao tần RF

Thích nghi đầu vào và phân tán năng

lượng

Mã hóa ngoài RS(204,188)

Lọc băng gốc

DVB-S (EN 300 421 )

Mã hóa trong

[Mã chập]

Điều chế QPSK

Xáo trộn bit

Hình 1.4: Sơ đồ khối hệ thống truyền hình vệ tinh DVB – S

http://www.ebook.edu.vn 13

- Các vạch phổ cố định có thể tạo ra vấn đề nghiêm trọng khi thu. Bởi

vì bộ dao động nội có thể điều chỉnh đến vạch phổ thay cho sóng

mang tới, gây tổn hao thông tin.

- Các vạch phổ, thực chất là thành phần một chiều DC rất khó để

truyền dẫn, gây mất mát thông tin được truyền đi.

1.2.1.2. Nguyên lý của ngẫu nhiên hóa nhằm phân tán năng lượng Việc ngẫu nhiên hóa được thực hiện theo nguyên lý tương tự như kỹ

thuật trải phổ. Dãy bit đầu vào sẽ được cộng modul 2 với một dãy bit giả ngẫu

nhiên (PRBS-Pseudo Random Binary Sequence) được tạo ra từ các thanh ghi

dịch. Như vậy tín hiệu đầu vào có phổ bất kỳ trở thành tín hiệu có phổ tương

tự như phổ của tín hiệu giả ngẫu nhiên.

Tại phía thu, dãy bit thu được cũng được cộng với dãy bit giả ngẫu

nhiên. Khi đó sẽ khôi phục được dữ liệu hoàn toàn giống như trước khi xáo

trộn. Điều này được giải thích như sau:

- Bộ cộng modul 2 là cổng logic XOR có bảng chân lý:

- Giả sử tín hiệu muốn truyền đi là X.

- Tín hiệu giả ngẫu nhiên PRBS là Y.

- Tín hiệu được truyền đi sau khi qua bộ ngẫu nhiên hóa là X ⊕ Y.

- Tín hiệu thu được sau khi cộng với chuỗi giả ngẫu nhiên tương tự

phía phát:

( X ⊕ Y ) ⊕ Y’ = X ⊕ ( Y ⊕ Y’ ) = X.

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

http://www.ebook.edu.vn 14

Để tín hiệu sau khi khôi phục hoàn toàn giống với tín hiệu đã truyền đi

thì tín hiệu giả ngẫu nghiên tại phần thu phải giống hoàn toàn so với phần

phát và phải đồng bộ với phần phát.

1.2.1.3. Điều kiện của chuỗi giả ngẫu nhiên Các chuỗi giả ngẫu nhiên PRBS có thể được tạo ra từ các thanh ghi

dịch và các mạch hồi tiếp. Đối với thanh ghi dịch có độ dài n, độ dài N của

chuỗi PRBS được tạo ra là: N = 2n-1.

Chuỗi PRBS trước khi xáo trộn với luồng bit vào MPEG-2 phải thỏa

mãn các điều kiện như:

- Tính cân đối (balance property): số bit 1 và 0 lệch nhau tối đa 1 bit.

- Tính chạy (run property): số bước chạy độ dài 1 chiếm 1/2 tổng số

bước chạy, số bước chạy có độ dài 2 chiếm 1/4 tổng số bước chạy,

độ dài 3 chiếm 1/8 tổng số bước chạy…

- Tính tương quan (correlation property): so chuỗi ban đầu với chính

chuỗi đó khi dịch chuyển, tổng các số hợp (giống nhau) a

(agreement) và tổng các số không hợp (khác nhau) d (disagreement)

lệch nhau không nhiều hơn 1.

Để minh họa, xét chuỗi PRSB đơn giản có 4 bộ ghi dịch như trong hình

vẽ sau:

Hình 1.5: Ví dụ một mạch tạo chuỗi giả ngẫu nhiên đơn giản Đa thức sinh ( polynomial ) của chuỗi giả ngẫu nhiên trong trường hợp

này là: 1 + X3 + X4 . Vì bộ ghi dịch có n = 4 thanh ghi nên độ dài chuỗi PRSB

là 24-1 = 15. Giả sử trạng thái ban đầu là 1000, chuỗi giả ngẫu nhiên sẽ được

tạo ra như trong bảng:

Bảng 1.1: Ví dụ các trạng thái và đầu ra của mạch tạo chuỗi giả ngẫu nhiên

http://www.ebook.edu.vn 15

Số TT Trạng thái Bit ra Số TT

Trạng

thái Bit ra

1 1000 0 9 1010 0

2 0100 0 10 1101 1

3 0010 0 11 1110 0

4 1001 1 12 1111 1

5 1100 0 13 0111 1

6 0110 0 14 0011 1

7 1011 1 15 0001 1

8 0101 1 1 1000 0 (lặp lại)

Xét chuỗi bit được tạo ra, chuỗi bit này thỏa mãn các tính chất của

chuỗi PRBS như sau:

- Tính cân đối: tổng số bit 0 là 7, tổng số bit 1 là 8.

- Tính chạy: số bước chạy có độ dài 1 bằng 4, số bước chạy có độ dài

2 bằng 2, độ dài 3 bằng 1, độ dài 4 bằng 1.

- Tính tương quan: xét công thức tổng quát hàm tự tương quan của

chuỗi f(t) (có chu kỳ T) và bản sao của nó khi dịch chuyển f(t + τ )

(1 ≤ τ < N). Trong đó τ là số bước dịch chuyển:

∫−∞→+=

2/

2/)()(lim)(

T

TTdttftfK ττ (5.2)

Khi τ = 0, f(t) và f(t + τ) tương quan tốt nhất: K(τ) = 1.

Khi chuỗi f(t) được dịch đi 1 nhịp, tương quan giữa f(t) và f(t + τ ) như

sau:

Trong đó tổng số d hơn tổng số a là 1. Dịch số bước bất kỳ (1 ≤ τ < N),

hiệu số bit hợp và không hợp luôn là 1. Như vậy điều kiện về tính tương hợp

được thỏa mãn.

http://www.ebook.edu.vn 16

1.2.1.4. Áp dụng ngẫu nhiên hóa trong DVB-S Theo tiêu chuẩn DVB-S, dòng dữ liệu đầu vào hệ thống là dòng truyền

tải MPEG-2. Độ dài các gói của dòng truyền tải là 188 byte, trong đó có một

byte dùng để đồng bộ gói với giá trị luôn bằng 47HEX (01000111). Việc phân

tán năng lượng luôn được thực hiện từ bit đầu tiên của byte đồng bộ (MSB-

Most Significant Bit) tức là bit 0 của byte 01000111.

Hình 1.6: Nguyên lý ngẫu nhiên hóa để phân tán năng lượng trong DVB-S Chuỗi PRSB được tạo ra bằng thanh ghi dịch có độ dài 15, biểu thức toán cho mạch tạo chuỗi giả ngẫu nhiên là: G(x) = 1 + X14 + X15. Khi nhận tín hiệu byte đồng bộ, các giá trị của thanh ghi dịch được nạp giá trị “100101010000000” và việc tạo tín hiệu ngẫu nhiên được thực hiện với chu kỳ là 8 gói dòng truyền tải MPEG-2. Sau khi xáo trộn đủ 8 gói dòng truyền tải, các thanh ghi dịch lại được nạp giá trị trên và thực hiện chu kỳ mới. Tại phía thu, tín hiệu thu được cũng được cộng với chuỗi giả ngẫu nhiên tương tự và đồng bộ với chuỗi giả ngẫu nhiên bên phát. Do vậy để cung cấp dấu hiệu cho bộ giải ngẫu nhiên, byte đầu tiên của gói truyền tải thứ nhất trong nhóm 8 gói được đảo ngược trở thành B8HEX (10111000). Đồng thời các byte đồng bộ trong các gói sẽ không được ngẫu nhiên hóa. Lúc này bộ tạo chuỗi PRSB vẫn hoạt động nhưng đầu ra sẽ được vô hiệu hóa do vậy các byte đồng bộ sẽ vẫn được giữ nguyên. Byte đồng bộ của gói đầu tiên trong chuỗi 8 gói dòng truyền tải được ký hiệu là . Byte đồng bộ của các gói còn lại (từ gói 2 đến gói 8) được ký hiệu là SYNC.

http://www.ebook.edu.vn 17

Hình 1.7: Cấu trúc dòng truyền tải sau khi được ngẫu nhiên hóa Quá trình ngẫu nhiên hóa được thực hiện ngay cả khi không có dòng bit đầu vào, hoặc dòng bit đầu vào không phải là dòng truyền tải MPEG-2. Điều này để tránh xảy ra tình trạng phát đi sóng mang không được điều chế. Tại phía thu, chuỗi giả ngẫu nhiên được tạo ra từ một mạch hoàn toàn giống với phía phát. Để đồng bộ với phần phát, mạch tạo chuỗi giả ngẫu nhiên sẽ được nạp giá trị “100101010000000” mỗi khi nhận được byte đồng bộ gói bị xáo trộn ( ) và việc tạo chuỗi PRBS sẽ được thực hiện với chu kỳ 8 gói tương tự như phía phát. 1.2.2. Mã hóa ngoài (Outer coding)

Đường truyền vệ tinh chịu ảnh hưởng lớn của nhiễu và tạp âm nên việc

áp dụng các phương pháp sửa lỗi là rất cần thiết. Thông tin truyền hình là

dạng thông tin một chiều do vậy phương pháp sửa lỗi được sử dụng là phương

pháp sửa lỗi trước (FEC-Forward Error Correction). Theo phương pháp này,

phía thu khi nhận được tín hiệu sẽ có khả năng phát hiện và tự sửa chữa lỗi

bit nếu có.

Dòng bit sau khi qua khối thích nghi dòng truyền tải và phân tán năng

lượng sẽ được đưa đến khối mã hóa ngoài. Trong tiêu chuẩn DVB, mã ngoài

được sử dụng là mã RS (204, 188). Đây là mã Reed-Solomon, thuộc dạng mã

khối (block coding). Mã khối xử lý các khối mã theo kích thước cố định, đối

với mã RS (204, 188) kích thước khối mã được xử lý là 188 byte phù hợp với

kích thước gói truyền tải MPEG-2. Các gói này được kết hợp với 16 byte gồm

các thông tin có chức năng phục vụ cho mục đích xác định và sửa lỗi tại phía

thu. Như vậy kích thước từ mã sau bộ mã hóa ngoài là 204 byte.

Hình 1.8: Gói dòng truyền tải TS của MPEG-2

Byte đồng bộ 187 byte thông tin

http://www.ebook.edu.vn 18

Hình 1.9: Gói TS sau khi được mã hóa RS (204,188)

Đa thức tạo mã: g(x) = (x+λ0) (x+λ1)... (x+λ15) với λ = 02HEX .

Đa thức tạo trường: P(x) = x8 + x4 + x3 + x2 + 1.

Mã RS (204, 188) là mã được rút gọn dựa trên mã gốc RS (255, 239).

Trước khi đưa vào bộ mã hóa RS (255, 239), dòng bit được thêm vào 51 byte

mang giá trị 0. Tại đầu ra bộ mã hóa các giá trị này sẽ bị loại bỏ để tạo thành

gói 204 byte.

Theo lý thuyết về mã khối, mã RS (204, 188) có thể sửa được tối đa 8

byte trong 1 gói. Khả năng sửa lỗi của mã khối đối với lỗi ngẫu nhiên phụ

thuộc vào số vị trí nhỏ nhất khác nhau giữa các cặp mã khác nhau, được gọi là

khoảng cách Hamming. Mã RS (204, 188) có thể sửa được cả lỗi ngẫu nhiên

(random error) và lỗi chùm (burst error), tuy nhiên nó chỉ hiệu quả đối với các

lỗi đơn, nếu lỗi chùm ảnh hưởng đến nhiều hơn 8 byte thì mã RS (204, 188)

không thể khắc phục được mà phải kết hợp với các phương pháp sửa lỗi khác.

1.2.3. Khối xáo trộn bit (Forney Convolutional Interleaver)

Phương pháp xáo trộn bit được kết hợp với mã ngoài RS (204, 188) để

nâng cao khả năng sửa lỗi chùm. Khi có lỗi chùm xảy ra, chất lượng tín hiệu thu

được suy giảm đột ngột. Nếu lỗi chùm xảy ra vượt quá 8 byte thì phương pháp

mã sửa sai RS (204, 188) không thể khắc phục được và dẫn tới sự sai lệch trong

quá trình giải mã lại tín hiệu. Nguyên lý của việc xáo trộn bit là xáo trộn các

byte trong các gói khác nhau theo một quy luật nhất định, sao cho các byte liền

nhau sẽ thuộc các gói khác nhau. Tại phía thu, việc xáo trộn được làm ngược lại

với phía phát. Khi có lỗi chùm xảy ra trên đường truyền thì các lỗi đó phân đều

http://www.ebook.edu.vn 19

trên các gói mà không tập trung tại một gói, nhờ đó mà khi đường truyền bị lỗi

chùm thì vẫn có thể khắc phục được trong một giới hạn nào đó.

Việc xáo trộn được thực hiện thông qua đổi chỗ các byte khác nhau qua 12

nhánh, các nhánh có cấu trúc là các thanh ghi dịch FIFO (First In First Out-vào

trước ra trước). Mỗi nhánh bao gồm j*M ô (cell). Mỗi ô có kích thước là 1 byte.

Trong đó:

j: chỉ số của nhánh. Giá trị từ 0 đến 11.

N: độ dài của gói sau mã hóa ngoài. N = 204 byte.

I: tổng số nhánh, còn gọi là độ sâu xáo trộn (interleaving depth). I = 12.

M: độ dài thanh ghi dịch nhỏ nhất. M = N/I = 204/ 12 = 17 byte.

Như vậy mỗi nhánh có kích thước từ 0, 17, 34…187 byte.

Hình 1.10: Nguyên lý hoạt động của bộ xáo trộn/ giải xáo trộn

Khi nhận được byte đồng bộ gói, bộ xáo trộn sẽ bắt đầu thực hiện việc

xáo trộn các byte giữa các gói với nhau. Giả sử thời gian chuyển mạch là T,

tương ứng với thời gian truyền đi 1 byte. Để mỗi byte có thể dịch đi 1 vị trí

trong 1 nhánh cần thời gian là 12T là khoảng thời gian để chuyển mạch thực

hiện một chu kỳ.

Trong nhịp đầu tiên, byte đồng bộ không bị trễ được đi qua nhánh “0”.

Đến nhịp thứ 2, byte thứ 2 (byte tiếp sau byte đồng bộ) được nạp vào ô đầu

tiên của nhánh “1” đồng thời đọc số liệu tại ô cuối cùng của nhánh “1”. Như

http://www.ebook.edu.vn 20

vậy độ trễ của byte đọc ra (từ lúc vào nhánh đến lúc ra khỏi nhánh) đối với

nhánh 1 được xác định như sau:

T1 = 12T * số cell trong nhánh “1” = 12T * M = 12 * 17 = 204T.

Khi nhịp thứ 3 bắt đầu, byte tiếp theo được nạp vào nhánh “2” đồng

thời đọc ra byte cuối cùng ở nhánh “2” và cứ như vậy cho đến hết nhánh “11”

bộ xáo trộn sẽ trở về nhánh “0” và tiếp tục chu kỳ mới.

Độ trễ của các byte khi đi qua nhánh j được xác định như sau:

Tj = 12T * M * j = 12T * 17 * j = 204T * j

Tại phía thu, bộ giải xáo trộn cũng có nguyên lý tương tự như bộ xáo

trộn. Các byte cũng được đưa qua các thanh ghi dịch với chiều dài tương ứng

với chỉ số nhánh là (11-j) ô. Như vậy các byte tại phía phát có độ trễ ít sẽ

được làm trễ nhiều hơn và ngược lại sao cho tổng độ trễ của cả phần thu và

phát của tất cả các byte là 12T * M * (j + 11-j) = 2244 T. Như vậy thứ tự các

byte sau khi ra khỏi bộ xáo trộn sẽ có thứ tự như trước khi vào bộ xáo trộn.

