121
Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie der Ruhr-Universität Bochum angefertigt am Lehrstuhl für Biologie der Mikroorganismen vorgelegt von Diplom-Biologe Frank Rosenau aus Sprockhövel Tag der mündlichen Prüfung: 14.1.2001 Bochum 2001

Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Embed Size (px)

Citation preview

Page 1: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Überexpression der Lipase aus

Pseudomonas aeruginosa

und physiologische Charakterisierung der

Foldasefunktion

Dissertation

zur Erlangung des Gradeseines Doktors der Naturwissenschaften

der Fakultät für Biologieder Ruhr-Universität Bochum

angefertigt amLehrstuhl für Biologie der Mikroorganismen

vorgelegt vonDiplom-Biologe

Frank Rosenau

aus Sprockhövel

Tag der mündlichen Prüfung: 14.1.2001

Bochum 2001

Page 2: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Meiner Mutter

Page 3: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Herrn Priv. Doz. Dr. Karl-Erich Jäger gebührt mehr als der an dieser Stelle übliche Dank. Ichdanke ihm für seine freundschaftliche Kollegialität, die permanente Unterstützung und dielehrreichen Jahre. Es war eine grosse Erfahrung, einen Wissenschaftler kennenzulernen, fürden der Begriff „Doktorvater“ mehr als nur ein Wort ist.

Herrn Prof. Dr. Matthias Rögner danke ich für die Übernahme des Korreferats und danke ihmfür manche Diskussion.

Mein besonderer Dank gilt Frau Dr. Susanne Wilhelm für ihre Tatkraft und die Hilfe, diedaraus erwächst. Die Gespräche mit ihr und die Diskussionen waren oft richtungsweisend undaufmunternd für mich. Danke für die beste Unterstützung in allem, die man sich wünschenkann.

Bei den Mitarbeitern der „Pseudomonas“-Gruppe möchte ich mich für das gute Arbeitsklimaund die Hilfsbereitschaft bedanken. Dies ganz besonders bei Frau Annette Zacharias für somanche Hilfe.

Ich danke Herrn Prof. Dr. Dieter Haas, Frau Dr. Cornelia Reimmann und Herrn Dr. BernardBerger von der Universität Lausanne für die freundliche Aufnahme in der Schweiz im Jahre1998 und die gute Zusammenarbeit in dieser Zeit.

Den Herren Prof. Dr. Jan Tommassen, Priv. Doz. Dr. Wilbert Bitter und Herrn Mohammed ElKhattabi danke ich für die drei schönen Monate in Utrecht im Frühjahr 1999, die tiefenEinblicke in die Welt der Sekretion, die Zusammenarbeit bei den Foldasen und dieanregenden Diskussionen

Frau Prof. Dr. Marina Lotti und Frau Dr. Claudia Alquati danke ich für die freundlicheAufnahme in Mailand und die Zusammenarbeit in dem Pseudomonas fragi Projekt.

Dank gebührt „meinen“ Diplomanden für ihr Vertrauen in meine Ideen. Sie waren für michder Anlass, über den wissenschaftlichen „Tellerrand“ des eigenen Projektes zu sehen. Dankealso an die heutigen und künftigen DiplombiologInnen mit denen ich arbeiten durfte: SandraRösmann, Melanie Schäfer, Anja, Seuter, Martina Eller, Minou Sharihari, Mathias Ryszka,Gisela Friedrich, Anke Beselin, Silke Heckmann, Denis Tielker, Annette Smolski und DanielaJanosch.

Allen Mitarbeitern von Herrn Prof. Dr. W. Klipp, Herrn Prof. Dr. W. Hengstenberg und HerrnProf. Dr. W. Rüger gilt mein Dank für das gute Arbeitsklima und die interessantenDiskussionen.

Abschliessend, aber besonders herzlich, sei meinen Lieben gedankt für die Hilfe undUnterstützung während der ganzen Zeit. Besonders mein Vater hat vieles für mich erstmöglich gemacht. Danke.

Page 4: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Veröffentlichungen

Jaeger, K.-E., Schneidinger, B., Rosenau, F., Werner, M., Lang, D., Dijkstra, B.W., Zonta, A. & Reetz,M.T. (1997) Bacterial lipases for biotechnological applications. J. Mol. Catalys. B: Enzymatic 3:3-12

Rosenau, F., Liebeton, K. & Jäger, K.-E. (1998) Überexpression extrazellulärer Enzyme in Pseudomonasaeruginosa. Biospektrum 4:38-41

Rosenau, F. & Jäger, K.-E. (2000) Bacterial lipases from Pseudomonas: Regulation of gene expression andmechanisms of secretion. Biochimie 82:1023-1032

Wilhelm, S., Rosenau, F. & Jaeger, K.-E. (2001) Proteinsecretion in Gram-negative bacteria and Pseudomonasaeruginosa. FEMS Microbio. Lett. eingereicht zur Veröffentlichung

Rosenau, F., Heckmann, S., Stratmann, M., Wingender, J., Flemming, H.C., Schmidt, R. & Jäger, K.-E.(2001) The extracellular lipase LipC affects cell motility, cell surface hydrophobicity and biofilm architecture ofPseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, eingereicht zur Veröffentlichung

Posterpräsentationen

Rosenau, F., Eller, M. & Jäger, K.-E. (1999) Production of lipase from Pseudomonas aeruginosa in a non-pathogenic host. Biospektrum: Sonderausgabe zur Jahrestagung der VAAM, Göttingen

Rosenau, F., Zacharias, A. & Jäger, K.-E. (2001) Regulatory elements within the intergenic region of thePseudomonas aeruginosa lipase operon uncouple expression of foldase and lipase. Book of Abstracts,Pseudomonas 2001, Brüssel

Tielker, D., Rosenau, F., Grützmacher, S. & Jäger K.-E. (2001) Cloning, overexpression and purification oftwo lectins from Pseudomonas aeruginosa. Book of Abstracts, Pseudomonas 2001, Brüssel

Wingender, J., Tielen, P., Strathmann, M., Flemming, H.-C., Heckmann, S., Rosenau, F. & Jäger, K.-E.(2001)Extracellular enzymes in Pseudomonas aeruginosa biofilms. Book of Abstracts, Pseudomonas 2001, Brüssel

Page 5: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Inhaltsverzeichnis

I

Inhaltsverzeichnis

Verzeichnis Abbildungen und TabellenAbkürzungsverzeichnis

1. Einleitung

2. Material und Methoden2.1 Bakterien und Plasmide2.2 Oligonukleotide2.3 Chemikalien, Enzyme und Antiseren2.4 Anzucht der Bakterien2.5 Präparation von Plasmid-DNA2.6 Präzipitation von DNA durch Alkohol / Isopropanolfällung2.7 Konzentrationsbestimmung von DNA2.8 Agarosegelelektrophorese2.9 Elution von DNA aus Agarosegelen2.10 In vitro-Rekombination von DNA2.11 Sequenzierung von DNA2.12 Transformation von Escherichia coli mit Plasmid-DNA2.13 Übertragung von Plasmid DNA durch Konjugation2.14 Erzeugung von Mutanten in P.aeruginosa

2.15 Transkriptionsstart-Bestimmung durch "Primer extension"-Analyse2.16 Gewinnung von Kulturüberständen2.17 Herstellung von Gesamtzellextrakten (GZE)2.18 Herstellung von Späroplasten2.19 Herstellung der Periplasma-, Cytoplasma- und Membranfraktion2.20 Enzymtests2.22 Präzipitation von Proteinen2.23 Denaturierende SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)2.24 Immunodetektion der Lipase (LipA) oder der Foldase (LipH)2.25 Färbung der PVDF-Membran (Matsudaira, 1989)2.26 Computerprogramme und Online-Datenbanken

3. Ergebnisse3.1 Entwicklung eines Expressionssystems zur Produktion der Lipase aus P. aeruginosa im heterologen Wirt Pseudomonas putida

3.1.1 Pseudomonas putida transkribiert die xcp-Gene aus Pseudomonas

aeruginosa

3.1.2 Der Xcp-Sekretionsapparat aus P. aeruginosa ist in P.putida

funktionell3.1.3 Produktion und Stabilität der P. aeruginosa Lipase in P. putida

3.1.4 Stabilität der Foldase

IVVI

1

1919212222232324242424252525252627272727282828292929

3030

30

32

3436

Page 6: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Inhaltsverzeichnis

II

3.2 Überexpressionssysteme zur Produktion der Lipase aus P. aeruginosa im homologen Wirt

3.2.1 Konstruktion von Expressionsstämmen zur T7-RNA-Polymerase abhängigen Expression der Lipase

3.2.2 Produktionsleistung der Expressionsstämme

B. Der Einfluss der Foldase LipH auf die Physiologie der Lipaseproduktion

3.3 Die LipH-Expression beeinflusst die Lipaseproduktion3.3.1 Die intergenische Region enthält verschiedene repetitive

Sequenzen3.3.2 Konstruktion von IR-Varianten3.3.3 Das GTG-Translationsinitiationskodon limitiert die Expression des

lipH-Gens3.3.4 Die Steigerung der lipH-Expression erhöht die Synthese

sekretierter Lipase3.3.5 Die Überexpression des lipH-Gens in trans zu einem episomal

kodierten Lipaseoperon erhöht die Lipaseproduktion3.3.6 Die LipH-Überexpression steigert die Lipaseproduktion auch im

Wildtypstamm3.4 Die zelluläre LipH-Konzentration reguliert die Lipaseexpression

3.4.1 Die 5'-untranslatierte Region (UTR) ist Voraussetzung für die LipH-abhängige Regulation

3.4.2 LipH-steigert die Lipaseexpression posttranskriptionell3.4.3 Sequenzanalyse und Homologievergleich von Foldaseproteinen:

Bedeutung des Membranankers von LipH3.4.4 Konstruktion von LipH-Varianten mit Lokalisation im Zytoplasma

oder Periplasma3.4.5 Im Periplasma lösliches LipH-Protein aktiviert Lipase in vivo

3.4.6 Die Membranverankerung ist Voraussetzung für die LipH-abhängige Steigerung der Lipaseexpression

3.4.7 Die Aktivierung der Lipase LipC erfordert die Membran-verankerung von LipH

3.5 Das lipH-Gen kann unabhängig von lipA exprimiert werden: DasLipaseoperon besitzt zusätzliche lipH-spezifische Promotoren3.5.1 Die lipA-Promotorregion ist in einer ChpA-Mutante nicht

funktionell3.5.2 Die ChpA-Mutante synthetisiert LipH und sekretiert enzymatisch

aktive Lipase3.5.3 Die extrazelluläre Lipaseaktivität in der ChpA-Mutante beruht auf

LipC3.5.4 Das Foldasegen lipH wird unabhängig von lipA transkribiert

38

38

39

41

4141

4344

45

46

47

4848

4950

53

5455

56

57

57

58

59

60

Page 7: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Inhaltsverzeichnis

III

3.5.5 Die intergenische Region beinhaltet einen lipH-spezifischen Promotor

3.5.6 Bestimmung des Transkriptionsstarts für den lipH-spezifischenPromotor

4. Diskussion

5. Zusammenfassung

6. Literatur

7. Anhang

62

63

64

95

97

Page 8: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Abbildungs- und Tabellenverzeichnis

IV

Verzeichnis der Abbildungen und Tabellen

SeiteAbb. 1 Erweiterter Homologievergleich der Lipasen der Familie I.1 und I.2 3

Abb. 2 Regulation der Lipase-Genexpression in P. aeruginosa 7

Abb. 3 Mechanismen zur Sekretion von Lipasen Gram-negativer Bakterien. 12

Abb. 4 .Sekretion und Faltung der Lipase aus P. aeruginosa 17

Abb. 5 Genetische Organisation der xcp-Gene aus P. aeruginosa 30

Abb. 6 Transkriptionsaktivität des xcpR-Promotors in P. putida BMTU 650 31

Abb. 7 Sekretion der Lipase durch den P. aeruginosa Xcp-Apparat im heterologen Wirt P. putida 33

Abb. 8 Kinetik der Lipaseproduktion in P.putida 34

Abb. 9 Verteilung der Lipaseaktivität nach 14 und 24h Wuchsdauer 35

Abb. 10 Stabilität der Lipase in Kulturüberständen von P. putida 35

Abb. 11 Stabilität der Foldase in Abhängigkeit von der Expression der Lipase und des Xcp-Apparats 36

Abb. 12 Übersicht der Expressionsstämme mit induzierbarer T7-RNA-Polymerase 39

Abb. 13 Expression der Lipase in P. aeruginosa PABST7.1. 40

Abb. 14 Sequenzwiederholungen in der intergenischen Region des Lipaseoperons. 41

Abb. 15 Maskierung der Ribosomenbindestelle durch Sekundärstrukturen der mRNA in derintergenischen Region

42

Abb. 16 Varianten der IR 43

Abb. 17 Effekt der IR auf die lipH-Expression 44

Abb. 18 Einfluß der IR-Varianten auf die Lipaseproduktion 45

Abb. 19 Effekt der Foldaseüberexpression auf die Lipaseproduktion 46

Abb. 20 Lipaseproduktion im WT-Stamm bei Überexpression von lipH 47

Abb. 21 Einfluß der UTR im Plasmid pUCPLip1X und der Überexpression von lipH in trans 48

Abb. 22 Transkriptionsaktivität der lipA-Promotorregion bei Überexpression von lipH 49

Abb. 23 Erweiterter Homologievergleich der Foldasen 51/52

Abb. 24 Subzelluläre Lokalisation der LipH-Varianten 54

Abb. 25 Lipaseaktivität nach in vivo Faltung mittels der Foldasevarianten 55

Abb. 26 Wirkung der LipH-Varianten bei Überexpression im WT-Stamm 56

Abb. 27 Aktivierung der Lipase LipC durch die LipH-Varianten 57

Abb. 28 Wuchskurve und ß-Galaktosidaseaktivitäten einer lipA-Promotor-lacZ-Fusion im P.aeruginosa PAO1 undeiner ChpA-Mutante

58

Abb. 29 Lipolytische Aktivität und LipH-Produktion der ChpA-Mutante 59

Abb. 30 Die ChpA-Mutante produziert LipC 60

Abb. 31 Promotoraktivität interner Fragmente des Lipaseoperons 61

Abb. 32 Lipaseproduktion von P. aeruginosa PAFRGmP 62

Abb. 33 Transkriptionsstartbestimmung des IR-internen Promotors 63

Abb. 34 Vorhersage von "coiled-coil"-Domänen in XphA und XcpP 87

Abb. 35 Sequenzvergleich der potentiellen lipA-internen Promotoren (int.1-int.3) mit RpoN-abhängigen Promotoren aus P. aeruginosa und verschiedenen Konsensussequenzen

91

Page 9: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Abbildungs- und Tabellenverzeichnis

V

SeiteTab. 1 Übersicht verwendeter Bakterienstämme. 19

Tab. 2 Liste der verwendeten Vektoren und Plasmide mit weitem Wirtsbereich. 20

Tab. 3 Liste der verwendeten Vektoren und Plasmide für E.coli. 21

Tab. 4 Übersicht der verwendeten Oligonukleotide. 21

Tab. 5 Konzentration der, zur Selektion eingesetzten Antibiotika. 23

Tab. 6 Mengenangaben für SDS-Polyacrylamidgele verschiedener Prozentigkeit. 28

Tab. 7 Vergleich der Expressionsraten der T7-Expressionsstämme 39

Tab. 8 Sequenzmerkmale verschiedener Lif-Proteine 53

Tab. 9 Beispiele für bakterielle Gene mit posttranskriptioneller Regulation der Genexpression 78

Page 10: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

Abkürzungen

VI

Abkürzungen

äM äußere MembranAmpr Ampicillin-ResistenzAS Aminosäure/nASD Anti-Shine-Delgarnobp Basenpaar/eCmr Chloramphenicol-ResistenzCP CytoplasmaCP/PP Cytoplasma/PeriplasmadNTP DesoxynucleosidtriphosphatEDTA EthylendinitrilotetraacetatGEP "general export pathway"Gmr Gentamycin-ResistenzGSP "general secretory pathway"GZE Gesamtzellextrakth Stunde/nIM innere MembranIPTG Isopropyl-β-D-ThiogalaktosidIR Intergenische Regio nkDa Kilo DaltonKmr Kanamycin-ResistenzKÜ KulturüberstandLif Lipase spezifische FoldaseLPS LipopolysaccharidM Membran/enmin Minute/nMM MinimalmediumMTB "main terminal branch"nt NucleotideO.D. optische Dichteorf "open reading frame", offener LeserahmenPAGE Polyacrylamid-GelelektrophoresepNPP para-Nitrophenyl-PalmitatPP PeriplasmaRBS Ribosomen-BindestelleSDS NatriumdodecylsulfatSDS-PAGE SDS-Polyacryamid-GelelektrophoreseSmr/Spr Streptomycin-/Spectinomycin-ResistenzSS SignalsequenzTCA TrichloressigsäureTcr Tetracyclin-ResistenzUpm Umdrehungen pro MinuteUTR untranslatierte RegionWt Wildtyp

Page 11: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

1

Einleitung

Die Zahl mikrobieller Lipasen, die kloniert und biochemisch charakterisiert werden steigt

ständig an. Die Regulation der Genexpression wird dabei genauso untersucht, wie eventuell

involvierte Sekretionsmechanismen. Die Analysen der 3D-Struktur sollen Aufschluss über

funktionelle Aspekte der Lipasefunktion liefern. Das Interesse an dieser Enzymklasse spiegelt

sich in der Flut von Originalarbeiten und Übersichtsartikeln wider, die sich mit der

Molekularbiologie, der biochemischen Charakterisierung, 3D-Strukturaufklärung und

biotechnologischen Anwendungsaspekten von Lipasen prokaryontischen und eukaryontischen

Ursprungs befassen (Alberghina und Lotti, 1998; Jäger et al., 1994; Gosh et al., 1996; Rubin

und Dennis, 1997a,b; Jäger etal., 1997; Ortaggi und Jäger, 1997; Kazlauskas und

Bornscheuer, 1998; Schmid und Verger, 1998; Jäger und Reetz, 1998; Jäger et al., 1999;

Rosenau und Jäger, 2000).

Bakterien produzieren verschiedene Klassen von Enzymen mit lipolytischer Aktivität,

darunter Carboxylesterasen (EC 3.1.1.1) und Lipasen (EC 3.1.1.3), die im Unterschied zu

ersteren längerkettige und somit wasserunlösliche Triacylglycerolester als Substrat

akzeptieren. Carboxylesterasen und Lipasen gehören häufig zu der grossen Enzymfamilie der

Serin-Hydrolasen (Derewenda & Derewenda, 1991), auch α/β Hydrolasen genannt (Ollis et

al., 1992; Nardini & Dijkstra, 1999), welche u.a. auch verschiedene Proteasen und andere

Hydrolasen beinhaltet (Pelletier & Altenbuchner, 1995). Diese Familie ist durch das

Vorhandensein einer katalytischen Triade (Blow, 1990), also drei Aminosäureresten in ihrem

aktiven Zentrum charakterisiert, die an der Katalyse beteiligt sind. Die Triade besteht aus

einer nucleophilen Aminosäure, dem essentiellen Serin (Brenner, 1988), einer sauren

Aminosäure, meistens Aspartat oder auch Glutamat, und einem konservierten Histidin (Brady

et al., 1990; Schrag et al., 1991). Bemerkenswert ist ein Konsensusmotiv Gly-X1-Ser-X2-Gly

um den nucleophil aktiven Serin-Rest. Dieses Konsensusmotiv liegt in einem für Serin-

Hydrolasen typischen β-ε-Ser-α-Motiv vor und scheint erforderlich zu sein, um die

notwendigen sterischen Vorausetzungen für die Katalyse zu gewährleisten (Ollis et al, 1992).

Die typische Serin-Hydrolase katalysiert die Hydrolyse einer Esterbindung durch einen

nucleophilen Angriff der Hydroxyl-Gruppe des Serins im aktiven Zentrum auf das Carbonyl-

Kohlenstoffatom (Brady et al., 1990; Jäger et al., 1994).

Page 12: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

2

Bakterielle Lipasen finden steigende Beachtung vor allem aus zwei Gründen: 1. sie dienen

pathogenen Bakterien als Virulenzfaktoren und 2. sie sind die Enzymgruppe, die als

Biokatalysatoren für verschiedene biotechnologisch relevante Prozesse das vielseitigste

Anwendungspotential bieten.

Arpigny und Jäger identifizierten 1999 in verschiedenen frei verfügbaren Datenbanken 47

verschiedene Lipasen bakteriellen Ursprungs und klassifizierten sie anhand von

Sequenzhomologien in sechs verschiedene Familien. Familie I besteht aus 22 Proteinen, die

wiederum in sechs Subfamilien untergliedert sind, wobei zu den Subfamilien I.1 und I.2 die

zuvor beschriebenen sog. Gruppe 1 und Gruppe 2 Lipasen aus der Gattung Pseudomonas

(Jäger et al., 1994) gehören. Diese werden in einer Operonstruktur jeweils zusammen mit

einem für sie spezifischen intermolekularen Chaperon, dem sog. Lif-Protein (lipase specific

foldase) kodiert. Diese Lipasen werden von der Bakterienzelle über den sog. Typ II-

Mechanismus sekretiert, während die Lipasen der Subfamilie I.3 den Typ I-

Sekretionsmechanismus benutzen.

Ziel dieser einleitenden Übersicht soll es im Folgenden sein, einen Überblick über das heutige

Wissen um die zellulären Mechanismen zur Produktion enzymatisch aktiver, extrazellulärer

Lipasen durch Gram-negative Bakterien zu geben. Als prototypisches Enzym der Lipase-

Subfamilie I.1 (Arpigny und Jäger, 1999) wird die Lipase LipA aus Pseudomonas aeruginosa

besondere Beachtung finden.

Page 13: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

3

Abb. 1 Erweiterter Homologievergleich der Lipasen der Familie I.1 und I.2 (Arpigny & Jäger, 1999). DieAminosäuresequenzen oder gegebenfalls die Nucleotidsequenzen (nt) sind zugänglich unter folgenden"accession" Nummern: P. aeruginosa LipA, CAA44997; P. alcaligenes A37025 (nt); P. spec KFCC10818LipK, AAD22078; Vibrio cholerae O17 LipA, CAA68639; P. aeruginosa LipC, AAC34733; Acinetobactercalcoaceticus RAG1 LipA, AAD29441; A. calcoaceticus BD413 LipA, CAA56780; P. wisconsinensis LpwA,AAB53647; P. fragi LipA, CAC07191; Burkholderia glumae LipA, CAA49812; B. cepacia LipA,AAA50466; P. fragi LipB, E04513(nt); Xylella fastidosa 9a5c, AAF83991.

Page 14: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

4

A. Regulation der Lipasegenexpression

Anlass, die Produktion von Lipasen durch Mikroorganismen zu untersuchen, ist häufig der

biotechnologische Anwendungsaspekt. Hierbei ist es hauptsächlich von Interesse, hohe

Ausbeuten zu erzielen, so dass erheblicher Forschungsaufwand z.B. in die Entwicklung von

Kulturmedien oder in die empirische Beschreibung von Bedingungen investiert wird, die die

Produktion von Lipase induzieren oder verbessern (Jäger et al., 1994; Kok et al., 1996).

Zusätzlich vermögen chemische Zusätze wie einige Lipide (Tanaka et al., 1999b),

Polysaccharide oder Detergentien (Winkler und Stuckmann, 1979; Schulte et al., 1982) die

Lipaseausbeute günstig zu beeinflussen. Die molekularen Mechanismen, die die

Verbesserungen der Produktionsleistung auf der Ebene der Regulation bewirken, sind in den

meisten Fällen jedoch unbekannt. Die Freisetzung enzymatisch aktiver bakterieller Lipasen in

das Kulturmedium stellt sich als ein komplexer Vorgang dar, an dem die verschiedensten

zellulären Vorgänge beteiligt sind. Angefangen bei der Transkription entsprechender

Strukturgene, über die Translation der resultierenden mRNA bis zur Translokation des

Proteins über die Zellmembran, bzw. über innere und äussere Membran im Falle Gram-

negativer Bakterien, kann jeder Schritt einer Regulation durch die Zelle unterliegen.

Die Regulation der Genexpression bakterieller Lipasen ist nur an wenigen Beispielen

untersucht worden. Zum Beispiel produziert das insektenpathogene Bakterium Xenorhabdus

nematophilus, das im Darmtrakt des Nematoden Steinernema carpocapsae vorkommt eine

Lipase, deren Biosynthese durch N-β-Hydroxybutanoyl-Homoserin-Lacton (HBHL)

stimuliert wird, welches als sog. Autoinduktor des lux-Operons aus dem Leuchtbakterium

Vibrio harvey (Dunphy et al., 1997) bekannt ist. Dies erlaubt den Schluss, dass die X.

nematophilus Lipase einer „Quorum sensing“-Regulation unterliegt. Als „Quorum sensing“-

Regulation werden Prozesse bezeichnet, die als Antwort auf die Zelldichte innerhalb der

betroffenen Bakterienkultur die Genexpression beeinflussen (Withers et al., 2001). Zahlreiche

Gram-negative Bakterien besiten sog. Autoinduktoren, die von LuxI-homologen

Autoinduktor-Synthetasen konstitutiv produziert werden und als extrazelluläre Signalstoffe

wirken. Diese Autoinduktoren sind der Klasse der acylierten Homoserinlactone zuzuordnen

und aktivieren durch Bindung dazugehörige LuxR-homologe Regulatorproteine („R“-

Proteine), die ihrerseits dann Zielgene entweder induzieren oder reprimieren.

Bemerkenswerterweise wurde das sog. „Flagellen Master Operon“ flhDC als ebenfalls

essentiell für die Biosynthese von Lipase in X. nematophilus beschrieben.

Page 15: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

5

Inaktivierung des flhD Gens durch Insertion einer Resistenzkassette führte zum Verlust

jeglicher extrazellulärer Lipaseaktivität, ein Effekt, der mit dem flhDC Operon in trans

komplementiert werden konnte (Givaudan und Lanois, 2000). Dies lässt den Schlusss zu, dass

die Produktion und die Sekretion der Lipase in X. nematophilus sowohl durch eine „Quorum

sensing“-Regulation als auch durch FlhD koordiniert reguliert wird.

In dem humanpathogenem Bakterium Burgholderia cepacia (ehemals Pseudomonas cepacia)

führt die Inaktivierung eines luxR-homologen Gens zu einer signifikanten Reduktion in der

Genexpression sowohl der extrazellulären Lipase, als auch anderer Virulenzfaktoren

(Lewenza et al., 1999). Die Zugabe zellfreier Kulturüberstände verschiedener klinischer B.

cepacia Isolate zu einer wachsenden B. cepacia Kultur bewirkte entweder eine Induktion der

Lipaseexpression in einer früheren Wuchsphase oder eine gesteigerte Lipaseproduktion, was

auf das Vorhandensein von Autoinduktoren (AI) schliessen lässt. Die AI waren aber nicht in

allen diesen Kulturüberständen durch einen Biotest nachweisbar, welcher darauf beruht, die

von Autoinduktoren abhängige Synthese des Farbstoffs Violacein in einer Autoinduktor-

defizienten und farblosen Mutante des Indikatorbakteriums Chromobakterium violaceum

wiederherzustellen. Wahrscheinlich produziert B. cepacia mindestens zwei verschiedene

Autoinduktorspezies, die beide an der „Quorum sensing“-Regulation von Virulenz-

assoziierten Proteinen beteiligt sind (Weingart und Hooke, 1999). In P. aeruginosa wurden

mindestens zwei LuxR/I-homologe Systeme beschrieben (Pesci und Iglewski, 1999; Winson

et al., 1999). Der Transkriptionsaktivator RhlR (synonym VsmR) wird durch N-butyryl-

Homoserin-Lacton aktiviert, welches von der Synthetase RhlI (VsmI) gebildet wird und

kontrolliert die zelldichteabhängige Bildung eines natürlichen Emulgators aus P. aeruginosa,

des Rhamnolipids (Ochsner et al., 1994; Ochsner und Reiser, 1995), wie auch die Produktion

einiger extrazellulärer Enzyme (Brint und Ohman, 1995; Latifi et al., 1995). Untersuchungen

mit einer lipA::lacZ-Reporter-Genfusion zeigten, dass auch die Lipaseexpression einer

Regulation durch das RhlR/I-System unterliegt, wobei die Expression des Lipasegens lipA

aber wahrscheinlich nicht direkt durch RhlR aktiviert wird (Schneidinger, 1997; Düfel, 2000).