Sự khác biệt của dòng bit đầu ra so với đầu vào bộ xáo trộn là số liệu trong

mỗi gói ở đầu ra sẽ là số liệu của nhiều gói khác nhau ở đầu vào. Các byte

đồng bộ gói không bị thay đổi vị trí (không bị trễ). Khi có lỗi chùm xảy ra

trên 1 gói thì lỗi sẽ được phân chia trên các gói này trước khi được đưa đến

khối giải mã ngoài, do vậy làm tăng khả năng sửa lỗi của mã RS (204, 188).

http://www.ebook.edu.vn 21

Hình 1.11: Minh họa tác dụng của việc xáo trộn bit: lỗi chùm

được phân tán thành nhiều lỗi đơn

1.2.4. Mã hóa trong-mã chập (Inner Coding - Convolutional Coding)

Mã hóa trong là lớp mã thứ 2 được sử dụng trong truyền hình số vệ tinh

và truyền hình số mặt đất để nâng cao hơn nữa khả năng sửa lỗi đường truyền.

Mã hóa trong theo tiêu chuẩn DVB-S là loại mã chập (convolutional code).

Mã chập không xử lý các khối bit cố định như mã khối. Dòng bit đầu vào bộ

mã hóa là liên tục và được đưa vào một thanh ghi dịch có kích thước K (tầng),

được gọi là chiều dài ràng buộc của bộ mã hóa (constraint length). Tín hiệu

đầu vào sẽ được cộng modul 2 với nội dung chứa trong thanh ghi dịch. Sở dĩ

gọi là mã chập vì tín hiệu vào được mã hóa bằng cách cộng với chính nó đã

được làm trễ về thời gian. Để đơn giản, xét một bộ mã chập sau:

Hình 1.12: Bộ tạo mã chập với độ dài K = 3 Trong đó:

[A]: trạng thái ban đầu của thanh ghi dịch.

[B]: trạng thái sau của thanh ghi dịch.

Đa thức sinh tại đầu ra 1: G1 = 1 + X + X2.

Đa thức sinh tại đầu ra 2: G2 = 1 + X2.

Số các tầng trong thanh ghi dịch của bộ tạo mã trong hình có độ dài

bằng 2, như vậy số các trạng thái có thể có là 22 = 4 trạng thái (00, 01, 10,

11). Tùy thuộc vào từ mã đầu vào và trạng thái của bộ tạo mã mà từ mã đầu ra

có thể nhận các giá trị như sau:

[A] [B]

+

[A] [B]

+

+ Đầu ra 2

Đầu vào

Đầu ra 1

[0] [1]

+

[0] [0]

+

+

[1]

[1]

[0] [0] [0]

+

[0] [0]

+

+

[0]

[0]

http://www.ebook.edu.vn 22

Hình 1.13: Các trạng thái và đầu ra của bộ tạo mã chập được xét Hoạt động của bộ tạo mã chập có thể được biểu diễn bằng sơ đồ trạng

thái. Các trạng thái được thể hiện tại các nút, biểu diễn giá trị của thanh ghi

dịch theo chiều từ phải sang trái. Mỗi trạng thái có thể chuyển đến 2 trạng thái

khác tương ứng với bit đầu vào là 0 hoặc 1.

[1]

http://www.ebook.edu.vn 23

Hình 1.14: Sơ đồ trạng thái của bộ tạo mã chập được xét

Một cách khác để biểu diễn mã chập là sử dụng sơ đồ lưới (trellis). Sơ

đồ lưới có ưu điểm là có thể biểu diễn các trạng thái theo trục thời gian.

Hình 1.15: Sơ đồ lưới của bộ tạo mã chập được xét

Mã chập được sử dụng trong tiêu chuẩn DVB-S có nguyên lý tương tự

như trên với số tầng của thanh ghi dịch là 6. Như vậy số trạng thái có thể có là

26 = 64 trạng thái.

http://www.ebook.edu.vn 24

Hình 1.16: Sơ đồ bộ tạo mã chập trong tiêu chuẩn DVB-S Bảng 1.2: Các thông số cơ bản của bộ tạo mã chập trong tiêu chuẩn DVB-S

Thông số Ký hiệu Giá trị

Tỷ lệ mã RC 1/2

Chiều dài ràng buộc K 7

Đa thức sinh của nhánh thứ 1 G1 1+ X2 + X3 + X5 + X6

Đa thức sinh của nhánh thứ 2 G2 1+ X + X2 + X3 + X6

Tỷ lệ mã 1/2 tương ứng với dòng bit đầu ra gấp đôi dòng bit đầu vào.

Điều này đem đến khả năng sửa lỗi cao cho tín hiệu nhưng đồng thời cũng

gây lãng phí vì thông tin có ích chỉ chiếm 1/2 trong dòng bit truyền đi. Tuy

nhiên, các bit phục vụ cho việc sửa lỗi có thể được loại bỏ (puncturing) để

tăng hiệu suất sử dụng. Nhờ biện pháp loại bỏ, mã trong của tiêu chuẩn DVB-

S có thể đạt được các tỷ lệ mã sau: 1/2, 2/3, 3/4, 5/6, 7/8. Đây là tỷ lệ giữa

thông tin có ích và thông tin được truyền. Tỷ lệ 1/2 phản ánh không sử dụng

loại bỏ bit nhằm tối đa khả năng sửa lỗi, trong khi đó tỷ lệ 7/8 đạt được hiệu

suất các bit thông tin lớn nhất. Tùy thuộc vào yêu cầu của ứng dụng cụ thể đòi

hỏi khả năng sửa lỗi hay tốc độ bit để có thể lựa chọn tỷ lệ mã phù hợp.

Do việc loại bỏ là không đối xứng nên trước khi được đưa vào khối

điều chế, các từ mã tại 2 nhánh đầu ra bộ mã trong được sắp xếp lại để có sự

cân bằng giữa dòng bit từ 2 nhánh.

http://www.ebook.edu.vn 25

Hình 1.17: Vị trí các bit được loại bỏ trong các tỷ lệ mã tương ứng 1.2.5. Lọc băng gốc và điều chế tín hiệu (Baseband Shaping & Modultation)

Trong các thiết bị điều chế tín hiệu truyền hình số qua vệ tinh, tín hiệu

được xử lý bằng DSP (Digital Signal Processing) ở khâu điều chế cũng như

các bộ lọc số trung tần. Điều này giúp cho tín hiệu truyền hình có được độ

linh động cao và tốc độ ổn định. Việc điều chế tín hiệu sử dụng DSP cho phép

thay đổi kiểu điều chế (QPSK, 8PSK) dễ dàng trong những trường hợp đặc

biệt (ví dụ như truyền hình lưu động DSNG).

Tín hiệu vào bộ điều chế là tín hiệu số với các xung biểu diễn “0” và

“1”. Phổ tần số của các tín hiệu này theo lý thuyết là vô hạn và đòi hỏi kênh

truyền cũng phải có băng thông vô hạn để truyền dẫn. Điều này không thể

thực hiện được trong thực tế do vậy cần phải có các bộ lọc để hạn chế dải

thông của tín hiệu. Sử dụng các bộ lọc dẫn đến can nhiễu giữa các symbol liền

nhau, được gọi là nhiễu liên symbol ISI (Intersymbol interference). Để khắc

phục điều này, các bộ lọc phải thỏa mãn tiêu chuẩn Nyquist. Loại bộ lọc được

sử dụng trong trong tiêu chuẩn DVB-S là bộ lọc cos nâng, được đặc trưng bởi

hệ số roll-off α.

Hàm truyền đạt H(f) của bộ lọc cos nâng:

http://www.ebook.edu.vn 26

H(f) = 1 với ( )f fN< −1 α

H f sinfN

fN f( ) = +

⎣⎢⎢

⎦⎥⎥

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

−12

12 2

12

πα với ( ) ( )f f fN N1 1− ≤ ≤ +α α (5.1)

H(f) = 0 với ( )f fN> +1 α

Trong đó 22

1 s

sN

RT

f == là tần số Nyquist và α là hệ số roll-off được lựa

chọn tùy theo kiểu điều chế được sử dụng. Khi sử dụng điều chế BPSK và

QPSK hệ số α = 0,35. Đối với điều chế 8PSK hay 16QAM hệ số α = 0,35

hoặc 0,25 tùy thuộc vào cấu hình thiết bị hay lựa chọn của người sử dụng hệ

thống.

Hình 1.18: Đáp ứng tần số của bộ lọc với các giá trị α khác nhau

Sau khi qua bộ lọc, tín hiệu được đưa tới khối điều chế. Phương pháp

điều chế được sử dụng trong tiêu chuẩn DVB-S là điều chế pha vuông góc

QPSK (Quadrature Phase Shift Keying). Sở dĩ được gọi là điều chế vuông góc

vì tín hiệu sau điều chế gồm 2 thành phần I (Inphase) và Q (Quadrature) lệch

nhau 90o. Trong DVB-S, 2 thành phần I, Q này chính là 2 đầu ra của bộ tạo

mã chập.

http://www.ebook.edu.vn 27

Hình 1.19: Sơ đồ khối điều chế và giải điều chế QPSK trong DVB-S

Tín hiệu sau khi qua bộ lọc băng gốc gồm 2 thành phần I(t) và Q(t)

được đưa vào 2 bộ trộn (Mixer). Bộ trộn điều chế 2 tín hiệu thành phần I, Q

với tín hiệu được lấy từ bộ dao động nội (Local Oscillator), tuy nhiên đối với

thành phần Q (Quadrature) thì tín hiệu từ bộ dao động nội được đảo pha 900.

Đầu ra của 2 bộ trộn kết hợp lại tạo thành sóng mang với các góc pha là π/4,

3π/4, 5π/4, 7π/4. Mỗi trạng thái pha này biểu diễn một symbol tương ứng

trong biểu đồ chòm sao. Phương pháp điều chế QPSK có 4 trạng thái symbol

do vậy mỗi symbol bao gồm log24 = 2 bit, tương ứng với tốc độ dữ liệu tăng

gấp 2 lần so với điều chế BPSK thông thường.

Hình 1.20: Giản đồ chòm sao định vị các bit điều chế QPSK

Tín hiệu sau điều chế sẽ được đưa đến khối cao tần nhằm biến đổi tín

hiều trung tần thành cao tần trước khi khuếch đại công suất để đưa đến anten

phát lên vệ tinh.

http://www.ebook.edu.vn 28

1.3. Các thông số kỹ thuật đường truyền của tiêu chuẩn DVB-S

Bảng sau cho thấy so sánh giữa băng thông tín hiệu truyền, tỷ lệ mã

chập với lượng thông tin hữu ích thu được sau giải mã chống nhiễu. Thông

tin hữu ích tăng theo tỷ lệ mã chập được sử dụng và băng thông được cấp

phát cho kênh truyền.

Bảng 1.3: Sự phụ thuộc của tốc độ bit vào băng thông và tỷ lệ mã trong DVB-S

BW

(MHz)

RS

(Mbaud)

RU (Mb/s)

Tỷ lệ 1/2

RU (Mb/s)

Tỷ lệ 2/3

RU (Mb/s)

Tỷ lệ 3/4

RU (Mb/s)

Tỷ lệ 5/6

RU (Mb/s)

Tỷ lệ 7/8

54 42,2 38,9 51,8 58,3 64,8 68,0

46 35,9 33,1 44,2 49,7 55,2 58,0

40 31,2 28,8 38,4 43,2 48,0 50,4

36 28,1 25,9 34,6 38,9 43,2 45,4

33 25,8 23,8 31,7 35,6 39,6 41,6

30 23,4 21,6 28,8 32,4 36,0 37,8

27 21,1 19,4 25,9 29,2 32,4 34,0

26 20,3 18,7 25,0 28,1 31,2 32,8

Trong đó:

BW ( Bandwidth ): băng thông tín hiệu.

RS: tốc độ symbol. Coi kênh truyền có hiệu suất sử dụng băng

thông BW/RS = 1,28.

http://www.ebook.edu.vn 29

RU: tốc độ dòng bit sau giải mã FEC.

Ví dụ đối với kênh có băng thông 36 MHz: Tốc độ symbol: RS = 36: 1,28 =

28,125 Mbaud. Sử dụng điều chế QPSK, mỗi symbol gồm 2 bit thông tin.

Như vậy tốc độ bit sau bộ mã hóa chập là: R1 = 28,125 * 2 = 56,25 Mbit/s.

Với tỷ lệ mã chập ¾, tốc độ bit trước khi vào bộ mã chập là: R2 = 56,25 * 3/4

= 42,1875 Mbit/s. Sử dụng mã Reed-Solomon (204, 188) nên tốc độ bit hữu

ích trước khi thêm các bit sửa lỗi là: RU = 42,1875 * 188/204 = 38, 8786

Mbit/s.

Tuy các tỷ lệ mã cao có hiệu suất dòng bit lớn hơn nhưng khả năng

chống nhiễu thấp, không phù hợp với đường truyền kém. Bảng sau cho thấy

mối quan hệ giữa tỷ lệ mã và tỷ số năng lượng bit trên mật độ phổ công suất

tạp âm (Eb/ No). Tỷ số Eb/ No được chọn để thỏa mãn tiêu chí QEF (Quasi

error free-gần như không nhiễu) sau khi qua bộ giải mã Reed-Solomon. Như

vậy, tùy thuộc vào ứng dụng cụ thể và chất lượng đường truyền mà tỷ lệ mã

được lựa chọn phù hợp.

Bảng 1.4: Tỷ lệ mã trong và Eb/ No yêu cầu tại phía thu

Tỷ lệ mã trong Eb/ No yêu cầu (dB) (*)

1/2 4,5

2/3 5,0

3/4 5,5

5/6 6,0

7/8 6,4

(*) Eb/ No yêu cầu được tính với BER = 2.10-4 sau giải mã chập, QEF sau giải

mã RS (204,188)

QEF được định nghĩa là có xấp xỉ nhỏ hơn 1 lỗi trong 1 giờ ở đầu vào của bộ

giải nén MPEG-2 tương ứng với BER 10-10 đến 10-11.

http://www.ebook.edu.vn 30

1.4. Tiêu chuẩn truyền hình vệ tinh lưu động DVB-DSNG (EN 301 210)

[5]

Hiện nay, một trong những ứng dụng quan trọng của kỹ thuật truyền

hình là chức năng truyền hình lưu động. Các chương hình trực tiếp như thể

thao, ca nhạc, phỏng vấn, cầu truyền hình… luôn có sức hấp dẫn với khán giả.

Để thực hiện điều này, phương pháp thường được sử dụng là các xe truyền

hình lưu động SNG (Satellite News Gathering) có mặt trực tiếp tại nơi diễn ra

sự kiện, truyền tín hiệu về cho studio xử lý thông qua vệ tinh. Truyền hình lưu

động analog (PAL, SECAM, NTSC) sử dụng điều chế FM hoạt động ở băng

tần C và Ku có thiết bị phát cồng kềnh và đã trở nên lỗi thời. Hiện nay, phổ

biến là các hệ thống SNG kỹ thuật số DSNG (Digital Satellite News

Gathering) với những ưu điểm như:

- Giảm bớt kích thước của trạm phát lên (anten, bộ khuếch đại ... ).

- Yêu cầu EIRP vệ tinh thấp hơn.

- Nâng cao hiệu suất sử dụng phổ.

Vào năm 1997, tiêu chuẩn DVB-DSNG ra đời trên cơ sở kế thừa tiêu

chuẩn DVB-S. Bên cạnh kiểu điều chế QPSK trong DVB-S, tiêu chuẩn

DSNG bổ sung kỹ thuật điều chế lưới 8PSK và 16QAM. Điều này tạo cho hệ

thống khả năng linh hoạt điều chỉnh phương pháp mã hóa kênh và điều chế

trong những điều kiện cụ thể để tối đa chất lượng.

1.4.1. Sơ lược về điều chế mã lưới (Trellis Code Modulation)

Điều chế mã lưới TCM được Ungerboeck phát minh vào năm 1971.

Thông thường trong xử lý tín hiệu, mã hóa và điều chế là 2 quá trình riêng

biệt. Tuy nhiên với phương pháp TCM, điều chế và mã hóa được kết hợp với

nhau để nâng cao hiệu suất của hệ thống. Hệ thống TCM gồm 2 thành phần

chính: Bộ mã hóa lưới (mã chập) và bộ ánh xạ bit lên chòm sao điều chế.

http://www.ebook.edu.vn 31

Hình 1.21: Nguyên lý điều chế TCM

Việc sử dụng điều chế mã lưới TCM nhằm làm tăng hiệu suất sử dụng

phổ tín hiệu. Băng thông cần thiết không thay đổi vì tốc độ symbol và độ rộng

xung không đổi. Điều khác biệt là số bit trên một symbol nhiều hơn khiến tốc

độ bit tăng lên. Điều này phải trả giá bằng việc khoảng cách giữa các symbol

trên chòm sao điều chế giảm đi. Số mức M trong kỹ thuật điều chế M mức

càng lớn thì khoảng cách này càng giảm, gây khó khăn trong quá trình giải

điều chế do yêu cầu tỷ số tín hiệu trên tạp âm S/N phải đủ lớn. Kỹ thuật TCM

khắc phục điều này bằng cách sử dụng mã chập trước khi các bit được đưa

vào điều chế để tăng khả năng chống lỗi. Do vậy hiệu suất tăng lên trong khi

băng thông và công suất phát là không thay đổi.