Für B. cepacia und P. aeruginosa, die einzeln oder in Koexistenz, Lungen von Patienten mit

der Erbkrankheit Cystischer Fibrose persistierend infizieren können, wurde eine durch

Autoinduktoren vermittelte „Interspezies Kommunikation“ postuliert, über die Gene

potentieller Virulenzfaktoren reguliert werden (McKenney et al., 1995). Eine solche Strategie

zur koordinierten Expression der jeweiligen Lipasen und anderer Virulenzfaktoren durch

extrazelluläre und zelldichteabhängige Signalmoleküle könnte pathogenen Bakterien

verschiedener Spezies eine effizientere Besiedlung eines Wirtes ermöglichen.

Page 16: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

6

Acinetobacter calcoaceticus, ein Gram-negatives Bodenbakterium, produziert verschiedene

lipolytisch aktive Enzyme, darunter auch LipA, eine extrazelluläre Lipase (Kok et al., 1995a).

Der Einfluss zahlreicher physiologischer Faktoren auf die Expression des Lipasegens lipA

wurde hier mittels einer chromosomal integrierten transkriptionalen lipA::lacZ-Genfusion

untersucht. So wirkten Fettsäuren, als Reaktionsprodukte der Spaltung von Triolein durch die

Lipase, als effiziente Inhibitoren der Expression von lipA (Kok et al., 1996). Erklärt wurde

dies mit der möglichen Existenz eines noch nicht identifizierten Regulators, der durch

Bindung von Fettsäuren aktiviert, als Repressor für das Lipasegen wirkt (Kok et al., 1996).

Als das wahrscheinlich am intensivsten untersuchte Beispiel für die Regulation einer Lipase

aus Gram-negativen Bakterien ist das Lipase-Operon aus P. aeruginosa anzusehen. Die

Transkription des aus den Genen lipA (Lipase) und lipH (Lif-Protein) bestehenden Operons

vom Promotor P1 erfordert das Vorhandensein des alternativen Sigma-Faktors δ54 (Jäger et

al., 1996). Im Rahmen einer Dissertation (Düfel, 2000) konnte dieses Ergebnis durch Primer–

Extension-Analysen bestätigt werden und darüberhinaus die Existenz eines zweiten, 330

Basenpaare stromaufwärts von P1 gelegenen Promotors P2 gezeigt werden (Düfel, 2000). Da

zur Transkriptionsinitiation an δ54-abhängigen Promotoren spezifische Transkriptions-

aktivatoren notwendig sind (Shingler, 1996), wurde die Existenz eines lipasespezifischen

Regulators LipR postuliert (Jäger et al., 1996). Die Charakterisierung einer P. aeruginosa

Tn5-Transposonmutante mit erheblich reduzierter P1 Promotoraktivität führte zur

Identifikation des Gens lipR, das für einen Transkriptionsaktivator kodiert und Teil eines sog.

„Zweikomponenten“-Regulationssystems ist (Düfel, 2000). Das Strukturgen lipQ für die

zweite notwendige Komponente liegt im Stromaufwärtsbereich von lipR und kodiert für eine

putative signaltransduzierende Sensorkinase. Die Beteiligung dieses Zweikomponenten-

systems an der transkriptionellen Regulation der Lipaseexpression konnte anhand von

Untersuchungen mit transkriptionellen lipA::lacZ-Reportergenfusionen gezeigt werden.

Während in lipQ/R-negativem Hintergrund die lipA-Transkription deutlich reduziert war, war

sie in Stämmen, die das Zweikomponentensystem überexprimierten ebenso gesteigert, wie

auch die resultierende extrazelluläre Lipaseaktivität (Düfel, 2000). Welches Signal das LipQ-

Protein transduziert, ist hierbei allerdings noch nicht klar. Ein kürzlich publiziertes

Zweikomponentensystem, bestehend aus den Proteinen CbrA und CbrB („catabolic

regulation“), das als zentraler Regulator von Abbauwegen zur Verwertung verschiedener

Kohlen- und Stickstoffquellen identifiziert wurde (Nishijyo et al., 2001), ist mit dem LipQ/R-

Zweikomponentensystem identisch (F. Rosenau & K.-E. Jäger, unveröffentlicht).

Page 17: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

7

In die transkriptionelle Regulation der lipQ/lipR-Gene ist das ChpA-Protein involviert, das im

Zusammenhang mit der Biosynthese der TypIV-Pili aus P. aeruginosa identifiziert wurde und

Homologien zu den CheR-Proteinen der Enterobacteriaceae besitzt (Stover et al., 2000;

www.pseudomonas.com) und wahrscheinlich multiple Virulenz-assoziierte Funktionen reguliert

(C. Withchurch & J. Mattick, persönliche Mitteilung). In einem ChpA-negativen Stamm war

die Transkription der lipQ/lipR-Gene vollständig reprimiert und infolge dessen auch keine

Aktivität der Lipasepromotoren nachweisbar (Düfel, 2000). Darüberhinaus wurde die

Beteiligung des „globalen Aktivatorproteins“ GacA an der Regulation der Lipase beschrieben

(Reimmann et al., 1997). Überproduktion von GacA führte zu einer erheblichen Zunahme

extrazellulärer Lipaseaktivität. Als Teil eines anderen Zweikomponentensystems, dessen

zugehörige Sensorkinase das GacS-Protein ist (Brinkman et al., 2001), fungiert GacA als

Aktivator verschiedener Virulenzgene in P. aeruginosa, wahrscheinlich indem es die

„Quorum-sensing-Kaskade“ aktiviert (Reimmann et al., 1997). Somit kommt dem

GacS/GacA-Regulationssystem eine entscheidende regulatorische Rolle für die Pathogenität

von P. aeruginosa zu (Tan und Ausubel, 2000). Abbildung 1 gibt eine Übersicht über die

Regulation der Lipase-Produktion in P. aeruginosa.

Abb. 2 Regulation der Lipase-Genexpression in P. aeruginosa (modifiziert nach Rosenau und Jäger, 2000).Die „Quorum-sensing“-Kontrolle wird von dem globalen Regulator-Protein GacA vermittelt, das dieTranskription des „Quorum-sensing“-Aktivators RhlR aktiviert. RhlR seinerseits aktiviert möglicherweise durchBindung an eine putative lux-Box die Transkription des LipQ/R-Zweikomponentensystems. Die SensorkinaseLipQ wird durch ein bisher nicht bekanntes Signal, also möglicherweise durch Umweltstimuli oderperiplasmatische Faktoren, die die Faltungs- oder Sekretionseffizienz widerspiegeln, aktiviert. DerTranskriptionsaktivator LipR bindet nach seiner Aktivierung durch LipQ an eine „upstream activation sequence“und aktiviert so am Promotor P1die δ54-abhängige Transkription des Lipase-Operons. Die Lipase wird von demStrukturgen lip, die spezifische Foldase von dem lif-Gen kodiert. Die physiologische Bedeutung des PromotorsP2 ist noch nicht bekannt.

lux-box

lipQ lipR

RhlR/I

GacA

?

lifUAS

lip

σ54

P1P2Signal-Umwelt-Sekretion / Faltung

PLipQ LipRP

Page 18: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

8

Kürzlich wurde ein weiterer Aspekt der Lipaseregulation in P. aeruginosa entdeckt. Für die

Produktion enzymatisch aktiver, extrazellulärer Lipase bedarf es einer korrekten Faltung des

Proteins im Periplasma der Bakterienzelle als Voraussetzung für eine effiziente Sekretion

über die äussere Membran. An diesem Prozess sind verschiedene zusätzliche Proteine

beteiligt, darunter auch die Lipase-spezifische Foldase (Lif-Protein) und zum Dsb-System

(von Disulphide Bond Formation) gehörende Proteine. In einem dsbA-negativen P.

aeruginosa-Stamm wurde eine um 90% reduzierte extrazelluläre Lipaseaktivität beschrieben

(Urban et al., 2001). Dies wurde zumindest teilweise durch eine verminderte Transkription

des Lipasegens erklärt, da eine lipA::lacZ-Reportergenfusion in diesem Stamm eine

signifikant geringere Promotoraktivität aufwies (Urban, 2000). Ein solches System könnte das

Verhältnis korrekt gefaltener/aktiver zu missgefaltener/inaktiver Lipase detektieren und diese

Information in das Cytoplasma transduzieren, wo eine Adaptation der Lipaseexpression an die

Exportrate stattfände (Rosenau und Jäger, 2000).

Eine zelldichteabhängige Regulation scheint somit in pathogenen Bakterien ein bedeutsamer

Mechanismus zur Steuerung der Lipase- wie auch der Expression anderer Virulenzfaktoren zu

sein, wobei andere regulatorische Elemente der Zelle eine Anpassung der Lipaseproduktion

an verschiedene Umwelt- oder Wuchsbedingungen ermöglichen können.

B. Mechanismen zur Sekretion lipolytischer Enzyme

Alle bekannten bakteriellen Lipasen sind extrazelluläre Enzyme, deren Produktion eine

Translokation über die Cytoplasmamembran in Gram-positiven und, zusätzlich, in Gram-

negativen Bakterien durch das Periplasma und die äussere Membran erfordert. Im Moment

sind drei Haupttransportwege bekannt, die eine Sekretion von Proteinen aus Gram-negativen

Bakterien erlauben (Binet et al., 1997; Pugsley, 1992b und 1993; Hueck, 1998; Filloux et al.,

1998). Sie wurden numerisch Typ I, II und III benannt, wobei die sog. TypI- und TypII-

Sekretionsmechanismen diejenigen sind, über die der Grossteil bakterieller Lipasen sekretiert

wird (Abb.2).

Page 19: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

9

Ein-Schritt-Sekretionsmechanismen

ABC-Exporter (TypI-Sekretion) Die Lipasen aus P. fluorescens (Duong et al., 1994;

Kawai, et al., 1999) und Serratia marcescens (Akatsuka et al., 1995; Li et al., 1995) besitzen

keine typische aminoterminale Signalsequenz, weisen aber ein carboxyterminales

Exportsignal auf, das essentiell für die Sekretion des Proteins durch einen ABC-Exporter ist

(Binet et al., 1997). ABC-Protein vermittelte Exportsysteme stellen den sog. TypI-

Sekretionsmechanismus dar und bestehen aus drei Proteinen, die in der inneren bzw. der

äusseren Bakterienmembran lokalisiert sind. Eine in der inneren Membran lokalisierte,

wahrscheinlich das System energetisierende, ATPase gehört dabei zu der namensgebenden

ABC- (ATP-binding cassette) Superfamilie eukaryontischer und prokaryontischer

Proteinexporter (Pugsley, 1992a). Das sog. MFP-Protein (Membrane-fusion-protein) ist ein

Protein der inneren Membran mit einer grossen hydrophilen periplasmatischen und einer

Carboxyterminalen Domäne, die wahrscheinlich mit der äusseren Membran interagiert. Die

dritte Komponente dieses Systems ist ein Protein der äusseren Membran, welches die

Translokationspore darstellt. Die Lipase aus S. marcescens ist das wahrscheinlich

bestuntersuchte Beispiel für eine auf dem TypI-Weg sekretierte Lipase, der sich in diesem

Fall aus dem ABC-Protein LipB, dem MFP LipC und dem äusseren Membranprotein LipD

zusammensetzt. Es gilt als sicher, dass der Sekretionskomplex Kontaktstellen zwischen

innerer und äusserer Membran vermittelt und dadurch eine das Periplasma durchspannende

Translokationspore bildet, so dass sekretierte Proteine ohne das Vorkommen von

periplasmatischen Intermediaten in einem Schritt über beide Membranen transportiert werden

(Wandersman, 1996; Binet et al., 1997).

TypIII-Sekretion Ebenfalls um einen Ein-Schritt-Mechanismus handelt es sich bei dem

TypIII-Sekretionsmechanismus, der hauptsächlich von pathogenen, Gram-negativen

Bakterien genutzt wird, um Virulenz vermittelnde Effektorproteine in das Cytoplasma

eukaryontischer Zielzellen zu injizieren (Cornelis und Wolf-Watz, 1997; Hueck, 1998;

Anderson und Schneewind, 1999; Cornelis, 2000). Der Sekretionsapparat ist homolog zu dem

Flagellenapparat und besteht aus einem Komplex von mindestens 17 Proteinen (Hueck, 1998;

Young et al., 1999; MacNab, 1999). Er vermittelt die Sekretion von Effektorproteinen über

drei Membranen, da ausser den beiden bakteriellen Membranen auch die Zellmembran der

Zielzelle überbrückt werden muss. Der TypIII-Sekretionsmechanismus scheint jedoch zur

Sekretion von Lipasen nicht realisiert zu sein.

Page 20: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

10

Zwei-Schritt-Sekretionsmechanismen

Sekretion über die innere Membran

Die meisten der bekannten Lipasen aus Gram-positiven wie Gram-negativen Bakterien

zeichnen sich durch aminoterminale Signalpeptide als potentielle Substrate für Sec-homologe

Sekretionskomplexe aus. Hierbei handelt es sich um Translokasekomplexe, die in E. coli aus

den Membranproteinen SecY, E und G gebildet werden und durch die Proteine SecD und F

stabilisiert in der inneren Membran lokalisiert sind (Duong et al., 1997; Duong & Wickner,

1997). Ähnliche Translokasekomplexe existieren auch in Gram-positiven Spezies wie B.

subtilis (Simonen und Palva, 1993). Der Grossteil sekretorischer Proteine wird mit Hilfe

dieses Sec-Proteinkompexes über den sog. GEP (general export pathway) sekretiert (Pugsley,

1993). Substratproteine werden hierbei bereits während der Translation durch das

cytoplasmatische Chaperon SecB erkannt und an einer vollständigen Faltung gehindert. SecB

vermittelt auch die Bildung eines Komplexes aus der SecA-ATPase und dem zu

sekretierenden Präprotein, welcher schliesslich mit der SecY/E/G-Translokationspore

interagiert. Hier erfolgt unter ATP-Verbrauch und unter Abspaltung des Signalpeptids die

Translokation des Substratproteins als ungefaltene Polypeptidkette (Danese und Silhavy,

1998; Driessen et al., 1998). Die Proteinfaltung erfolgt anschliessend im Periplasma

(Tommassen et al., 1992; Pugsley, 1993), oder im Falle Gram-positiver Bakterien im

extracytoplasmatischen Raum.

Alternativ zum GEP können Proteine mit stark hydrophoben Signalpeptiden in einem frühen

Stadium der Translation statt von SecB von einem sog. SRP (signal recognition particle)

gebunden werden (Ulbrandt et al., 1997; Stroud und Walter, 1999). Die Bindung des

Substratproteins an die Sec-Translokase erfolgt dann über das SRP-Rezeptorprotein FtsY

(Valent et al., 1998; Scotti et al, 1999). Dieser Weg wird vorwiegend von Membranproteinen

ohne ausgedehnte periplasmatische Domänen benutzt (Fekkes und Driessen, 1999; van Geest

und Lolkema, 2000) und ist für den Transport bakterieller Lipasen nicht beschrieben.

Sekretion über die äussere Membran

Autotransporter Im Falle Gram-negativer Bakterien müssen extrazelluläre Proteine nach

der Passage über die innere auch die äussere Bakterienmembran überwinden. Die Klasse der

sog. Autotransporterproteine ist hierzu in der Lage, ohne auf spezielle Exportapparate

Page 21: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

11

angewiesen zu sein. Alle bisher beschriebenen Proteine dieser Art werden von pathogenen

Bakterien sekretiert und man nimmt an, dass sie an deren Virulenz beteiligt sind.

Sie weisen eine distinkte Zwei-Domänenstruktur auf, wobei die aminoterminalen Domänen

sehr unterschiedliche enzymatische Aktivitäten aufweisen. Die carboxyterminale Domänen

weisen untereinander starke Homologien auf und sind für den autonomen Transport

verantwortlich, indem sie durch einen noch nicht vollständig geklärten Mechanismus eine

porenähnliche Struktur in der äusseren Membran bilden. Durch diese erfolgt anschliessend die

Sekretion der enzymatisch aktiven aminoterminalen Domäne (Henderson et al., 1998 und

2000). Ein lipolytisch aktives Enzym, dass auf diesem Wege sekretiert wird, ist das EstA-

Protein aus P. aeruginosa (Wilhelm et al., 1999; Wilhelm, 2001).

TypII-Sekretion Das pathogene Bakterium P. aeruginosa gilt als ein Modellorganismus

der Proteinsekretion, da hier die drei Hauptsekretionsmechanismen zur Sekretion zahlreicher

Virulenzfaktoren realisiert sind (Nicas und Iglewski, 1984; Jäger, 1994; Govan und Deretic,

1996). Die grösste Bedeutung kommt hierbei dem sog. TypII-Sekretionsmechanismus zu,

einem Zwei-Schritt-Prozess, über den, neben den Elastasen LasA und LasB, den

Phospholipasen PlcH und PlcN, der alkalischen Phosphatase und dem Exotoxin A auch die

Lipasen LipA und LipC sekretiert werden (Andro et al., 1984; Tommassen et al., 1992;

Pugsley, 1993; Filloux et al., 1998; Martinez et al., 1999). Der erste Schritt in dem auch als

MTB (main terminal branch) des GSP (general secretory pathway) bezeichneten (Pugsley,

1993; Russel, 1998) Prozess, ist meistens die bereits beschriebene Signalpeptid-abhängige

Translokation des sekretorischen Proteins über die Cytoplasmamembran durch den Sec-

abhängigen GEP. Der zweite Schritt, der abschliessende Export über die äussere Membran,

erfolgt über einen aufwendigen Multi-Protein-Komplex, der in P. aeruginosa aus mindestens

12 verschiedenen Xcp-Proteinen besteht, die von zwei entgegengesetzt transkribierten

Operonen kodiert werden (Tommassen et al., 1992; Filloux et al., 1998). Der Xcp-Apparat

zeigt starke Homologie zu dem Transmembran-Komplex der Typ IV-Pilus-Biogenese (Hobbs

und Mattick, 1993), so dass heute auch mechanistische Homologien angenommen werden

(Filloux et al., 1998; Sandkvist et al., 2001). Zentrale Komponente, ist hierbei die aus 12

XcpQ-Untereinheiten bestehende Pore (Bitter et al., 1998; Brok et al., 1999) der äusseren

Membran, die auch Sekretin genannt wird. Durch den wahrscheinlich reversiblen Aufbau

einer Pilus-ähnlichen Struktur aus den sog Pseudopilin-Proteinen XcpT, XcpU, XcpV und

XcpW (Bally et al., 1992) wird das Substratprotein durch das Sekretin geschoben. Durch den

Einbau des weiteren Pseudopilins XcpX (Bleves et al., 1998) kommt es zum Abbruch des

Sekretionsprozesses und zur Reorganisation des Xcp-Apparats.

Page 22: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

12

Die Faltung sekretorischer Proteine erfolgt im Periplasma unter Mitwirkung periplasmatischer

Faltungsmediatoren (s.u) unter Bildung enzymatisch aktiver periplasmatischer Intermediate

(Hamood et al., 1990; Pugsley, 1992b; Frenken et al., 1993a/b; Lu et al., 1993; Bortoli-

German et al., 1994; Hardie et al., 1995; Braun et al., 1996). In verschiedenen Exoproteinen

wurden Sequenzbereiche identifiziert, die für den Export nach dem TypII-Mechanismus

notwendig sind (McVay und Hamood, 1995; Lu und Lory, 1996; Sauvonnet und Pugsley,

1996; Lindeberg et al., 1998), doch konnte noch kein allgemeingültiges Signal für den

Transport über den Xcp-Apparat oder homologe Apparate identifiziert werden.

Wahrscheinlich ist jedoch ein in der Tertiärstruktur des vollständig gefaltenen

Substratproteins festgelegtes Sekretionssignal, wobei dessen spezifische Erkennung durch den

Xcp-Apparat vermutlich durch die Proteine XcpP und XcpQ erfolgt (A. Filloux, persönliche

Mitteilung).

Abb. 3 Mechanismen zur Sekretion von Lipasen Gram-negativer Bakterien (modifiziert nach Rosenau undJäger, 2000). Lipasen aus P. fluorescens und S. marcescens werden in einem Ein-Schritt-Mechanismus (ABC-Export) sekretiert (Binet et al., 1997). Der TypII-Mechanismus, wird von den Lipasen LipA und LipC aus P.aeruginosa benutzt und stellt nach der Sec-Apparat-abhängigen Translokation über die innere Membran (iM) insPeriplasma (P) den abschliessenden Schritt des Proteinexports dar. Homologe Systeme zum Proteinexportexistieren auch in anderen Lipase-produzierenden Bakterien. Das lipolytische Enzym EstA aus P. aeruginosawird nach der Translokation ins Periplasma über eine proteineigene carboxyterminale Autotransporterdomäneüber die äussere Membran (äM) transportiert (Wilhelm et al., 1999).

Cytoplasma

ExtrazelluläresMedium

GSP(type II)

ABC-Transporter(type I)

im

p

äm

Autotransporter

XcpApparat

Prä-Lipase

Reife Lipase

Sec

Page 23: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

13

C. Periplasmatische Faltung

Unspezifische Faltungshelfer

Viele exportierte Proteine, darunter auch die Lipasen der Subfamilien I.1 und I.2 enthalten

Disulfidbrücken, die im Periplasma gebildet werden. Die Bildung von Disulfidbrücken im

Periplasma wird von einem komplexen System aus Enzymen mit Thiol:Disulfid-

Oxidoreduktase und –Isomerase-Aktivitäten, dem sog. Dsb-System (disulphide bond

formation) vermittelt (Raina und Missiakis, 1997; Missiakis und Raina, 1997), dem allgemein

eine grosse Bedeutung für die korrekte Faltung von Exoproteinen beigemessen wird (Peek

und Taylor, 1992; Pugsley, 1992b; Bortoli-German et al., 1994; Shevchik et al., 1995;

Okamoto et al., 1995; Urban et al., 2001). Die Rolle der DsbA-Oxidoreduktase und der DsbC-

Isomerase bei der Bildung extrazellulär aktiver Lipase wurde von Urban et al. kürzlich

beschrieben. Eine DsbA-deffiziente Mutante von P. aeruginosa zeigte eine im Vergleich zum

Wildtyp um 90%, eine DsbA/DsbC-Doppelmutante eine um 99% reduzierte extrazelluläre

Lipaseaktivität und –Menge (Urban et al., 2001). Die Rolle von Disulfidbrücken auf die

Aktivität und die Sekretionseffizienz von Lipasen wurde an zwei verschiedenen Modellen

untersucht. Die Lipase aus Aeromonas hydrophila wird nach dem TypII-Mechanismus

sekretiert und enthält eine Disulfidbrücke (Brumlik et al., 1997). Der Austausch beider hieran

beteiligter Cystein-Reste gegen Serin-Reste hatte zwar keinen Einfluss auf die Aktivität oder

die sekretierte Menge des Enzyms, doch war die Lipase weniger stabil (Brumlik et al., 1997).

Wie die A. hydrophila-Lipase enthält die P. aeruginosa-Lipase zwei Cysteinreste, die eine

intramolekulare Disulfidbrücke bilden (Jäger et al., 1993; Nardini et al., 2000; Liebeton et al.,

2001; Urban et al., 2001). Lipase-Varianten mit Austauschen von einem bzw. zwei Cystein-

gegen Serin-Reste wurden in P. aeruginosa deutlich schlechter sekretiert, konnten aber nach

Expression in E. coli in vitro unter Einsatz der spezifischen Foldase LipH mit der selben

Effizienz aktiviert werden, wie das Wildtypenzym. Jedoch waren die modifizierten Lipasen

auch hier weniger stabil und anfälliger gegen proteolytische Degradierung (Liebeton et al.,

2001). Eine Bedeutung für die Stabilität der Lipase im Periplasma wurde dort lokalisierten

Proteasen zugewiesen. Sieben Gene für putative periplasmatische Proteasen aus P.

aeruginosa wurden inaktiviert und die resultierenden Stämme auf intra- bzw. extrazelluläre

Lipaseaktivität untersucht. Es wurden sowohl Mutanten identifiziert, die eine gesteigerte

Page 24: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

14

extrazelluläre Lipaseaktivität aufwiesen, als auch solche mit reduzierter extrazellulärer, aber

signifikant erhöhter intrazellulärer Lipaseaktivität (Windgassen, 2000).

Neben den DsbB-Proteinen sind auch Peptiddyl-Prolyl-cis/trans-Isomerasen (PPIasen) am

periplasmatischen Faltungsprozess beteiligt (Missiakas und Raina, 1997; Danese und Silhavy,

1998), die die Isomerisierung einer Peptidbindung zwischen einem Prolin- und dem

vorangehenden Aminosäurerest von trans in die energetisch ungünstigere cis-Konfiguration

(Brandts und Lin, 1986) katalysieren. Für E. coli sind die PPIasen RotA, SurA, FklA und

FklB beschrieben, denen vor allem eine Funktion bei der Faltung von Proteinen der äusseren

Membran zugeschrieben wird (Liu und Walsh, 1990; Missiakas et al., 1996; Rahfeld et al.,

1996). Die enzymatisch aktive und extrazelluläre Lipase aus P. aeruginosa enthält eine solche

cis-Bindung (Nardini et al., 2000), jedoch ist nicht bekannt, ob zu ihrer Ausbildung die

Aktivität von PPIasen notwendig ist.

spezifische Faltungshelfer

Um eine stabile Konformation zu erlangen, brauchen einige nach dem TypII-Mechanismus

exportierte Proteine die Aktivität spezifischer Faltungshelfer. Die LasB-Protease aus P.

aeruginosa besitzt hierfür ein Propeptid, das als intramolekulares Chaperon die Faltung des

Enzyms vermittelt, aber nicht Bestandteil der reifen Elastase (LasB) ist (McIver et al., 1995;

Braun et al., 1996 und 1998; Kessler et al., 1998).

Lipasen der Subfamilien I.1 und I.2 benötigen für ihre Faltung intermolekulare Chaperone,

die spezifischen Foldasen, oder Lif-Proteine genannt werden (Jäger et al., 1994 und 1999;

Rosenau und Jäger, 2000) (Abb. 3). Diese Lif-Proteine sind normalerweise in einer

Operonstruktur mit dem dazugehörigen Lipasegen kodiert und wurden in P. aeruginosa

(Iizumi et al., 1991; Chihara-Siomi et al., 1992; Ihara et al., 1992; Wohlfahrt et al., 1992;

Oshima-Hirayama et al., 1993), P.wisconsinensis (Hazbon et al., 2001), B. cepacia (Jörgensen

et al., 1991), B. glumae (Frenken et al., 1993a/b), A. calcoaceticus (Kok et al., 1995b;

Sullivan et al., 1999) und Vibrio cholerae (Ogierman et al., 1997) identifiziert. Eine

Ausnahme hierfür ist die zweite extrazelluläre Lipase LipC aus P. aeruginosa, die kein

individuelles Lif-Protein besitzt, sondern durch das zur Lipase LipA gehörende LipH-Protein

aktiviert wird (Martinez et al., 1999; Friedrich, 2001). Mit Ausnahme der Lipase aus P.

alcaligines, die bei Expression im heterologen Wirt E. coli durch das Lif-Protein aus P.

aeruginosa aktiviert werden kann (El Khattabi et al., 1999), ist die Wirkung der Foldasen

spezifisch für die korrespondierende Lipase. Durch Verwendung von Hybridfoldasen konnte

Page 25: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

15

gezeigt werden, dass ein carboxyterminaler, 138 Aminosäurereste grosser Bereich die

Spezifität der Foldase aus B. glumae vermittelt (El Khattabi et al., 1999).

Die Rolle der Lif-Proteine bei der Faltung von Lipasen ist aufgrund der engen Kopplung der

Faltung an die anschliessende Sekretion nur schwer in vivo zu untersuchen (Rosenau und

Jäger, 2000). Jedoch haben hauptsächlich Expressionsstudien in heterologen Wirtsbakterien

und biochemische Methoden wie chemisches "crosslinking" und verschiedene

Untersuchungen zur Aktivierung von Lipasen in vitro Informationen zur Interaktion zwischen

Lipasen und Foldasen ergeben, wobei die Lipase/Lif-Systeme aus B. cepacia, B. glumae und

P.aeruginosa die Modellsysteme darstellen. Diese Foldasen sind mit einer aminoterminalen

hydrophoben Domäne in der inneren Membran verankert, wobei der grösste Teil des Proteins

zum Periplasma orientiert ist (Frenken et al., 1993a; Schneidinger, 1997). Aminoterminale

Modifikationen oder Verkürzungen führen nicht zu einem Verlust der Aktivität, was zeigt,

dass dieser Membrananker nicht für die Funktion der Foldasen notwendig ist (Shibata et al.,

1998a; Quyen et al., 1999). In welchem stöchiometrischen Verhältnis Lipase und Foldase in

vivo vorliegen müssen um eine quantitativ optimale Faltung der Lipase zu gewährleisten, ist

nicht bekannt, doch lassen "crosslinking" Studien auf ein 1:1-Verhältnis (Shibata et al.,

1998a), Ergebnisse aus Rückfaltungstests auf ein 1:4-Verhältnis schliessen (Ihara et al.,

1995). Sowohl die Bildung von Komplexen zwischen Foldase und Lipase (Shibata et al.,

1998a), wie auch der eigentliche Aktivierungsprozess des Enzyms sind hierbei Calcium-

abhängig (Schneidinger, 1997; Seuter, 1998; Shibata et al., 1998a). Bei der Expression des

Lipase-/Foldase-Systems aus B. cepacia konnte demonstriert werden, dass im heterologen

Wirt E. coli vorliegendes Lif-Protein ohne weitere nachfolgende Synthese Lipase aktivieren

konnte, deren Expression später induziert wurde (Aamand et al., 1994). Bei der Umkehrung

der selektiven Expressions-Induktion, konnten weder bereits im Periplasma befindliche

Lipase aus B. cepacia, wie auch aus P. aeruginosa, durch nachträgliche Produktion von

Foldase Protein aktiviert werden (Aamand et al., 1994; Rösmann, 1998). Bemerkenswert ist,

dass die Lif-Proteine aus B. cepacia und P. aeruginosa ebenso mit hoher Affinität native, aus

Kulturüberständen gereinigte Lipase binden (Hobson et al., 1995; Ihara et al., 1995;

Schneidinger, 1997). Für die native Lipase aus P. aeruginosa wurde darüberhinaus sogar eine

Inhibierung der Lipaseaktivität in Gegenwart von gereinigtem Lif-Protein beschrieben

(Schneidinger, 1997). Zur Zeit ist noch nicht völlig geklärt, an welchem Punkt der Faltung

einer Lif-abhängigen Lipase die Aktivität der Foldase notwendig ist, um eine effiziente

Page 26: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

16

Aktivierung des Enzyms zu gewährleisten. Auch ist nicht vollständig verstanden, wie der

Komplex aus Foldase und Lipase nach Beendigung der Lipase-Faltung in vivo aufgelöst wird.

Die vom Sec-Apparat vermittelte Translokation über die innere Membran erfordert einen

ungefaltenen Zustand des sekretorischen Proteins (denBlaauwen und Driessen, 1996;

Driessen et al., 1998), so dass die Interaktion zwischen Lif-Protein und Lipase wahrscheinlich

unmittelbar nach oder bereits während der Sec-abhängigen Translokation der ungefaltenen

Lipase erfolgt. El Khattabi et al. wiesen kürzlich dem Lif-Protein aus B. glumae die Funktion

eines sog. „sterisches Chaperons“ zu, dass im Faltungsprozess der Lipase eine abschliessende

Konformationsänderung zum aktiven Zustand vermittelt. Bei Rückfaltungsexperimenten mit

denaturierter Kulturüberstandslipase wurde ein Intermediat nachgewiesen, dass durch

biophysikalische Methoden nicht von der aktiven Konformation der Lipase unterscheidbar

war, selber aber keine enzymatische Aktivität besass. Erst durch Zusatz der Foldase erlangte

dieses durch Selbstfaltung entstandene Intermediat enzymatische Aktivität (El Khatabi et al.,

2000). Die Stabilität der Interaktion ermöglicht methodische Ansätze wie die

Koimmunopräzipitation (Hobson et al., 1995), die chromatographische Reinigung in vitro

formierter Komplexe (Shibata et al., 1998b) oder Affinitätsblotting (Schneidinger, 1997;

Seuter, 1998, Friedrich, 2001). Die Dissoziation ebenfalls in vitro gebildeter Komplexe aus

der Lipase und dem Lif-Protein aus Pseudomonas sp. 109 soll durch einen „lipase activation

factor“,eine niedermolekulare Verbindung, gefördert werden, die aus Ganzzellextrakten

dieses Stammes isoliert (Tanaka et al., 1999a) und kürzlich als reduziertes Glutathion

identifiziert wurde (Tanaka et al., 2000). Die Mechanismen, die in vivo die Auflösung von

Lipase/ Foldase-Komplexen bewirken sind allerdings ebensowenig bekannt, wie die exakte

räumliche Lokalisierung des Lif-Proteins in der inneren Membran. Durch chemisches

"crosslinking" in vivo (A. Filloux, persönliche Mitteilung) und Fluoreszenz-Quenching-

Messungen mit gereinigten Komponenten (P. van Gelder, persönliche Mitteilung) konnten

allerdings Hinweise erbracht werden, dass das Lif-Protein aus P. aeruginosa mit Proteinen

des Xcp-Apparats interagiert, so dass möglicherweise das Exportsignal nicht nur in der Lipase

selbst, sondern in der Struktur des Lipase-/ Foldase-Komplexes festgelegt ist (Filloux et al.,

1998; Sandkvist et al., 2001) und die Dissoziation des Komplexes Folge einer Erkennung

durch den Sekretionsapparat sein könnte.

Page 27: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

17

Abb. 4 Sekretion und Faltung der Lipase aus P. aeruginosa (modifiziert nach Rosenau und Jäger, 2000). Dieals Präprotein mit einem Signalpeptid von 26 AS Länge (SS; dicke schwarze Linie) synthetisierte Lipase wirdüber einen Sec-abhängigen Mechanismus über die innere Membran (iM) transportiert. Nach Abspaltung desSignalpeptids und Interaktion mit der spezifischen, membranverankerten Foldase (Lif) erfolgt die Faltung desEnzyms in eine enzymatisch aktive, sekretionskompetente Konformation. Dieser Prozess wird vonperiplasmatischen Faltungsmediatoren begünstigt, darunter die Dsb-Proteine, die die Ausbildung vonDisulfidbrücken katalysieren. Missgefaltene Lipasemoleküle werden wahrscheinlich von einem Systemperiplasmatischer Proteasen degradiert. Es ist nicht bekannt, ob die periplasmatische Faltung bzw. Degradationstattfindet, während die Lipase noch komplexiert mit der inneren Membran vorliegt, oder erst nach derAuflösung des Lipase/Lif-Komplexes. Die abschliessende Sekretion des reifen Enzym über die äussereMembran (äM) erfolgt über einen in P. aeruginosa aus den sog. Xcp-Proteinen gebildeten TypII-Sekretionsapparat.

äm

p

im

Sec

ss

Secretions-Apparat

ReifeLipase

LipLif

lip lif

Dsb

Proteasen

ssLipase-Operon

Page 28: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

1. Einleitung

18

Ziele der Arbeit

Die Lipase aus Pseudomonas aeruginosa besitzt ein grosses biotechnologisches Potential als

Biokatalysator für verschiedenste Anwendungen. Die Regulation der Genexpression und der

physiologischen Vorgänge, die zur Produktion enzymatisch aktiver und in das extrazelluläre

Medium sekretierter Lipase führen sind nicht vollständig verstanden. Ein essentieller Schritt

ist die periplasmatische Faltung und der nachfolgende Export über die äussere Membran.

Es sollte in dieser Arbeit demonstriert werden, dass die Produktion enzymatisch aktiver und

sekretierter Lipase in einem nicht humanpathogenen Wirtsbakterium prinzipiell möglich ist.

Hierbei war von Interesse, inwieweit der aus 11 verschiedenen Proteinen bestehende Xcp-

Exportapparat in nah verwandten Organismen funktionell ist. Dabei stand es im Mittelpunkt

des Interesses, die Produktion der Lipase in dem heterologen Wirt zu charakterisieren, um

gegebenenfalls eine Produktion des Enzyms in industriellem Massstab zu ermöglichen.

Für Anwendungen im Labormassstab sollte ein Überexpressionssystem entwickelt werden,

dass eine effiziente Überexpression enzymatisch aktiver extrazellulärer Lipase erlaubt, etwa

zur Durchmusterung von Bibliotheken modifizierter Lipasegene.

Das Lipaseoperon weist einige strukturelle Besonderheiten auf genetischer Ebene auf, deren

Bedeutung für die Physiologie der Lipaseproduktion untersucht werden sollte, darunter die 49

Nukleotide umfassende intergenische Region. Es sollte daher untersucht werden, welchen

Einfluss die intergenische Region auf die Expression der Foldase besitzt. Ferner sollte

untersucht werden, ob das Foldaseprotein einen limitierenden Faktor für die Lipaseproduktion

darstellen kann. Gegebenenfalls sollte diese Limitierung näher charakterisiert werden. Dies

sollte auch mit Hinblick auf eine potentielle Steigerung der Lipaseproduktion geschehen.

Dabei sollten auch Mechanismen untersucht werden, die regulatorisch auf die Lipase- und

Foldaseproduktion wirksam sind.

Die lipasespezifische Foldase LipH ist unter nativen Bedingungen über eine

Transmembrandomäne in der inneren Membran verankert. Die physiologische Bedeutung

dieser Membranverankerung sollte im Hinblick auf die Lipaseproduktion in vivo untersucht

werden.

Page 29: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

19

2. Material und Methoden

2.1 Bakterien und Plasmide

Tab. 1 Übersicht verwendeter Bakterienstämme

Stamm Genotyp Referenz/Bezugsquelle

E. coli JM109 F’ traD36 lacIq ∆(lacZ)M15 proAB/e14-(McrA-) ∆(lac-proAB) thigyrA96 (Nalr) endA1 hsdR17(rK

- mK+) relA1 supE44 recA1

Yanisch-Perron et al.(1985)

E. coli JM101 F’ traD36 lacIq ∆(lacZ)M15 proAB∆(lac-proAB) thi supE1

Yanisch-Perron et al.(1985)

E. coli S17-1 thi pro hsdR-M+ mit chromosomalintegriertem [RP4-2-Tc::Mu:Kmr::Tn7, Tra+ Trir Strr]

Simon et al. (1983)

E. coli DH5α φ80dlacZ∆M15recA1 endA1gyrA96 thi-1 hsdR17 (rK-, mK+)supE44 relA1 deoR ∆(lacZYA-argF) U169

Hanahan (1983)

P. aeruginosa PAO1 Wildtyp Holloway et al. (1979)

P. aeruginosa PABS1 ∆lipA/H Schneidinger (1997)

P. aeruginosa PASCH I estA::ΩSmr/Spr Schäfer (1998)

P. aeruginosa PASCH II ∆lipA/H, estA::Ω Smr/Spr Schäfer (1998)

P. aeruginosa chpA-lipC- ChpA::Tetr, lipC::Gmr diese Arbeit

P. aeruginosa lipC- lipC::Gmr diese Arbeit

P. aeruginosa PAFR T7.7 lipA::T7-RNA-Polymerase Rosenau et al. (1998),diese Arbeit

P. aeruginosa PAFR T7.7 L lipA::T7-RNA-Pol lasB::Kmr diese Arbeit

P. aeruginosa PABST7.1 ∆lipA/H; mit chromosomalintegriertem D180-Tetr lacIq T7-RNA-Polymerase

Rosenau et al. (1998),

diese Arbeit

P. aeruginosa PABST7.1C ∆lipA/H lipC::Gmr; mitchromosomal integriertem D180-Tetr lacIq T7-RNA-Polymerase

diese Arbeit

P. aeruginosa ΩGmP Insertion ΩGmr zwischen lipA-Stopkodon und IR

diese Arbeit

P. putida BMTU650 Wildtyp Roche-Diagnostics,Penzberg, Deutschland

P. aeruginosa 2B18 pilD(xcpA)::Tn5 Strom et al. (1991)

Page 30: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

20

Tab. 2 Liste der verwendeten Vektoren und Plasmide mit weitem Wirtsbereich.

Plasmide mit weitem

Wirtsbereich

genetische Eigenschaften Referenz

pUCPKS/ SK ColE1-SF Ampr lacZα Plac PT7 Watson et al. (1996)pBBR1MCS Cmr mob lacZα Plac PT7 Kovach et al. (1994)pML5(B+) lacZYA mob Tcr (2. BamHISchnittstelle) Labes et al. (1990)pEB1 pUCP+Mini-D3112-Element, lacIq

induzierbare T7-RNA PolymeraseBrunschwig & Darzins,1992

pBR22b Cmr mob lacIq PT7Φ10 diese ArbeitpLAFR3 IncP1, λcos, rlx, Tcr Friedemann et al., 1982pAX24 pLAFR3+12,5kb chromosomale DNA

(P.a.) mit xcp-Gen clusterFilloux et al., 1990

pML5xcpR pML5+ScaI/PstI-Fragment, 417 bp, PxcpR diese ArbeitpMLlipA pML5+XhoI/PaeI Fragment, PlipA Düfel, 2000pMLAH(PE) pML5+PaeI/Eco47 Fragm. 5'∆lipA,lipH diese ArbeitpMLlipA(PP) pML5+PaeI/PpuMI Fragm. 5'∆lipA diese ArbeitpMLAH(AE) pML5+ AgeI/Eco47 Fragm. 5'∆lipA, lipH diese ArbeitpMLlipH pML5+PpuMI/Eco47 Frag. IR lipH diese ArbeitpUCPLip1 pUCPKS+XmnI/SmaI-Fragment, 2,8 kb,

lipA/H, Plac

diese Arbeit

pUCPLip1X XhoI-Fragment, 4,8 kb, lipA/H diese ArbeitpUCPL7 pUCPKS+XmnI/SmaI-Fragment, 2,8 kb,

lipA/H, PT7

diese Arbeit

pBBL7 pBBR1MCS+XmnI/SmaI-Fragment,2,8 kb, lipA/H, Plac

Düfel, 1995

pBBL7IR-O pBBL7 mit GTG→ATG Austausch lipH diese ArbeitpBBL7IR-2 pBBL7IR-O + verbesserte RBS diese ArbeitpBBL7IR-SD pBBL7IR-O potentieller stem-loop der

IR deletiertdiese Arbeit

pBBL7IR-SL pBBL7IR-O potentieller stem-loop derIR verlängert

diese Arbeit

pBBL7SS pBBL7, Membrananker lipH durch SSersetzt

diese Arbeit

pBBL7-CP pBBL7, Membrananker lipH deletiert diese ArbeitpBBL8 pBBL7 ∆lipA Schneidinger, 1997pBBL8IR-O pBBL8 mit GTG→ATG Austausch lipH diese ArbeitpBBL8IR-2 pBBLIR-O + verbesserte RBS diese ArbeitpBBL8SS pBBL8, Membrananker lipH durch SS

ersetztdiese Arbeit

pBBL8-CP pBBL8, Membrananker lipH deletiert diese Arbeit

Tab. 3 Liste der verwendeten Vektoren und Plasmide für E. coli.

Page 31: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

21

Plasmide für E. coli. genetische Eigenschaften Referenz

pME3087 ColE1, oriT, mob, tetA tetR Voisard et al., 1994

pMELipT7 pME3087+lacIq-T7-RNA-Pol::lipA, lipH Rosenau et al., 1998

pSUP202 ColE1, mob, Ampr, Cmr, Tcr Simon et al., 1983

pSUPAGmH pSUP202+ lipA, ΩGmr in PpuMI, lipH diese Arbeit

pBCSK ColE1, PT7 PT3 Plac lacZα Cmr Stratagene, Heidelberg

pLip3-S pBluescript+XmnI/SmaI Fragm. lipA/H Schneidinger,unveröffentlicht

2.2 Oligonukleotide

Tab. 4 Übersicht der verwendeten Oligonukleotide. Die aufgeführten Oligonukleotide wurden bei der FirmaInteractiva, Ulm bestellt.

Name DNA-Sequenz (5’→3’ bzw. 3'→5' Richtung) und eingefügteErkennungssequenzen für Restriktionsendonukleasen und überhängende Enden

Beschreibung

IR-O+ 5'CTAGATAGGACCCCGGCCGGGGCCTCGGCCCCGGCCCTTTCCCGGAAGCCCCCTCA3'

originale IR;XbaI + NdeI-Überhang

IR-O- 5'TATCCTGGGGCCGGCCCCGGAGCCGGGGCCGGGAAAGGGCCTTCGGGGGAGTAT3'

originale IR;XbaI + NdeI-Überhang

IR-2+ 5'CTAGATAGGACCCCGGCCGGGGCCTCGGCCCCGGCCCTTTAAGAAGGAGATATACA3'

modifizierteRBS; XbaI +NdeI-Überhang

IR-2- 5'TATCCTGGGGCCGGCCCCGGAGCCGGGGCCGGGAAATTCTTCCTCTATATAT3'

modifizierteRBS; XbaI +NdeI-Überhang

IR-SD+ 5'CTAGATAGGACCCCCTTTCCCGGAAGCCCCCTCA3' Haarnadeldeletion; XbaI +NdeI-Überhang

IR-SD- 5'TATCCTGGGGCCGGCCCCGAAAGGGCCTTCGGGGGAGTAT3' Haarnadeldeletion; XbaI +NdeI-Überhang

IR-SL+ 5'CTAGATAGGACCCCGGCCGGGGGGGGCCTCGGCCCCCCCCGGCCCTTTCCCGGAAGCCCCCTCA3'

Haarnadelverlängert;XbaI + NdeI-Überhang

IR-SL- 5'TATCCTGGGGCCGGCCCCCCCCGGAGCCGGGGGGGGCCGGGAAAGGGCCTTCGGGGGAGTAT3'

Haarnadelverlängert;XbaI + NdeI-Überhang

PELipH1

5'GCGGAGGCTGCTGGCGGGGCGTGG3'

PELipH2

5'CTTTGCTGCAGGGGCTCTTCGCC3'

2.3 Chemikalien, Enzyme und Antiseren

Alle verwendeten Chemikalien wurden in p.A.-Qualtität bei folgenden Firmen bezogen:

Page 32: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

22

Sigma (Deisenhofen), Roche Diagnostics (Mannheim), Biomol (Hamburg), Merck(Darmstadt), Riedel de Haën (Seelze), Roth (Karlsruhe) und Serva (Heidelberg). Antibiotikawurden bei den Firmen Serva, Sigma und Gerbu (Geilberg) gekauft.Restriktionsendonukleasen wurden von den Firmen MBI Fermentas (St. Leon-Rot), GibcoBRL (Eggenstein), New England Biolabs (Schwalbach) und Stratagene (Heidelberg) bezogen.Weitere Enzyme wurden von Sigma (Trypsin, Lysozym), MBI Fermentas (T4-DNA-Ligase,Ribonuclease A, T4-DNA-Polymerase) und Stratagene (Pfu-DNA-Polymerase) gekauft.Medienkomponenten von den Firmen Difco (Detroit, USA), Gibco BRL und Oxoid (Wesel)fanden Verwendung.Der Antikörper, Ziege-Anti-Kaninchen-Meerrettich-Peroxidase-Konjugat, wurde von der Fa.BioRad (München) bezogen.

2.4 Anzucht der Bakterien

Alle Nähr- und Testmedien wurden 20 min bei 121°C und 200 kPa autoklaviert. HitzelabileKomponenten wurden sterilfiltriert (Millipore-Membranfilter, Porendurchmesser 0,25 o. 0,45µm) und dem Medium (≤60°C) nachträglich zugesetzt.

2.4.1 Nährmedien

Im folgenden werden Flüssigmedien beschrieben, wurden von diesen Medien Agarplattenbenötigt, so wurden falls nicht anders beschrieben, 15 g/l Agar zugegeben.LB-Medium (Sambrook et al., 1989)10 g/l Trypton; 10 g/l NaCl; 5 g/l Hefeextrakt.2 x LB-MediumDie Inhaltsstoffe des LB-Mediums, ausser NaCl, werden verdoppelt.M9-Medium (Sambrook et al., 1989)Lösung I 40 g/l GlucoseLösung II 20 g/l MgSO4 • 7 H2OLösung III 2 g/l CaCl2 x 2 H2OLösung IV 70 g/l Na2HPO4 • 2H2O; 30 g/l KH2PO4; 5 g/l NaCl; 10 g/l NH4ClDie Lösungen werden getrennt autoklaviert und in folgenden Mengen eingesetzt:10% (v/v) Lsg. I; 1% (v/v) Lsg. II; 1% (v/v) Lsg. III; 10% (v/v) Lsg. IVLB/M9 Medium (Sambrook et al., 1989)50 % (v/v) 2x LB-Medium und die o.g. Mengen des M9-Mediums werden vermischt.NB-Medium (Sambrook et al., 1989)

8 g/l Pepton; 4 g/l NaClTrypton-Phosphat-Medium (TP) (Moore et al., 1993)20g/l Pepton, 2g/l Na2HPO4, 1g/l KH2PO4, 15g/l Hefeextrakt

2.4.2 Testmedien

α-Komlementations-Agar (Sambrook et al., 1989)1 ml 100 mM IPTG in 70% (v/v) Ethanol; 3 ml 2% (w/v) X-Gal in DMF; 300 ml LB-AgarIPTG und X-Gal wurden vor Gebrauch jeweils frisch angesetzt.Tributyrin-Agar (Kok et al., 1993)7,5 ml Tributyrin und 0,75g Gummi arabicum ad 15 ml A. dest.Mischen, mit Ultraschall (3 min, 75 W, 100%) das Tributyrin emulgieren und zu 500 mlautoklaviertem NB-Agar (60°C) geben.Skim Milk Agar5% (w/v) Magermilchpulver (30 min, 105°C) in LB-Agar. Proteaseaktivität zeigt sich durch

Page 33: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

23

klare Hofbildung um die Bakterienkolonie.

2.4.3 Kultivierung von BakterienE. coli und P. aeruginosa wurden bei 37°C und P. putida bei 30° in LB-Medium kultiviert.Gegenüber dem Wildtyp veränderte oder plasmidtragende Bakterien wurden unterSelektionsdruck angezogen.

Tab. 5 Konzentration der, zur Selektion eingesetzten Antibiotika

für E. coli[µg/ml]

für P. aeruginosa /P. putida [µg/ml] [µg/ml]

Ampicillin 100 --- ---Carbenicillin 100 500 ---Chloramphenicol 50 350 450Gentamycin 15 30 ---Irgasan --- 25 25Kanamycin 50 --- ---Streptomycin 50 100 ---Spectinomycin 50 100 ---Tetracyclin 50 100 100

Kulturvolumina bis 5 ml wurden in Reagenzgläsern im Brutroller und grössere Volumina inErlenmeyerkolben auf einem Rundschüttler bei 180-220 Upm inkubiert. Als Übernacht-kulturen (ÜK) wurden Ansätze bezeichnet, die mindestens 16 h bebrütet wurden.Hauptkulturen wurden aus ÜK auf eine O.D.580nm = 0,05 beimpft.Die Zelldichte einer Kultur wurde durch Trübungsmessung in einem Spektralphotometer beieiner Wellenlänge von 580 nm bestimmt Als Referenz diente das entsprechende Medium.Testkulturen wurden von Stammplatten mit Einzelkolonien bzw. mit verdünntenFlüssigkulturen beimpft und 15-48 h unter Selektionsdruck auf entsprechenden Test-Agarplatten bei 37°C bebrütet.Für Gefrierkulturen wurden 1,3 ml einer ÜK mit 0,1ml DMSO vermischt und bei -80°Cgelagert.

2.5 Präparation von Plasmid-DNA

Die Standard-Präparation von Plasmid-DNA erfolgte nach der Methode der alkalischen Lyse(Birnboim & Doly, 1979) oder durch das Mini-/Midipräp. Kit der Fa. Qiagen (Hilden). ZurMini-/Midi-Präparation von Plasmid-DNA wurden die mitgelieferten Puffer der Fa. Qiagenverwendet und nach den Angaben des Herstellerprotokolls vorgegangen.

2.6 Präzipitation von DNA durch Alkohol / Isopropanolfällung

Salzige Nucleinsäurelösungen wurden mit 0,7 Volumen Isopropanol bei RT versetzt,gemischt und zentrifugiert (13000 Upm, 30 min, RT). Das Sediment mit 70% Ethanolgewaschen und die DNA nach erneuter Zentrifugation getrocknet und in A. dest. oder TE-Puffer resuspendiert.2.7 Konzentrationsbestimmung von DNA

Die Konzentration von DNA in wässriger Lösung wurde spektralphotometrisch (Ultrospec II

Page 34: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

24

GeneQuant; Pharmacia, Freiburg) bestimmt. In Agarosegelen erfolgte die Mengenabschätzungder DNA anhand der 1,6 kb Bande des Molekulargewichtsstandards (1 kb-ladder, GibcoBRL). Nach Herstellerangabe enthält diese Bande 10 % der insgesamt eingesetzten Marker-DNA. Bei einer DNA-Gesamtmenge von 333 ng entfallen auf die 1,6 kb-Bande 33 ng.

2.8 Agarosegelelektrophorese (Sambrook et al., 1989)

Zur Trennung von DNA-Fragmenten bis 1 kb Grösse wurden Gele mit einer Agarose-konzentration von 1,5% verwendet. Grössere Fragmente wurden in 0,4-0,8%igenAgarosegelen aufgetrennt. Die entsprechende Agarosemenge wurde eingewogen und ingewünschtem Volumen von 0,5fach TBE-Puffer (1x: 89 mM Tris/HCl pH 8,3; 89 mM Borat;2,5 mM EDTA) durch Erhitzen in der Mikrowelle gelöst. Zur Anfärbung der DNA wurde 1µlEthidiumbromidlösung (0,5% (w/v) Ethidiumbromid) pro 10 ml Gel-Lsg. zugegeben. DieElektrophorese wurde mit 0,5x TBE- Laufpuffer durchgeführt. Vor dem Auftragen wurden dieDNA-Proben mit DNA-Probenpuffer [5x: 100 mM EDTA, 44% (v/v) Glycerol, 0,05% (w/v)BPB] versetzt. Der DNA-Molekulargewichtsstandard "1kb-Leiter" Fa. Gibco BRL(Eggenstein) wurde mit aufgetragen. Die Agarosegele wurden mit derVideodokumentationsanlage "Gel Print 2000i (MWG Biotech, Ebersberg) dokumentiert.

2.9 Elution von DNA aus Agarosegelen (Vogelstein & Gillespie, 1989)

Zur Elution von DNA aus Agarosegelen wurde das "NucleoSpin" Extrakt der Fa. Macherey-Nagel verwendet. Zur Isolierung des gewünschten DNA-Fragments wurde dieses aus demAgarosegel ausgeschnitten und eluiert. Die Elution der DNA erfolgte nach den Angaben desHerstellers unter Verwendung der mitgelieferten Puffer und Lösungen.