Điều chế mã lưới được sử dụng trong tiêu chuẩn DVB-DSNG là

phương pháp “pragmatic” TCM do Viterbi đề xuất. Phương pháp này không

hiệu quả bằng phương pháp TCM tối ưu, tuy nhiên nó sử dụng bộ mã chập tỷ

lệ 1/2 , 64 trạng thái tiêu chuẩn công nghiệp. Nguyên lý chung của

“pragmatic” TCM trong DVB-DSNG là chỉ mã hóa một số các bit đầu vào.

Các bit còn lại không được thêm mã sửa lỗi do vậy sẽ được ánh xạ lên các

symbol cách xa nhau trên biểu đồ chòm sao điều chế. Nhờ vậy, tốc độ bit

truyền qua hệ thống tăng lên so với DVB-S nhưng vẫn đảm bảo giải mã

chống lỗi được ở phía thu.

Bộ mã

hóa chập tỷ lệ k/ (k+1)

Bộ điều chế M mức

M = 2k+1

Điều chế Ánh xạ bit

LO

k bit .. .

.

.

.

k+1 bit

Sóng mang

Symbol sau �i� h�

http://www.ebook.edu.vn 32

Hình 1.22: Sơ đồ nguyên lý điều chế TCM “ pragmatic” dùng trong DVB 1.4.2. Tiêu chuẩn DVB-DSNG (EN 301 210)

Trong DVB–DSNG, quá trình xử lý dòng dữ liệu tương tự như tiêu chuẩn

DVB-S, với một số khác biệt:

• Thích nghi ghép kênh dòng truyền tải và phân tán năng lượng (theo

DVB-S).

• Mã hóa ngoài Reed-Solomon (204, 188) (theo DVB-S).

• Xáo trộn bit (theo DVB-S).

• Mã hóa trong:

Mã chập có loại bỏ bit (theo DVB-S).

Mã lưới “pragmatic” liên kết với 8PSK và 16QAM.

• Ánh xạ bit lên chòm sao điều chế:

QPSK (theo DVB-S).

8PSK (khác DVB-S).

16QAM (khác DVB-S).

• Lọc băng gốc dùng bộ lọc cos nâng:

Hệ số cuốn α = 0,35 cho QPSK, 8PSK, 16QAM.

Tùy chọn α = 0,25 cho 8PSK, 16QAM.

• Điều chế cầu phương (quadrature modulation) (theo DVB-S).

http://www.ebook.edu.vn 33

Khi sử dụng điều chế QPSK, tiêu chuẩn DVB-DSNG hoàn toàn tương tự

với DVB-S. Trong 2 trường hợp còn lại, 2 tiêu chuẩn khác biệt nhau từ phần

mã hóa trong và điều chế. Ví dụ, với trường hợp 8PSK 2/3:

Với mã sửa sai 2/3, cứ 2 bit vào thì có 3 bit tại đầu ra. Khối chuyển đổi

song song ra song song sẽ biến đổi 8 tín hiệu vào thành 2 tín hiệu ra song

song. Hai luồng bit này sẽ được đưa qua khối mã chập với tỷ lệ 1/2 trên

đường E1 để tạo ra 2 bit trên 1 nhịp cùng với 1 bit trên đường NE để tạo ra 3

bit trên 1 nhịp cho phù hợp với 1 symbol điều chế 8PSK. Sau đó 3 bit này sẽ

được đưa đến khối điều chế 8PSK.

Hình 1.23: Sơ đồ khối điều chế 8PSK tỷ lệ 2/3 trong DVB-DSNG

Khối mã chập tương tự như trong điều chế QPSK. Giản đồ định vị bit

điều chế 8PSK, TCM với tỷ lệ trên 2/3 như trong hình vẽ sau:

Hình 1.24: Giản đồ định vị bit điều chế 8PSK tỷ lệ 2/3 trong DVB –DSNG

Các phương pháp điều chế và mã hóa khác trong DVB-DSNG cũng có

nguyên lý tương tự 8PSK 2/3. Sử dụng nhiều tỷ lệ mã khác nhau giúp cho hệ

http://www.ebook.edu.vn 34

thống DVB –DSNG có khả năng lựa chọn phương án tối ưu tùy theo điều

kiện cụ thể.

Bảng 1.5: Các lựa chọn điều chế và mã hóa trong DVB –DSNG

Kiểu điều chế Tỷ lệ

mã trong

Hiệu suất phổ

(số bit/symbol)

Eb/ No yêu cầu

(dB) (*)

QPSK

1/2 0,92 4,5

2/3 1,23 5,0

3/4 1.38 5,5

5/6 1,53 6,0

7/8 1,61 6,4

8PSK

2/3 1,84 6,9

5/6 2,30 8,9

8/9 2,46 9,4

16QAM 3/4 2,76 9,0

7/8 3,22 10,7

(*): Eb/N0 yêu cầu được tính với BER=2x10-4 trước giải mã RS và QEF

(Quasi-Eror-Free) sau giả mã RS.

QEF được định nghĩa là có xấp xỉ nhỏ hơn 1 lỗi trong 1 giờ ở đầu vào của bộ

giải nén MPEG-2 tương ứng với BER 10-10 đến 10-11.

1.5 Kết luận

Tiêu chuẩn DVB-S và DVB-DSNG thiết kế trên cơ sở gia tăng khả

năng chống nhiễu cho dòng truyền tải MPEG-2 và hiện đang được sử dụng

rộng rãi trong truyền hình có các đặc điểm nổi bật là:

1. Tín hiệu đầu vào là dòng truyền tải MPEG-2 TS.

2. Kiểu điều chế là QPSK đối với DVB-S và QPSK, 8PSK, 16QAM

đối với DVB-DSNG.

3. Mã hóa chống nhiễu: Mã ngoài là mã RS(204,188) và mã trong là

mã chập.

http://www.ebook.edu.vn 35

4. Hiện chỉ sử dụng hai hệ số rool-off là 0,35 và 0,25.

5. Mã hóa và điều chế là cố định không thay đổi được khi đang trong

quá trình truyền tin.

http://www.ebook.edu.vn 36

CHƯƠNG 2

TIÊU CHUẨN DVB-S2 VÀ MỘT SỐ ỨNG DỤNG

Chuẩn truyền hình số qua vệ tinh DVB-S hiện đang được sử dụng rộng

rãi trên thế giới, tuy nhiên nhu cầu tăng hiệu quả sử dụng băng tần và tốc độ

truyền dẫn tín hiệu để đáp ứng nhu cầu ngày càng cao của các dịch vụ như

dịch vụ HDTV, dịch vụ internet tốc độ cao qua vệ tinh….Chuẩn DVB-S2

(Digital Satellite Broadcasting 2nd Generation) ra đời để đáp ứng các nhu cầu

đó.

2.1. Giới thiệu về tiêu chuẩn DVB -S2 (EN 302 307) [6]

DVB-S2 là thế hệ thứ 2 của truyền hình số phát qua vệ tinh, được phát

triển từ năm 2003, phiên bản mới nhất là V1.2.1 tháng 8 năm 2009. DVB-S2

kết hợp chức năng của truyền hình quảng bá DVB-S và các ứng dụng chuyên

nghiệp DVB-DSNG trong một tiêu chuẩn duy nhất. Trong tương lai, DVB-S2

sẽ dần thay thế cả hai tiêu chuẩn này nhờ sự vượt trội về hiệu quả sử dụng

băng tần và độ linh hoạt.

Sơ đồ khối hệ thống DVB-S2 như sau:

Hình 2.1: Sơ đồ khối hệ thống DVB-S2

34

2.1.1. Khối thích nghi kiểu truyền dẫn (Mode Adaptation)

Khối thích nghi kiểu truyền dẫn thực hiện việc thích nghi giao diện đầu

vào, mã hóa CRC-8 để phát hiện lỗi, đồng bộ và kết hợp dòng bit (trong trường

hợp đầu vào đa chương trình), chia nhỏ dòng bit thành các DATA FIELD.

Cuối cùng, một tín hiệu báo hiệu được thêm vào để thông báo cho phía thu biết

những thông tin cơ bản về dữ liệu và cấu trúc khung. Định dạng của chuỗi bit

đầu ra của khối thích nghi kiểu truyền dẫn sẽ bao gồm trường BBHEADER (80

bit) và trường dữ liệu DATA FIELD có kích thước không cố định.

2.1.1.1. Khối giao diện đầu vào (Input Interface) Theo định nghĩa, đầu vào của hệ thống DVB-S2 có thể là:

- Một hoặc nhiều dòng truyền tải (TS) MPEG.

- Một hoặc nhiều dòng dữ liệu chung, có thể là dòng bit liên tục hoặc

dạng gói.

Do DVB-S2 chấp nhận nhiều dạng đầu vào khác nhau nên các dạng đầu

vào này cần phải được nhận biết và chuyển về một dạng chung. DVB-S2 phân

loại đầu vào dựa trên độ dài của dòng bit và gán các giá trị độ dài gói UPL

(User Packets Length) tương ứng như sau:

- Dòng truyền tải TS: Giá trị UPL cố định và bằng (188 x 8) bit (độ dài

một gói MPEG). Byte đầu tiên luôn là byte đồng bộ (47HEX).

- Dòng dữ liệu chung: Có thể là dòng bit liên tục (được gán UPL = 0D),

hoặc dạng gói dữ liệu. Trong trường hợp gói, nếu độ dài gói không đổi và nhỏ

hơn 64K thì UPL được gán bằng độ dài của gói, nếu không thỏa mãn 2 điều

kiện trên thì đầu vào được xem như liên tục (UPL = 0D).

Đối với các gói dữ liệu không phải dòng truyền tải, nếu byte đồng bộ là

byte đầu tiên của gói thì byte này sẽ không bị thay đổi. Nếu không, byte đồng

bộ bằng 0D sẽ được thêm vào phía trước của gói đồng thời giá trị UPL tăng

thêm 8 bit.

35

- Tín hiệu điều khiển ACM (ACM Command): Nếu hệ thống làm việc

trong chế độ mã hóa điều chế thích nghi ACM, tín hiệu điều khiển có thể được

sử dụng để điều chỉnh tỷ lệ đầu vào cho phù hợp với điều kiện truyền dẫn.

2.1.1.2. Bộ mã hóa CRC-8 Mã hóa CRC chỉ được sử dụng cho dạng dữ liệu gói. Nếu UPL = 0D thì

khối này được bỏ qua không xử lý.

Trường hợp UPL ≠ 0, dòng bit đầu vào sẽ có dạng một chuỗi các gói dữ

liệu người dùng UP (User Packet) với độ dài UPL, bắt đầu bằng byte đồng bộ

(byte đồng bộ được hệ thống gán bằng 0 nếu không có).

Nếu như vậy, phần mang thông tin có ích của gói UP (ngoại trừ byte

đồng bộ) sẽ được đưa vào bộ mã hóa CRC, với đa thức sinh: g(X) = (X5 + X4 +

X3 + X2 + 1)(X2 + X + 1)(X + 1) = X8 + X7 + X6 + X4 + X2 + 1.

Đầu ra bộ mã hóa CRC là phần dư của phép tính: [ X8u(X): g(X) ], trong

đó u(X) là gói đầu vào sau khi trừ đi 8 bit của byte đồng bộ. Giá trị này sẽ thay

thế cho byte đồng bộ của gói UP tiếp theo, còn byte đồng bộ bị thay thế sẽ

được copy vào trường SYNC của BBHEADER.

Hình 2.2: Hoạt động của bộ mã hóa CRC-8 2.1.1.3. Khối Merger/Slicer

Đầu vào của bộ Merger/Slicer có thể là dòng bit liên tục hoặc gói UP.

Khối Merger/Slicer gồm 2 thành phần, thực hiện 2 nhiệm vụ khác nhau:

• Slicer:

36

Đọc dòng dữ liệu vào (trường hợp có nhiều đầu vào thì chỉ đọc 1 trong

số các dòng đầu vào) rồi chia thành các khối DATA FIELD có kích thước DFL

(Data Field Length). Giá trị DFL phải thỏa mãn:

(Kbch-80) ≥ DFL ≥ 0

Trong đó KBCH là độ dài khối bit trước khi mã hóa BCH (nhận các giá trị

khác nhau, tùy theo tỷ lệ mã được áp dụng), 80 bit là kích thước của trường

BBHEADER.

• Merger:

Liên kết các khối DATA FIELD của cùng một dòng đầu vào. Trong

trường hợp chỉ có một dòng dữ liệu đầu vào thì khối khối Merger trở nên

không cần thiết và được bỏ qua.

Tùy thuộc vào ứng dụng, việc phân chia các bit vào trường DATA

FIELD có thể được thực hiện theo 2 cách:

- Lấp đầy kích thước tối đa của DATA FIELD, tương ứng với độ dài bit

yêu cầu trước khi mã hóa BCH trừ đi 80 bit BBHEADER (Kbch-80). Như vậy,

một gói UP có thể bị chia vào nhiều DATA FIELD khác nhau.

- Ngược lại, có thể phân chia sao cho mỗi DATA FIELD chỉ chứa một

số nguyên các UP.

Do các gói UP có thể bị chia vào các DATA FIELD khác nhau và các

byte đồng bộ được thay thế bằng trường sửa lỗi CRC-8, nên để thực hiện đồng

bộ ở phía phát cần chỉ ra số các bit tính từ đầu một DATA FIELD cho đến bit

bắt đầu của trường CRC-8 đầu tiên. Khoảng cách này sẽ được chứa trong

trường SYNCD trong BBHEADER.

37

Hình 2.3: Định dạng đầu ra sau khối thích nghi kiểu truyền dẫn 2.1.1.4. Chèn BBHEADER

Một trường BBHEADER có độ dài cố định (10 byte) sẽ được thêm vào

phần đầu của DATA FIELD nhằm xác định cấu trúc của DATA FIELD đó.

BBHEADER gồm các thành phần:

1) MATYPE (2 byte): mô tả định dạng dòng dữ liệu đầu vào, phương pháp

thích nghi kiểu truyền dẫn, chế độ làm việc CCM hay ACM, hệ số roll-off

α. Trong đó:

• Byte đầu tiên (MATYPE-1) gồm các thành phần:

- TS/GS-Transport Stream/Generic Stream: Đầu vào là dòng truyền tải hay

dòng dữ liệu chung (2 bit).

- SIS/MIS-Single Input Stream/Multiple Input Stream: Một hay nhiều dòng

dữ liệu đầu vào (1bit).

- CCM/ACM: Mã hóa và điều chế không đổi CCM hay mã hóa và điều chế

thích nghi ACM (1bit).

- ISSYI-Input Stream Synchronization Indicator: Chỉ thị cơ chế định thời ở

phía thu có hoạt động hay không (1bit).

- NPD-Null Packet Deletion: Chỉ thị cơ chế xóa các gói rỗng có hoạt động

hay không (1bit).

38

- RO: Hệ số roll-off α (2bit).

Bảng 2.1: Giá trị các trường trong MATYPE-1 TS/GS SIS/MIS CCM/ACM ISSYI NPD RO

11: dòng gói truyền tải 00: dữ liệu chung, gói 01: dữ liệu chung, liên tục 10: dự phòng

1 = một dòng 0 = nhiều dòng

1: CCM0: ACM

1: Có0: Không

1: Có 0: Không

00 = 0.3501 = 0,25 10 = 0,20 11 = dự phòng

• Byte thứ 2 (MATYPE-2): Nếu trường SIS/ MIS chỉ thị nhiều dòng dữ

liệu đầu vào thì byte thứ 2 chứa nội dung xác định các dòng dữ liệu này

(ISI-Input Stream Identifier), nếu không sẽ được dự phòng.

2) UPL-User Packet Length (2 byte): Chiều dài của gói người dùng UP [bit].

UPL nhận các giá trị trong khoảng [0, 65535].

Ví dụ: 0000HEX = dòng dữ liệu liên tục.

000AHEX = chiều dài gói UP bằng 10.

UPL = 188x8D: gói truyền tải MPEG.

3) DFL-Data Field Length (2 byte): chiều dài của DATA FIELD, [bit]. DFL

nhận các giá trị trong khoảng [0, 58112].

Ví dụ: 000AHEX = Data Field có độ dài 10 bit.

4) SYNC (1byte): bản sao của byte đồng bộ gói UP.