2.10 In vitro-Rekombination von DNA

2.10.1.Hydrolytische Spaltung von DNA durch RestriktionsendonukleasenZur gezielten hydrolytischen Spaltung von Phosphodiesterbindungen innerhalb spezifischerBasensequenzen von DNA wurden ausschliesslich Restriktionsendonukleasen des Typs II(DNA-Bindungsstelle ist identisch mit Schnittstelle) eingesetzt. Um eine vollständigeHydrolyse zu gewährleisten, wurden pro µg DNA 5 U der entsprechenden Endonuklease inden Restriktionsansatz eingesetzt und 2 h bei benötigter Temperatur inkubiert. Für optimaleReaktionsbedingungen wurde der vom Hersteller mitgelieferte Puffer eingesetzt.

2.10.2 Hybridisierung von Oligonukleotiden zu doppelsträngiger DNASynthetische Oligonukleotide zur Erzeugung modifizierter intergenischer Regionen wurden inäquimolaren Verhältnissen gemischt, im Thermocycler durch 10 min Inkubation bei 96 °Cvollständig denaturiert, dann bei 60°C für 1 h inkubiert und abschliessend binnen 1h langsamauf RT abgekühlt.

2.10.3 Ligation von Vektor- und Fragment-DNADie Ligation von DNA-Fragmenten und entsprechend hydrolysierter Vektor-DNA wurdedurch die T4-DNA-Ligase katalysiert. Die Ligase ist in der Lage, unter Hydrolyse von ATPdie kovalente Verknüpfung benachbarter 3´-Hydroxy- und 5´-Phosphatenden doppelsträngigerDNA-Moleküle zu bilden. Das Enzym wurde nach Herstellerprotokoll im mitgeliefertenPuffer eingesetzt und 2 h bei RT inkubiert. Die Vektor- und die zu inserierende DNA wurdenim molaren Verhältnis von 1:3 eingesetzt.2.11 Sequenzierung von DNA

Page 35: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

25

Die Sequenzierungen wurden als Auftragsarbeit am Lehrstuhl für molekulare Neurobiochemie(Ruhr-Universität-Bochum) oder von IIT Biotech/Bioservice, Zentrales Isotopenlabor,Universität Bielefeld durchgeführt.

2.12 Transformation von Escherichia coli mit Plasmid-DNA (Hanahan, 1983)

LB-Medium wurde mit 0,02 Volumen Mg2+- Mix (je 500 mM MgCl2 und MgSO4) versehenund aus einer E.coli ÜK beimpft. Bei Erreichen einer O.D.580nm= 0,5 wurden die Zellengeerntet (3 min, 8000 Upm, 4°C), in halbem Volumen eiskaltem Transformationspuffer (100mM CaCl2, 50 mM RbCl2, 40 mM MnCl2) resuspendiert und 30 min auf Eis inkubiert. Nacherneuter Zentrifugation wurde das Zellsediment dann in einem Zehntelvolumen TMFaufgenommen. Die kompetenten Zellen wurden nach Zugabe von 20% (v/v) Glycerol bei -80°C eingefroren.Kompetente Zellen wurden zu der DNA gegeben und 30 min auf Eis inkubiert. Nach demHitzeschock (42°C; 3 min) wurden 0,7 ml LB-Medium zugegeben, für 0,5 3 h (je nach Art derAntibiotikaresistenz und des Replikationsursprungs) bei 37°C inkubiert und anschliessend aufden entsprechenden Selektivagarplatten ausplattiert. Gleichbehandelte Bakterienansätze denenkeine DNA zugesetzt wurde, dienten als Negativ-Kontrolle.

2.13 Übertragung von Plasmid DNA durch Konjugation

Zur Einbringung von Plasmid-DNA in P.aeruginosa wurde die Methode der biparentalenKonjugation angewendet. Die konjugierbaren Plasmide (mit mob-Genen) wurden in denStamm E. coli S17-1 transformiert, in dem die Transfer-Gene (tra-Gene) chromosomalintegriert vorliegen. Die Anzucht erfolgte für E. coli bis zur logarithmischen Wuchsphase(O.D.580nm 0,5-0,7) und für P. aeruginosa bei genau 43°C ü.N. (Ianenko et al., 1983). 5 ml derFlüssigkultur des Rezipientenstamms und 2 ml des Donorstamms wurden vermischt undzentrifugiert (10 min, 8000 Upm, 4°C). Das Zellsediment wurde resuspendiert und auf eineLB-Agarplatte gegeben. Der Konjugationsansatz wurde 4 h oder über Nacht bei 37°Cbebrütet, danach in 1 ml steriler Saline (0,9 % (w/v) NaCl) resuspendiert. Jeweils 0,1 ml desBakteriengemisches wurden unverdünnt, bzw. in verschiedenen Verdünnungen auf Selektiv-Agarplatten plattiert. Zur Kontraselektion von E. coli wurde Irgasan (25µg/ml) eingesetzt.

2.14 Erzeugung von Mutanten in P.aeruginosa

2.14.1"Allelenaustausch" (verändert nach Voisard et al., 1994)

Durch insertion selektierbarer Antibiotikaresistenzkassetten inaktivierte Gene wurden in die inP. aeruginosa nicht replizierenden (Suizid) Vektoren pME3087 oder pSUP202 subkloniert.Die resultierenden Mutageneseplasmide wurden durch konjugativen Transfer mittels E. coliS17.1 in P. aeruginosa-Ausgangsstämme eingebracht. Die Transkonjuganden wurden auf LB-Agarplatten mit beiden Antibiotika selektiert gegen die das Mutageneseplasmid Resistenzverlieh, gegen den Donorstamm wurde mit Irgasan selektiert. Durch mehrmalige Anzuchtohne Selektionsdruck und anschliessender Selektion auf die Antibiotikaresistenz der imZielgen inserierten Resistenzkassette wurden Mutanten isoliert, die das zweiteRekombinationsereignis durchgeführt hatten. Der Verlust des Vektoranteils wurde durchGegenselektion überprüft und die Mutante phänotypisch charakterisiert.

2.14.2 Zufällige Integration durch Phageninfektion

Page 36: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

26

(Darzins & Casdaban, 1989; Brunschwig & Darzins, 1992)

P. aeruginosa CD10 mit dem Plasmid pEB1 wurde durch Hitzeinduktion des ProphagenD3112 bei 42°C lysiert und so ein Gemisch aus Partikeln des Phagen und des verpacktenPlasmids gewonnen. Das Lysat wurde zweimal sterilfiltriert. Eine ÜK des Lipase/ Foldase-negative Stamm P. aeruginosa PABS1 wurde mit 1/10 Volumen des Lysats für 2 h bei RTinkubiert und dann in Verdünnungen auf Tetrazyklinhaltigen LB-Agarplatten ausplattiert.Resistente Klone wurden mehrfach auf dem selben Medium vereinzelt und dann durchAnzucht in Flüssigmedium bei 42 °C auf das Vorhandensein des Phagen überprüft.

2.15 Transkriptionsstart-Bestimmung durch "Primer extension"-Analyse

2.15.1 Isolierung von Gesamt-RNA

Die Isolierung von Gesamt-RNA erfolgte modifiziert nach Chomczynski & Sacchi (1987)durch saure Guanidinium-Thiocyanat-Phenol-Chloroform- Lösung direkt aus Bakterien.Zellen aus 5 ml einer Kultur wurden geerntet (5', 13000UpM, 4°C) und in 500µl "total RNAisolation reagent" (Biomol, Hamburg) resuspendiert, 5 min inkubiert, mit 100 µl Chloroformversetzt und zentrifugiert (10', 13000UpM, 4°C). Die RNA-enthaltende wässrige Phase wurdeabgenommen und die RNA mittels Isopropanol (400µl) gefällt, 2x gewaschen (je 10',13000UpM, 4°C), getrocknet und in 20µl DEPC(Diethylpyrocarbonat)-behandeltem Wasseraufgenommen, und bei -80°C gelagert.

2.15.2 "Primer extension" Analyse(modifiziert nach Myöhänen und Wahlfors, 1993)

Alle benutzten Geräte wurden durch 2xiges autoklavieren und alle Lösungen duch Einsatz vonDEPC RNAse-frei gemacht.Zunächst wurde mit der Gesamt-RNA (2.15.1) die Anlagerung der spezifischen, markiertenOligonukleotide (primer) (PELipH1/2, 2.2) durchgeführt. Der Reaktionsansatz (10µl) enthielt5-10 µg RNA, 50 pmol primer, 2 µl "annealing"-Puffer (1,25 M KCl, 10 mM Tris-HCL, 1mM EDTA, pH 7,9) und 1 µl RNAse-Inhibitor. Der Ansatz wurde zunächst denaturiert (10',85°) und anschliessend 2h bei 40-55°C (Schmelztemperatur primer -15°C) inkubiert zurAnlagerung der primer. Die reverse-Transkriptase Reaktion wurde durch Zugabe von 24µl"primer-extension-Mix" (0,5 U SuperscriptTM reverse Transkriptase,330µM dNTPs, 20 mMDTT, 10mM MgCl2, 20 mM Tris-HCl, pH 8,3) gesartet und 45 min bei 37°C inkubiert. DiePräzipitation der RNA erfolgte durch Ethanol (300µl, 100%, 20 min, -80°C) mitanschliessender Zentrifugation (15 min, 13000 UpM, 4°C) und wurde nach Trocknung bei RTin 7,5 µl TE (10 mM Tris-HCl, 1 mM EDTA, pH 7,5) aufgenommen und 15 min bei 65°Cgelöst. Nach Zugabe von 6 µl ALF-Stop-Mix (Pharmacia, Freiburg) wurden die Ansätzeeingefroren (-20°C) oder weiter verwendet.Die Detektion und Referenzsequenzierung wurde als Auftragsarbeit durchgeführt (Lehrstuhlfür Molekulare Neurobiochemie, Ruhr-Universtiät Bochum). Die Auswertung erfolgte mittelsder "ALFwinTM" Evaluation software (Pharmacia).

Page 37: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

27

2.16 Gewinnung von Kulturüberständen

Die Zelldichte einer Flüssigkultur (10 ml Kulturvolumen, 24 h bei 37°C gewachsen) wurdebestimmt (O.D.580 nm) und die Zellen durch Zentrifugation (5 min, 7500 Upm) geerntet. DerÜberstand wurde abgenommen, im Bedarfsfall sterilfiltriert (Schleicher und Schüll, NC45Membranfilter, 0,45µm Porendurchmesser) und/oder konzentriert (Amicon, Centricon 10)und sofort verwendet oder bis zur weiteren Verwendung bei -20°C gelagert. Das Zellsedimentwurde für die Herstellung von Gesamtzellextrakt verwendet.

2.17 Herstellung von Gesamtzellextrakten (GZE)

Das unter 2.14 gewonnene Zellsediment wurde in Puffer (100 mM Tris/HCl, pH 8,0)gewaschen (5 min, 7500Upm). Dann nochmals im gleichen Puffers aufgenommen undanschliessend einer Ultraschallbehandlung unterzogen (Branson-Sonifier W250, 2 min,Leistungszyklus 50 %, 20 Watt). Das Volumen wurde bis zum entnommenen Probenvolumen(2.14) mit Waschpuffer aufgefüllt. Bei grossen Kulturvolumina wurde der GZE mittels zweierPassagen (1500 psi) durch eine "French-Press" (SLM-AMINCO Version 5.0, SLMInstruments Int., Urbana, USA) gewonnen. Der GZE wurde in Enzymtests eingesetzt oder biszur weiteren Verwendung bei -20°C gelagert.

2.18 Herstellung von Späroplasten (Witholt et al., 1976)

200 mg Zellen (Trockengewicht, exponentielle Wuchsphase) wurden in 20 ml Puffer A (100mM Tris-HCl pH 8,0; 20% [w/v] Saccarose) resuspendiert und 5 min bei RT inkubiert. Dannwurden 20 ml Puffer B (Puffer A + 5 mM EDTA) und 2 mg Lysozym zugegeben und für 30min bei RT inkubiert.

2.19 Herstellung der Periplasma-, Cytoplasma- und Membranfraktion(Pedrotta & Witholt, 1999)

Die generierten Sphäroplasten wurden für 20 min zentrifugiert (10000xg) und der Überstandwurde als Periplasmafraktion bezeichnet. Die sedimentierten Sphäroplasten wurden in 15 mlPuffer C (100 mM Tris-HCl pH 8,0; 20 mM MgCl2) resuspendiert und DNAse (0,01 mg/ml)zugefügt. Die Späroplasten wurden mittels zwei Passagen durch eine "French-Press"aufgeschlossen, Zelltrümmer durch Zentrifugation (10 min, 5000xg) entfernt. Gesamt-membranen wurden durch Ultrazentrifugation (2 h, 250000xg) sedimentiert und derresultierende Überstand als Cytoplasmafraktion genutzt. Die Membranen wurden in 5 mlPuffer D (50 mM KPi, pH 7,2) resuspendiert.

2.20 Enzymtests

Page 38: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

28

2.20.1 Bestimmung der Lipaseaktivität (Winkler & Stuckmann, 1979)

In basischer Lösung adsorbiert abgespaltenes p-Nitrophenol Licht der Wellenlänge λ = 410nm. Die O.D.410nm ist somit ein Mass für die Aktivität der Lipase.Substratemulsion: 207 mg Natriumdesoxycholat, 100 mg Gummi arabicum, 90 ml SörensenPhoshatpuffer pH 8,0 (Lösung A: 8,9 g/l Na2HPO4, Lösung B: 0,68 g/l KH2HPO4 [A:B ⇒17:1]); 30 mg pNP Palmitat in 10 ml Isopropanol. Pro Reaktion wurden 2,5 mlSubstratemulsion mit 20-100 µl Probe vermischt und für 15 min bei 37°C inkubiert.Anschliessend wurde die O.D.410nm der einzelnen Ansätze im Spektralphotometer (Zeiss PMQII) gemessen. Angegeben werden die Werte als relative Aktivität, wobei die O.D.410 nm auf 1ml Probenvolumen und auf die Zelldichte (O.D.580nm) bezogen ist (O.D.410nm/O.D.580nm*ml).

2.20.2 ββββ-Galaktosidase Aktivität

Die Aktivität der β-Galaktosidase wurde in Toluol-permeabilisierten Zellen mit o-Nitrophenyl-β-D-Galaktopyranosid (ONPG) als Substrat im Spektralphotometer (NovaspecII,Pharmacia) bei einer Wellenlänge von 420 nm nach Miller (1992) bestimmt.

2.21 Bestimmung von ProteinkonzentrationenProteinkonzentrationen wurden nach der Methode von Bradford (1976) imSpektralphotometer "Novaspec" (Pharmacia) bestimmt. Als Referenz dienteRinderserumalbumin (BSA).

2.22 Präzipitation von Proteinen (Peterson, 1977)Proteinproben wurden mit 0,1 Volumen Natriumdesoxycholat-Lösung (1% w/v) vermischtund mit 0,1 Volumen 70%iger (w/v) Trichloressigsäure versetzt und 5 min auf Eis inkubiert.Nach der Zentrifugation (30 min, 13000 Upm) wird das Sediment 2 mal mit 80%igem Acetongewaschen und getrocknet.

2.23 Denaturierende SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)(nach Laemmli, 1970)

Tab. 6: Mengenangaben für SDS-Polyacrylamidgele verschiedener Prozentigkeit (Sambrook et al. 1989).

Lösungen Sammelgel3,9%

Trenngel 10%

30% Acrylamid, 0,8% N-N‘-Methylenbisacrylamid 0,65 ml 5 ml1,5 M TrisHCl (pH 8,8), 0,4% SDS ----- 3,75 ml0,5 M TrisHCl (pH 6,8), 0,4% SDS 1,25 ml -----A. dest. 3,05 ml 6,25 ml10 % (w/v) APS 25 µl 50 µlTEMED 5 µl 10 µlDie Elektrophorese wurde in einem diskontinuierlichen Gelsystem, in einer "Mini ProteanDual Slab Cell"der Fa. BioRad durchgeführt. Die Proben wurden in 10 µl Probenpuffer [50mM Tris-HCl, 10 % (v/v) Glycerol, 4 % (w/v) SDS, 2 % (v/v) ß-Mercaptoethanol, 0,03 %(w/v) BPB, (pH 6,8)] aufgenommen und 10 min bei 95°C gekocht.Die Elektrophorese erfolgte bei einer konstanten Spannung von 120 V für ca. 45 min imElektrophorese-Puffer [ 25 mM Tris, 192 mM Glycin, 0,1 % (w/v) SDS, pH 8,3]. Proteinewurden mit Coomassie Briliant Blue R-250 der Fa. Serva (Heidelberg) gefärbt.

Page 39: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

2. Material und Methoden

29

2.24 Immunodetektion der Lipase (LipA) oder der Foldase (LipH)

Die Immunodetektion der Lipase/Foldase erfolgte nach Auftrennung der Proteine in einemdenaturierenden SDS-Polyacrylamidgel. Die Proteine wurden mittels einer Transferapparaturder Firma BioRad (Mini Trans-Blot Elektrophoretic Transfer Cell), auf eine PVDF-Membran(Fa.Milipore) übertragen (Wilson & Yunan, 1989). Die Übertragung erfolgte 15 min bei 150mA und weitere 20 min bei 300 mA konstanter Stromstärke in Dunn-Carbonat-Puffer (10 mMNaHCO3, 3 mM Na2CO3, 20 % (v/v) Methanol) (Dunn, 1986). Anschliessend wurde diePVDF-Membran mindestens 1 h in TBST [50 mM Tris-HCl (pH 6,8), 150 mM NaCl, 1 mMMgCl2, 0,2 % (v/v) Tween 20] mit 2% (w/v) Milchpulver blockiert. Die Lipase/Foldase wurdemit einem indirekten Enzym-Immunoassay nachgewiesen. Der Kanninchen-Anti-LipA/LipHAntikörper wurde in einer Verdünnung von 1:80000/1:200000 und der Zweitantikörper Ziege-Anti-Kaninchen-Meerrettich-Peroxidase-Konjugat in einer Verdünnung von 1:5000eingesetzt. Der Nachweis durch das ECL-System (Enhanced Chemiluminescence WesternBlotting detection system, Amersham Buchler, Braunschweig) erfolgte nach den Angaben imHerstellerprotokoll. Die Dokumentation erfolgte über die Belichtung eines Röntgenfilmes.

2.25 Färbung der PVDF-Membran (Matsudaira, 1989)

Nach der Detektion wurde die Membran 15 min in TBST gewaschen und anschliessend 30min in der Färbelösung (50 % (v/v) Methanol, 0,1 % (w/v) Coomassie Brilliant Blue R)inkubiert. Zur Entfärbung des Hintergrundes wurde die Membran 10 min in derEntfärbelösung (50 % (v/v) Methanol, 10 % (v/v) Essigsäure) gewaschen.

2.26 Computerprogramme und Online-Datenbanken

Die Analyse von DNA- oder Aminosäuresequenzen wurden mit den Programmen "CLONEManager for Windows 4.1" (Scientific and EducationalSofware), "DNA STAR" (Lasergene)und PSORT (http.//www.psort.nibb.ac.jp) (Nakai & Horton, 1999) durchgeführt.Homologievergleiche wurden mit dem BLAST-Algorithmen des NCBI-Servers(http://www.ncbi.nlm.nih.gov) (Altschul et al., 1990 und 1997) und dem MATCH-BOXServer (http.//www.fundp.ac.be) durchgeführt.In dieser Arbeit wurden Ergebnisse mit Hilfe einer Videodokumentationsanlage oder einerDigaitalkamera digitalisiert und elektronisch in diese Arbeit eingebunden. Im Verlauf derDatenerfassung und Datenverabeitung wurden keine inhaltlichen Veränderungen derAbbildungen vorgenommen.

Page 40: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

30

3. Ergebnisse

3.1 Entwicklung eines Expressionssystems zur Produktion der Lipase aus P. aeruginosaim heterologen Wirt Pseudomonas putida

3.1.1 Pseudomonas putida transkribiert die xcp-Gene aus Pseudomonas aeruginosa

Zur Produktion der Lipase aus P. aeruginosa sollte ein Expressionsstamm entwickelt werden,

der auf einem Wirtsbakterium der Sicherheitsstufe 1 basiert. Hierzu sollte in dem Stamm P.

putida BMTU650 der für die Sekretion der Lipase über die äussere Membran notwendige

Xcp-Apparat aus P. aeruginosa rekonstituiert werden.

Der TypII-Sekretionsapparat aus P. aeruginosa besteht aus 11 Proteinen, deren Gene in zwei

divergent transkribierten Operons organisiert sind (Abb.5) und einer zelldichteabhängigen

Regulation unterliegen (Chapon-Herve et al., 1997). Essentiell ist daneben auch eine durch

das xcpA/pilD-Gen kodierte spezielle Prepilinpeptidase/ Methyltransferase (Bally et

al.,1992). Da P. putida ebenfalls eine XcpA-homologe Prepilinpeptidase besitzt (de Groot et

al., 1994), sollte die Ausbildung eines funktionellen TypII-Exportapparates möglich sein,

sofern die 11 P. aeruginosa xcp-Strukturgene in P. putida exprimiert werden. Eine

Voraussetzung hierfür ist eine effektive Erkennung der Promotoren die die Expression der

xcp-Gene kontrollieren.

Um zu zeigen, dass diese gewährleistet ist, wurde zunächst exemplarisch die

Promotoraktivität des vor dem xcpR-Gen lokalisierten Promotors anhand einer episomal

kodierten transkriptionalen Reportergenfusion untersucht.

PP PR

ScaI PstI

Q P R ZS,T,U,V,W,X,Y

lacZpML5XcpR

417 bp

Abb. 5 Genetische Organisation der xcp-Gene aus P. aeruginosa. Die Strukturgenesind in zwei divergent transkribierten Operonen angeordnet (Operon P-Q und OperonR-Z). Vergrössert gezeichnet ist die interoperonische Region mit den Promotoren PPund PR, die auf einem 417 bp grossen ScaI/ PstI-Fragment in dem lacZ-FusionsplasmidpML5XcpR enthalten ist. Der xcpR-Promotor PR kontrolliert hierbei die Transkriptiondes lacZ-Gens. Aufgrund dieser transkriptionellen Fusion, kann die zelluläre ß-Galaktosidase-Aktivität als Mass für die Promotoraktivität herangezogen werden.

Page 41: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

31

Das Plasmid pML5xcpR trägt ein 417 bp grosses internes DNA-Fragment aus dem P.

aeruginosa xcp-Gencluster, auf dem sowohl der stromaufwärts des xcpP-Gens, wie auch der

divergent orientierte xcpR-Promotor lokalisiert sind. Die Orientierung ist hierbei so, dass der

xcpR-Promotor unmittelbar vor dem promotorlosen lacZ-Gen lokalisiert ist (Abb.5) und

somit eine intrazelluläre ß-Galaktosidase-Aktivität als Mass für die Transkriptionsaktivität

dieses Promotors dienen kann.

Das Fusionsplasmid und der Leervektor pML5 wurden durch Konjugation in den Stamm P.

putida BMTU650 eingebracht und wuchsphasenabhängig die Aktivität des Reportergens

bestimmt. Die in Abb.6 dargestellten Wuchskurven wurden aufgenommen und parallel dazu

die intrazelluläre ß-Galaktosidaseaktivität bestimmt.

Die zu Beginn der Wuchsphase gemessene ß-Galaktosidaseaktivität resultiert wahrscheinlich

aus einer intrazellulären Akkumulation der sehr stabilen ß-Galaktosidase in den

spätstationären Vorkulturen. In der logarithmischen Wuchsphase sinkt die Aktivität, bedingt

durch den Verdünnungseffekt der sich teilenden Bakterien, dann zunächst ab.

Am Übergang zwischen spätlogarithmischer und früher Stationärphase wurde ein Maximum

von 129 Miller Units erreicht, danach, also in der Stationärphase und besonders in der späten

Stationärphase sank die ß-Galaktosidaseaktivität stark ab. Insgesamt sind die gemessenen

(Transkriptions-)Aktivitäten von maximal 150 Miller Units als gering zu bewerten, decken

sich aber mit der Promotorstärke von PR, die im homologen Wirt bei voller Induktion

beschrieben wurden (Chapon-Herve et al., 1997).

Abb. 6 Transkriptionsaktivität des xcpR-Promotors in P. putida BMTU 650. Die dargestellte ß-Galaktosidaseaktivität ist die Differenz aus den Werten der episomalen Transkriptionsfusion (pML5XcpR)und der Hintergrundaktivität der Leervektorkontrolle (pML5). Die Zelldichte und die ß-Galaktosidaseaktivität wurden in drei unabhängigen Experimen bestimmt und als Mittelwert dargestellt,wobei die Fehlerbalken die Standardabweichung angeben. Die Kultivierung erfolgte in LB-Medium bei30°C.

0

5 0

10 0

15 0

20 0

0 2 4 6 8 2 5 30

W u ch s dau er [h ]

spez

. ß-G

al.-A

ktiv

ität

[Mill

er U

nits

]

0 ,0 1

0 ,1

1

1 0

Zel

ldic

hte

[O.D

.580

nm]

ß -G a l.

Z e lld ic h t e

Page 42: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

32

Im Unterschied zur Situation in P. aeruginosa bewirkt der xcpR-Promotor in P. putida zwar

eine effektive Transkriptionsinitiation, scheint aber nicht zelldichtereguliert zu sein, da der

hierfür typische deutliche Anstieg der ß-Galaktosidaseaktivität am Übergang zwischen

logarithmischer und stationärer Wuchsphase nicht beobachtet wurde.

3.1.2 Der Xcp-Sekretionsapparat aus P. aeruginosa ist in P.putida funktionell

Anhand des Promotors des xcpR-Gens wurde demonstriert, dass im heterologen Wirt P.

putida die Strukturgene für den TypII-Sekretionsapparat effektiv transkribiert werden. Zur

Ausbildung eines funktionellen Xcp-Apparates müssen jedoch auch alle weiteren

posttranskriptionellen Prozesse in adäquater Weise gewährleistet sein. Darüberhinaus war

unklar, ob neben den 12 in P. aeruginosa klar identifizierten Genprodukten weitere bisher

unbekannte Faktoren für den Aufbau oder die Funktion des Xcp-Apparates notwendig sind.

Daher wurde untersucht, ob ein Plasmid, das nur die in Abb. 5 dargestellten 11 xcp-

Strukturgene trägt, eine Sekretion der P. aeruginosa-Lipase durch P. putida erlaubt. Dabei

handelt es sich um das Plasmid pAX24, ein Derivat des Cosmids pLAFR3, das ein ca. 20 kbp

grosses Fragment des P. aeruginosa-Chromosoms beinhaltet, auf dem die zwei xcp-Operons

lokalisiert sind. Ferner wurde das Plasmid pBBL7 benutzt, das ein 2,8 kbp XmnI/SmaI-

Fragment enthält, das für das komplette lipA/lipH aus P. aeruginosa kodiert (Düfel, 1995).

Dieses basiert auf dem Plasmid mit weitem Wirtsbereich pBBR1MCS (Kovach et al., 1994)

und erlaubt unter transkriptioneller Kontrolle des lac-Promotors die konstitutive Expression

des Lipaseoperons. Der Leervektor pLAFR3 wie auch pAX24 wurden durch Konjugation in

P. putida BMTU650 eingebracht. Ebenso wurden parallel dazu jeweils die Plasmide

pBBR1MCS als Leervektorkontrolle, bzw. pBBL7 als Lipaseexpressionsvektor in die

erhaltenen Stämme eingebracht.

Die Abb. 7 A zeigt, dass in Kulturüberständen von P. putida nur dann Lipaseaktivität

nachweisbar war, wenn episomal sowohl das Lipaseoperon, als auch pAX24 mit den xcp-

Genen vorhanden waren. Während unter diesen Bedingungen nach 24 h Wuchsdauer eine

spezifische Lipaseaktivität von 36 nkat/ml/O.D.580nm gemessen wurde, war in dem

Kontrollstamm, der nur die zwei Leervektoren enthielt, eine zu vernachlässigende Aktivität

nachweisbar. Dies galt auch für Stämme, in denen zwar entweder das P. aeruginosa-

Lipaseoperon oder die xcp-Gene vorhanden waren, jedoch nicht die entsprechende zweite

Komponente. Die Befunde der Aktivitätsmessungen decken sich hierbei mit den Ergebnissen

des immunologischen LipA-Nachweises der entsprechenden Kulturüberstände (Abb.7 B).