Ví dụ: SYNC = 47HEX: gói dòng truyền tải MPEG.

SYNC = 00HEX: khi đầu vào là dòng gói dữ liệu chung

không có byte đồng bộ.

SYNC = không có nếu đầu vào là dòng dữ liệu liên tục.

5) SYNCD (2 byte): khoảng cách từ bit đầu tiên của DATA FIELD và bit bắt

đầu của trường CRC-8 đầu tiên thuộc DATA FIELD đó.

6) CRC-8: byte chỉ thị lỗi áp dụng cho 9 byte đầu tiên của BBHEADER.

2.1.2. Khối thích nghi dòng truyền tải (Stream Adaptation)

Bộ đệm (Padding)

Ngẫu nhiên hóa (Scrambler)

BBHEADER và DATA FIELD BBFRAME

39

Hình 2.4: Các thành phần trong khối thích nghi dòng truyền tải 2.1.2.1. Bộ đệm (Padding)

Đầu ra của khối là khung BBFRAME sẽ được đưa vào khối mã hóa

BCH, do vậy BBFRAME phải có đúng kích thước theo yêu cầu của bộ mã hóa

(Kbch). Bộ đệm được sử dụng trong trường hợp dữ liệu không đủ lấp đầy một

khung BBFRAME, hoặc một số nguyên lần các gói UP nằm trong DATA

FIELD, dẫn đến còn có những chỗ trống. Khi đó bộ đệm sẽ bổ sung thêm (Kbch

- DFL - 80) bit 0 để khung BBFRAME có độ dài cần thiết là Kbch. Đối với ứng

dụng quảng bá, DFL = Kbch-80 do vậy không cần sử dụng bộ đệm.

Hình 2.5: Khung BBFRAME tại đầu ra khối thích nghi dòng truyền tải 2.1.2.2. Ngẫu nhiên hóa khung BBFRAME

Quá trình ngẫu nhiên hóa được sử dụng tương tự như trong tiêu chuẩn

DVB-S nhằm phân tán năng lượng dòng bit, tránh xuất hiện thành phần DC

trong phổ tín hiệu. Nguyên lý thực hiện trong DVB-S2 cũng sử dụng chuỗi giả

ngẫu nhiên PRSB.

Hình 2.6: Nguyên lý ngẫu nhiên hóa trong DVB-S2 2.1.3. Khối mã hóa sửa lỗi trước FEC

40

Hình 2.7: Các thành phần trong khối mã hóa trước FEC

DVB-S2 cũng áp dụng các biện pháp sửa lỗi trước như DVB-S, tuy

nhiên phương pháp mã hóa khác với DVB-S. Thay thế tương ứng cho mã

Reed-Solomon và mã chập là mã khối BCH và mã kiểm tra độ ưu tiên cường

độ thấp LPDC. Ngoài ra một số lượng lớn các tỷ lệ mã hóa được đưa vào

DVB-S2 giúp cho hệ thống có thể linh hoạt làm việc theo các điều kiện đường

truyền khác nhau, thậm chí cả khi mức nhiễu cao hơn mức tín hiệu.

Định dạng đầu vào bộ mã hóa sửa sai là các khung BBFRAME. Bộ mã

hóa đưa thêm các bit sửa sai tương ứng với 2 loại mã hóa, tạo thành cấu trúc

khung mới FECFRAME như sau:

Hình 2.8: Cấu trúc FECFRAME sau bộ mã hóa trước Trong đó:

Kbch: kích thước khối bit trước mã hóa BCH.

Nbch: kích thước khối bit sau mã hóa BCH.

kldpc: kích thước khối bit trước mã hóa LDPC.

nldpc: kích thước khối bit sau mã hóa LDPC.

DVB-S2 định nghĩa 2 loại cấu trúc khung FECFRAME: loại bình thường

có độ dài 64800 bit và loại ngắn 16200 bit. Các khung FECFRAME dài có khả

Mã hóa ngoài BCH

(BCH coder)

Mã hóa trong LDPC

(LDPC Encoder)

Xáo trộn trong (Bit Interleaver)

Tỷ lệ mã 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6,8/9, 9/10

BBFRAME FECFRAME

41

năng bảo vệ lỗi tốt hơn nhưng có độ trễ lớn hơn so với loại ngắn 16200 bit. Do

vậy cấu trúc khung ngắn được lựa chọn cho các ứng dụng mà độ trễ là quan

trọng (ví dụ trong các ứng dụng lưu lượng internet), còn khung bình thường

64800 bit được sử dụng để tối ưu hóa khả năng bảo vệ chống nhiễu (ví dụ

trong các ứng dụng quảng bá thông thường).

Bảng 2.2: Các tham số mã hóa đối với khung FECFRAME thường

Tỷ lệ mã LDPC Kbch Nbch = kldpc tbch nldpc

1/4 16008 16200 12 64800

1/3 21408 21600 12 64800

2/5 25728 25920 12 64800

1/2 32208 32400 12 64800

3/5 38688 38880 12 64800

2/3 43040 43200 10 64800

3/4 48408 48600 12 64800

4/5 51648 51840 12 64800

5/6 53840 54000 10 64800

8/9 57472 57600 8 64800

9/10 58192 58320 8 64800

2.1.3.1. Mã hóa ngoài-mã BCH (Bose Chaudhuri Hocquenghem) Mã BCH là loại mã khối được sử dụng trong DVB-S2 để thay thế cho

mã ngoài Reed-Solomon. Nguyên lý tạo từ mã BCH được tóm tắt như sau:

- Giả sử khối bit cần mã hóa là 1 2 1 0( , ,...., , )bch bchK Km m m m m− −=

-Nhân đa thức từ mã m (x) với bch bchn kx − 1 2

1 2 1 0 ( ) ....bch bchbch bch

K KK Km x m x m x m x m− −

− −= + + + +

- Chia kết quả tìm được cho đa thức sinh từ mã g(x). Phần dư của phép chia có

dạng:

- 1 1 1 0( ) ....bch bch

bch bch

n kn kd x d x d x d−

− −= + + +

42

- Đa thức sinh của từ mã ra: ( ) ( ) ( )bch bchn kc x x m x d x−= +

- Từ mã BCH sẽ có dạng:

1 2 1 0 1 2 1 0( , ,...., , , , , , )bch bch bch bch bch bchk k n k n kc m m m m d d d d

− − − − − −=

Bảng 2.3: Đa thức sinh BCH trong trường hợp khung FECFRAME thường

g1(x) 1 + x2 + x3 + x5 + x16

g2(x) 1 + x + x4 + x5 + x6 + x8 + x16

g3(x) 1 + x2 + x3 + x4 + x5 + x7 + x8 + x9 + x10 + x11 + x16

g4(x) 1 + x2 + x4 + x6 + x9 + x11 + x12 + x14 + x16

g5(x) 1 + x + x2 + x3 + x5 + x8 + x9 + x10 + x11 + x12 + x16

g6(x) 1 + x2 + x4 + x5 + x7 + x8 + x9 + x10 + x12 + x13 + x14 + x15 + x16

g(x) 1 + x2 + x5 + x6 + x8 + x9 + x10 + x11 + x13 + x15 + x16

g8(x) 1 + x + x2 + x5 + x6 + x8 + x9 + x12 + x13 + x14 + x16

g9(x) 1 + x5 + x7 + x9 + x10 + x11 + x16

g10(x) 1 + x + x2 + x5 + x7 + x8 + x9 + x10 + x12 + x14 + x16

g11(x) 1 + x2 + x3 + x5 + x9 + x11 + x12 + x13 + x16

g12(x) 1 + x + x5 + x6 + x7 + x9 + x11 + x12 + x16

2.1.3.2. Mã hóa trong LDCP (Low Density Parity Check Codes) Mã hóa kiểm tra chẵn lẻ mật độ thấp (LPDC) là một lớp các mã khối

tuyến tính với một ma trận kiểm tra độ ưu tiên H. Ma trận H chỉ gồm các giá trị

0 và 1 nằm rải rác. Số lượng các số 1 trong ma trận này rất thấp. Việc mã hóa

được thực hiện bằng các phương trình biến đổi từ ma trận H để tạo ra các bit

kiểm tra độ ưu tiên. Quá trình giải mã sử dụng các đầu vào ‘mềm’ (soft-input)

kết hợp với các phương trình này để tạo ra các ước lượng mới cho các giá trị

thông tin được gửi. 2.1.3.3. Xáo trộn bit (Bit Interleaver)

Đối với các kiểu điều chế 8PSK, 16APSK, 32APSK từ mã đầu ra sau khi

mã hóa LDPC sẽ được xáo trộn. Mục đích của xáo trộn để nâng cao khả năng

chống lỗi cụm tương tự như trong DVB-S, tuy nhiên nguyên lý thực hiện xáo

43

trộn khác với DVB-S. Trong DVB-S2, các bit được ghi tuần tự theo các cột

trong bộ xáo trộn, nhưng khi đọc ra lại đọc theo hàng ngang, như vậy thứ tự

các bit đã bị thay đổi. Bit MSB của trường BBHEADER luôn được đọc ra đầu

tiên, ngoại trừ trường hợp của 8PSK 3/5).

Hình 2.9: Sơ đồ xáo trộn bit, điều chế 8PSK và khung FECFRAME thường

Trong các trường hợp khác của DVB-S2, xáo trộn bit được thực hiện

tương tự, theo các thông số trong bảng sau:

Bảng 2.4: Thông số của bộ xáo trộn bit trong tiêu chuẩn DVB-S2 Điều chế Số hàng (với nldpc = 64800) Số hàng (với nldpc = 16200) Số cột

8PSK 21600 5400 3

16APSK 16200 4050 4

32APSK 12960 3240 5

2.1.4. Khối ánh xạ bit lên chòm sao điều chế (Bit Mapping Into

Constellation)

44

DVB-S2 sử dụng 4 sơ đồ điều chế khác nhau: QPSK, 8PSK, 16APSK,

32APSK. Trong đó QPSK và 8PSK được sử dụng cho các ứng dụng quảng bá

do chúng là loại điều chế có đường bao không đổi và có thể hoạt động ở gần

điểm bão hòa của các bộ phát đáp trên vệ tinh. Còn 16APSK và 32APSK

hướng tới các ứng dụng chuyên nghiệp, có thể được sử dụng cho quảng bá

nhưng đòi hỏi mức C/N cao và phải áp dụng phương pháp tiền sửa méo (pre-

distortion) trong trạm phát lên để giảm thiểu tính phi tuyến của bộ phát đáp.

Các phương pháp này không tối ưu về mặt công suất nhưng hiệu suất phổ lại

lớn hơn nhiều. Các sơ đồ chòm sao 16APSK và 32APSK được thiết kế để hoạt

động trên các bộ phát đáp phi tuyến nhờ đặt các điểm trên các vòng tròn khác

nhau. Tuy nhiên trên kênh tuyến tính chúng vẫn có thể đạt hiệu quả tương

đương với 16QAM và 32QAM.

Bằng cách lựa chọn kiểu điều chế và tỷ lệ mã khác nhau, DVB-S2 có thể

đạt được hiệu suất phổ từ 0,5 đến 4,5 bit/symbol tùy thuộc vào bộ phát đáp

được sử dụng. Ba hệ số roll-off khác nhau được lựa chọn: 0,35 (DVB-S) ; 0,2

và 0,25 cho phép tiết kiệm băng thông hơn so với DVB-S.

45

Hình 2.10: Các sơ đồ điều chế được sử dụng trong DVB-S2

Ngoài ra, để tương thích ngược với DVB-S đang được sử dụng rộng rãi,

điều chế phân cấp (Hierarchical Modulation) cũng được đưa vào DVB-S2. Nhờ

điều chế phân cấp, có thể truyền đồng thời một dòng truyền tải DVB-S (HP-

High Priority) và dòng truyền tải DVB-S2 (LP-Low Priority) .

46

Hình 2.11: Ánh xạ các bit trong điều chế phân cấp Trong điều chế phân cấp, mỗi góc phần tư được xem như một điểm trên

chòm sao điều chế. Mỗi góc phần tư sẽ xác định 2 bit có độ ưu tiên cao HP.

Tuy nhiên, nếu thêm vào 2 trạng thái tại mỗi góc phần tư để xác định bit có độ

ưu tiên thấp LP thì mỗi symbol sẽ tăng thêm 1 bit thông tin. Như vậy, máy thu

DVB-S có thể thu tín hiệu điều chế phân cấp và giải điều chế QPSK, còn máy

thu DVS-S2 sẽ thu và giải điều chế 8PSK.

2.1.5. Tạo khung lớp vật lý (PL Framing)

2.1.5.1. Cấu trúc khung truyền tải trong DVB-S2 Khác với DVB-S, tiêu chuẩn DBV-S2 quy định các cấu trúc khung. Có 2

mức cấu trúc khung được thiết kế là:

- Mức vật lý PL (PLFRAME).

- Mức cơ bản (FECFRAME).

Hình 2.12: Minh họa cấu trúc khung vật lý được sử dụng trong DVB-S2

Các khung vật lý truyền tải các khung FECFRAME tương tự như xe chở

hàng. Các khung PLFRAME liền nhau có thể được mã hóa điều chế khác nhau.

Cấu trúc khung ở lớp vật lý có các bit mào đầu PLHEADER, mang các thông

tin nhằm giúp phía thu có thể đồng bộ và xác định phương pháp điều chế và

các thông số mã hóa mà không cần phải giải mã, giải điều chế tín hiệu. Do tính

chất quan trọng của PLHEADER nên nó được mã hóa sửa sai rất chặt chẽ với

47

tỷ lệ mã 7/64 (57 bit chống lỗi cho 7 bit mang tin). Trên hình, các khung vật lý

được truyền tải nối tiếp nhau. Trong mỗi khung vật lý lược đồ mã hóa và điều

chế phải đồng nhất, tuy nhiên giữa các khung vật lý khác nhau thì có thể thay

đổi. Điều này tạo nên tính linh hoạt cho hệ thống DVB-S2 so với DVB-S.

Cấu trúc khung FECFRAME sẽ cung cấp đầy đủ thông tin phục vụ cho

quá trình xử lý giải mã tín hiệu. Nhờ có 80 bit mào đầu BBHEADER, phía thu

có thể thiết lập các cấu hình tương ứng với các chế độ truyền dẫn khác nhau

như đầu vào đơn chương trình hay đa chương trình, định dạng chung hay gói

dòng truyền tải MPEG, chế độ CCM hay ACM ... Tóm tắt quá trình tạo khung

FECFRAME: đầu tiên là dữ liệu cần truyền đi được chia thành các DATA

FIELD có độ dài DFL. DATA FIELD được thêm trường BBHEADER kích

thước 80 bit. Trước khi đưa vào bộ mã hóa FEC, nó được bổ sung thêm các bit

đệm để có độ dài phù hợp theo yêu cầu của mã BCH và LDPC tạo thành khung

BBFRAME. Quá trình mã hóa trước sẽ thêm vào các bit sửa sai và xáo trộn để

tạo thành khung FECFRAME với kích thước 64800 bit hoặc 16200 bit, tùy

thuộc vào tỷ lệ mã hóa được lựa chọn.

48

Hình 2.13: Quá trình tạo thành FECFRAME trong DVB-S2 2.1.5.2. Quá trình tạo khung lớp vật lý

Đầu vào của khối tạo khung PL là cấu trúc XFECFRAME (FECFRAME

sau khi điều chế), đầu ra là khung lớp vật lý PLFRAME. Khung PLFRAME

được tạo ra bằng cách chia nhỏ khung XFECFRAME thành các SLOT với độ

dài 90 symbol. Sau đó phần đầu PLHEADER được thêm vào phía trước

XFECFRAME. Tùy thuộc vào yêu cầu cụ thể mà các bit hoa tiêu (pilot) được

thêm vào để tạo thành khung PLFRAME.