Während in keinem der Kontrollstämme ein Signal auftrat, wurde in dem Expressionsstamm,

Page 43: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

33

der in Kombination beide Expressionsplasmide trug, eine der Lipase entsprechende Bande

nachgewiesen.

Dies zeigt zum einen, dass der P. putida eigene Xcp-homologe Apparat nicht in der Lage ist,

die P. aeruginosa-Lipase als heterologes Substrat zu sekretieren. Zum anderen ist das

Vorhandensein des Lipaseoperons und der 11 xcp-Gene ausreichend für den Aufbau eines

funktionellen Xcp-Apparates in P. putida und eine effiziente Lipasesekretion.

Interessanterweise war reproduzierbar die intrazelluläre Konzentration des Foldaseproteins

ebenfalls in Stämmen am höchsten, die einen funktionellen Xcp-Apparat besassen und aktiv

Lipase sekretierten (Abb. 7 C).

Abb. 7 Sekretion der Lipase durch den P. aeruginosa Xcp-Apparat im heterologen Wirt P. putida. In denWildtypstamm P. putida BMTU650 wurden die Plasmide pBBL7 bzw. pAX24 durch konjugativen Transfereingebracht. Das Expressionsplasmid pBBL7 trägt das komplette Lipaseoperon bestehend aus den Genen lipAund lipH („lipA/H +“)aus P. aeruginosa unter transkriptioneller Kontrolle des in Pseudomonas spec.konstitutiven lac-Promotors, pAX24 trägt die 11 xcp-Strukturgene aus P. aeruginosa („xcp +“). Als Kontrollendienten Stämme, die ausser einem dieser Plasmide den jeweils anderen Leervektor pBBR1MCS bzw. pLAFR3trugen. Der als Negativkontrolle eingesetzte Stamm enthielt nur die beiden Leervektoren. Die Bakterienstämmewurden 14 h bei 30°C in LB-Medium kultiviert. A. Die Lipaseaktivität in Kulturüberständen wurde mit pNPPals Substrat bestimmt. Dargestellt sind die Mittelwerte aus drei unabhängigen Messungen, wobei dieFehlerbalken der Standardabweichung entsprechen. B. Immunologischer Nachweis der extrazellulären Lipase.Es wurden Volumina der Kulturüberstände aus A. eingesetzt, die einer O.D.580 von 0,15 entsprachen. NachSDS-Page und Transfer der Proteine auf eine PVDF-Membran erfolgte der Nachweis der Lipase mit demLipase-spezifischen Antiserum Lip4 in einer Verdünnung von 1:80000. C. Immunologischer Nachweis desFoldase-Proteins LipH. Es wurden GZE der Zellen aus A. benutzt, die einer O.D.580 von 0,15 entsprachen. DerNachweis erfolgte mit einem LipH-spezifischen Antiserum in einer Verdünnung von 1:200000.

xcp-Gene

lipA/lipH-Operon

-- -

+ +

+

-+

0,01 05 0,11 5 0,0 270

1 0

2 0

3 0

4 0

1 2 3 4

spez

. Lip

asea

ktiv

ität

[µka

t/ml/O

.D.5

80nm

Lipase

Foldase

A

B

C

A

spez. Lipaseaktivität[nkat/ml/OD580nm]

Page 44: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

34

3.1.3 Produktion und Stabilität der P. aeruginosa Lipase in P. putida

P. putida synthetisiert einen funktionellen, heterologen Xcp-Apparat aus P. aeruginosa über

den enzymatisch aktive Lipase in das Kulturmedium sekretiert wird. Damit konnte erstmalig

gezeigt werden, dass für die in vivo Rekonstitution des Exportapparates ausser den 11 in P.

aeruginosa bekannten xcp-Genen und der in diesem Fall durch das Wirtsbakterium

bereitgestellten XcpA-homologen Prepilinpeptidase keine weiteren zellulären Faktoren aus

P. aeruginosa notwendig sind. Im Hinblick auf eine potentielle Anwendung dieses

Expressionssystems sollte nun der zeitliche Verlauf der Lipaseproduktion und die unter

Laborbedingungen in einem Standardmedium erzielbare Ausbeute untersucht werden. Hierzu

wurde die in Abbildung 8 dargestellte Wuchskurve aufgenommen, in der die extrazelluläre

Lipasemenge durch Aktivitätsmessung und immunologischen Nachweis des Proteins

bestimmt wurde. Die extrazellulär detektierbare Lipaseaktivität erreichte hierbei nach einer

Wuchsdauer von 14 h ein Maximum von etwa 0,3 mg/l, wobei auch im Westernblot zu

diesem Zeitpunkt das stärkste Signal auftrat. Zu späteren Zeiten war bei nahezu konstanten

Zelldichten eine signifikante Abnahme sowohl der Aktivität als auch der Proteinmenge zu

verzeichnen. Die Lipase liegt im Kulturüberstand von P. aeruginosa in hochmolekularen

Aggregaten vor (Stuer et al., 1986), was mit einer Assoziation des Enzyms mit LPS-

Molekülen erklärt wird (K.-E. Jäger, unveröffentlicht).

Abb. 8 Kinetik der Lipaseproduktion in P. putida. P.putida BMTU650 mit den Plasmiden pBBL7 undpAX24 wurde in LB-Medium bei 30°C für 24h kultiviert. A. Zeitlicher Verlauf der extrazelluläre Lipaseaktivi-tät und Zelldichte. Dargestellt sind die Mittelwerte aus drei unabhängigen Experimenten, wobei die Fehlerbal-ken die Standardabweichung zeigen. B. Immunologischer Nachweis des Lipaseproteins in Kulturüberständen.

0.01

0.1

1

10

0 2 4 6 8 10 14 24

Zel

ldic

hte

[O.D

.580

]

0

100

200

300

400

Lip

asea

usbe

ute

[µg/

l]Zelld ich te

Lipas eA.

B.

Wuchsdauer [h]

Page 45: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

35

Abb. 9 Verteilung der Lipaseaktivität nach14 und 24h Wuchsdauer. P.putida (pBBL7/pAX24) wurde in LB-Medium bei 30°Ckultiviert.Nach 14 und 24h wurde dieLipaseaktivität von Kulturüberständen undGanzzellextrakten bestimmt. Die Aktivitätender 14h-Proben wurden als 100%angenommen. Dargestellt sind dieMittelwerte dreier Versuche mit der Angabeder Standardabweichung durch dieFehlerbalken

0

20

40

60

80

100

120

GZE KÜ

rel.

Lipa

seak

tivitä

t [%

] 14 h24 h

Darüberhinaus variiert bei unterschiedlichen

Kulturbedingungen im homologen Wirt der Anteil

frei im Medium und extrazellulärer, aber an die

Zelloberfläche gebundener Lipase (K.-E. Jäger,

unveröffentlicht). Eine denkbare Bindung solcher

Lipase-LPS-Aggregate an die Zelloberfläche in der

spätstationären Wuchsphase müsste zu einer

gleichzeitige Abnahme der Lipaseaktivität im

Kulturüberstand und Zunahme in GZE führen. Wie

Abb. 9 zeigt, war dies nicht der Fall. Während in

Kulturüberständen die Lipaseaktivität zwischen 14 h

Wuchsdauer und Erreichen der spätstationären

Phase (24 h Wuchsdauer) auf etwa 1,7% der

ursprünglichen Menge abnahm, war die

zellgebundene Aktivität in GZE zu beiden

Zeitpunkten gleich. Sowohl der P. putida WT als

auch die Expressionsstämme mit den Plasmiden

pAX24 und/oder pBBL7 zeigten auf

Proteasenachweis- („Skim-milk“-) Agarplatten eine

geringe proteolytische Aktivität (ohne Abbildung).

Ein weiterer plausibler Grund für die Reduzierung

der Lipaseaktivität war daher, dass die sekretierte

Lipase im Kulturüberstand instabil war und

möglicherweise durch extrazelluläre Proteasen

degradiert wurde. Um den möglichen Einfluss

dieser proteolytischen Aktivität auf die Stabilität

bereits sekretierte Lipase zu überprüfen, wurden

zellfreie KÜ des Expressionsstammes P. putida

(pBBL7/pAX24) nach 14 h Wuchsdauer mit KÜ des

Kontrollstammes P. putida (pBBR1MCS/pAX24)

nach 24 h Wuchs im gleichen Volumenverhältnis

gemischt und die verbleibende Lipaseaktivität bei

30°C über weitere 16 h verfolgt. In

Kontrollansätzen, denen statt des Stationärphasen-

Abb. 10 Stabilität der Lipase inKulturüberständen von P. putida.Kulturüberstände von P. putida (pBBL7/pAX24) nach 14h und P. putida(pBBR1MCS/ pAX24) nach 24h Anzuchtwurden im gleichen Volumenverhältnisgemischt und die Lipaseaktivität nachInkubation bei 30°C verfolgt. Als Kontrolledienten Ansätze denen nur LB-Mediumzugesetzt wurde. Die Gewinnunghitzeinaktivierter KÜ (KÜ inakt.) erfolgtedurch 10 min Kochen nativer KÜ (KÜ nat.)bei 96 °C. Dargestellt sind die Mittelwertedreier Versuche, Fehlerbalken zeigen dieStandardabweichung

50

60

70

80

90

100

0 4 8 12 16

Inkubationsdauer [h]

rel.

Lipa

seak

tivitä

t [%

]

LBKÜ nat.KÜ inakt.

Page 46: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

36

KÜ lediglich frisches LB-Medium zugesetzt wurde, blieb die xxxxxxxxxxxxxxxxx

Lipaseaktivität über diesen Zeitraum annähernd unverändert (Abb. 10).

Demgegenüber führte die Zugabe des unbehandelten nativen Stationärphasen-KÜ zwar nicht

zu einem vollständigen Verlust der Lipaseaktivität, jedoch zu einer deutlichen Abnahme der

Restaktivität auf 69% des Ausgangswertes nach 16 h. Dieser Effekt blieb aus, wenn der

eingesetzte Stationärphasen-KÜ zuvor hitzeinaktiviert wurde (KÜ inakt., Abb. 10). Diese

Befunde zeigen, dass die beobachtete Abnahme der Lipaseaktivität und Proteinmenge in KÜ

auf Faktoren zurückzuführen ist, die von P. putida (pBBR1MCS/ pAX24) in der

spätstationären Wuchsphase sekretiert werden, wobei es sich aufgrund der nachgewiesenen

Hitzeinaktivierbarkeit wahrscheinlich um sekretierte Proteasen handelt.

3.1.4 Stabilität der Foldase

Als Erklärung für die Abnahme der extrazellulären Lipaseaktivität in der Stationärphase kam

neben der nachgewiesenen Instabilität der bereits sekretierten Lipase eine Abnahme der

Expression bzw. Sekretion in Frage. Aufgrund der in Abb. 7 dargestellten Befunde stellte

sich darüberhinaus die Frage, inwieweit die intrazelluläre Produktion bzw. Stabilität des

LipH-Proteins vom Vorhandensein der Xcp-Proteine abhängig war. Da durch Western-Blot-

Analysen in GZE der Expressionsstämme zu keiner Wuchsphase intrazelluläre Lipase

nachgewiesen werden konnte (ohne Abb.), wurde zur Klärung der Frage, ob in der

Stationärphase das Lipaseoperon überhaupt noch exprimiert wird, auf den Nachweis des zur

in vivo-Aktivierung der Lipase notwendigen LipH-Proteins als Indikator zurückgegriffen.

Hierzu wurden P. pudida pBBL8/pAX24 und pBBL7/pLAFR3 über 24 h in LB Medium

kultiviert und das LipH-Protein zu verschiedenen Zeitpunkten der Wuchskurve mittels

Western-Blot-Analyse von GZE nachgewiesen. Wie aus Abb. 11 zu ersehen ist, war das

LipH-Protein zu

jedem Zeitpunkt intrazellulär nachweisbar.

Abb. 11 Stabilität der Foldase in Abhängigkeit vonder Expression der Lipase und des Xcp-Apparats.Die Anzucht der Bakterien erfolgte für dieangegebenen Zeiten bei 30°C in LB-Medium. DiePlasmide pBBL7 bzw. pBBL8 kodierten für daskomplette Lipaseoperon bzw. nur für das lipH-Gen.Dargestellt ist die Immunodetektion des LipH-Proteins in GZE. Zu beachten ist die unterschiedlicheProbenmenge. Die Spuren –xcp enthielten GZEentsprechend einer Zelldichte von 0,45 O.D.580, +xcpenthielten 0,15 O.D.580. Pfeile kennzeichnen dasVollängen-LipH-Protein.

- xcp-Gene + xcp-Gene

pBBL7(+lipA)

pBBL8(-lipA)

2 146 24 2 146 24 Stunden

LipH

LipH

Page 47: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

37

Wie vermutet, war die Konzentration in der Stationärphase nach 24 h Wuchsdauer jedoch in

allen Stämmen geringer als in früheren Wuchsphasen. Weiterhin scheint die intrazelluläre

LipH-Konzentration mit dem Vorhandensein des Xcp-Apparates korreliert zu sein. Eine

denkbare Erklärung hierfür ist eine Stabilisierung des LipH-Proteins durch eine eventuelle

periplasmatische Komplexbildung mit einem der Xcp-Proteine. Ebenso könnte das Auftreten

des LipH-Degradationsproduktes bei alleiniger Expression von lipH darauf hindeuten, dass

im Normalfall das LipH-Protein durch Bindung der Lipase während des Faltungsprozesses

gegen eine Degradation geschützt vorliegt.

Es kann somit zusammenfassend gesagt werden, dass P. putida als nichtpathogenes (S1)

Wirtsbakterium zur Expression und Sekretion heterologer Proteine aus P. aeruginosa

geeignet ist. Voraussetzung hierfür ist das Vorhandensein der 11 bisher in P. aeruginosa

bekannten xcp-Strukturgene, die in P. putida transkribiert werden und deren Genprodukte im

heterologen Wirt einen funktionellen TypII-Exportapparat zur Translokation extrazellulärer

Proteine aus P. aeruginosa konstituieren. Die hierfür als Beispielprotein gewählte Lipase aus

P. aeruginosa wird in einer enzymatisch aktiven Form in das Kulturmedium sekretiert. Die

extrazelluläre Stabilität der Lipase wird wuchsphasenabhängig wahrscheinlich durch bisher

unbekannte, extrazelluläre proteolytisch aktive Proteine aus P. putida limitiert. Das hier

beschriebene System aus P. putida BMTU650 als (S1-) Wirtsbakterium, einem die xcp-Gene

tragenden Plasmid und einem Vektor zur Expression des Lipaseoperons aus P. aeruginosa

wurde zur Patentierung eingereicht (Appl.-Nr. 19848016.4/ U.S.-Appl.-Nr.09/418.935).

Page 48: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

38

3.2 Überexpressionssysteme zur Produktion der Lipase aus P. aeruginosa imhomologen Wirt

Es wurde ein System entwickelt, die Lipase aus P. aeruginosa im heterologen Wirt zu

produzieren. Für die Produktion im Labormassstab sollte darüberhinaus ein System

entwickelt werden, dass die Produktion der Lipase mit hoher Ausbeute erlaubt. Eine

beabsichtigte Anwendung hierfür war die Durchmusterung von Bibliotheken modifizierter

Lipasegene zur Optimierung des Enzyms für biotechnologisch relevante Umsetzungen

(Rosenau et al., 1998). Dazu war es von Bedeutung, Expressionsstämme ohne

Hintergrundaktivität des WT-Enzyms zu konstruieren.

3.2.1 Konstruktion von Expressionsstämmen zur T7-RNA-Polymerase abhängigen

Expression der Lipase

Ein bereits etabliertes System, das zur Expression von Proteinen in P. aeruginosa eine

induzierbare T7-RNA-Polymerase verwendet wurde von Brunschwig & Darzins (1992)

vorgestellt und auch schon für die Expression der Lipase benutzt (Schneidinger, 1997).

Es wurden verschiedene Stämme mit einer induzierbaren T7-RNA-Polymerase konstruiert

(Abb. 12). Die Konstruktion der Stämme P. aeruginosa PABST7.1 und PAFRT7.7 ist in

Abb. 35 (Anhang) dargestellt. Alle Stämme enthalten eine "Expressionskassette" bestehend

aus dem Gen für die T7-RNA-Polymerase unter transkriptioneller Kontrolle des lacUV5-

Promotors, und zu dessen Regulation den konstitutiv exprimierten Lac-Repressor aus E. coli.

Diese regulatorische Kontrolle erlaubt die Induktion der Expresion durch Zugabe von IPTG.

Neben den reinen lipasedefizienten Stämmen (lipA-) P. aeruginosa PABST7.1 und

PAFRT7.7 wurden basierend auf diesen Stämmen verbesserte Varianten konstruiert (Abb.

12). Ebenso wurde ein Plasmid mit weitem Wirtsbereich konstruiert, das ebenfalls die

"Expressionskassette" trägt und die Expression in jedem genetischen Hintergrund erlaubt

(Rosenau et al. ,1998).

Page 49: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

39

3.2.2 Produktionsleistung der Expressionsstämme

Die Charakterisierung der Lipaseexpression in den Überexpressionsstämmen wurde unter

Verwendung des Expressionsplasmids pUCPL7 durchgeführt, das das Lipaseoperon unter der

Kontrolle eines spezifisch durch die T7-RNA-Polymerase regulierten Promotors trägt. Die

Expressionsrate hing dabei stark von der maximal erreichbaren Zelldichte der

Expressionskulturen ab die, direkt mit dem "Nährstoffgehalt" des verwendeten Mediums

korrelierte (Tab.7).Tab.7 Vergleich der Expressionsraten der T7-Expressionsstämme

P.aeruginosa Merkmal NB-Medium TP-Medium

maximaleZelldichte[O.D.580]

Lipase[mg/l]

maximaleZelldichte[O.D.580]

Lipase[mg/l]

PAO1 WT 1,5-2 0,03 8-13 0PABST7.1 - 1,5-2 3-4 7,5-13 25-150PAFRT7.7LipC ∆lipC::Gmr 1-2,5 2,5-4,5 7,5-13 25-150PAFRT7.7 - 1-2,5 2,5-4,5 7,5-12 20-90PAFRT7.7∆lasB ∆lasB::Kmr 1,5-2,5 2,5-4,5 7,5-12 20-80PABS1 + pML5T7 nb nb 5-6 5-10

PlacUVT7-RNA-Pol. lacI

„Expressions-Kassette“

PABS1 (∆lipA/H)

PAO1

pML5T7PABS1T7.1

(∆lipA/H )PAFRT7.7

(∆lipA/H)

PABS1T7.1∆∆∆∆lipC(∆lipA/H , ∆∆∆∆lipC)

PAFRT7.7 ∆∆∆∆lasB(∆ipA/H , ∆lasB)

Abb. 12 Übersicht der Expressionsstämme mitinduzierbarer T7-RNA-Polymerase. Die"Expressions"-Kassette entstammt dem PlasmidpEB1 (Brunschwig & Darzins, 1992). Sie bestehtaus dem T7-RNA-Polymerasegen unter Kontrolledes lac-Promotors, der im uninduzierten Zustanddurch den Lac-Repressor reprimiert wird.

Page 50: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

40

Darüberhinaus ergab sich eine relativ hohe Basalexpressionsrat, wie an den vergleichsweise

hohen Werten bereits vor Induktion zu sehen ist (Abb. 13). Die maximalen Ausbeuten waren

in allen Stämmen mit bis zu ca. 100mg/ l vergleichbar.

012

34567

8910

16 18 20 24 28

Wuchsdauer nach Induktion [h]

Zel

ldic

hte

[O

.D.5

80]

0510

1520253035

404550

Lip

asea

usb

eute

[m

g/l]

O.D.580

O.D.580

Lipase

Lipase

Abb. 13 Expression der Lipase in P. aeruginosa PABST7.1. Das Lipaseoperon war im Plasmid pUCPL7kodiert, die Anzucht der Bakterien erfolgte zunächst für 16 h bei 30°C in TP-Medium. Nach 16 Stunden wurdedie Expression durch Zugabe von IPTG (Endkonzentration 1mM) induziert. Als Kontrolle dienten nichtinduzierte Kulturen. Dargestellt ist der zeitliche Verlauf der Lipaseproduktion nach Induktion. DieAktivitätswerte sind Mittelwerte, die in fünf parallel inkubierten Kulturen gemessen wurden. Fehlerbalkenmarkieren die Standardabweichungen.

Page 51: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

41

B. Der Einfluss der Foldase LipH auf die Physiologie der Lipaseproduktion

3.3 Die LipH-Expression beeinflusst die Lipaseproduktion

3.3.1 Die intergenische Region enthält verschiedene repetitive Sequenzen

Im Lipaseoperon aus P. aeruginosa werden die Strukturgene für die Lipase und die Foldase

durch eine 49 bp grosse intergenische Region verbunden. Die IR enthält mindestens zwei für

die Expression des lipH-Gens potentiell relevante Sequenzmerkmale. Zum einen eine

putative Ribosomenstelle 12 bp vor dem GTG-Translationsinitiationskodon von lipH und

zum anderen eine invertierte Wiederholung des Sequenz-Decamers 5'-GGCCGGGGCC-3',

durch die wahrscheinlich auf mRNA-Ebene eine doppelsträngige Haarnadelstruktur ("stem-

loop") ausgebildet werden kann (Wohlfahrt et al, 1992) (Abb. 14). Solche

Haarnadelstrukturen können als Bindestellen und Prozessierungssignale für die RNaseE

dienen (Ehretsmann et al.,1992; Gamper & Haas, 1993) und somit über eine Veränderung der

Stabilität polycistronischer Transkripte die Relation der Expressionsraten der einzelnen

Leserahmen beeinflussen (Carrier & Keasling, 1997, Smolke et al., 2000).

Neben den o.g. schon bekannten, wurden weitere repetititve Sequenzen identifiziert (Abb.

14). Eine ebenfalls invertierte Wiederholung des Hexamers 5'-CCCCGG-3' und eine direkte

Wiederholung der octameren Nukleotidsequenz 5'-CCCCGGCC-3' überlappen mit der

bereits beschriebenen invertiert repetitiven Sequenz. Auffallend ist insgesamt die

Sequenzsymmetrie der IR bis zur Position 29, wobei die Symmetrieachse am Dinukleotid TC

an Position 17-18 liegt (Abb. 14). Diese führt zu einer Häufung von direkten und indirekten

repetitiven Sequenzen in diesem Bereich, von denen mindestens zwei einen Abstand von 10

bp, also einer Windung einer DNA-Helix (Watson & Crick, 1954), zueinander haben.

Abb. 14 Sequenzwiederholungen in der intergenischen Region des Lipaseoperons. In rot markiert ist dieinvertierte Sequenzwiederholung, die als potentielle Haarnadelstruktur auf mRNA-Ebene vorhergesagt wurde(Wohlfahrt et al., 1992). Durch Fettdruck sind das Translations-Stopkodon des lipA-Gens und das Startkodondes lipH-Gens hervorgehoben.

TAGGACCCCGGCCGGGGCCTCGGCCCCGGCCCTTTCCCGGAAGCCCCCTCGCGTG

Page 52: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

42

Die Vielzahl verschiedener repetitiver und invertiert repetitiver Sequenzen liess vermuten,

dass die IR auf Transkriptebene neben der bereits vorhergesagten Haarnadelschleife weitere

doppelsträngige RNA-Bereiche ausbilden könnte. Deswegen wurden die möglichen

Sekundärstrukturen der RNA in diesem Bereich mit Hilfe des mFold-Programms (Zuker et

al.,1991; Mathews et al., 1999) modelliert. Die zugrundegelegte Sequenz enthielt dabei auch

das stromaufwärts gelegene Translations-Stopkodon des lipA-Gens, sowie das Translations-

Initiationskodon des lipH-Gens. Gemeinsam ist den in Abb. 15 dargestellten

thermodynamisch bevorzugten Sekundärstrukturen das Auftreten kurzer doppelsträngiger

Bereiche, an denen Nukleotide der putativen Ribosomenbindestelle (RBS) beteiligt sind. An

verschiedenen Beispielen konnte gezeigt werden, dass die Maskierung der RBS durch

Sekundärstrukturen der mRNA in diesem Bereich Einfluss auf die Translationsinitiation und

damit auf die Effizienz der Translation nehmen kann (Aristarkhov et al., 1996; de Smit & van

Duin, 1990; Dunn & Studier, 1975; Hall et al., 1982; Kameyama et al., 1991; Min-Jou et al.,

1972; Saito & Richardson, 1981; Steitz, 1969).

Abb. 15 Maskierung der Ribosomenbindestelle durch Sekundärstrukturen der mRNA in derintergenischen Region. Dargestellt sind die zwei thermodynamisch günstigsten Strukturen, die anhand desmFold-Programms errechnet wurden. Berücksichtigt sind neben den 49 Nukleotiden der intergenischen Regionauch das lipA-Stopkodon und das lipH-Startkodon. Die Nukleotide der RBS sind grün hervorgehoben.

Page 53: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

43

3.3.2 Konstruktion von IR-Varianten

Der unmittelbare Stromaufwärtsbereich des lipH-Gens weist auf mRNA-Ebene

vorhergesagte stabile Sekundärstrukturen auf, die möglicherweise die Assemblierung von

Ribosomen an der RBS behindern und damit die Effizienz der Translationsinitiation

reduzieren. Darüberhinaus ist das GTG-Kodon als seltenes Startkodon anzusehen und kann

ebenfalls Grund für eine reduzierte Translationseffizienz sein (O'Donnel & Janssen, 2000;

Ringquist et al., 1992; Vollenoweth & Rabinowitz, 1992; Van Etten & Jannssen, 1998). Um

den potentiellen negativen Einfluss dieser Merkmale auf die Expression des lipH-Gens und

der zu erwartenden Auswirkungen auf die Lipaseproduktion zu untersuchen, wurde die IR

gezielt verändert. Dabei wurden verschiedene Varianten der IR erzeugt, indem synthetische

Oligonukleotide zu doppelsträngiger DNA hybridisiert und anstelle der WT-IR in den

Expressionsvektor pBBL7 kloniert wurden. Die Modifikation der IR wurde jeweils durch

DNA-Sequenzierung des entsprechenden Bereiches bestätigt. Bei den eingefügten

Veränderungen handelte es sich um a) die Ersetzung des GTG- durch das häufigere ATG-

Startkodon (IR-O) und b) den Austausch des RBS-Bereiches (IR-2) durch den

entsprechenden Bereich des Gens 10 aus dem E. coli-Bacteriophagen T7, der aufgrund der

RBS-Stärke in verschiedenen Überexpressionsvektoren (Studier & Moffatt, 1986)

Verwendung findet und auch zur Überexpression der Lipase in P. aeruginosa erfolgreich

eingesetzt wurde (F. Rosenau, S. Heckmann & K.-E.Jäger, unveröffentlicht). Des weiteren

wurden zwei Varianten konstruiert in denen die vorhergesagte Haarnadelstruktur im

unmittelbaren Stromabwärtsbereich des lipA-Stopkodons entweder durch Insertion einander

komplementärer Sequenzblöcke verlängert war (IR-SL), oder die gesamte Struktur deletiert

war (IR-SD).

Abb. 16 Varianten der IR.Schematisch dargestellt ist dievorhergesagte Haarnadelschleife"Stem-Loop". Veränderungengegenüber dem WT sind rotdargestellt, die Ribosomen-bindestelle ist in blau markiert.

Page 54: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

44

Mit diesen Varianten sollte untersucht werden, ob die vorhergesagte Haarnadelschleife durch

eine potentielle Stabilisierung des 5'-Endes des lipH-Transkripts gegen enzymatische

Degradierung durch RNasen Einfluss auf die lipH-Expression nehmen kann. Die Abb.16 gibt

eine Übersicht über die benutzten Varianten der IR und der entsprechenden im Folgenden

verwendeten Expressionsplasmide.