Hình 2.14: Các thành phần của khối tạo khung PLFRAME a. Chèn khung giả (Dummy PLFRAME insertion)

Các khung PLFRAME giả sẽ được tạo ra nếu không có dữ liệu được

truyền đi. Khung PL giả chỉ bao gồm phần đầu PLHEADER và 36 SLOT

không được điều chế.

b. Chèn báo hiệu lớp vật lý (PL signalling) Khung XFECFRAME được chia thành S các SLOT với độ dài cố định

90 symbol. Số lượng S được xác định theo bảng:

Bảng 2.5: Số lượng các SLOT theo độ dài XFECRAME Số bit/symbol FECFRAME: nldpc=64800 bit FECFRAME: nldpc=16200 bit

2 360 90

3 240 60

4 180 45

5 144 36

Phần mào đầu PLHEADER sẽ được thêm vào phía trước khung nhằm

cung cấp thông tin cấu hình cho phía thu. Độ dài PLHEADER bằng đúng kích

thước 1 SLOT. Sau khi giải mã PLHEADER, phía thu sẽ biết được độ dài và

cấu trúc PLFRAME, phương pháp điều chế và mã hóa của FECFRAME, sự có

mặt hay không của các bit hoa tiêu. Do tính chất quan trọng mà PLHEADER

Chèn khung giả

Báo hiệu lớp vật lý

Thêm bit hoa tiêu

Xáo trộn lớp vật lý

PLFRAMEXFECFRAME

49

được bảo vệ bằng mã hóa Reed Muller (64,7) và điều chế BPSK để đảm bảo

phía thu vẫn có thể giải mã trong điều kiện xấu nhất.

Hình 2.15: Cấu trúc của PLHEADER Phần PLHEADER bao gồm 2 thành phần như sau:

- SOF - Start Of Frame (26 symbol): xác định bắt đầu một khung, mang

giá trị 18D2E82HEX.

- PLSCODE (64 symbol): được mã hóa chống lỗi, sau khi giải mã sẽ thu

được 7 symbol phục vụ cho việc báo hiệu. Các symbol này được phân vào 2

trường sau:

MODCOD (5 symbol): xác định phương pháp điều chế (QPSK,

8PSK, 16APSK, 32APSK) và các tỷ lệ mã hóa trước (1/4, 1/3,

2/5, 1/2, 3/5, 2/3, 3/4, ....) được áp dụng.

TYPE (2 symbol): xác định độ dài của khung FECFRAME (0 =

bình thường: 64800 bit, 1 = ngắn: 16200 bit), ngoài ra còn xác

định khung PL có chèn bit hoa tiêu hay không (0: không chèn

bit hoa tiêu).

c. Chèn các bit hoa tiêu (Pilots insertion). Tùy thuộc vào phương thức làm việc được lựa chọn mà khung

PLFRAME có thể có hoặc không các bit hoa tiêu. Các bit hoa tiêu làm nhiệm

50

vụ đồng bộ tại phía phát. Kích thước khối bit hoa tiêu bằng P = 36 symbol và

được chèn thêm sau mỗi SLOT, tính từ trường PLHEADER.

d. Xáo trộn lớp vật lý (PL Scrambler). Trước khi được điều chế, các khung PLFRAME (ngoại trừ PLHEADER)

sẽ được xáo trộn để phân tán năng lượng và tránh các giá trị lặp lại. Chuỗi xáo

trộn (CI + jCQ) được tạo thành từ 2 chuỗi thực (từ 2 đa thức sinh có bậc 18). Độ

dài chuỗi được lựa chọn lớn hơn độ dài tối đa của PLFRAME nhằm tránh các

bit giả có thể phát sinh trong quá trình xáo trộn.

2.1.6. Lọc băng gốc và điều chế cầu phương (Baseband Shaping &

Quadrature Modultation)

Tín hiệu sẽ được xử lý bằng bộ lọc cos nâng với hệ số roll-off bằng

0,35 ; 0,25 hoặc 0,2.

Hàm truyền đạt H(f) của bộ lọc cos nâng:

H(f) = 1 với ( )f fN< −1 α

H f sinfN

fN f( ) = +

⎣⎢⎢

⎦⎥⎥

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

−12

12 2

12

πα với

( ) ( )f f fN N1 1− ≤ ≤ +α α

H(f) = 0 với ( )f fN> +1 α

Trong đó 22

1 s

sN

RT

f == là tần số Nyquist và α là hệ số roll-off.

Điều chế cầu phương được thực hiện bằng cách nhân đầu vào I, Q với

sin(2πf0t) và cos(2πf0t) tương ứng. Sau đó kết quả được cộng lại với nhau để tạo

thành tín hiệu điều chế.

2.2. Điểm lại tiêu chuẩn DVB-S2

Các mode điều chế DVB-S2:

DVB-S2 có bốn mode điều chế, hai mode QPSK và 8PSK với điều chế

đường bao không đổi được khuyến cáo dùng cho ứng dụng quảng bá hoạt động

51

trên bộ phát đáp vệ tinh phi tuyến ở điểm làm việc bão hoà hoặc gần bão hoà.

Hai mode điều chế cao hơn 16APSK và 32APSK thay thế cho các sơ đồ điều

chế 16QAM và 32QAM của tiêu chuẩn DVB-S DSNG, với độ co dãn được

tăng và giảm độ nhạy với trạm mặt đất cũng như các đáp tuyến AM/AM và

AM/PM của bộ phát đáp đèn sóng chạy. Độ nhạy giảm làm cho APSK thích

hợp hơn với các hoạt động chuyên dụng trên vệ tinh trong các cấu hình “back-

off” (lùi điểm làm việc khỏi phần phi tuyến trên đáp tuyến của đèn sóng chạy

để tránh can nhiễu giữa các sóng mang). Các chòm sao hiệu suất băng thông và

công suất của chúng phù hợp hơn cho các bộ phát đáp phi tuyến và cho chỉ tiêu

bằng hoặc tốt hơn trên các kênh tuyến tính so với mode QAM với hỗn hợp điều

chế pha và biên độ của chúng. Mặc dù các sơ đồ APSK không hiệu quả về

công suất do yêu cầu tỷ số C/N cao hơn, chúng vẫn có hiệu quả phổ lớn hơn

đáng kể. Các vòng tròn đồng tâm trong các chòm sao APSK gồm các điểm

được đặt cách đều nhau hơn so với lưới hình vuông của các điểm được sử dụng

trong các sơ đồ 16QAM thông thường. Dạng vòng tròn đồng tâm này giảm

thiểu ảnh hưởng của méo do các bộ khuếch đại công suất cao gây ra.

Độ lợi hiệu dụng:

Việc đưa vào các mode điều chế cao hơn làm tăng hiệu suất băng thông vì

tăng số bit ánh xạ đưa vào các chòm sao. Tất nhiên phải trả giá là yêu cầu C/N

cao hơn.

Hệ số roll-off:

Như đã trình bày trước, tiêu chuẩn DVB-S2 có ba hệ số roll-off ( ) thay

vì chỉ có hệ số roll-off là 0.35 trong tiêu chuẩn DVB-S. Hệ số roll-off nhỏ đi sẽ

làm tăng hơn nữa hiệu quả của bộ phát đáp. Băng thông bị chiếm bởi tín hiệu

điều chế là tần số biểu tượng nhân với (1+ ). Bằng việc sử dụng hệ số thấp

hơn, các sóng mang có thể đặt gần nhau hơn, dẫn đến số tải sóng mang tăng

đối với bộ phát đáp đã cho, hoặc là tăng tần số biểu tượng với băng thông đã

cho. Có nghĩa là bộ phát đáp sẽ truyền dẫn được nhiều thông tin hơn.

52

Tiểu hệ thống sửa lỗi tiến (FEC) trong DVB-S2: Tiểu hệ thống FEC (Forward Error Correction) có trách nhiệm chính trong

việc cải thiện chỉ tiêu kỹ thuật của kết nối vệ tinh khi có can nhiễu. Do vậy việc

áp dụng các thuật toán mã hoá tiên tiến với các bộ xử lí (các chip) giá rẻ có ý

nghĩa rất quan trọng. Nhóm thiết kế tiêu chuẩn DVB-S2 đã đánh giá bảy đề

nghị cho sửa lỗi tiến khi dùng họ mã hoá Turbo, từ đó đã chọn mã nội LDCP

(Low Density Parity Checking) kết nối (concatenated) với mã ngoại BCH

(Bose Chauhuri Houquenohem). Sơ đồ FEC mới này được thay cho sơ đồ mã

hoá của DVB-S gồm mã xoắn kết hợp với mã Reed-Solomon. Mã LDCP do

nhà toán học Gallager tạo ra từ năm 1963 và có thông số kỹ thuật tốt thể hiện ở

tỷ lệ mã hoá cao và độ dài khối dài, nhưng nay mới có điều kiện ứng dụng

trong thực tế do những hạn chế về công nghệ thời kỳ đó. Chúng yêu cầu sự

phức tạp thấp của bộ giả mã và tất cả các phương pháp sửa lỗi tiến mới thực tế

cho tới bây giờ, mã Turbo cùng với mã LDCP là tiệm cận giới hạn Shannon -

giới hạn lý thuyết của tốc độ truyền thông tin cực đại trên kênh có nhiễu.

2.3. Một số điểm đáng chú ý về thông số kỹ thuật của tiêu chuẩn DVB-S2

DVB-S2 cùng với chuẩn nén tín hiệu MPEG-4 H.264/AVC là tiền đề cho

triển khai đại trà dịch vụ truyền hình số HDTV cũng như các dịch vụ khác như

internet tốc độ cao, không chỉ ở việc tăng thông lượng kênh truyền mà cả độ tin

cậy, tính mềm dẻo trong truyền dẫn.

Hiệu quả truyền dẫn tăng:

DVB-S2 có thể tăng dung lượng của bộ phát đáp vệ tinh lên 30%. Dung

lượng của một bộ phát đáp vệ tinh chuẩn là 36MHz, hoạt động với tốc độ biểu

tượng 27,5 Msymbols/s và FEC 3/4 có thể tăng từ 38 Mb/s lên 50 Mb/s khi

dùng DVB-S2. Về lý thuyết, khi dùng DVB-S2 kết hợp với MPEG-4 có thể

truyền tới 6 kênh HDTV 8 Mb/s/kênh trên một bộ phát đáp, so với 2 kênh

HDTV 16Mb/s/kênh khi dùng DVB-S MPEG-2 cũng trên bộ phát đáp này.

Điều này được thực hiện bởi việc thay mã xoắn nội Viterbi trong DVB-S bằng

53

mã nội LDPC hiệu quả hơn, kết hợp với thay thế mã ngoại Reed-Solomon bằng

mã BCH trong DVB-S2. Kết hợp mã sửa lỗi tiến (FEC) LDPC/BCH làm cho

DVB-S2 tiến gần tới giới hạn Shannon hơn, chỉ cách khoảng 1,2 dB so với

khoảng 3 dB của DVB-S.

Các giải pháp kết hợp mạnh:

Trong DVB-S2 có sự kết hợp hiệu quả tác động lẫn nhau cảu các mode

điều chế, các hệ số roll-off và các tỷ lệ mã FEC. Ngoài điều chế QPSK như

trong DVB-S, DVB-S2 còn thêm ba sơ đồ điều chế bậc cao hơn 8PSK,

16APSK, 32APSK cho phép tăng dung lượng của các bộ phát đáp vệ tinh. Nếu

như trước đây tiêu chuẩn truyền dẫn vệ tinh cho các ứng dụng quảng bá và thu

tin vệ tinh số (DSNG) là khác nhau (DVB-S và DVB-DSNG) thì nay DVB-S2

đảm nhiệm tất cả. Các tỷ lệ mã FEC cũng tăng thêm: trong DVB-S có 1/2, 2/3,

3/4, 5/6, 7/8; trong DVB-S2 bổ sung thêm 1/4, 1/3, 2/5, 3/5, 4/5, 8/9, 9/10. Đặc

biệt có ba tỷ lệ mã hoá mà ở đó các bit dư phục vụ cho việc bảo hiểm lỗi nhiều

hơn các bit thông tin, đó là các tỷ lệ mã: 1/4, 1/3 và 2/5. Ở QPSK 1/4 có thể

giải mã tín hiệu ở mức nhiễu -2,35dB, có nghĩa là tỷ số (S/N) = -2,35 dB hay

mức nhiễu cao hơn mức tín hiệu. Các tỷ lệ mã này cho phép thông tin trong các

điều kiện lan truyền kém thường thấy ở các ứng dụng DSNG. Do vậy tính mềm

dẻo của DVB-S2 tăng lên rất nhiều so với DVB-S và DVB-DSNG.

Lựa chọn mode điều chế:

Các mode điều chế có đường bao không đổi như QPSK và 8PSK cho phép

bộ khuếch đại công suất đầu ra đèn sóng chạy trên bộ phát đáp vệ tinh hoạt

động ở chế độ bão hoà. Điều này là quan trọng đối với dịch vụ quảng bá vì nó

cho phép điều khiển độ lợi tự động để duy trì bộ phát đáp ở mức công suất đầu

ra cực đại không phụ thuộc vào suy giảm uplink. Do vậy đảm bảo mức công

suất phát xạ đẳng hướng tương đương đầu ra không đổi từ vệ tinh.

QPSK cung cấp 2 bit/symbol, còn 8PSK là 3 bit/symbol. Do đó 8PSK

mang lượng thông tin lớn hơn QPSK 50% với cùng một băng thông. Nhưng

54

điều này cũng yêu cầu công suất phát xạ tương ứng lớn hơn từ vệ tinh, hoặc

kích thước anten thu vệ tinh lớn hơn. Các vệ tinh công suất cao và các khối thu

vệ tinh với hệ số nhiễu thấp làm cho 8PSK trở nên thông dụng cho các ứng

dụng quảng bá. Các mode điều chế với đường bao không đổi, như 16QAM

(trong DVB-DSNG), 16APSK và 32APSK cần hoạt động trong các bộ phát

đáp với mode hoạt động tuyến tính để tránh can nhiễu điều chế tương hỗ. Các

bộ phát đáp này hoạt động ở mức back-off đáng kể và sẽ không cho công suất

đầu ra cực đại.

Các frame lớp vật lý:

Lớp cao tần (RF layer) của tín hiệu DVB-S2 được chia thành các khung

vật lý không cần sử dụng cũng một dạng mã hoá hay điều chế. Mode điều chế

và tỷ lệ mã có thể thay đổi theo từng khung. Các khung có thể được ấn định

cho các luồng truyền tải khác nhau. Mỗi khung được kết thúc bởi một dãy

symbol BPSK 90bits, bảo vệ cao header mã khối 7/64. Header bao gồm tín

hiệu đồng bộ và thông tin liên quan với báo hiệu. Và nó được kèm theo bởi

hoặc là 16.200 bit (180x90), hoặc 64.800 bit (720x90), được bảo vệ bởi liên

hợp mã LDPC/BCH FEC. Các khung FEC dài hơn sẽ cũng cấp sự bảo vệ lỗi

tốt hơn nhưng lại có độ trễ lớn hơn so với khung FEC 16 200 bit. Do vậy,

khung FEC ngắn được dùng cho các ứng dụng mà yêu cầu độ trễ nhỏ hay tính

đến lưu lượng dữ liệu (trường hợp thông tin truyền đi nhỏ mà sử dụng khung

thường, sẽ truyền đi lượng lớn bit dư thừa không mang thông tin), khung dài

được sử dụng để tối ưu hoá việc bảo vệ tín hiệu (ví dụ trong các ứng dụng

quảng bá thông thường). Bằng việc dùng điều chế và mã hoá khác nhau cho

khung khác nhau nhiều khả năng mới có thể được sáng tạo. Tuy nhiên cần bổ

sung cac pilot vào tín hiệu để dễ dàng cho việc khôi phục sóng mang.

Mã hoá điều chế không đổi (CCM-Constant Coding and

Modulation):

55

Mode hoạt động đơn giản nhất của DVB-S2 là mã hoá và điều chế

không đổi tương tự với cách mà tín hiệu sử dụng bởi DVB-S. Trong CCM

cùng một mode điều chế và FEC được sử dụng cho tất cả các frame lớp vật lý.

Điểm trội hơn của DVB-S2 trong mode CCM so với DVB-S là việc bảo hiểm

lỗi được cải thiện do dùng mã nội và mã ngoại mới, cải thiện dung lượng tăng

30%. Sự cải thiện này có giá trị lớn cho các hệ thống quảng bá HDTV. Tuy

nhiên trong mode CCM tiềm năng đầy đủ của cấu trúc frame lớp vật lý DVB-

S2 không được sử dụng.

Mã và điều chế thay đổi (VCM-Variable Coding and Modulation): Trong các ứng dụng quảng bá DVB-S, QPSK và tỷ lệ mã FEC là cố

định, trong khi đó với DVB-S2 thì khác: nhiều luồng truyền tải có thể được kết

hợp trên một bộ phát đáp hoạt động ở chế độ bão hoà, cung cấp đường bao của

tín hiệu không đổi (QPSK và 8PSK). Tuy nhiên nhiều luồng truyền tải có thể

được ấn định cho các frame vật lý khác nhau, do vậy có thể dùng các mode

điều chế và các tỷ lệ mã khác nhau cho các dòng truyền khác nhau. Phụ thuộc

vào ứng dụng mà có sự dung hoà khác nhau giữa dung lượng và tính mạnh

khoẻ của truyền dẫn. Ví dụ một bộ phát đáp có thể mạng cả tín hiệu truyền

hình SDTV và HDTV nhưng với mức bảo vệ kém hơn cho HD để đạt lợi ích

tăng tốc độ bit. Điều này có thể đặt ra yêu cầu cao hơn đối với kích thước anten

của đầu thu (set-top-box) HDTV, nhưng phải ở mức chấp nhận được với ứng

dụng.