3.3.3 Das GTG-Translationsinitiationskodon limitiert die Expression des lipH-Gens

Die Expressionsplasmide mit den im Bereich der IR modifizierten Lipaseoperons wurden

durch konjugativen Transfer in die lipasedefiziente Mutante P. aeruginosa PABS1

eingebracht. Als Kontrolle ohne Modifikation der IR diente das Plasmid pBBL7. Die direkte

Auswirkung der IR-Modifikationen auf die lipH-Expression wurden durch den

immunologischen Nachweis des LipH-Proteins in GZE zu verschiedenen Zeitpunkten einer

Wuchskurve untersucht. Um eine potentielle Korrelation der zellulären LipH-Konzentration

mit der Lipaseproduktion zu erfassen, wurde zusätzlich die jeweilige extrazelluläre

Lipasemenge bestimmt. Gegenüber dem WT, war in allen GZE nach 6 h deutlich mehr LipH-

Protein nachweisbar. Den deutlichsten Effekt auf die zelluläre LipH-Menge hatte somit die

GTG/ ATG-Substitution (IR-O) des lipH-Startkodons, da diese in allen Varianten vorhanden

war (Abb.17). Im Vergleich zu dieser Modifikation erbrachte die zusätzliche Veränderung

der RBS weder nach 6 h Wuchszeit noch in der Stationärphase nach 24 h eine deutliche

Veränderung der LipH-Konzentration. Auch die Modifikationen der potentiellen

Haarnadelstruktur erbrachten im Vergleich zur IR-O zum „frühen“ Zeitpunkt keinen

signifikanten Unterschiede. Einen deutlichen Einfluss hatte die Deletion allerdings in der

Stationärphase, in der, wie im WT, kein Vollängenprotein nachweisbar war. Stattdessen

traten verstärkt LipH-spezifische Signale geringerer molekularen Massen auf, bei denen es

sich möglicherweise um distinkte Abbauprodukte von LipH mit.

SL SD O 2 WTSL SD O 2 WT

6h

24h

LipHAbb. 17 Effekt der IR auf die lipH-Expression. ImmunologischerNachweis des LipH-Proteins in GZEvon P. aeruginosa PABS1 mit denPlasmiden zur Expression dermodifizierten Lipaseoperons nach 6 bzw24 h Wuchs. Die Anzucht der Bakterienerfolgte bei 30°C in NB-Medium.Eingesetzt wurde eine Menge, die eineroptischen Dichte von O.D.580 =0,15entsprach. Die Pfeilspitze kennzeichnetVolllängen-LipH, möglicheDegradationsprodukte sind durch Pfeilemarkiert

Page 55: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

45

Es scheinen somit hier zwei entgegengesetzte Effekte vorzuliegen. Die Substitution des

Startkodons führt auch in der Stationärphase zu einer im Vergleich zur WT-IR erhöhten

LipH-Konzentration, wohingegen die Deletion der Haarnadelstruktur antagoniostisch wirkt

und eine deutliche Reduktion auf das WT-Niveau bewirkt.

3.3.4 Die Steigerung der lipH-Expression erhöht die Synthese sekretierter Lipase

Betrachtet man vergleichend die Menge an extrazellulärer Lipase, wird deutlich, dass die IR-

Modifikationen auf die Lipaseproduktion indirekt die gleichen Effekte haben, wie direkt auf

die lipH-Expression. Die Substitution des lipH-Startkodons führte zu einer deutlichen

Steigerung der extrazellulären Aktivität von bis zu 30%, wobei die Effekte jeweils in der

Stationärphase am deutlichsten ausgeprägt waren. Wie auch für die lipH-Expression hatten

die weiteren Modifikationen der IR mit Ausnahme der Deletion im Bereich der

Haarnadelstruktur keinen signifikanten Einfluss. Diese bewirkte eine Reduktion auch der

Lipasemenge auf das Niveau der WT-IR (Abb.18). Da die Effekte der IR-Modifikationen auf

die LipH- und die Lipaseproduktion identisch sind, zeigt dies eine Abhängigkeit der

Lipaseproduktion von der zellulären LipH-Konzentration.

Abb. 18 Einfluss der IR-Varianten auf die Lipaseproduktion. A. Dargestellt ist die relative extrazelluläreLipaseaktivität von P. aeruginosa PABS1 mit den Plasmiden zur Expression der modifizierten Lipaseoperonsnach 6 h und 24 h Wuchs. Die Werte von P. aeruginosa PABS1 mit pBBL7 (WT-Operon) wurden gleich100% gesetzt. Die Werte sind Mittelwerte aus drei Experimenten, die Standardabweichung ist durchFehlerbalken angegeben. B. Immunologischer Nachweis des Lipaseproteins in den KÜ aus A. Die Proteineaus einem Kulturvolumen, dass einer Zelldichte von O.D.580= 0,35 entsprach wurden mit TCA-gefällt und ineinem SDS-PAG aufgetrennt und auf eine PVDF-Membran übertragen. Der Nachweis der Lipase erfolgte mitdem lipasespezifischen Antiserum.

0

50

1 00

1 50

IR-S L IR-S D IR-O IR-2 WT

rel.

Lipa

seak

tivitä

t [%

]

6 Stunden24 Stunden

6 Std.

24 Std.

Page 56: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

46

Eine Verbesserung der lipH-Expression bewirkt eine Steigerung der Lipaseproduktion

gegenüber dem WT. Dies erlaubt umgekehrt den Schluss, dass im WT-Operon die

Expression des lipH-Gens direkt insbesondere durch das GTG-Startkodon limitiert ist. Die

Limitierung der Lipaseproduktion scheint somit indirekt durch die LipH-Konzentration zu

erfolgen.

3.3.5 Die Überexpression des lipH-Gens in trans zu einem episomal kodierten

Lipaseoperon erhöht die Lipaseproduktion

Die Verbesserung der lipH-Expression durch Substitution des seltenen GTG-Startkodons von

lipH hatte eine moderate Überexpression der Foldase und dadurch bedingt eine

Produktionssteigerung extrazellulärer Lipase zur Folge. Es sollte nun untersucht werden, ob

eine deutliche Überexpression des lipH-Gens generell eine Steigerung der Lipaseproduktion

bewirken kann. Dazu wurde in den Stamm P. aeruginosa PABS1 zunächst das Plasmid

pUCPLip1 eingebracht, in dem das Lipaseoperon unter transkriptioneller Kontrolle des

starken lac-Promotors steht. Um die Expression von lipH zu erhöhen, wurde zusätzlich durch

Verwendung des Plasmids pBBL8 eine weitere Kopie des lipH-Gens in trans in die Zellen

eingebracht. Da die beobachteten Effekte in den Versuchen zuvor in der Stationärphase am

deutlichsten waren, wurde die extrazelluläre Lipaseaktivität auch hier nach 24 h Kultivierung

der Bakterien bestimmt.

Im Vergleich zu dem Kontrollstamm mit dem Leervektor pBBR1MCS in trans war in GZE

von P. aeruginosa PABS1 (pUCPLip1/pBBL8) in der Immunodetektion wie erwartet eine

deutlich erhöhte LipH-Menge nachweisbar (Abb.19, B).

0

100

200

300

pB B R1MCS pB B L8

sp

ez

. L

ipa

se

ak

tiv

itä

t

[nk

at/

O.D

.58

0/m

l]

A.

B.

Abb. 19 Effekt der Foldaseüberexpressionauf die Lipaseproduktion. A. ExtrazelluläreLipaseaktivität in KÜ von P. aeruginosaPABS1 mit pUCPLip1 zur Expression desOperons in trans. Die Werte sind Mittelwerteaus drei Experimenten, Fehlerbalken gebendie Standardabweichung an. B.Immunologischer Nachweis des LipH-Proteins in gleichen Mengen von GZE. DieBakterien wurden in LB-Medium bei 30°Cfür 24 h angezogen.

Page 57: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

47

Da resultierend aus der Überexpression von lipH in Relation zur Expression des gesamten

Operons auch die extrazelluläre Lipaseaktivität um etwa 50% gesteigert war, bedeutet dies,

dass bei der Expression des plasmidkodierten Lipaseoperons alleine, tatsächlich die gebildete

Menge an LipH limitierend für die vollständige Faltung oder Sekretion der kosynthetisierten

Lipase ist.

3.3.6 Die LipH-Überexpression steigert die Lipaseproduktion auch im Wildtypstamm

Weiterhin war von Interesse, ob die Limitierung der Faltungskapazität auch unter

physiologischen Bedingungen zu tragen kommt, wenn das chromosomal kodierte

Lipaseoperon unter transkriptioneller Kontrolle der naürlichen Promotorregion exprimiert

wird. Daher wurde der Einfluss einer lipH-Überexpression unter Verwendung von pBBL8 im

WT-Stamm P. aeruginosa PAO1 untersucht. Da ein limitierender Einfluss der LipH-

Konzentration besonders bei starker Expression der Lipase zu erwarten war, wurde zur

Induktion der Lipaseexpression dem Nährmedium n-Hexadecan zugesetzt, dessen

induzierende Wirkung auf die Transkription des Lipaseoperons sowohl in A. calcoaceticus,

wie auch in P. aeruginosa bereits beschrieben wurde (Kok et al., 1995; Schneidinger, 1997).

Im Vergleich zu der entsprechenden Leervektorkontrolle, ergab auch hier die

Immunodetektion eine deutlich gesteigerte intrazelluläre LipH-Konzentration (ohne Abb).

Nach 24 h Wuchsdauer war die absolute extrazelluläre Lipaseaktivität auch bei

Überexpression von lipH zwar insgesamt geringer als bei Überexpression des episomal

kodierten Operons in den Versuchen zuvor, jedoch war sie gegenüber dem Kontrollstamm P.

aeruginosa PAO1 (pBBR1MCS) um den Faktor 13 erhöht und erreichte nach 29 h

Wuchsdauer ein Maximum von 309 nkat/ O.D.580/ml, was einer fast 40 fachen Steigerung

gegenüber der Kontrolle entsprach (Abb.20).

0

100

200

300

400

0 10 20 30 40

Wuchsdauer [h]

spez

.Lip

asea

kti

vitä

t [n

kat

/O.D

.58

0/m

l]

pBBR1MCS

pBBL8

Abb. 20 Lipaseproduktion im WT-Stamm bei Überexpression von lipH.Die Anzucht der Bakterien erfolgte bei30°C in NB-Medium unter induzierendenBedingungen für die Lipaseexpressiondurch Zugabe von 1% (v/v) n-Hexdecan.Das Plasmid pBBL8 trägt da lipH-Gen,pBBR1MCS diente alsLeervektorkontrolle

Page 58: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

48

Der steigernde Effekt einer lipH-Überexpression auf die Lipaseproduktion war somit

deutlicher, wenn das Lipaseoperon chromosomal kodiert vorlag und einer WT-Regulation

unterlag, als bei simultaner Expression des plasmidkodierten Operons unter Kontrolle des

heterologen lac-Promotors.

3.4 Die zelluläre LipH-Konzentration reguliert die Lipaseexpression

3.4.1 Die 5'-untranslatierte Region (UTR) ist Voraussetzung für die LipH-abhängige

Regulation

Setzt man voraus, dass eine bis zu 40 fache Steigerung der produzierten Lipasemenge durch

eine lipH-Überexpression in P. aeruginosa PAO1 nicht ausschliesslich auf einer verbesserten

Effizienz der Faltung oder Sekretion bereits synthetisierter Lipase beruhte, konnte dies

bedeuten, dass die lipH-Überexpression einen direkten oder indirekten regulatorischen Effekt

besitzt. Die gesteigerte Lipaseproduktion wäre in diesem Fall auf die Aktivierung der

Transkription oder Translation des Lipasegens zurückzuführen.

Das zuvor zur Expression des Lipaseoperons verwendete Plasmid pUCPLip1 beinhaltet ein

DNA-Fragment, das nur 81 bp des untranslatierten lipA-Stromaufwärtsbereiches aufweist.

Die zu den Promotoren P1 und P2 gehörenden Transkriptionsstartpunkte wurden aber 71

bzw. 401 bp vor dem Translationsinitiationskodon des lipA-Gens ermittelt (Düfel, 2000). Um

den Einfluss des nativen Stromaufwärtsbereichs auf die Expression der episomal kodierten

Lipase erfassen zu können, wurde das Plasmid pUCPSKLip1X konstruiert. Das inserierte 4,8

kb XhoI-Fragment kodiert für das komplette Lipaseoperon, trägt aber im Unterschied zu

pUCPLip1 einen 581 bp grossen lipA-Stromaufwärtsbereich.

0

250

500

750

1000

pUCPlip1 pUCPlip1X

spez

. Lip

asea

kti

vitä

t [n

kat

/O.D

.580

/ml]

pBBR1MCSpBBL8

Abb. 21 Einfluss der UTR im PlasmidpUCPLip1X und der Überexpressionvon lipH in trans. Die PlasmidepUCPLip1 (ohne UTR) undpUCPLip1X(mitUTR) zur Expression desLipaseoperons, sowie pBBR1MCS oderpBBL8 in trans lagen in P. aeruginosaPABS1 vor. Die Kultivierung erfolgte bei30°C für 24 h in NB-Medium. Dargestelltsind die extrazellulären Lipaseaktivitätenaus drei unabhängigen Experimenten, dieFehlerbalken geben dieStandardabweichung an.

Page 59: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

49

Da das Operon wie auch in pUCPLip1 zusätzlich unter Kontrolle des starken lac-Promotors

steht, war mit diesem Plasmid eine effektive Transkription des Lipaseoperons, einschliesslich

der nativen 401 bp grossen 5'-untranslatierten Region (UTR), zu erwarten. Die Abb.21 zeigt

den Vergleich der extrazellulären Lipaseaktivitäten von P. aeruginosa PABS1 mit den

Plasmiden pUCPLip1 und pUCPLip1X jeweils in Kombination mit dem Leervektor

pBBR1MCS oder dem lipH-Expressionsplasmid pBBL8. Mit pBBR1MCS in trans hatte das

Vorhandensein des lipA-Stromaufwärtsbereichs keinen Einfluss auf die Lipaseexpression.

Dies spricht auch dafür, dass unter den gewählten Bedingungen die lipA-eigenen Promotoren

vor dem Hintergrund des stärkeren lac-Promotors keinen Einfluss ausübten. Der

induzierende Effekt durch Überexpression von lipH in trans auf die Lipaseproduktion war

aber in Stämmen mit pUCPLip1X deutlich stärker ausgeprägt. Gegenüber einem

Induktionsfaktor von etwa 1,5 bei Verwendung von pUCPLip1 stieg die Lipaseaktivität in

Kulturen mit pUCPLip1X um den Faktor 7 an. Dies bedeutet, dass die beobachtete Induktion

der Lipaseexpression wahrscheinlich auf Elementen in der lipA-Stromaufwärtsregion beruht.

3.4.2 LipH-steigert die Lipaseexpression posttranskriptionell

Als Mechanismus zur Steigerung der Lipaseexpression kamen sowohl eine Aktivierung der

Transkription, wie auch der Translation in Frage. Daher wurde die Wirkung der lipH-

Überexpression auf die Transkriptionsaktivität dieses Bereiches unter Verwendung des

Plasmids pMlipA::LacZ untersucht. Diese wurde jeweils zusätzlich in trans zu pBBR1MCS

bzw. pBBL8 in die verwendeten Stämmen eingebracht und kodiert für eine transkriptionelle

lipA::lacZ-Reportergenfusion. Die lipH-Überexpression in P. aeruginosa PAO1 (pBBL8)

erbrachte im Vergleich zum Kontrollstamm P aeruginosa (pBBR1MCS) keine erhöhten ß-

Galaktosidaseaktivitäten. Die Aktivierung der lipA-Expression auf transkriptioneller Ebene

konnte daher als Grund für die erhöhte Lipaseproduktion als Folge der LipH-Überexpression

mit hoher Wahrscheinlichkeit ausgeschlossen.

0

100

200

300

400

pBBR1MCS pBBL8

spez

. ß-G

al.-

Ak

tivi

tät

[Mil

ler-

Un

its]

Abb. 22 Transkriptionsaktivität derlipA-Promotorregion beiÜberexpression von lipH. Die ß-Galaktosidaseaktivität der episomalelipA-Promotorfusion wurde nach 24 hWuchs in NB-Medium bestimmt.Dargestellt sind die Werte dreierunabhängiger Messungen, Fehlerbalkengeben die Standardabweichung an

Page 60: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

50

3.4.3 Sequenzanalyse und Homologievergleich von Foldaseproteinen: Bedeutung des

Membranankers von LipH

Die bisher bekannten Lipase-spezifischen Foldasen weisen ausser zueinander keine

signifikanten Homologien zu anderen Proteinen in frei zugänglichen Sequenz- oder

Strukturdatenbanken auf. Der erste veröffentlichte Homologievergleich von Foldaseproteinen

berücksichtigte sechs Sequenzen aus Pseudomonas- und Burkholderia-Stämmen (Jäger et al.,

1994). Ergänzt wurden diese Daten 1999 um Sequenzen aus den Gattungen Vibrio und

Acinetobacter (Sullivan et al.,1999). Die Abb.23 zeigt einen Homologievergleich der heute

bekannten Lif-Proteine. Berücksichtigt wurden dabei auch die Sequenzen der Lif-Proteine

aus P. alcaligenes (Cox et al., 1994), P. wisconsinensis (Access. Nr.: O05938), eines

putativen Lif-Proteins aus dem Pflanzenpathogen Xylella fastidosa (Simpson et al., 2000),

und das erst kürzlich veröffentlichte Protein aus P. spec. KFCC10818 (Kim et al., 2001). Bei

der hier erstmals beschriebenen Proteinsequenz aus P. fragi handelt es sich um das

vorhergesagte Translationsprodukt eines offenen Leserahmens aus der DNA-Sequenz

(Access. Nr.: EO4514) im Stromabwärtsbereich des lipB-Gens (Access. Nr.: EO4513) aus P.

fragi. Das lipB-Gen kodiert für eine bisher ebenfalls nicht als Proteinsequenz veröffentlichte

Lipase B, die sich von der bekannten Lipase A (Aoyama et al., 1988) durch das

Vorhandensein eines vorhergesagten klassischen Signalpeptids. Das Gen für das potentielle

Lif-Protein bildet wahrscheinlich mit dem lipB-Gen ein Operon und wird im Folgenden als

lifA bezeichnet.

Die in Abb. 23 verglichenen Lif-Proteine haben einen Aufbau in zwei unterschiedliche

Proteinbereiche. Einen variabler Bereich, der etwa das aminoterminale Drittel der Proteine

umfasst und eine grosse carboxyterminale Domäne aus vorwiegend hydrophilen AS-Resten.

Die variablen Domänen weisen aminoterminale, mittels der "SAPS"- (Brendel et al., 1992)

und "DAS"-Analyseprogramme (Cserzo et al., 1997) vorhergesagte hydrophobe

Transmembranbereiche auf (Tab.8). Diese haben die Funktion von Ankersequenzen, die die

periplasmatische Domäne in der inneren Membran verankern (Frenken et al., 1993;

Schneidinger, 1997) Ausgeprägte Sequenzhomologien der Lif-Proteine finden sich

hauptsächlich in diesem Bereich, beginnend mit einem hochkonservierten Arg-Rest (Position

94 im P. aeruginosa LipH-Protein). Vorhersagen der Sekundärstruktur mittels des PHD-

Programms weisen dieser Domäne einen Aufbau aus vorwiegend α-helikalen Bereichen zu

(Abb. 23). Für die Lif-Proteine aus P. aeruginosa PAO1, P. spec. 109, und B. glumae

(Schneidinger, 1997; Shibata et al., 1998, El Khattabi et al., 1999) wurde gezeigt, dass die

Membranankersequenzen für die Aktivierung der jeweiligen Lipasen nicht essentiell sind.

Page 61: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

51

Page 62: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

52

Abb. 23 Erweiterter Homologievergleich der Foldasen. Die Aminosäuresequenzen oder gegebenfalls dieNucleotidsequenzen (nt) sind zugänglich unter folgenden "accession" Nummern: P. aeruginosa LipH,CAA44998; P. alcaligenes Lim, A37026 (nt); P. spec KFCC10818 LimK, AAD22079; Vibrio cholerae O17LipB, CAA68635; P. spec. TE3205; P. spec. KWI_56, P25276; Acinetobacter calcoaceticus RAG1 LipB,AAD29442; A. calcoaceticus BD413 LipA, CAA56779; P. wisconsinensis LpwB, AAB53648;; Burkholderiaglumae LipB, CAA49813; B. cepacia LimA, AAA50467; P. fragi LifA, E04514(nt); Xylella fastidosa 9a5c,AAF83992.

Page 63: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

53

Tab. 8 Sequenzmerkmale verschiedener Lif-Proteine

Lif-Protein ausStamm

TM-Helix (Position AS) "coiled-coil"1 Cys-ResteAnzahl/ Position

P. aeruginosa PAO1 4-22 + 0

P. alcaligenes 20-39 + 0P. fragi 14-35 + 1 / 103P. wisconsinensis 14-20 + 0B. glumae 19-40 + 3 / 30,33,112B. cepacia 14-35 + 1 / 103A. calcoac.RAG1 11-30 + 2 / 79,98A. calcoac.BD413 7-25 + 2 /74,93X. fastidosa 12-30 + 3 / 20,25,154V. cholerae 4-21 + 1 / 17P. spec KFCC10818 7-25 + 01Vorhersage nach Lupas et al., 1996

Auch die Deletion grosser Teile der variablen Domänen führte nicht zu einem

Funktionsverlust der Lif-Proteine aus P. aeruginosa TE3285, B. cepacia (Ihara et al., 1995;

Quyen et al., 1999). Allerdings beruhen diese Aussagen auf in vitro Untersuchungen zur

Aktivierung denaturierter Lipase durch im heterologen Wirt E. coli exprimierte Lif-Proteine.

3.4.4 Konstruktion von LipH-Varianten mit Lokalisation im Zytoplasma oder

Periplasma

Um die physiologische Bedeutung der Membranverankerung zu untersuchen, war es von

Interesse, inwieweit Varianten des LipH-Proteins mit vorwiegend periplasmatischer (LipH-

SS) und cytoplasmatischer Lokalisierung (LipH-CP) in vivo eine Lipaseaktivierung

gewährleisten können. Als weiterer Aspekt bestand die Frage, inwieweit der beschriebene

regulatorische Effekt auf die Lipaseexpression von der subzellulären Lokalisation des LipH-

Proteins beeinflusst wird.

Basierend auf dem Plasmid pBBL7-IR2 wurden Varianten des Lipaseoperons mit

entsprechend veränderten lipH-Strukturgenen konstruiert. Die durch Austausch eines NdeI/

Eco72I-DNA-Fragments in pBBL7-IR2 erzeugten lipH-Allele enthielten eine Deletion von

60 bp entsprechend den AS 1-20 des nativen LipH-Proteins (pBBL7.2-CP). Um einen Sec-

abhängigen Transport des LipH-Proteins ins Periplasma zu erreichen, wurde dieser Bereich

durch das Signalpeptid einer Pectatlyase aus Erwinia chrysanthemi ersetzt (pBBL7SS). Die

Abb.24 A zeigt die aus den Modifikationen abgeleiteten aminoterminalen AS-Sequenzen der

LipH-Varianten.

Page 64: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

54

Zum Nachweis der subzellulären LipH-Lokalisierung wurden die modifizierten Operone in

der Lipase-defizienten Mutante P. aeruginosa PABS1 exprimiert und die Bakterien in die

Kompartimente Cytoplasma, Periplasma und Gesamtmembran fraktioniert. Die in Abb.24 B

dargestellte Immunodetektion zeigte die erwartete Verteilung der LipH-Varianten in den

subzellulären Kompartimenten.

Abb.24 Subzelluläre Lokalisation der LipH-Varianten. A. Aminoterminale Sequenzen der LipH-Varianten.In blau dargestellt ist die N-terminale Membranankersequenz des nativen LipH-Proteins. Durch Deletion diesesBereiches wurde die zytoplasmatische Variante erzeugt (LipH-CP). LipH-SS trägt stattdessen ein spaltbaresSignalpeptid. Die erwartete Spaltstelle ist unterlegt dargestellt. B. Immunologischer Nachweis der LipH-Varianten nach Fraktionierung von Ganzzellextrakten. CP: Zytoplasmafraktion PP: Periplasmafraktion M:Gesamtmembranfraktion. Es wurde jeweils eine Menge eingesetzt, die einer Zelldichte von O.D.580= 0,5entsprach.

3.4.5 Im Periplasma lösliches LipH-Protein aktiviert Lipase in vivo

Die Lif-Varianten LipH-CP und LipH-SS hatten die erwartete subzelluläre Lokalisation

gezeigt. Der Vergleich der extrazellulären Lipaseaktivität die von P. aeruginosa PABS1 mit

den entsprechenden Plasmiden sekretiert wurden, sollte nun Aufschluss über die Effizienz

der Lif-Varianten und somit über den Einfluss der LipH-Lokalisation auf die

Lipaseproduktion geben.

Variante C P P P M

ohne

LipH

LipH-SS

LipH-CP

MKKILLLIPLAFAASLAWFVWLEPSPAPET...

MLEPSPAPET...

MKYLLPTAAAGLLLLAAQPAMAMGHHHHHHHHHHSSGHIDDDDLHMLEPSPAPET...

LipH

LipH-CP

LipH-SS

B .

A .

Page 65: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

55

Die Abb. 25 zeigt die unter Verwendung der cytoplasmatisch, bzw. periplasmatisch

lokalisierten LipH-Varianten sekretierten Lipaseaktivitäten im Vergleich zum WT-Lif mit

aminoterminaler Membranankersequenz. Nur die Stämme, die LipH-SS, bzw. das WT-LipH

exprimierten, sekretierten enzymatisch aktive Lipase. Die gemessenen Werte bei Expression

von LipH-CP lagen mit etwa 3% Restaktivität gegenüber der WT-Kontrolle nur unwesentlich

über denen des Kontrollstamms PABS1 mit nur der plasmidcodierten Lipase und sind

deshalb als nicht signifikant anzusehen. Die periplasmatische Lokalisation führte zwar

gegenüber einer Lokalisation von LipH in der inneren Membran zu einer Reduktion der

Lipaseaktivität auf etwa 30%, war aber geeignet, den Faltungsprozess in vivo zu katalysieren.

Die Membranverankerung von LipH ist also für eine quantitative Faltung der Lipase in eine

enzymatisch aktive und sekretionskompetente Konformation nicht essentiell, hat aber

Einfluss auf die Effizienz des Faltungsprozesses oder der Sekretion.

3.4.6 Die Membranverankerung ist Voraussetzung für die LipH-abhängige Steigerung

der Lipaseexpression

Um den Einfluss der subzellulären Lokalisation von LipH auf den beschriebenen

regulatorischen Effekt auf die Lipaseexpression zu untersuchen wurde, analog der

Konstruktion von pBBL8 (Schneidinger, 1997) aus den Plasmiden pBBL7-IR2, pBBL7.2-SS

und pBBL7.2-CP jeweils das für die Lipase kodierende lipA-Gen deletiert. Die Deletion hatte

keinen Einfluss auf die Expression oder die Lokalisation der mittels der resultierenden

Plasmide pBBL8.2, pBBL8.2-SS und pBBL8.2-CP in der Lif-deffizienten Mutante P.

aeruginosa PABS1 exprimierten LipH-Proteine (ohne Abb.).

0

20

40

60

80

100

120

pBBL7-IR2 pBBL7.2-SS pBBL7.2-CP

pBBL9

rel.

Lip

asea

kti

vitä

t [%

]

Abb. 25 Lipaseaktivität nach in vivo Faltungmittels der Foldasevarianten. Die LipH-Varianten wurden im Operon mit der Lipase inP. aeruginosa PABS1 exprimiert. Dargestellt istdie relative Lipaseaktivität mit der Aktivität desWt-Operons als 100 %. Die Werte wurden indrei unabhängigen Experimenten ermittelt, dieFehlerbalken zeigen die Standardabweichung.