Các dịch vụ chuyên dùng cho phép dùng các anten kích thước lớn, do

vậy có thể dùng tỷ lệ mã xấu hơn để đạt độ lợi về tốc độ bit, và có thể được

tích hợp đến các bộ phát đáp quảng bá đang hoạt động ở chế độ bão hoà. Điều

này có thể bao gồm nhiều loại lưu lượng dữ liệu khác nhau như internet

backbone mà trước đây bặt buộc phải dùng các sóng mang tách biệt nhằm đảm

bảo tính linh hoạt chọn lựa tỷ lệ mã và điều chế.

56

Mã hoá và điều chế thích nghi (ACM-Adaptive Coding and

Modulation):

ACM chính là mode hoạt động tinh tế nhất của DVB-S2, nó cho phép tối

ưu hoá các ứng dụng điểm - điểm.Trong mode này có một kênh ngược từ máy

thu tới máy phát uplink. Kênh ngược cung cấp cập nhật tức thời hệ số ở

máy thu cho trạm uplink. Điều này có thể được sử dụng để thay đổi tỷ lệ mã

hoá và mode điều chế để tối ưu hoá tốc độ bit cực đại.Có nghĩa là khi trời trong

thì có thể dùng tỷ lệ mã xấu hơn, điều chế mức cao hơn để tăng thông lượng

bit, nghĩa là tăng thông lượng trung bình của toàn hệ thống. Khi trời mưa to

hoặc điều kiện lan truyền xấu thì ngược lại.Như vậy có thể cải thiện đáng kể

thông số thông lượng của hệ thống, đặc biệt với các kết nối backbone internet

và các loại lưu lượng dữ liệu khác.

Trong các ứng dụng DSNG, một kênh ngược băng thông hẹp đến xe

uplink có thể cung cấp thông lượng tối ưu trong các điều kiện khó bằng việc

thay đổi mã hoá và điều chế tương ứng. Ví dụ nếu bắt buộc phải dùng mode

với tốc độ bit thấp hơn bình thường thì có thể bù lại bằng cách giảm tốc độ bit

dùng cho bộ mã hoá.

Hình 2.16: Mô hình mã hóa và điều chế thích nghi [8]

57

Mode tương thích ngược (BC mode-Backwards Compatible mode): Tiêu chuẩn DVB-S2 (tiêu chuẩn ETSI EN 302 307 V1.1.2 06/2006) đã

nhìn thấy trước rằng tuy DVB-S2 có nhiều ưu điểm nhưng do hiện nay số máy

thu theo tiêu chuẩn DVB-S là quá lớn (hàng trăm triệu chiếc) nên các nhà

quảng bá vệ tinh không thể hoặc khó có thể chuyển ngay sang dùng DVB-S2 vì

còn phải tính đến quyền lợi của người tiêu dùng. Do vậy trong tiêu chuẩn này

còn có một phụ lục tuỳ chọn “các mode tương thích ngược” để dung hoà giữa

việc ứng dụng công nghệ truyền dẫn mới cho quảng bá và khách hàng của họ.

Các mode tương thích ngược (BC mode) tuỳ chọn nhằm để gửi trên một

kênh vệ tinh hai luồng truyền tải.Dòng thứ nhất (có độ ưu tiên cao-HP) chỉ

tương thích với các máy thu DVB-S ( theo tiêu chuẩn DVB-S EN 300 421)

cũng như với các máy thu DVB-S2, nghĩa là cả hai máy thu DVB-S và DVB-

S2 đều thu được tín hiệu của luồng truyền tải này. Dòng thứ hai (có độ ưu tiên

thấp-LP) chỉ tương thích với các máy thu DVB-S2. Sự tương thích ngược có

thể được thực hiện theo một trong hai phương pháp:

- Điều chế theo lớp, trong đó các tín hiệu DVB-S và DVB-S2 được ghép

kênh không đồng bộ trên cùng một tần số vô tuyến (do vậy mode hoạt

động này không yêu cầu một công cụ đặc biệt nào trong tiêu chuẩn kỹ

thuật DVB-S2).

- Điều chế phân cấp, trong đó hai luồng truyền tải HP và LP được kết hợp

đồng bộ ở mức symbol điều chế trên chòm sao 8PSK không đối xứng.

Tiêu chuẩn DVB-S2 chọn phương pháp này.

Cần chú ý rằng mode phân cấp cũng được sử dụng trong tiêu chuẩn truyền

hình số mặt đất DVB-T. Ngoài ra các dịch vụ quảng bá không phải DVB dựa

trên điều chế QPSK có thể truyền dòng truyền DVB-S2 LP, khi dùng các sơ đồ

điều chế theo lớp hoặc phân cấp kể trên. Tuy nhiên dùng BC mode cũng có ý

nghĩa là có sự thoả hiệp giữa chỉ tiêu của các thành phần DVB-S2 và DVB-S

của tín hiệu.Việc dùng điều chế 8PSK với hai symbol đặt gần nhau hơn so với

58

trong mỗi góc phần tư so với giản đồ chòm sao 8PSK gốc làm cho các máy thu

DVB-S tin rằng chúng đang thu tín hiệu QPSK, còn các máy thu DVB-S2 thu

tất cả 8 symbol. Việc dùng ánh xạ phân cấp thông minh như vậy cho phép kết

hợp các tín hiệu SDTV cho máy DVB-S và HDTV cho máy thu DVB-S2 trên

cùng một bộ phát đáp.

2.4 So sánh một số thông số kỹ thuật với DVB-S

Việc dùng sơ đồ FEC mới cho phép DVB-S2 tăng thông lượng kênh với

cùng một mức công suất sóng mang và sử dụng các mode điều chế bậc cao hơn

so với QPSK trong DVB-S. Đối với cùng một tỷ lệ lỗi bit (BER) DVB-S2 có

độ dự phòng từ 1,4 đến 1,8 dB so với DVB-S.

Ví dụ: DVB-S QPSK với FEC tỷ lệ mã 3/4 yêu cầu cùng một mức công

suất sóng mang như DVB-S2 8PSK với FEC tỷ lệ mã 2/3 như hình 32.

Hình 2.17: Độ lợi công suất của DVB-S2 với DVB-S

Độ dự phòng này cho phép dùng anten thu có đường kính nhỏ hơn trong

điều kiện thời tiết xấu hơn. Đồng thời DVB-S2 cho phép dùng phổ hiệu quả

khi xét về thông số hiệu suất băng thông (bit/s/Hz). Việc dùng các hệ số roll-

off thấp hơn cho phép dùng các sóng mang hẹp hơn.

59

Ví dụ: Sóng mang 20 Msym/s với roll-off 0,35 của DVB-S sử dụng băng

tần 27 MHz so với 24 MHz của DVB-S2 với hệ số roll-off là 0,2. Hình 33 cho

thấy so sánh hiệu suất băng thông của DVB-S và DVB-S2.

QEF

Hình 2.17: Độ lợi băng thông của DVB-S2

Bảng 15 cho ta so sánh các thông số của DVB-S và DVB-S2 ở một vài

chế độ làm việc khác nhau điển hình. Ta thấy với tỷ số C/N tương tự nhau

nhưng thông lượng kênh của DVB-S2 tăng khoảng 30% so với DVB-S. Hình

34 biểu diễn hiệu suất băng thông của hiệu quả phổ DVB-S2 đã gần đạt đến

mức giới hạn Shannon, và đó cũng là lý do để các nhà sáng tạo lạc quan nói

rằng sẽ khó mà có tiêu chuẩn DVB-S3.

Bảng 2.6: So sánh DVB-S2 với DVB-S ở một vài chế độ làm việc khác

nhau điển hình

60

61

Hình 2.18: Hiệu suất băng thông và C/N yêu cầu trên kênh nhiễu Gausse trắng

cộng (AWGN)

Những ưu điểm của DVB-S2 so với DVB-S:

• Tăng dung lượng truyền dẫn trên cùng một băng thông:

So sánh với tiêu chuẩn DVB-S với cùng một điều kiện truyền dẫn: DVB-

S2 có khả năng truyền dữ liệu tới hơn 30% trong cùng dải băng thông. Nói

cách khác, một tín hiệu truyền dẫn theo tiêu chuẩn DVB-S2 yêu cầu băng

thông ít hơn 30% so với khi sử dụng DVB-S. Đặc biệt khi ứng dụng điều chế,

mã hóa VCM và ACM hiệu suất sử dụng băng thông tăng tương ứng 66% và

131%.

• Tăng hiệu quả công suất truyền dẫn:

Trong vùng phủ sóng, yêu cầu thu của một tín hiệu DVB-S2 thấp hơn

khoảng 2,5 dB so với một tín hiệu DVB-S với cùng điều kiện bảo vệ lỗi. Ngoài

ra, DVB-S2 còn có thể tương thích được với nhiều bộ phát đáp vệ tinh có sự

khác nhau về hiệu suất sử dụng phổ (từ 0,5 đến 4,5 bit/sHz) và yêu cầu tỷ số

C/N kết hợp (từ -2 dB đến +16 dB).

Chức năng điều chế và mã hóa thay đổi (VCM) cho phép thực hiện điều

chế và sử dụng các mức bảo vệ lỗi khác nhau để sử dụng hoặc thay đổi trên cơ

sở từng khung (frame) một. Chức năng này còn có thể kết hợp với việc sử dụng

kênh phản hồi (return channel) tạo thành một vòng điều khiển kín (closed

loop). Vì vậy các thông số truyền dẫn được tối ưu cho mỗi kênh thông tin riêng

biệt tùy thuộc vào điều kiện đường truyền.

• DVB-S2 được thiết kế phù hợp với nhiều loại dịch vụ:

DVB-S2 đã đượcc tối ưu cho các ứng dụng vệ tinh băng rộng như:

- Các dịch vụ quảng bá: Truyền dẫn các chương trình SDTV hoặc

HDTV.

- Các dịch vụ tương tác bao gồm cả truy nhập internet.

62

- Các ứng dụng chuyên nghiệp: Phân phối tín hiệu truyền hình số tới các

trạm phát hình mặt đất (TV Contribution), truyền hình lưu động DSNG, truyền

số liệu và các ứng dụng khác….

• DVB-S2 không bị hạn chế với kiểu mã hóa video MPEG-2: Đầu vào

DVB-S2 có thể tương thích với các kiểu mã hóa MPEG-2, MPEG-4 và

HDTV. DVB-S2 chấp nhận rất nhiều dạng đầu vào khác nhau: dòng bit

liên tục, dòng truyền tải đơn chương trình và đa chương trình, IP hay

ATM. Đặc tính này cho phép các dòng dữ liệu khác và các cấu hình dữ

liệu trong tương lai có thể sử dụng được với DVB-S2 mà không cần tới

một tiêu chuẩn mới.

2.4. Kết luận

DVB-S2 là tiêu chuẩn mới nhất trong hệ thống tiêu chuẩn DVB cho các

ứng dụng vệ tinh băng rộng, với hiệu suất sử dụng băng thông tăng từ 30% đến

131% so với công nghệ DVB-S hiện nay. Công nghệ này thực sự là bộ công cụ

hữu hiệu cho các dịch vụ tương tác vệ tinh. Tổ chức DVB lạc quan rằng: với

việc ra đời chuẩn DVB-S2 thì sẽ không cần phải ra thêm một chuẩn nào khác

nữa.

Thông qua việc nghiên cứu về tiêu chuẩn DVB-S2 này ta có một cách

nhìn tổng quan về công nghệ DVB-S2 và hiểu được do đâu mà DVB-S2 lại có

sự vượt trội so với tiêu chuẩn DVB-S trước đây, đó là sử dụng các kỹ thuật

mới: mã hoá tiên tiến, mã ngoài BCH, mã trong LDPC, sử dụng nhiều hệ số

roll-off... Chính nhờ kỹ thuật này mà DVB-S2 đã có hiệu quả phổ đáng kể,

tăng cường khả năng bảo vệ lỗi trong truyền phát tín hiệu. Những ưu thế vượt

trội của công nghệ này là cơ sở cho việc phát sóng truyền hình số độ phân giải

cao HDTV và cung cấp nhiều dịch vụ hơn nữa tới người sử dụng.

63

64

CHƯƠNG 3

MỘT SỐ ĐỀ XUẤT VỀ DỊCH VỤ VÀ THÔNG SỐ TRẠM THU PHÁT KHI

SỬ DỤNG DVB-S2 CHO ĐÀI THVN

Truyền dẫn tín hiệu qua vệ tinh hiện nay đóng vai trò chủ đạo trong việc

truyền dẫn và phát sóng các chương trình truyền hình Quốc gia trong và ngoài

nước. THVN đã và đang có nhiều bước tiến đáng kể trong việc nâng cấp, đổi

mới và đầu tư thiết bị công nghệ, đào tạo đội ngũ cán bộ kỹ thuật trong lĩnh

vực này. Trên cơ sở các nghiên cứu về chuẩn DVB-S trong chương 1 và chuẩn

DVB-S2 trong chương 2, chương 3 tác giả đưa ra hiện trạng sử dụng vệ tinh

của Đài THVN hiện nay và các đề xuất cho việc sử dụng DVB-S2 trong những

năm tới.

3.1. Hiện trạng sử dụng thông tin vệ tinh của Đài Truyền hình Việt Nam

3.1.1. Hiện trạng truyền dẫn và phát sóng các chương trình truyền hình

quảng bá và truyền hình lưu động qua vệ tinh

Hiện nay Đài THVN truyền dẫn các tín hiệu chương trình VTV1,

VTV2, VTV3, VTV5, VTV6 tới các đài phát sóng Quốc gia, các Đài khu vực,

các trạm phát lại mặt đất qua vệ tinh trên cả băng C và Ku theo phương thức

nhiều chương trình trên một sóng mang MCPC (MultiChanel Per Carrier).

Trong đó, nguồn tín hiệu từ băng C là nguồn tín hiệu chính và nguồn tín hiệu từ

băng Ku là nguồn tín hiệu dự phòng.

Các trạm phát lại mặt đất của THVN đều dùng công nghệ tương tự hệ

PAL D/K. Dự kiến từ năm 2015 các trạm phát lại bắt đầu chuyển sang công

nghệ số DVB-T.

65

3.1.2. Hiện trạng truyền dẫn và phát sóng các chương trình truyền hình

trả tiền qua vệ tinh

Các chương trình quảng bá VTV1, VTV2, VTV3, VTV4, VTV5, VTV6

và các chương trình truyền hình trả tiền được phát trên băng Ku từ Vĩnh Yên.

Hiện nay số lượng chương trình DTH là 57 kênh và phát trên 04 bộ phát

đáp 36MHz.

Hình 3.5: Truyền dẫn và phát sóng các chương trình VTV 1,2,3,5,6 trên băng C (Hà Nội) và Ku (Vĩnh Yên)

C/Ku

VTV 1, 2, 3, 5, 6

Hà Nội/Vĩnh Yên

Vinasat 1 1320E

Truyền hình quảng bá C/Ku

Phát VTV1

Phát VTV2

Phát VTV3

Phát VTV5

Phát VTV6

Truyền hình

l độ

66

3.2.3. Hiện trạng truyền dẫn và phát sóng chương trình truyền hình VTV4

dành cho cộng đồng người Việt Nam ở nước ngoài qua vệ tinh

Hiện nay chương trình VTV4 của Đài THVN được phủ sóng tại hầu hết

các khu vực trên thế giới. Cụ thể:

Tại Châu Á: Vệ tinh phủ sóng là Vinasat 1 (1320E) băng C và Thaicom

3 (78,50E) băng C global.

Tại Châu Âu: Vệ tinh phủ sóng là Hotbird 3 (130E) băng Ku.

Tại Bắc Mỹ: Vệ tinh phủ sóng là IA-5 (970W).

Vĩnh yên

Ku Ku

DTH

Hình 3.6: Truyền dẫn và phát sóng các chương trình VTV1,2,3,5,6 trên băng Ku

Ku Band

Các chương trình DTH

Vĩnh

Vinasat 11320E

Ku Band

67

3.3. Hiện trạng các máy phát vệ tinh của Đài THVN

3.3.1. Hiện trạng máy phát vệ tinh băng C

Đông Á

Australia

Vinasat 1

1320E

Bắc Mỹ Tây Âu

Châu Á, Bắc Phi

Hình 3.7: Truyền dẫn và phát sóng chương trình VTV4 qua vệ tinh

VTV 4

Hà Nội

IA-5 Hotbird 3

130EIS-907

Băng C Băng C

Băng Ku Băng C Băng Ku

Thaicom 3

Băng C

global

Băng C

global

Băng Ku

Băng C

68

Hình 3.9: Sơ đồ khối máy phát vệ tinh băng C

Nguyên lý làm việc: Các tín hiệu đầu vào tương tự được đưa vào bộ

chuyển mạch điện tử 8x8 (Router). 6 đầu ra được đấu tương ứng vào 6 bộ

mã hoá MPEG.

Phần mã hoá gồm 3 card EVA 210. Mỗi card chứa 2 khối mã hoá

MPEGII. Đầu ra ASI 1 chương trình của các khối mã hoá này được đưa vào

02 card ghép kênh NIM100. Hiện nay phát 4 chương trình nên các khối mã

hóa MPEG-2 hoạt động ở chế độ dự phòng 4+2.

Hai card NIM100 vừa là card ghép kênh, vừa là card điều khiển, trong đó

1 chạy ở chế độ điều khiển dự phòng. Đầu ra ASI (gói 4 chương trình) của 2

card NIM100 được đấu tương ứng với hai bộ điều chế NDS.

Hai khối điều chế NDS có nhiệm vụ điều chế tín hiệu thành tín hiệu trung

tần (IF) 70MHz theo tiêu chuẩn DVB -S. Đầu ra được nối tương ứng đến hai

bộ đổi tần thông qua bảng đấu dây (Patch panel).

69

Hai khối đổi tần thực hiện chức năng đổi tần số từ IF 70MHz thành tần số

RF băng C (5,8÷6,4 GHz). Hai khối đổi tần có cấu hình dự phòng 1+1 tự

động. Đầu ra các khối này nối vào HPA qua chuyển mạch điều khiển dự

phòng tự động.

Hai khối HPA đèn sóng chạy TWT (Travelling Wave Tube) làm nhiệm

vụ khuếch đại công suất cao tần, công suất ra tối đa là 400W. Cuối cùng, tín

hiệu cao tần được đưa vào ống dẫn sóng dẫn ra anten đường kính 4,6 m phát

lên vệ tinh.

3.3.2. Hiện trạng máy phát vệ tinh lưu động băng C

Nguyên lý làm việc: Hệ thống máy phát băng C có cấu trúc đơn giản, gọn

nhẹ và được đặt trên xe truyền hình lưu động. Tín hiệu đầu vào được đưa

đến bộ Encoder EN802 (Tandberg) để mã hóa tín hiệu theo tiêu chuẩn

MPEG-2 MP@ML hoặc MPEG-4 AVC H.264. Đầu ra là tín hiệu ASI được

đưa đến bộ điều chế SM6620 (Tandberg) để điều chế tín hiệu thành tín hiệu

IF theo chuẩn DVB-S hoặc DVB-S2. Tín hiệu đầu ra được đưa đến bộ đổi

tần lên SCR600BU (Vertex) để chuyển lên tần số băng C (tiêu chuẩn và mở

rộng) và đưa đến bộ HPA SSPA (Solid States Power Amplifier) PCM 6200

(Vertex), công suất 200W sau đó đưa ra anten phát đường kính 2,4m. Tín

hiệu thu về kiểm tra được đưa đến LNB để chuyển xuống băng L sau đó đưa

đến đầu thu chuyên dụng T1290 (Tandberg) để đưa ra màn hình kiểm tra.

Cấu hình hệ thống là 1+1, dự phòng nóng (hot standby).

70

Antenna 2.4 m

Local motor controller

2 PortFEED

S1

HPA2

LNB

HPA1

Anten Controller

AV In

AV In

Hot standby 1+1 Controler

Spl

iter

To Spectrum analyzer

To L bandMonitor

Encoder 1 Mod 1 Upconverter 1

Mod 2 Upconverter 2Encoder 2

IRD 1

IRD 2

3.2. Một số đề xuất về dịch vụ của DVB-S2

Sau đây là một vài ví dụ về ứng dụng cụ thể của DVB-S2, từ phát hình

quảng bá cho đến các ứng dụng chuyên nghiệp, các ứng dụng tương tác.

3.2.1. Phát sóng kết hợp các chương trình truyền hình quảng bá SDTV và

HDTV [7]

So sánh dịch vụ quảng bá của 2 tiêu chuẩn với cùng bộ phát đáp vệ tinh

băng thông 36MHz. Tốc độ dòng video trong ví dụ như sau: 4,4 Mbit/s

(SDTV) và 18Mbit/s (HDTV) đối với mã hóa MPEG-2; hoặc 2,2 Mbit/s

(SDTV) và 9Mbit/s (HDTV) đối với mã hóa nâng cao AVC (Advanced Video

Coding).

Bảng 3.1: Ví dụ so sánh DVB-S và DVB-S2 trong ứng dụng quảng bá EIRP của vệ tinh 51 dBW 53,7 dBW

Hệ thống DVB - S DVB- S2 DVB- S DVB- S2

Mã hóa & điều chế QPSK 2/3 QPSK 3/4 QPSK 7/8 8PSK 2/3

Tốc độ symbol (Mbaud) 27,5

(α = 0,35)

30,9

(α = 0,25)

27,5

(α = 0,35)

29,7

(α = 0,25)

C/N (dB) 5,1 5,1 7,8 7,8

Tốc độ bit mang tin (Mb/s) 33,8 46 (tăng 36%) 44,4 58,8 (tăng 32%)

Số chương trình SDTV 7 (MPEG-2) 10 (MPEG-2) 10 (MPEG-2) 13 (MPEG-2)

71

15 (AVC ) 21 (AVC) 20 (AVC) 26 (AVC)

Số chương trình HDTV 1-2 (MPEG 2

3-4 (AVC)

2 (MPEG-2)

5 (AVC)

2 (MPEG-2)

5 (AVC)

3 (MPEG-2)

6 (AVC)

Tỷ số C/N yêu cầu trong cả 2 hệ thống được xác định thông qua nhiều chế

độ truyền dẫn khác nhau, với các tốc độ symbol và hệ số roll-off được điều chỉnh

cho phù hợp.

Kết quả cho thấy ưu điểm của DVB-S2 so với DVB-S: dung lượng tăng hơn

30%. Hơn thế nữa, sự kết hợp của DVB-S2 và mã hóa AVC có thể đạt được tới

20-26 kênh SDTV trên một bộ phát đáp, giảm đáng kể chi phí cho từng kênh vệ

tinh. Đối với các chương trình HDTV, với dung lượng 5-6 kênh có thể giảm bớt

chi phí cho việc nâng cấp từ các dịch vụ SDTV thông thường.

Một trong những cải tiến của DVB-S2 là khả năng truyền dẫn với nhiều

dòng truyền tải khác nhau, với những thiết lập thông số tách biệt giữa các chương

trình. Điều này giúp DVB-S2 có thể truyền kết hợp đồng thời cả các kênh SDTV

và HDTV. Ví dụ, với tốc độ symbol 27,5 Mbaud sử dụng 8PSK 3/4 và QPSK 2/3,

khoảng 40 Mbit/s có thể được dùng để truyền 2 chương trình HDTV và 12 Mbit/s

được dùng để truyền từ 2 đến 3 chương trình SDTV. Chênh lệch giữa 2 tỷ số C/N

yêu cầu khoảng 5 dB.

Hình 3.1: Cấu hình phát sóng HDTV và SDTV sử dụng VCM [9]

3.2.2. Phân phối chương trình đến các trạm phát truyền hình mặt đất

72

Truyền hình số mặt đất DTT (Digital Terrestrial Television) đã được sử

dụng rộng rãi trên thế giới. Một trong những cách phổ biến để phân phối chia

sẻ các chương trình truyền hình đến các trạm phát số mặt đất là sử dụng vệ

tinh.

Sử dụng DVB-S2 cho phép truyền nhiều dòng ghép kênh MPEG theo

cấu hình 1 sóng mang trên 1 bộ phát đáp. Do vậy khối khuếch đại cao tần HPA

trên vệ tinh có thể làm việc tại điểm làm việc bão hòa để đạt được hiệu suất cao

nhất.

Ví dụ, một bộ phát đáp với băng thông 36MHz và α = 0,2 có thể truyền

được tốc độ symbol 30 Mbaud, sử dụng DVB-S2. Nếu muốn truyền 2 dòng

ghép kênh DTT với tốc độ bit 24 Mbit/s thì hiệu suất sử dụng phổ cần thiết là

(48: 30) = 1,6 bit/s/Hz. Hiệu suất này tương ứng với điều chế QPSK. Tỷ số

C/N yêu cầu vào khoảng 6 dB. Để đảm bảo chất lượng của tuyến truyền dẫn,

anten của trạm phát lên có đường kính 3m (EIRP = 64 dBW) và anten của trạm

mặt đất có đường kính 1,2m. Nếu thay thế DVB-S2 bằng cách sử dụng DVB-

DSNG thì thiết lập hệ thống như sau: 8PSK 2/3, tốc độ symbol 13,3 Mbaud,

C/N yêu cầu 9 dB đồng thời bộ phát đáp phải điều chỉnh để OBO = 5,5 dB. Do

C/N yêu cầu cao hơn, EIRP của anten phát phải bằng 75 dBW và kích thước

anten trạm thu không được nhỏ hơn 2 m. Như vậy, sử dụng DVB-S2 cho phép

thu nhỏ kích thước anten và trạm upink rẻ hơn.

73

Hình 3.2: Phân phối chương trình đến các trạm phát truyền hình mặt đất [9]

3.2.3. Các ứng dụng lưu động DSNG sử dụng DVB-S2

Chuẩn DVB-S2 được thiết kế dành cho cả các ứng dụng lưu động

DSNG. Trong lĩnh vực này, DVB-S2 cũng thể hiện rõ sự hiệu quả của mình.

Ví dụ: Với một băng tần 9MHz trên bộ phát đáp vệ tinh, một xe truyền hình

lưu động DVB-S2 (kích thước anten 1,2m, EIRP=61 dBW) có thể truyền được

dòng dữ liệu tốc độ 19,8 Mbit/s trong điều kiện trời tốt và chuyển sang 14,85

Mbit/s khi có mưa lớn. Trong khi đó, nếu dùng DVB-DSNG thì chỉ có thể đạt

được 10,7 Mbit/s. Thậm chí xét một trạm DSNG gọn nhẹ (flyaway) với đường

kính anten 90cm và bộ khuếch đại HPA công suất 12 W. DVB-S2 kết hợp với

ACM có thể đạt được 9,9 Mbit/s (QPSK, 2/3, roll-off 0,2) trong điều kiện tốt,

8,9 Mbit/s (QPSK 3/5) trong điều kiện bình thường và 3,68 Mbit/s (QPSK 1/4)

khi trời xấu. Như vậy đã đủ để có chất lượng tốt với mã hóa MPEG-2, còn với

DVB-S thì cần tăng công suất lên 5 dB nữa mới có thể đạt được tốc độ 6,1

Mbit/s.

3.2.4. Góp tin truyền hình tới Studio (TV contribution)

DVB-S2 là lý tưởng cho cả hoạt động góp tin vệ tinh điểm-điểm và điểm-

đa điểm, và DSNG từ các trạm uplink có thể di chuyển. Các dịch vụ được

truyền tải trong một hoặc nhiều dòng truyền tải MPEG. DVB-S2 cung cấp mã

hoá và điều chế không đổi, điều chế và mã hoá thích nghi, điều chế và mã hoá

thay đổi, cho phép các định dạng điều chế và các mức sửa lỗi có thể thay đổi

trong giới hạn cơ sở dữ liệu trên cơ sở từng khung tiếp nối nhau. Băng thông

cần thiết giảm và tính kháng nhiễu cao của DVB-S2 là đặc biệt giá trị với các

ứng dụng SNG, ở đó giá thành truyền dẫn và độ tin cậy là các thông số xem xét

đầu tiên.

Xét một ví dụ: Giả sử thuê 18MHz của bộ phát đáp vệ tinh để cho ba bộ

DSNG, mỗi bộ dùng 6MHz. Mỗi bộ DSNG phát một kênh đơn ở tốc độ bit

6,8Mb/s, khi dùng điều chế QPSK, tỷ lệ mã FEC 7/8 và roll-off 35%. Băng

74

thông toàn phần cho mỗi kênh là 6 MHz (5,7 MHz cho video và 0,3 MHz cho

thông tin audio với studio). ( ) cần thiết theo chuẩn DVB-S là 6,4 dB

nhưng ở mức vừa phải ta lấy là 6,1 dB, ứng với tỷ số (C/N) là 8,176 dB. Khi

nâng cấp lên DVB-S2 có thể giảm giá thành băng thông truyền dẫn ba kênh,

hoặc thêm một kênh với cùng giá thành. Cụ thể: khi dùng điều chế 8PSK, 2/3

FEC và roll-off 20% với các pilot, băng thông cần thiết để truyền một kênh

DVB-S2 là 4,5 MHz (4,2 MHz cho video và 0,3 MHz cho thông tin video với

studio). Điều này biểu diễn tiết kiệm băng thông 25% so với 6 MHz cần thiết

để truyền cùng một nội dung trong chuẩn DVB-S. Tỷ số (C/N) cần thiết là 7,92

dB, thấp hơn giá trị 8,176 dB trong DVB-S. Như vậy, bằng việc chuyển từ

DVB-S sang DVB-S2 có thể tăng từ ba bộ lên bốn bộ DSNG, với giá thành

không đổi. Hoặc nhà quảng bá có thể chỉ truyền nội dung cũ trên ba bộ DSNG,

tiết kiệm 25% băng thông.

Giả sử mỗi bộ DSNG phát 3 giờ /lần, 60 lần/năm thì số giờ tổng cộng của ba bộ là 540 giờ.

Nếu giá thành thuê là 300USD/MHz/giờ thì với số băng thông được giảm là 4,5 MHz của ba khối cho tiết kiệm hàng năm là:

300USD/MHz/giờ x 4,5 MHz x 540 giờ = 729.000 USD.

3.2.5. Mã hóa và điều chế thích nghi cho các ứng dụng điểm-điểm

Khi sử dụng DVB-S2 cho các ứng dụng điểm-điểm (point to point), lợi

thế của DVB-S2 so với DVB-S càng thể hiện rõ nhờ ứng dụng mã hóa và điều

chế thích nghi ACM. ACM cho phép tăng gấp đôi hoặc thậm chí gấp ba thông

lượng của hệ thống và giảm đáng kể giá thành dịch vụ. Ngoài ra, ACM giúp

hạn chế gián đoạn thông tin trong điều kiện đường truyền kém vì vậy rất quan

trọng với các băng tần cao (Ku, Ka) và vùng khí hậu nhiệt đới.

75

Hình 3.3: Sơ đồ khối của hệ thống DVB-S2 với ứng dụng điểm-điểm [9]

Đường truyền DVB-S2 chế độ ACM bao gồm các thành phần chính như sau: Gateway ACM, bộ điều chế DVB-S2, trạm phát lên vệ tinh, vệ tinh và trạm thu vệ tinh. Trạm thu (ST-Satellite terminal) được kết nối với cổng ACM thông qua một kênh phản hồi. Bộ điều chế DVB-S2 làm việc với tốc độ symbol không đổi, vì băng thông trên bộ phát đáp của vệ tinh là cố định. Tuy nhiên, nhờ cấu trúc khung vật lý của DVB-S2, bộ điều chế có thể thay đổi phương pháp điều chế và mã hóa trên từng khung một. Nhờ áp dụng cơ chế thích nghi này mà DVB-S2 có thể duy trì được dịch vụ ngay cả trong điều kiện đường truyền xấu (mưa, bão…) bằng cách tăng thêm các bit mã sửa sai, hoặc lựa chọn phương pháp điều chế chống nhiễu tốt hơn.

Cơ chế làm việc của DVB-S2 theo chế độ mã hóa & điều chế thích nghi như sau:

- Mỗi trạm thu sẽ xác định trạng thái hiện thời của kênh truyền (bằng tỷ số sóng mang trên nhiễu + tạp âm C/N+I) và thông báo đến cổng ACM thông qua kênh phản hồi.

- Cổng ACM sẽ dựa trên bản tin thông báo này để lựa chọn cấu hình

mã hóa cho các gói bản tin.