Page 66: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

56

Die Abb. 26 zeigt deutlich, dass bei Expression der LipH-Varianten im WT-Stamm P.

aeruginosa PAO1 im Unterschied zum unveränderten LipH-Protein keine Steigerung der

extrazellulären Lipaseaktivität zu beobachten war. Die im KÜ gemessenen Lipaseaktivitäten

waren vergleichbar mit der des Kontrollstammes, der lediglich den Leervektor pBBR1MCS

enthielt. Dies zeigt, dass die LipH-Varianten in der Zelle nicht mit dem zugleich

vorkommenden chromosomal kodierten unveränderten LipH interferierten und dessen

Funktion beeinflussten. Voraussetzung für die aktivierende Wirkung der LipH-

Überexpression auf die Lipaseexpression scheint demnach die korrekte Lokalisierung in der

inneren Membran zu sein, nicht aber die Erhöhung der im Zytoplasma oder Periplasma

verfügbaren Menge funktionellen LipH-Proteins.

Abb. 26 Wirkung der LipH-Varianten bei Überexpression im WT-Stamm. Die LipH-Varianten wurden imWT-Stamm P. aeruginosa PAO1 exprimiert. Dargestellt ist sie relative Lipaseaktivität in KÜ der Stämme nach24 h Wuchs in NB-Medium. Die Aktivität von P. aeruginosa PAO1 mit dem Leervektor wurde gleich 100%gesetzt. Dargestellt sind Mittelwerte aus drei Experimenten unter Angabe der Standardabweichung alsFehlerbalken.

3.4.7 Die Aktivierung der Lipase LipC erfordert die Membranverankerung von LipH

Die Bildung enzymatisch aktiver Lipase LipC erfolgt in vivo wie auch in vitro ebenfalls in

Abhängigkeit von LipH (Martinez et al., 1999; Friedrich, 2001). Um den Einfluss der LipH-

Lokalisation auf den Aktivierungsprozess dieser zweiten Lipase zu untersuchen, wurden die

LipH-Varianten in den Lipase-/Foldase-defizienten Stämmen P. aeruginosa PABS1 und P.

aeruginosa PASCHII unter Verwendung der Plasmide pBBL8.2, pBBL8.2-SS und pBBL8.2-

CP exprimiert. Da LipC nur in sehr geringer Menge gebildet wird (Martinez et al., 1999;

Friedrich, 2001; Heckmann, 2001), war auch hier die gemessene Aktivität insgesamt sehr

gering.

0

250

500

750

1000

pBBR1MCS pBBL8-IR2 pBBL8.2-SS pBBL8.2-CP

rel.

Lip

asea

ktiv

ität

[%

]

Page 67: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

57

Das Ergebnis der Expression ist in der Abb. 27 exemplarisch für die Expression in P.

aeruginosa PABS1 dargestellt. Im Vergleich zum Kontrollstamm mit Leervektorkontrolle

war lediglich Lipaseaktivität nachweisbar, wenn WT-LipH exprimiert wurde. Die

subzelluläre Lokalisation des Foldaseproteins in der inneren Membran war also

Voraussetzung für die Synthese enzymatisch aktiver Lipase LipC.

Abb. 27 Aktivierung der Lipase LipC durch die LipH-Varianten. Die LipH-Varianten wurden in P.aeruginosa PABS1 (lipH-) exprimiert. Die extrazelluläre Lipaseaktivität wurde nach 24 h Wuchs in NB-Medium bestimmt. Dargestellt sind relative Aktivitäten mit P. aeruginosa PABS1/pBBL8 als 100 %. Dargestelltsind Mittelwerte aus fünf Experimenten, Fehlerbalken geben die Standardabweichung an.

3.5 Das lipH-Gen kann unabhängig von lipA exprimiert werden: Das Lipaseoperon

besitzt zusätzliche lipH-spezifische Promotoren

3.5.1 Die lipA-Promotorregion ist in einer ChpA-Mutante nicht funktionell

Die Expression des Lipaseoperons wird auf transkriptioneller Ebene von zwei Promotoren

reguliert. Die Aktivierung des Promotors P1 erfolgt abhängig vom alternativen Sigmafaktor

RpoN (σ54) (Schneidinger, 1997) und erfordert zudem die Wirkung des "Zwei-

Komponenten"-Systems LipQ/ LipR (Düfel, 2000). Als weiteres an der

Transkriptionskontrolle beteiligtes regulatorisches Protein konnte das CheY homologe ChpA

Protein (Withchurch & Mattick, unveröffentlicht) identifiziert werden. In einer ChpA-

deffizienten Mutante erfolgt keine Transkription des Sensorkinasegens lipQ noch, daraus

resultierend, die transkriptionelle Aktivierung der Lipaseexpression (Düfel, 2000). Trotz der

fehlenden Transkriptionsaktivierung der Lipasepromotoren produzierte die ChpA-Mutante

eine mit dem WT-Stamm P. aeruginosa PAO1 vergleichbare extrazelluläre Lipaseaktivität.

0

20

40

60

80

100

120

pBBL8-IR2 pBBL8-CP pBBL8-SS pBBR1MCS

rel.

Lip

asea

kti

vitä

t [%

]

Page 68: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

58

Dabei war wahrscheinlich aufgrund des verwendeten Nährmediums die Lipaseausbeute auch

in P. aeruginosa PAO1 nur äusserst gering (Düfel, 2000).

Daher wurde die Transkriptionsaktivität der Lipasepromotorregion bei Kultivierung der

Stämme in NB-Medium untersucht, das eine insgesamt höhere Lipaseproduktion erwarten

liess. Die Abb. 28 zeigt die Wuchskurve der ChpA-Mutante im Vergleich zum WT. Beide

Stämme trugen die auf dem Plasmid pMlipA::lacZ kodierte transkriptionelle

Reportergenfusion. Unter den hier gewählten Bedingungen bestätigte sich anhand der

ermittelten ß-Galaktosidaseaktivitäten, dass im ChpA-negativen Hintergrund keine

nennenswerte Promotoraktivität auftrat, also keine Transkription des Lipaseoperons unter

Benutzung der bekannten Lipasepromotoren stattfand.

Abb. 28 Wuchskurve und ß-Galaktosidaseaktivitäten einer lipA-Promotor-lacZ-Fusion im P. aeruginosaPAO1 undeiner ChpA-Mutante. Die Kultivierung der Bakterien erfolgte bei 30°C in NB-Medium. Dargestelltsind Mittelwerte dreier Wuchskurven (schwarz) und der Aktivitätsmessung (rot) unter Angabe derStandardabweichung als Fehlerbalken.

3.5.2 Die ChpA-Mutante synthetisiert LipH und sekretiert enzymatisch aktive Lipase

Trotz der nicht vorhandenen lipA-Promotoraktivität in der ChpA-Mutante, wurde in

Kulturüberständen lipolytische Aktivität nachgewiesen. Setzt man voraus, dass die

chromosomal kodierte Kopie des Operons identisch reguliert wird, wie die in trans getestete

episomale transkriptionelle Reportergenfusion, konnte es sich dabei nicht um die Aktivität

von LipA handeln. Die lipolytische Aktivität konnte wie vermutet (Düfel, 2000) auf die

Esterase EstA zurückzuführen sein, oder auf die 1999 von Martinez et al. (Martinez et al.,

1999) beschriebene Lipase LipC. Die vergleichsweise hohe Aktivität der ChpA-Mutante bei

Anzucht auf Indikatoragarplatten mit dem lipasespezifischen Substrat Triolein liess als

Ursache eher auf die Beteiligung von LipC als EstA schliessen (ohne Abb.).

0.01

0.1

1

10

0 1 2 3 4 5 6 7 24 26 28 30

Wuchsdauer [h]

Zel

ldic

hte

[O

.D.5

80]

0

1000

2000

3000

ß-G

alak

tosi

das

e-ak

tivi

tät

[M

ille

r-U

nit

s]

PAO1chpAPAO1chpA

Page 69: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

59

Wie die Lipase LipA benötigt LipC zur Faltung in seine enzymatisch aktive Konformation

das Foldaseprotein LipH (Martinez et al., 1999; Friedrich, 2000). Da in der ChpA-Mutante

die Transkription des lipA/ lipH-Operons vollständig reprimiert schien, stellte sich daher die

Frage nach der Herkunft des zur Synthese von LipH benötigten lipH-Transkripts.

Wie Abb. 29 zeigt, war die extrazelluläre lipolytische Aktivität in der ChpA-Mutante nicht

von der im WT P. aeruginosa PAO1 zu unterscheiden. Interessanterweise führte die Zugabe

von n-Hexadecan wie im WT auch in der ChpA-Mutante zu einer deutlichen Steigerung der

lipolytischen Aktivität. Anders als im Kontrollstamm P. aeruginosa PABS1, war in GZE

beider Stämme überdies eindeutig LipH-Protein nachweisbar (Abb. 29, B). Dies zeigt, dass

die nachgewiesene Repression der vor dem lipA-Gen gelegenen Promotoren eine Expression

des lipH-Gens nicht ausschloss.

Abb. 29 Lipolytische Aktivität und LipH-Produktion der ChpA-Mutante. A. Die lipolytische Aktivitätwurde nach 24 h Wuchs in NB-Medium und NB-Medium mit n-Hexadecan (1% (v/v) imVergleich zum WT-Stamm bestimmt. B. Immunologischer Nachweis des LipH-Proteins in GZE. Es wurde jeweils eine Mengeentsprechend einer Zelldichte von 0,15 O.D.580 eingesetzt. Die Proben wurden aus den Kulturen mit n-Hexadecan entnommen. Als Kontrolle diente P. aeruginosa PABS1.

3.5.3 Die extrazelluläre Lipaseaktivität in der ChpA-Mutante beruht auf LipC

Die Tatsache, dass die ChpA-Mutante LipH-Protein synthetisierte, war als weiterer Hinweis

darauf zu werten, dass es sich bei der extrazellulären Aktivität um die Lipase LipC handelte.

Um dies zu verifizieren, wurde basierend auf der ChpA-Mutante das lipC-Gen durch

Insertion eines Gentamycin-Resistenzgens inaktiviert.

PAO1Chp

APABS1

(∆lip

H)

0

20

40

60

P A O 1 C hpA P A O 1 C hpA

spez

. lip

olyt

isch

e Akt

ivität

[n

kat/O.D

.580

/ml]

AB

+ n-Hexadecan - n-Hexadecan

Page 70: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

60

Da zur Inaktivierung des chpA-Gens ein Tetrazyklin-Resistenzgen inseriert wurde (C.

Withchurch, J. Mattick, persönliche Mitteilung) war zum beabsichtigten allelen Austausch

durch homologe Rekombination der Vektor pSUP202lipC::Gm (Friedrich, 2000) nicht zu

verwenden, da dieser als pSUP202-Derivat die identische Tetrazyklin-Resistenz vermittelt.

Um nicht beabsichtigte Rekombinationsereignisse innerhalb der allelen Resistenzgene zu

vermeiden, wurde daher ein 7 kb grosses BamHI/ EcoRI-Fragment in den Vektor pBCSK

subkloniert. Dieses trägt sowohl das bereits zur Inaktivierung von lipC erfolgreich benutzte

lipC::Gmr-Insertionsprodukt, wie auch die benötigten Elemente zur Plasmidmobilisierung

aus pSUP202. Der resultierende Vektor pBClipC::Gm wurde durch konjugativen Transfer in

die ChpA-Mutante eingebracht und die ChpA/ LipC-Doppelmutanten (P. aeruginosa

PAFRcl) anhand der Gm-Resistenz selektioniert.

P. aeruginosa PAFRcl produzierte im Vergleich zum Ausgangsstamm weder auf

lipasespezifischen Indikator-Agarplatten (ohne Abb.), noch in Flüssigkultur signifikante

extrazelluläre Lipaseaktivität (Abb. 30). Da dies auch in Gegenwart von n-Hexadecan der

Fall war, bedeutet dies indirekt, dass die Produktion beider Lipasen aus P. aeruginosa durch

dieses Agens positiv beeinflusst wird.

3.5.4 Das Foldasegen lipH wird unabhängig von lipA transkribiert

Bei drastisch reduzierter Aktivität oder völliger Reprimierung der Promotoren im

Stromaufwärtsbereich des Lipaseoperons konnte die in der ChpA-Mutante nachgewiesenen

Synthese des LipH-Proteins bedeuten, dass entweder a) bei einer sehr geringen

Transkriptmenge die Effizienz der Translation erhöht war, oder b) das lipH-Gen unabhängig

vom lipA-Gen transkribiert wurde.

0

10

20

30

40

50

60

70

ChpA ChpA/LipC

spez

. lip

olyt

isch

e A

kti

vitä

t [

nk

at/O

.D.5

80/m

l]

Abb.30 Die ChpA-Mutante produziertLipC. Verglichen sind die extrazellulärenlipolytischen Aktivitäten der ChpA- und derChpA/LipC-Mutante. Die Anzucht erfolgte inNB-Medium unter induzierendenBedingungen durch Zugabe von 1% (v/v) n-Hexadekan. Die Aktivität wurde nach 24 hWuchs gemessen. Dargestellt sindMittelwerte aus drei Messungen,Fehlerbalken geben die Standardabweichungan.

Page 71: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

61

Letzteres würde die Existenz von operoninternen Promotorstrukturen im

Stromaufwärtsbereich des lipH-Gens, also innerhalb des lipA-Gens oder in der intergenischen

Region voraussetzen. Um dieser Fragestellung nachzugehen, wurde eine Serie von

transkriptionellen lacZ-Reportergenfusionen konstruiert. In Abb. XX sind die internen DNA-

Fragmente des Lipaseoperons dargestellt, die durch Insertion in den Vektor pML5BG mit

dem promotorlosen lacZ-Gen fusioniert wurden.

Wie die Abb. XX, B zeigt, besassen in P. aeruginosa PAO1 alle getesteten Fragmente

signifikante Promotoraktivitäten. Das Plasmid pMlip::lacZ trug die bisher bekannten

Promotoren des Lipaseoperons und diente als Referenz. Wie vermutet, besass das PaeI/

Eco47III-Fragment, das den stromabwärts gelegenen Rest des lipA- bzw. lipH-Gene

umfasste, eine signifikante Promotoraktivität. Dabei muss das PaeI/ PpuMI-Fragment, das

nur Bereiche des lipA-Gens bis zu dessen Stopp-Kodon trug (lipPP) als Promotorstruktur

funktionierende Sequenzen beinhalten. Interessanterweise galt dies auch für das direkt

anschliessende PpuMI/ Eco47III-Fragment (lipPE), das mit dem 5'-Ende der intergenischen

Region beginnt und darüber hinaus nur Sequenzen des lipH-Strukturgens beinhaltet.

Aufgrund der Tatsache, dass der stromabwärts von lipH gelegene potentielle offene

Leserahmen orf PA2864 in der inversen Orientierung transkribiert wird (Stover et al., 2000),

ist es als unwahrscheinlich anzusehen, dass das lipH-Gen selbst physiologisch relevante

Promotorstrukturen enthält. Dies machte es wahrscheinlich, dass die mit dem lipPE-Fragment

gemessene Promotoraktivität auf Sequenzen in der intergenischen Region zurückzuführen

war, die eine transkriptionelle Kontrolle zur Expression von lipH unabhängig von der

Transkription des Lipasegens lipA erlauben.

Abb. 31 Promotoraktivität interner Fragmente des Lipaseoperons. Gezeigt sind die Fragmente, die miteinem promotorlosen lacZ-Gen als Reporter fusioniert wurden. Die episomal kodierten transkriptionellenFusionen wurden in P. aeruginosa PAO1 eingebracht. Die Messung der ß-Galaktosidaseaktivitäten erfolgte nach24 h Wuchs in NB-Medium. Die Aktivitäten wurden um die Werte der Leervektorkontrolle korrigiert undstellen Mittelwerte aus drei Messungen dar. Fehlerbalken geben die Standardabweichung an.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

PpuM1

lipHlipAP1 P2

XhoI PaeI AgeI Eco47-III

pMLlipApMLlipAH(PE)pMLlipA(PP)pMLlipAH(AE)pMLlipH

lacZ-Fusion

ß-GalaktosidaseAktivität

[Miller Units]

Page 72: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

62

3.5.5 Die intergenische Region beinhaltet einen lipH-spezifischen Promotor

Die Existenz bzw. die Lokalisation des potentiellen lipH-spezifischen Promotors wurde im

Folgenden durch Insertion von Sequenzen zur Transkriptionstermination unmittelbar vor der

intergenischen Region untersucht. Dazu wurde in die mit dem Stoppkodon des lipA-Gens

überlappende PpuMI-Erkennungssequenz eine sog. "Omega"-Resistenzkassette (ΩGmr)

inseriert (Abb. XX, A; pSUPAGmH), wodurch die Transkription des lipA/lipH-Operons an

dieser Stelle terminiert werden sollte. Dieses Konstrukt wurde zum allelen Austausch des

Lipaseoperons in P. aeruginosa benutzt. Eine ggf. auftretende Expression von lipH sollte

dann der transkriptionellen Kontrolle von regulatorischen Elementen in der IR unterliegen.

Die Abb. 32 zeigt, dass dies der Fall war, interessanterweise produzierte der resultierende

Stamm P. aeruginosa PAFRGmP sogar etwa zweimal mehr Lipase als der Ausgangsstamm.

0

20

40

60

80

100

120

140

160

180

200

PAO1 PAFRGmP

rel.

Lip

asea

kti

vitä

t [%

]

Abb. 32 Lipaseproduktion von P. aeruginosaPAFRGmP. Schematisch dargestellt ist diegenetische Organisation des Lipaseoperons von P.aeruginosa PAFRGmP im Vergleich zum WT-Stamm. Die Anzucht erfolgte jeweils in NB-Mediumfür 24 h bei 30°C. Die Werte stellen Mittelwerte audrei Messungen dar, die Fehlerbalken geben dieStandardabweichung an

PpuM

lipHlipA

PpuM1/Mlu PpuM1/Mlu

lipHlipA Ω Gmr

P. aeruginosa PAO1

P. aeruginosa PAFRGmP

PXhoIP

PPXhoI

Page 73: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

3. Ergebnisse

63

3.5.6 Bestimmung des Transkriptionsstarts für den lipH-spezifischen Promotor

Der Transkriptionsstart wurde durch eine "Primer-Extension"-Analyse unter Verwendung der

Oligonukleotide PELipH1 und PELipH2, die beide komplementär zum 5'-Bereich des lipH-

Gens sind ermittelt. Mit beiden Oligonukleotiden konnten reproduzierbar drei Transkripte

unterschiedlicher Länge identifiziert werden Dies war sowohl in P. aeruginosa PAO1, wie

auc hin der ChpA-Mutante der Fall. Die Transkripte waren sowohl nach einer Wuchsdauer

von 10 h, wie auch nach 24 h nachweisbar (ohne Abb.).

Die Länge des Transkripts im Vergleich zur parallel mit denselben Oligonukleotiden

durchgeführte DNA-Sequenzeirung ergab, dass eines dieser Transkripte mit dem GTG-

Startkodon des lipH-Gens begann (Abb. 33). Dies bedeutet, dass sowohl die Existenz, als

auch die Funktionalität eines Promotors in der IR zur transkriptionellen Kontrolle des lipH-

Gens nachgewiesen werden konnte.

Abb. 33 Transkriptionsstartbestimmung des IR-internen Promotors. Die hier dargestellte " Primer-Extension"-Analyse wurde unter Verwendung des PELipH1-Oligonukleotids durchgeführt. Die Gesamt-RNAvon P. aeruginosa PAO1 wurde hierzu nach 10 h Wuchs in NB-Medium isoliert. Dargestellt sind im oberenTeil die Signale der "Primer-Extension". Im unteren Teil ist die parallel durchgeführte Sequenzierreaktion mitDNA des Plasmids pBBL7 dargestellt. Die Signale wurden anhand der relativen Laufzeiten aufgetragen. DasGTG-Startkodon des lipH-Gens ist durch Unterstreichung hervorgehoben.

A T T C A G C A G G A G G A T T T T C T T C A C G C G A G G G G G C T T C C G G G A A A G G G CTime [min]137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

GTime [min]137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

GTG-lipH

Page 74: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

64

Diskussion

Das Expressionssystem zur Produktion der Lipase aus P. aeruginosa im heterologenWirt Pseudomonas putida

Nach dem Gentechnikgesetz (GenTG) werden Bakterien in vier Gefahren- bzw.

Sicherheitsstufen (S1-S4) eingeteilt (GenTSV; www.rki.de). Mit der Gefahrenstufe steigen

die Sicherheitsanforderungen und somit auch die Restriktionen, denen der Umgang mit

gentechnisch veränderten Organismen unterliegt. Der Einsatz von pathogenen Bakterien zur

Produktion biotechnologisch relevanter Substanzen ist daher nur mit erheblichem Aufwand

und damit verbundenen Kosten möglich und daher nicht wünschenswert. P. aeruginosa als

opportunistisch humanpathogenes Bakterium ist in der Sicherheitstufe S2 klassifiziert. Zur

Produktion von extrazellulären Enzymen aus P. aeruginosa sollte ein Expressionsstamm

entwickelt werden, der auf einem heterologen, nicht pathogenen Bakterium der

Sicherheitsstufe S1 basiert. Als heterologe Wirtsbakterien sollten solche geeignet sein, die

entweder über ein eigenes TypII-Sekretionssystem verfügen, das heterologe Proteine

exportieren kann, oder solche, in denen ein funktioneller TypII-Exportapparat aus P.

aeruginosa rekonstituiert werden kann. P. putida wird nach dem GenTG als S1-Organismus

klassifiziert und besitzt den xcp-Genen aus P. aeruginosa homologe Gene, deren

Funktionalität noch nicht abschliessend geklärt ist (de Groot et al.,1996). Anhand der

Elastase LasB konnte jedoch gezeigt werden, dass dieses GSP-abhängige Protein aus P.

aeruginosa im heterologen Wirt P. putida nicht aktiv sekretiert wird (Braun et al., 2000).

Anhand der Lipase LipA aus P. aeruginosa sollte dieses I. verifiziert, II. gezeigt werden, dass

eine Spezies-Spezifität zwischen Substrat-Protein und Sekretionsapparat besteht, indem III.

der komplette TypII-Sekretionsapparat rekonstituiert und somit P. putida als heterologer Wirt

zur Produktion extrazellulärer Enzyme aus P. aeruginosa etabliert werden sollte.

Rekonstitution und Funktionalität des Xcp-Apparats in P. putida

Die Expression der xcp-Gene unterliegt in P. aeruginosa der Regulation durch das RhlR/I-

"Quorum-sensing"-Regulationssystem, das die Synthese eines funktionellen Exportapparates

an die Bildung anderer Virulenzfaktoren wie z.B. des P. aeruginosa Rhamnolipids koppelt

(Chapon-Herve et al, 1997). Für P. putida wurde ebenfalls die Existenz homologer

zelldichtabhängiger Regulationssysteme beschrieben (Sauer & Camper, 2001). Es war aber

nicht sicher, dass die Promotoren der xcp-Operons im heterologen Wirt P. putida erkannt

würden.

Page 75: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

65

Mittels einer Reportergenfusion des regulatorischen Bereiches der divergent transkribierten

xcp-Gene mit dem ß-Galaktosidasegen, konnte in dieser Arbeit demonstriert werden, dass die

Transkription der xcp-Gene als Voraussetzung zur Rekonstitution eines funktionellen

Exportapparates gewährleistet ist (Abb 5). Die gemessenen ß-Galaktosidaseaktivitäten

sprechen allerdings dafür, dass die Expression in P. putida eher konstitutiv, als

zelldichtereguliert erfolgt (Abb. 6). Die Möglichkeit zur Rekonstitution des Xcp-Apparates

selber und die Möglichkeit, diesen zur Produktion enzymatisch aktiver und sekretierter

Lipase zu nutzen wurde demonstriert, indem P. putida sowohl mit einem das Lipaseoperon

tragenden Expressionsplasmid, wie auch mit einem Kosmid versehen wurde, das die xcp-

Gene aus P. aeruginosa enthielt. Anhand von Aktivitätstests und des immunologischen

Nachweises des Lipaseproteins wurde gezeigt, dass dieser Stamm wie erwartet extrazellulär

aktive Lipase produzierte (Abb. 7).

Die Charakterisierung der Lipaseproduktion ergab einige interessante Details: I. Das zur in

vivo-Aktivierung der Lipase notwendige LipH-Protein war in P. putida nur nachweisbar,

wenn gleichzeitig auch die xcp-Gene aus P. aeruginosa exprimiert wurden, andernfalls

unterlag das Protein einem Abbau durch zelluläre Proteasen. II. auch die bereits sekretierte

Lipase erwies sich abhängig von der Wuchsphase in Kulturüberständen als instabil. Wie auch

in P. aeruginosa unterliegt das LipH-Protein in der Zelle auch in P. putida einer

proteolytischen Degradation (Abb. 11, vergleiche auch Abb. 7). Für die Foldase aus B.

glumae konnte demonstriert werden, dass das Protein bei gleichzeitiger Produktion der

Lipase eine erhöhte Stabilität aufweist, was auf eine Maskierung entsprechender Spaltstellen

für Proteasen zurückgeführt wurde (El Khattabi, 2001). Ebenso konnte für das essentielle

XcpP-Protein des Exportapparates aus P. aeruginosa eine Stabilisierung durch ein weiteres

Xcp-Protein nachgewiesen werden (Bleves et al., 1999). Das Fehlen eines funktionsfähigen

Xcp-Apparates bewirkt auch in P. aeruginosa eine drastische Reduzierung des korrekt in der

inneren Membran lokalisierten LipH-Proteins (Schneidinger, 1997). Es ist daher

anzunehmen, dass der beobachtete Effekt in P. putida auf eine mangelnde Stabilisierung des

Foldaseproteins durch Komponenten des Xcp-Apparats zurückzuführen ist. Da das LipH-

Protein in dieser Arbeit als limitierende Komponente für die Lipaseproduktion in P.

aeruginosa identifiziert wurde (s.u), ist es weiterhin plausibel anzunehmen, dass ein Faktor

für das Absinken der Lipaseproduktion in P. putida während der Stationärphase eine

reduzierte Foldaseproduktion und/oder eine gesteigerte Degradation ist. In P. aeruginosa

konnten einige potentiell periplasmatisch lokalisierte Proteasen identifiziert werden, die

Einfluss auf die Lipaseproduktion nehmen (Windgassen, 2000; Wilhelm et al., 2001).

Page 76: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

66

Ein möglicher Angriffspunkt dieser Proteasen auf die Lipaseproduktion kann neben einer

Aktivität gegenüber dem periplasmatischen Intermediat der Lipase selbst oder auch deren

Beteiligung am "turnover" des Foldaseproteins sein.

Die in P. putida sekretierte Lipase erwies sich im extrazellulären Medium als instabil (Abb. 9

und Abb. 10). Dies konnte teilweise auf das Vorhandensein extrazellulärer, hitzelabiler

Komponenten zurückgeführt werden. Wahrscheinlich handelt es sich dabei um Proteasen.

Darüberhinaus fand sich bei genauerer Untersuchung im Anschluss an eine industriell

durchgeführte Fermentation des rekombinanten Produktionsstammes P. putida/

pBBL7/pXcp7 (Eller, 1998) eine offenbar niedermolekulare Substanz, die die Lipase

reversibel inhibierte und vorläufig als "Lipase-Labilisator" bezeichnet wird (A. Weisser,

persönliche Mitteilung).

Die prinzipielle Eignung von P. putida als Expressionsstamm zur Produktion der Lipase aus

P. aeruginosa konnte somit in dieser Arbeit gezeigt werden. In einer ergänzenden Studie

konnte darüberhinaus die Lipaseausbeute weiter gesteigert werden, indem auch die

Prepilinpeptidase aus P. aeruginosa in den heterologen Wirt eingebracht wurde (Eller, 1998).