76

- Để tránh hiện tượng tràn thông tin trong điều kiện xấu, một cơ chế

điều khiển tốc độ bit sẽ được thiết lập để quy định lưu lượng trong

điều kiện cụ thể. Điều này có thể thực hiện bằng nhiều cách khác

nhau, phụ thuộc vào yêu cầu của dịch vụ hoặc cấu trúc của hệ thống.

Để có thể hoạt động hiệu quả thì độ trễ phản ứng của vòng lặp điều

khiển đối với trạng thái của kênh là rất quan trọng, vì điều này ảnh hưởng trực

tiếp tới khả năng thích ứng của hệ thống. Ví dụ, độ biến thiên C/N+I tối đa của

băng Ka là 0,5 dB 1 giây trong khi có mưa lớn. Do chênh lệch C/N giữa 2 mức

bảo vệ khác nhau của DVB-S2 khoảng 1 dB nên độ trễ thích nghi cần nhỏ hơn

1 giây để giảm thiểu khả năng mất mát dữ liệu.

3.2.6. Dịch vụ IP unicast

Hình 3.4: Dịchvụ IP dùng DVB-S2 liên kết ACM

Hình 3.4 là sơ đồ trao đổi thông tin (thông tin yêu cầu và thông tin đáp

ứng) giữa người dùng internet qua vệ tinh (ST-Satellite Terminal), Gateway vệ

tinh (Satellite Gateway) và nhà cung cấp dịch vụ (Info Service Provider) trong

một phiên sử dụng Internet dùng hệ thống ACM DVB-S2.

Hệ thống IP unicast dùng DVB-S2 phải áp dụng sửa lỗi đối với mỗi người

dùng (user), trong khi đó số user có thể rất lớn (ví dụ có thể đến vài trăm ngàn).

Theo sự ‘thương lượng” giữa ST và thiết bị quản lí định tuyến ACM (ACM

77

Router Manager) mà mỗi ACM router về nguyên tắc có thể tách rời gói IP cho

mỗi user, ở mỗi mức yêu cầu bảo vệ lỗi và dịch vụ khác nhau.

Tổng lưu lượng đầu vào trung bình ở mỗi kênh của mỗi mức bảo vệ không

được vượt qua lưu lượng có thể của kênh truyền. Trong khi lưu lượng đỉnh có

thể nhất thời vượt qua lưu lượng này tùy theo dung lượng bộ đệm và thời gian

trễ cho phép tối đa của dịch vụ.

Khi tổng lưu lượng yêu cầu lớn hơn lưu lượng kênh truyền thì có thể phải

chấp nhận trễ (delayed) hoặc ngưng dịch vụ (dropped) ở các gói IP có độ ưu tiên

thấp để ưu tiên cho các gói IP có độ ưu tiên cao hơn hoặc giảm tốc độ bit đến

user mà điều kiện thu kém.

Nếu trễ vòng lặp (bao gồm cả Routing Manager và ACM Router) quá lớn

dể cho phép thu tốt trong điều kiện đường truyền fading nhanh thì các dịch vụ

thời gian thực như video, audio thì ACM có thể phải gắn cố định vào các nhánh

có độ ưu tiên cao.

Trong ACM Router các bộ đệm đầu vào có thể dùng tới kỹ thuật polling

tĩnh hoặc động theo thống kê lưu lượng, đặc tính đường truyền và chính sách ưu

tiên lưu lượng của nhà cung cấp dịch vụ.

Giao diện của ACM router với hệ thống ACM DVB-S2 có thể là một dòng

truyền tải đơn (Single Generic Stream) hoặc đa dòng truyền tải (Multiple

Transport Stream) và điều khiển ACM.

3.3. Đề xuất về dịch vụ

3.3.1 Đối với dịch vụ truyền hình quảng bá

Đề xuất chuyển đổi:

- Hiện nay số lượng các chương trình quảng bá của THVN là 5 gồm

VTV1, VTV2, VTV3, VTV5 và VTV6. Theo định hướng quy hoạch truyền

dẫn phát sóng của THVN đến năm 2020 thì từ 2010 sẽ bắt đầu triển khai

truyên hình số mặt đất tại Hà Nội và thành phố Hồ Chí Minh sau đó từ

2011-2015 sẽ triển khai trên diện rộng.

78

Việc ra đời của tiêu chuẩn DVB-S2 mang lại hiệu quả cao cho việc chi

phí thuê kênh vệ tinh đặc biệt khi có số lượng chương trình lớn. Khác với

tiêu chuẩn DVB-S tiêu chuẩn DVB-S2 cho phép thiết kế hệ thống với nhiều

mức độ chất lượng đường truyền dẫn khác nhau, từ nhưng nơi có cường độ

trường thấp, đến nơi có cường độ trường cao vẫn đảm bảo chất lượng đường

truyền theo yêu cầu.

Đối với vệ tinh VINASAT 1 là vệ tinh có cường độ trường lớn, chất

lượng đường truyền cao nên việc sự dụng DVB-S2 sẽ đem lại hiệu quả cao

trong việc truyền dẫn các tín hiệu truyền hình so với tiêu chuẩn DVB-S.

Như trước đây hệ thống truyền dẫn của THVN sử dụng vệ tinh Measat 1

qua băng tần C, Vùng phủ sóng của Vệ tinh Measat 1 có cường độ trường

EIRP từ 36-40dBW cho toàn bộ lãnh thổ Việt Nam.

Vùng phủ sóng vệ tinh Measat 1

Đối với vùng phủ sóng có cường độ trường như trên, chất lượng đường

truyền được tinh toán như sau:

79

Tính toán chất lượng đường truyền.

Các thông số trạm phát: Công suất cực đại tram phát: 400 W. Công suất hoạt động: 80 W (19,03 dBW). Độ dự trữ công suất trạm phát: 6,78 dB. Độ rộng băng tần 18 Mhz Kiểu điều chế QPSK. Tỷ lệ FEC 3/4 Đường kính anten phát: 4,6 m. Tăng ích anten phát: 46,91 dB. Tổng suy hao trạm phát: 3 dB. Cường độ EIRP hoạt động: 62,49 dBW.

Thông số vệ tinh: Cường độ EIRP: phụ thuộc vị trí trạm thu. Độ rộng băng tần bộ phát đáp: 36 Mhz. Độ rộng băng tần sử dụng: 18 MHz. Back off (cho tuyến tính): 4 dB.

Bảng kết quả C/N toàn tuyến đối với vùng phủ sóng và với các anten thu có đường kính khác nhau.

EIRP (dB) 36 37 38 39 40

Anten 1,8 m 4.14 5.04 5.91 6.67 7.57 Anten 2,4 m 6.34 7.17 7.96 8.72 9.43 Anten 3,0 m 7.92 8.67 9.39 10.05 10.66Anten 3,6 m 9.09 9.78 10.41 10.99 11.51 Anten 4,8 m 10.71 11.26 11.75 12.18 12.57

Khi sử dụng tiêu chuẩn DVB-S, phụ thuộc vào tỷ lệ mã hoá đường truyền

(FEC), mà yêu cầu chất lượng đường truyền C/N khác nhau. Bảng sau chỉ ra

80

yêu cầu C/N đối với các tỷ lệ mã hoá FEC trong đương truyền vệ tinh tiêu

chuẩn DVB-S.

Band width (Mhz) 12 18 24 EB/No C/N

FEC Symbol rate (Msym/s) 8.889 13.333 17.778

1/2 Information data rate

(Mb/s)

8.192 12.288 16.383 5.3 4.20 2/3 10.922 16.383 21.845 5.8 6.00 3/4 12.288 18.431 24.575 6.3 7.00 5/6 13.653 20.479 27.306 6.8 7.90 7/8 14.336 21.503 28.671 7.2 8.60

Đối với chất lượng đường truyền khi sử dụng vệ tinh Measat việc sử

dụng tỷ lệ mã sủa sai FEC là 3/4 cho phép các anten thu có đường kính trên

2,4m đều có khả năng thu được tốt các chương trình của THVN. Đối với

một số nơi có cường độ trường EIRP nhỏ hơn 37dBW cần sử dụng anten có

đường kính lớn hơn.

Khi chuyển sang vệ tinh VINASAT1, vùng phủ sóng băng tần của vệ tinh

VINASAT1 như sau:

81

Đối với toàn bộ lãnh thổ Việt Nam, cường độ trường của vệ tinh

VINASAT1 đều có mức EIRP trên 44 dB, tính toán chât lượng đường truyền

đối với vệ tinh VINASAT1 được tính như sau:

Các thông số trạm phát: Công suất cực đại tram phát: 400 W. Công suất hoạt động: 80 W (19,03 dBW). Độ dự trữ công suất trạm phát: 6,78 dB. Độ rộng băng tần 18 Mhz Kiểu điều chế QPSK. Tỷ lệ FEC 3/4 Đường kính anten phát: 4,6 m. Tăng ích anten phát: 46,91 dB. Tổng suy hao trạm phát: 3 dB. Cường độ EIRP hoạt động: 62,49 dBW.

82

Thông số vệ tinh: Cường độ EIRP: phụ thuộc vị trí trạm thu. Độ rộng băng tần bộ phát đáp: 36 Mhz. Độ rộng băng tần sử dụng: 18 MHz. Back off (cho tuyến tính): 4 dB.

Bảng kết quả C/N toàn tuyến đối với vùng phủ sóng và với các anten thu có đường kính khác nhau.

EIRP (dB) 42 44

Anten 1,8 m 9,20 10,70 Anten 2,4 m 11,05 12,32 Anten 3,0 m 12,28 13,34 Anten 3,6 m 13,14 14,01

Do có chất lượng đường truyền C/N cao việc tiếp tục sử dụng tiêu

chuẩn DVB-S sẽ gây lãng phí về hiệu quả băng tần đối với vệ tinh

VINASAT1. Khi sử dụng DVB-S tốc độ cao nhất có thể đối với vệ tinh

VINASAT khi sử dụng 18 MHz (1/2 Transponder) là 21,50 Mbit/s.

Khi sử dụng tiêu chuẩn DVB-S2 yêu cầu đường truyền đối với các

kiểu mã hoá được mô ta trong bảng sau

Band Width 12 18 24

Es/No Eb/No C/N Symbol rate 9.6 14.4 19.2 Data rate (Mbit/s) QPSK 1/2 9.493 14.240 18.986 1.00 1.049 0.03 QPSK 3/5 11.408 17.112 22.815 2.23 1.481 1.26 QPSK 2/3 12.694 19.040 25.387 3.10 1.887 2.13 QPSK 3/4 14.280 21.420 28.559 4.03 2.306 3.06 QPSK 4/5 15.237 22.856 30.474 4.68 2.674 3.71 QPSK 5/6 15.885 23.827 31.770 5.18 2.993 4.21 QPSK 8/9 16.958 25.437 33.916 6.20 3.729 5.23 QPSK 9/10 17.171 25.756 34.341 6.42 3.895 5.45 8PSK 3/5 17.088 25.632 34.176 5.50 2.996 4.53 8PSK 2/3 19.014 28.521 38.028 6.62 3.652 5.65 8PSK 3/4 21.390 32.085 42.780 7.91 4.431 6.94

83

8PSK 5/6 23.794 35.691 47.588 9.35 5.408 8.38 8PSK 8/9 25.402 38.103 50.803 10.69 6.464 9.72 8PSK 9/10 25.720 38.581 51.441 10.98 6.700 10.01

Với kết quả tính toán chất lượng đường truyền như trên THVN hoàn

toàn có thể sử dụng kiểu điều chế DVB-S2 8PSK, FEC 9/10 trên vệ tinh

VINASAT mà vẫn đảm bảo chất lượng tín hiệu đồng thời đem lại hiệu suất

180% so với tiêu chuẩn DVBS hiện nay.

3.4. Kết luận chương 3

Chuẩn DVB-S2 có nhiều ưu điểm so với chuẩn DVB-S, tuy nhiên hiện

nay các thiết bị truyền hình trên thế giới nói chung và của Đài THVN nói riêng

đang chỉ dùng chuẩn DVB-S. Việc chuyển đổi sang sử dụng chuẩn DVB-S2

cần có lộ trình hợp lý kết hợp với đầu tư thiết bị thích hợp để tận dụng tốt các

thiết bị hiện có và các thiết bị mới đầu tư. Trong chương này tác giả đã trình

bày các ứng dụng điển hình của DVB-S2 và phương án áp dụng vào các thiết

bị truyền dẫn phát sóng vệ tinh của Đài THVN.

84

KẾT LUẬN

Trên cơ sở lý thuyết, đề tài đã phân tích, nghiên cứu về chuẩn DVB-S và

DVB-DSNG ở chương 1, chuẩn DVB-S2 và các so sánh với chuẩn DVB-S

trong chương 2, các ứng dụng điển hình của chuẩn DVB-S2 và hiện trạng cũng

như đề xuất về phương án chuyển đổi sang DVB-S2 cho THVN những năm tới

trong chương 3.

DVB-S2 là chuẩn ra đời dựa trên những yêu cầu mới về chất lượng và

tiết kiệm băng tần của các dịch vụ truyền thống như truyền dẫn và phát sóng

các chương trình truyền hình độ phân giải tiêu chuẩn SDTV và các dịch vụ mới

như internet, truyền dẫn và phát sóng các chương trình truyền hình độ phân

giải cao HDTV. Các kỹ thuật mới được đưa vào sử dụng gồm các kỹ thuật mã

hóa sử lỗi mới như LDPC, BCH có khả năng sửa lỗi tốt hơn và sửa được các

lỗi cụm tập trung và nhờ đó áp dụng được các kiểu điều chế có hiệu suất cao

hơn như 16APSK, 32APSK. Ngoài ra, nhờ có một kênh ngược để tương tác

giữa phía thu và phía phát mà có thể áp dụng được kiểu điều chế mã hóa thích

nghi ACM nhằm tối ưu hóa hiệu suất băng thông (ACM cho phép tăng gấp đôi

hoặc thậm chí gấp ba thông lượng của hệ thống và do đó giảm đáng kể giá

thành dịch vụ) và độ tin cậy của đường truyền (điều này có ý nghĩa quan trọng

đối với băng tần Ku bị chịu ảnh hưởng nhiều của thời tiết và nhất là trong điều

kiện khí hậu nhiệt đới như ở Việt Nam). Một đặc điểm nổi bật nữa của DVB-

S2 là có thể chấp nhận nhiều đầu vào khác nhau như MPEG-2, MPEG-4, IP,

HDTV,…dạng gói hoặc liên tục mà không chỉ bó buộc vào mỗi kiểu đầu vào

dòng truyền tải MPEG-2 như ở tiêu chuẩn DVB-S.

Các nghiên cứu của tác giả đã được đưa vào áp dụng thực tế khi lựa

chọn thiết bị vệ tinh lưu động và bước đầu đưa vào làm tài liệu tham khảo khi

tiến hành các dự án đầu tư thiết bi truyền hình vệ tinh tại Đài THVN.

85

Do cả yếu tố chủ quan và khác quan nên luận văn không tránh khỏi

những thiếu sót, tác giả rất mong được sự đóng góp ý kiến của các thầy cô,

đồng nghiệp và những người quan tâm tới luận văn này.

86

TÀI LIỆU THAM KHẢO

TIẾNG VIỆT 1. Nguyễn Đình Lương (2001), Các hệ thống thông tin vệ tinh, NXB Bưu điện.

2. Phùng Văn Vận (2005), Nghiên cứu cấu trúc hệ thống viễn thông mặt đất để

sử dụng hiệu quả vệ tinh Vinasat, Đề tài KC.01.19.

3. Viện Khoa học và Công nghệ Việt Nam (2005), Công nghệ vệ tinh, Tài liệu

khoá học Công nghệ vệ tinh.

TIẾNG ANH 4. DVB (1997), Framing structure, channel coding and modulation for

12/12GHz satellite services, DVB EN 300 421.

5. DVB (1999), Framing structure, channel coding and modulation for Digital

Satellite News Gathering (DSNG) and other contribution applications by

satellite, DVB, EN 301 210.

6. ETSI TR 102 376 V1.1.1 (2005-02), Digital Video Broadcasting (DVB),

User guidelines for the second generation system for Broadcasting, Interactive

Services, News Gathering and otherbroadband satellite applications (DVB-S2).

7. DVB-S2 ready for lift-off, Alberto Morello and Vittoria Mignone.

8. Dirk Breynaert, Newtec, Analysis of DVB-S2 bandwidth efficiency.

9. International Journal of Satellite Communications and Networking, Alberto

Morello, Ulrich Reimers, DVB-S2 the Second Generation Standard for

Satellite Broadcasting and Unicasting.