Expression der Lipase aus P. aeruginosa unter Verwendung der T7-RNA-Polymerase

im homologen Wirt

Für biotechnologische Anwendungen ist es wünschenswert, Proteine mit möglichst hoher

Ausbeute produzieren zu können. Handelt es sich bei dem Protein von Interesse um ein

solches, dessen natürliche Regulation im homologen Wirt nur unvollständig verstanden ist,

ist eine denkbare Strategie zur effektiven Überproduktion die Entkopplung von der

physiologischen Regulation. Dieses Konzept findet in den etablierten auf dem Wirt E. coli

basierenden T7-Überexpressionssystemen Anwendung (Studier & Moffatt, 1986; Tabor,

1990). Ein analoges System zur Überexpression von Proteinen in P. aeruginosa wurde von

Brunschwig und Darzins (1992) entwickelt. Der Stamm ADD1976 trägt stabil in das

Chromosom integriert das Strukturgen für die DNA-abhängige RNA-Polymerase des Phagen

T7 unter transkriptioneller Kontrolle des lacUV-Promotors. Das ebenfalls in das Chromosom

integrierte Gen für den lacIq-Repressor verhindert im nicht induzierten Zustand die Bildung

der RNA-Polymerase. Nach Induktion mit IPTG können somit Gene deren Expression unter

Kontrolle eines T7-spezifischen Promotors steht, in P. aeruginosa exprimiert werden

(Brunschwig und Darzins, 1992). Auch zur Expression der P. aeruginosa-Lipase mit hoher

Ausbeute ist dieser Stamm geeignet (Schneidinger, 1997), jedoch weist er phänotypische

Charakteristika auf, die auf einen pleiotropen regulatorischen Effekt hindeuten (Rosenau et

al., 1998).

Page 77: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

67

Für die Expression von Lipase-Varianten, etwa im Rahmen von „in vitro-Evolutions“-

Programmen ist darüberhinaus ein Expressionsstamm Voraussetzung, der keine

Hintergrundaktivität des Wildtypenzyms produziert, also ein T7-Expressionstamm, basierend

auf einer Lipase-defizienten Mutante.

In dieser Arbeit wurden mehrere Stämme konstruiert, die dieser Massgabe genügen (Abb. 12;

Tab. 7). Es war bei einem heterologen und induzierbaren Expressionssystem zu erwarten,

dass die Ausbeute des exprimierten Proteins mit der Zelldichte der Kultur korreliert. Ein

solcher Zusammenhang wurde auch für die hier verwendeten Expressionsbedingungen

gefunden. In Abhängigkeit vom verwendeten Medium bzw. dessen "Nährstoffgehalt" stiegen

sowohl die maximal erzielbare Zelldichte, wie auch die Lipaseproduktion an (Tab. 7).

Vor diesem Hintergrund wurde ein Anzuchtsprotokoll etabliert (B. Kutscher, F. Rosenau &

K.-E. Jäger, unveröffentlicht), nach dem die Induktion erfolgt, wenn die Bakterienkultur die

maximale Zelldichte erreicht. Dies war in dem nährstoffreichen Trypton-Phosphat-Medium

nach 16 h Inkubation der Fall. Während der Produktionsphase bis zum Absterben der

Bakterien nach weiteren 24 h (nach Induktion) akkumulierte die Lipase im Medium.

Analoge Expressionsysteme die durch den lac-Repressor reguliert werden, weisen generell

eine gewisse basale Expression auf (Studier & Moffat, 1986; Tabor, 1990; Mertens et al.,

1995). Dies, in Verbindung mit der langen Präinkubation, ist wahrscheinlich als Grund für

die bereits hohe extrazelluläre Lipaseaktivität vor Induktion (Abb. 13) anzusehen.

Die Reproduzierbarkeit der Lipaseexpression erwies sich in diesem System als

problematisch, wie an der Schwankungsbreite der maximalen Lipaseausbeuten zu erkennen

ist (Tab. 7). Dies ist ebenfalls ein Charakteristikum von T7-Expressionssystemen mit

vergleichsweise hoher Basalexpressionsrate, da aufgrund der Überproduktion zelluläre

Stressantworten induziert werden, durch die letztlich eine Selektion auf Verlust der

Expression stattfindet (Mertens et al., 1995).

Die erreichbare maximale Lipaseausbeute liegt in der Grössenordnung von 10-100mg/l

(Tab.7). Die Lipase unterliegt in Kulturüberständen von P. aeruginosa wahrscheinlich

ebenfalls einer Degradation durch Proteasen (Schneidinger, 1997; El Khattabi, 2001). Aus

diesem Grund wurde das Gen für die Elastase LasB, der im Kulturüberstand mengenmässig

dominierenden Protease, in dem Expressionsstamm P. aeruginosa PAFRT7.7 durch allelen

Austausch inaktiviert. Dies hatte jedoch keine Erhöhung der Lipaseausbeute zur Folge. Dies

zeigt, dass für den proteolytischen Abbau der Lipase in Kulturüberständen mit hoher

Wahrscheinlichkeit andere sekretierte Proteasen verantwortlich sein müssen.

Page 78: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

68

Die in dieser Arbeit konstruierten T7-Expressionsstämme wurden erfolgreich eingesetzt in

"Screening"-Prozessen zur Optimierung der Lipase aus P. aeruginosa als Biokatalysator

(Rosenau et al., 1998; Reetz & Jäger, 2000; Liebeton et al., 2000). Die hohe Expressionsrate

erlaubt dabei die Anzucht der Bakterien in kleinen Volumina bei gleichzeitig genügend hoher

Lipaseproduktion.

Die Funktion Lipase-spezifischer Foldasen

Die Lipasen LipA und LipC aus P. aeruginosa benötigen zur Aktivierung die Wirkung des

im Periplasma aktiven intermolekularen Faltungskatalysators LipH (Wohlfahrt et al., 1992;

Oshima-Hirayama, 1993; Martinez et al., 1999; Jäger et al., 1994; Rosenau & Jäger, 2000).

Die molekularen Mechanismen, die der Faltungskatalyse durch diese Lipasespezifischen

Foldasen zugrundeliegen ist zur Zeit noch ebenso wenig abschliessend geklärt, wie die

physiologische Bedeutung.

Kürzlich wurde die Sequenz eines Lipaseoperons aus P. spec. KFCC10818 veröffentlicht.

Die beiden Gene des Operons kodieren für eine wahrscheinlich der Familie I.2 zuzuordnende

Lipase und ein Foldaseprotein (Kim et al., 2001), das aufgrund von Sequenzhomologien zu

anderen Vertretern dieser Proteingruppe am nächsten mit dem Lif-Protein aus Vibrio

cholerae 017 verwandt ist (Abb 1, 23). Diese Lipase besass nach Expression im heterologen

Wirt E. coli auch ohne die Einwirkung des korrespondierenden Lif-Proteins enzymatische

Aktivität. Voraussetzung hierfür war eine singuläre Aminosäuresubstitution, die durch

gerichtete in vitro-Evolution des Lipasegens erzeugte wurde und eine Region in der Nähe des

konservierten Pentapeptid G-X-S-X-G betraf (Kim et al., 2001).

Da offenbar bereits der Austausch eines AS-Restes ausreicht die Abhängigkeit der

Lipasefaltung von dem Lif-Protein zu umgehen, scheint es fraglich, ob den Lif-Proteinen der

Familien I.1 und I.2 ausschliesslich eine Funktion bei der Faltung in die enzymatisch aktive

Konformation zukommt. Sofern nur die Aktivierung der Lipase im Vordergrund stünde, wäre

die Lif-Abhängigkeit der Faltung aus evolutiven Gesichtspunkten entbehrlich, was die

Diskussion weiterer potentieller Funktionen dieser Proteine für die Physiologie der

Lipasesynthese erlaubt, auf die später in der Diskussion eingegangen wird.

Die zur Zeit bestehende Sichtweise der Lif-Funktion beruht grösstenteils auf experimentellen

Daten, die mit in vitro Versuchsansätzen erhoben wurden (El Khattabi et al., 2000; Frenken

et al., 1993b; Hobson et al., 1993; Hobson et al., 1995; Oshima-Hirayama et al., 1993; Ihara

et al., 1995; Schneidinger 1997; Seuter, 1998; Shibata et al., 1998a,b).

Page 79: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

69

Die Stöchiometrie von Foldase- und Lipaseprotein, die zu einer effektiven in vitro

Aktivierung, bzw. Rückfaltung denaturierter Lipase führte, variierte dabei in den

Experimenten verschiedener Gruppen zwischen einem Verhältnis von 4:1 oder 1:1 bei der

Foldase/ Lipase aus P. aeruginosa (Ihara et al., 1995; Oshima-Hirayama et al., 1993) , 5:1 für

die Proteine aus B. glumae (El Khattabi et al., 2000) und 1:1 für B. cepacia (Hobson et al.,

1993). Diese Variabilität ist wahrscheinlich auf Unterschiede in den experimentellen

Bedingungen zurückzuführen.

Weitgehend akzeptiert ist heute die Sichtweise, dass die Interaktion von Foldase und Lipase

in einem equimolaren Verhältnis erfolgt, was für das Foldase-/ Lipase-System aus B. cepacia

(Aamand et al., 1994; Hobson et al., 1995) bzw. P. aeruginosa (Oshima-Hirayama et al.,

1993) u.a durch immunologischen Nachweis entsprechender Komplexe gezeigt wurde.

Ferner aktiviert das Foldase-Protein die Lipase nicht katalytisch, d.h, ein Foldasemolekül

aktiviert nur ein Lipasemolekül (Aamand et al., 1994; El Khattabi et al., 2000). Dies wäre

vergleichbar mit der Wirkweise verschiedener intramolekularer Faltungshelfer, wie den

Propeptiden bakterieller Proteasen (Kulakova et al., 1999, Nirasawa et al., 1999; Shinde et

al., 1999; Fu et al., 2000; Kojima et al., 2001; Marie-Claire et al., 2001), die auch bei dem

Propeptid der Elastase LasB aus P. aeruginosa realisiert ist (Braun et al., 1996, 1998, 2000,

2001). Für die Physiologie der Foldase-vermittelten Lipaseaktivierung implizieren diese

Befunde eine Biosynthese der beteiligten Proteine, die auch einer 1:1 Stöchiometrie

entsprechen sollte.

Die genetische Organisation der Strukturgene von Lipasen und Foldasen aus den Familien I.1

und I.2 in Operons (Jäger et al., 1994; Rosenau & Jäger, 2000) und somit die Transkription in

eine bicistronische mRNA (Schneidinger, 1997) gewährleistet dies für den ersten Schritt der

Expression von Lipase und Foldase aus P. aeruginosa. Bei beiden Translationsprodukten

handelt es sich um extracytoplasmatische Proteine, d.h. sie werden in komplexen Prozessen

über die innere Membran transportiert. Für die Lipase als Protein mit klassischer

Signalsequenz (vonHeinje, 1990; Nielsen et al., 1997), erfolgt dieser Transport

wahrscheinlich Sec-abhängig (Tommassen et al., 1992; Filloux et al., 1998; Koster et al.,

2000; Rosenau & Jäger, 2000; Wilhelm et al., 2001), während der Translokations- bzw.

Insertionsmechanismus für innere Membranproteine wie dem LipH-Protein z.Zt. noch nicht

vollständig verstanden ist (de Gier & Luirink, 2001). Setzt man hierfür eine unterschiedliche

Effizienz voraus, sollten allein aufgrund der Benutzung unterschiedlicher Transportwege

Mechanismen existieren, das Mengenverhältnis beider Proteine posttranskriptional

anzupassen, um eine equimolare Relation an der inneren Membran zu gewährleisten.

Page 80: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

70

In Frage kommen dafür neben einer veränderten Proteinstabilität, Mechanismen zur

Veränderung der Translationseffizienz und der mRNA-Stabilität (Regnier & Arraiano, 2000).

Bedeutung der intergenischen Region- Limitiert LipH die Lipaseproduktion?

Das Lipaseoperon enthält eine 49 bp grosse intergenische Region (IR), die einige Merkmale

aufweist, die auf einen Zusammenhang mit regulatorischen Prozessen hindeuteten, die eine

Steuerung des Verhältnis beider Proteine erlauben konnten. Durch Mutationsanalysen wurde

der Effekt diese Merkmale auf die Foldase- und Lipaseexpression untersucht. Die IR trägt an

ihrem 5'-Ende eine durch Computer-unterstützte Vorhersagen identifizierte inverse

Sequenzwiederholung (Wohlfahrt et al., 1992), die wahrscheinlich zur Ausbildung einer

stabilen Sekundärstruktur der mRNA führen kann (Abb. 15). Solche doppelsträngigen

mRNA-Strukturen können zum einen als Binde- bzw. Prozessierungsstelle für die

doppelstrangspezifische Endoribonuklease RNaseIII dienen, die für die Destabilisierung von

Transkripten verantwortlich ist (Cunningham & Guest, 1998). Besonders über

endonukleolytische Prozessierung in 5'- oder 3' untranslatierten Transkriptbereichen kann

dies auch zu einer Veränderung der Expression der kodierten Genen führen (Portier et al.,

1987; Bardwell et al., 1989). Ferner wurden Haarnadelstrukturen im Zusammenhang mit der

einzelstrangspezifischen (Bouvet und Belasco, 1992; Mackie, 1998) RNaseE identifiziert,

deren Aktivität durch Sekundärstrukturen der RNA reduziert wird (McDowall et al., 1994;

Mackie & Genereaux, 1993). Nach einer Prozessierung kann das Vorhandensein von 5'- oder

3'-terminalen Haarnadelstrukturen dann die RNA-Stabilität erhöhen und über eine gesteigerte

Transkriptverfügbarkeit eine Verbesserung der Translation bewirken. Dies führt dann zu

einer verstärkten Expression stromabwärts der Sekundärstruktur gelegener Gene (Carrier &

Keasling, 1997; Smolke et al., 2000). Der RNaseE konnte auch in P. aeruginosa eine

Bedeutung z.B. bei der Prozessierung des arc-Operons (Gamper et al., 1992; Gamper &

Haas, 1993) zugewiesen werden. In "Northern-Blot"-Analysen wurden neben dem

Volllängentranskript des Lipaseoperons aus P. aeruginosa auch kürzere RNA-Varianten

identifiziert, die monocistronischen Transkripten der lipA- und lipH-Gene entsprachen und

als Degradationsprodukte interpretiert wurden (Schneidinger, 1997). Die Computer-

unterstützte Modellierung des intergenischen Bereiches zwischen den lipA- und lipH-Genen

ergab als weitere strukturelle Auffälligkeit die Existenz von doppelsträngigen RNA-

Bereichen, in den beiden thermodynamisch günstigsten Strukturen dargestellt, an denen

jeweils Nukleotide der putativen RBS beteiligt waren (Abb. 15). Diese "Maskierung" der

Page 81: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

71

RBS wurde im Fall des adhE-Gens aus E. coli als Ursache für eine Reprimierung der

Translationsinitiation demonstriert (Aristarkhov et al., 1996; Membrillo & Lin, 1999). Der

durch Sekundärstrukturbildung bedingte Ribosomenausschluss ("Ribosome Occlusion") kann

physiologisch durch verschiedene Mechanismen rückgängig gemacht und so regulatorisch

genutzt werden. Die Veränderung des untranslatierten RNA-Bereiches durch RNaseE-

abhängige Prozessierung kann zu einer veränderten Sekundärstruktur mit dann frei

zugänglicher RBS führen demonstriert (Aristarkhov et al., 1996). Im Fall der cob mRNA aus

Salmonella typhimurium konnte die Bindung eines regulatorischen Proteins an die RNA als

Ursache für eine veränderte Sekundärstruktur im untranslatierten Bereich identifiziert

werden, die ebenfalls zu einer Exposition der RBS führte (Ravnum und Andersson, 2001).

Da eine frei zugängliche RBS über eine gesteigerte Effizienz Translationsinitiation zu einer

Verbesserung der Expression führen kann, wurde der Einfluss einer Modifikation der RBS

auf die LipH-Produktion untersucht.

Zur Verbesserung der Translationsinitiation sollten zwei Aspekte kombiniert werden. Die

Stärke einer RBS resultiert u.a. aus dem Grad ihrer Sequenzkomplementarität zu einem

Bereich am 3'-Ende (Moll et al., 2001) der ribosomalen 16S RNA, der sog. Anti-Shine-

Dalgarno-Sequenz (ASD). Der Homologievergleich der 16S rRNA aus P. aeruginosa und E.

coli zeigt, dass beide Moleküle im Bereich der ASD identisch sind (ohne Abbildung). Die

RBS des lipH-Gens wies aber eine nur geringe Komplementarität zu dieser auf. Durch

Substitution des nativen RBS-Bereichs durch den entsprechenden Bereich des stark

exprimierten (Moll et al., 2001) Gens 10 des Bakteriophagen T7, der vollständig

komplementär zur ASD ist, sollte der Einfluss der RBS-Komplementarität untersucht

werden. Der Einfluss der Substitution liess aufgrund der Strukturvorhersage ausserdem das

Fehlen einer RBS-Maskierung durch die Ausbildung von Basenpaarungen erwarten. Als

weiteres Merkmal mit potentiellem Einfluss auf die Effizienz der Translationsinitiation kam

die Sequenz des Initiationskodons in Frage. Das GTG-Kodon des lipH-Gens ist als seltenes

Startkodon anzusehen, da allgemein in Prokaryonten in 91% der Fälle ein ATG-Startkodon

verwendet wird (Gold & Stormo, 1990). Daher wurde das Startkodon entsprechend

substituiert. Da die dadurch erzeugte Erkennungssequenz für die Restriktionsendonuklease

NdeI zur Klonierung der weiteren IR-Varianten benutzt wurde, enthielten alle synthetischen

Konstrukte die GTG→ATG-Substitution. Bei den weiteren Varianten handelte es sich um

eine Deletion der beschriebenen Haarnadelstrukturstruktur und eine Insertion zusätzlicher

Nukleotidpaare zur Stabilisierung dieser Sekundärstruktur (Abb. 16). Die Befunde der

Expressionsstudien, die mit den modifizierten IR in P. aeruginosa durchgeführt wurden,

lassen sich wie folgt zusammenfassen.

Page 82: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

72

Die Substitution des seltenen GTG-Startkodons durch ein ATG-Kodon führte zu einer

signifikanten Steigerung der intrazellulären LipH-Konzentration.

Da dies sowohl am Übergang von der spätlogarithmischen zur Stationärphase (6 h Wuchs),

wie auch in der spätstationären Wuchsphase (24 h) zutraf, bedeutet dies eine

Wuchsphasenunabhängigkeit dieses Effekts. Die zusätzlich vorgenommene Veränderung der

RBS bezüglich der Komplementarität zur ASD führte nicht zu der erwarteten deutlichen

Steigerung der LipH-Expresion. Lediglich zum "frühen" Zeitpunkt war in der

Immunodetektion eine leicht erhöhte LipH-Konzentration zu verzeichnen, während dieser

Effekt auf die Expression in der Stationärphase nicht auftrat. Die basierend auf

Strukturmodellen vorhergesagte Maskierung der RBS und/oder in Kombination mit der

geringe Komplementarität der RBS scheinen demnach zwar in frühen Wuchsphasen, nicht

aber in der spätstationären Wuchsphase zu einer Limitierung der Translationsinitiation zu

führen. Dieser Unterschied kann darauf hindeuten, dass die Effizienz der

Translationsinitiation selbst einer Wuchsphasen-abhängigen Änderung unterliegt. Eine

Wuchsphasenabhängikeit ergab sich auch für den Einfluss der Modifikationen im Bereich der

Haarnadelstruktur auf die LipH-Produktion. Die Deletion führte erwartungsgemäss zu einer

Reduktion der zellulären LipH-Konzentration, während die Stabilisierung durch

Verlängerung der RNA-Sekundärstruktur keinen direkten Einfluss auf die LipH-Expression

hatte. Vor dem Hintergrund einer bereits demonstrierten Prozessierung des Operontranskripts

(Schneidinger, 1997) bestätigt die Reduktion der LipH-Menge als Folge der

Haarnadeldeletion die Annahme, dass das lipH-Transkript im Wt-Operon einer Stabilisierung

durch die RNA-Sekundärstruktur unterliegt und diese somit am 5'-Ende des neuentstandenen

Abbauprodukts liegen muss. Neben der Charakterisierung der direkten Effekte der IR-

Modifikationen auf die LipH-Produktion, wurde auch deren Auswirkung auf die

Lipaseproduktion untersucht. Interessanterweise waren diese in der Tendenz vergleichbar mit

den Auswirkungen auf die LipH-Produktion und führten zu einer Steigerung der

Lipaseausbeute von bis zu 30% in der Stationärphase (Abb. 18). Dies impliziert eine

Abhängigkeit der Lipaseausbeute von der LipH-Menge bzw. Verfügbarkeit für den

Faltungsprozess und somit eine Limitierung der Lipaseproduktion durch eine suboptimale

LipH-Expression. Als Ursache hierfür ist das seltene GTG-Startkodon des Wt-lipH-Gens

anzusehen, dass im Wt-Gen die Effizienz der Translationsinitiation herabsetzt.

Entgegengesetzt wirkt im Wt-Operon die 5‘terminale Haarnadelschleife, die wahrscheinlich

über eine Stabilisierung des lipH-Transkripts die Wahrscheinlichkeit für

Translationsereignisse erhöht.

Page 83: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

73

Dieser positive Effekt greift besonders in der Stationärphase, was indirekt auf besondere

Gegebenheiten für die Foldase- und Lipaseproduktion in dieser Wuchsphase hindeutet. Es

wurden somit in dieser Arbeit zwei posttranskriptionell wirksame Mechanismen identifiziert

werden, die über die Strukturmerkmale des Lipaseoperons Einfluss auf die Genexpression

und damit auf die zelluläre Lipase: Foldase-Stöchiometrie nehmen.

Die Foldasekonzentration limitiert die Lipasesynthese

Die Steigerung der Lipaseproduktion als Folge einer leicht verbesserten LipH-Expression

liess zwei plausible Erklärungen zu: I. eine Limitierung der Faltung oder Sekretion bereits

synthetisierter Lipase, und II. ein gegebenenfalls existierender Regulationsmechanismus zur

LipH-abhängigen transkriptionalen oder posttranskriptionalen Induktion der Lipasesynthese.

Beide Alternativen sollten eine gewisse Abhängigkeit von der in der Zelle verfügbaren LipH-

Menge zeigen. Dieser Zusammenhang konnte bereits in einer parallel durchgeführten Studie

zur Produktion enzymatisch aktiver Lipase im heterologen Wirt E. coli aufgezeigt werden, in

denen sich die Expression der Foldase durch das native Operon als limitierend erwies

(Rösmann, 1996).

Um potentiell vorhandene transkriptionelle regulatorische Mechanismen zu umgehen, stand

das Lipaseoperon in den durchgeführten Expressionsstudien jeweils ausschliesslich unter

transkriptioneller Kontrolle des lac-Promotors der Plasmide pBBR1MCS (Kovach et al.,

1994) oder pUCPKS (Watson et al., 1996). In der Genomsequenz von P. aeruginosa PAO1

wurden zwar dem lac-Repressor homologe Gene identifiziert (Stover et al., 2000;

www.pseudomonas.com), dennoch konnte mittels einer transkriptionellen Reportergenfusion

gezeigt werden, dass die Expression vom lac-Promotor aus konstitutiv erfolgt (F. Rosenau, S.

Heckmann & K.-E. Jäger, unveröffentlicht). Im Vergleich zu einer Steigerung von 30% bei

moderat verbesserter LipH-Expression in cis durch die Modifikation der IR, bewirkte die

Überexpression der Foldase in trans zum Lipaseoperon einen etwa 50%igen Anstieg der

extrazellulär detektierbaren Lipaseaktivität (Abb.19). Auch durch eine noch massivere

Überexpression der Foldase durch Verwendung des im Vergleich stärkeren Promotors des

Kanamycin-Resistenzgens aus dem Transposon Tn5 (Jorgensen et al., 1979) konnte keine

weitere Steigerung der Lipaseproduktion erzielt werden (Daten nicht gezeigt).

Der Anstieg der Lipaseproduktion zeigte eine nur begrenzte Abhängigkeit vom Mass der

LipH-Überexpression. Bei konstitutiver Expression der Lipase bedeutet dies, dass die

Erhöhung der zellulären LipH-Konzentration die Synthese aktiver Lipase zwar positiv

beinflussen kann, dies aber nur bis zu einer "Sättigungskonzentration" von LipH, deren

Überschreitung zu keiner weiteren Verbesserung der Lipaseproduktion führt.

Page 84: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

74

Unter den gewählten Bedingungen limitiert also die durch Expression des Lipaseoperons

synthetisierte Foldase die vollständige Aktivierung und/ oder Sekretion der kosynthetisierten

Lipase.

Die zelluläre Foldasekonzentration- Ein Induktor der Lipaseexpression?

Aufgrund der Befunde bei der Expression des episomal kodierten Lipaseoperons unter

transkriptioneller Kontrolle heterologer Promotoren hatte sich die Menge an synthetisierter

Foldase als limitierender Faktor für die Ausbeute enzymatisch aktiver, also korrekt gefaltener

und sekretierter Lipase erwiesen. Es wurde nun untersucht, welchen Einfluss eine

Verschiebung der Mengenverhältnisse von Lipase und Foldase auf die Lipaseproduktion hat,

wenn das Lipaseoperon in Einzelkopie im Chromosoms vorliegt und die Expression von den

nativen regulatorischen Elementen kontrolliert wird. Dies geschah zum einen unter dem

Gesichtspunkt der Frage nachzugehen, ob die Limitierung der Lipaseproduktion durch eine

zu geringe LipH-Synthese auch unter physiologischen Bedingungen, also bei Expression

"natürlicher" Lipasemengen, oder ob diese nur unter Überexpression der Lipase zum tragen

kommt. Dazu kam der Aspekt einer potentiellen Verbesserung der Lipaseproduktion für

biotechnologische Anwendungen. Der industrielle Produktionsprozess der Lipase aus P.

alcaligenes konnte durch das sog. "phenotype enhancement"-Verfahren optimiert werden,

indem durch Einführung zusätzlicher Kopien der xcp-homologen Gene in einen Wt-

Produktionsstamm die Lipasesekretion drastisch verbessert wurde (Gerritse et al., 1998).

Gleichzeitig konnte so gezeigt werden, dass die natürliche Konzentration der

Sekretionsproteine in der Zelle einen limitierenden Faktor für die Lipaseproduktion darstellt,

dass das System also unter diesem Gesichtspunkt nicht optimal ist (Gerritse et al., 1998). Die

Überexpression des lipH-Gens für die Foldase im Wt-Stamm P. aeruginosa PAO1 wurde

unter zwei Kulturbedingungen durchgeführt, unter nichtinduzierenden Bedingungen und

unter Zugabe des langkettigen Alkans n-Hexadecan, das als Induktor der Lipaseexpression in

A. calcoaceticus und P. aeruginosa identifizert wurde (Kok et al., 1996; Schneidinger, 1997).

Während unter nichtinduzierenden Bedingungen nur eine minimale Steigerung der

Lipaseproduktion auftrat, die als nicht signifikant beurteilt wurde (Daten nicht gezeigt),

führte die lipH-Überexpression unter induzierenden Bedingungen zu einer drastischen

Steigerung der Lipaseproduktion (Abb. 20), wobei zwei Details von besonderer Bedeutung

waren. Bei Überexpression der Foldase war im Verlauf der Wuchskurve bereits zu einem

früheren Zeitpunkt eine signifikante extrazelluläre Lipaseaktivität nachweisbar die nach 24 h

Kultivierung etwa 13-fach höher war als bei dem Kontrollstamm.

Page 85: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

75

Die maximale extrazelluläre Lipaseaktivität, die unter diesen Bedingungen erreicht wurde,

lag um einen Faktor von etwa 40 über der der Kontrolle. Der Grossteil des Anstiegs vollzog

sich also bemerkenswerterweise in der späten Stationärphase zwischen 24 h und 29 h

Wuchsdauer.

Die Foldaseüberproduktion hat somit zwei unterscheidbare Auswirkungen auf die

Lipaseproduktion. Sie bewirkt das frühere Einsetzen der Lipaseproduktion und wirkt

verstärkt unter den physiologischen Bedingungen der Stationärphase. Eine zeitgleich

durchgeführte Studie zeigte, dass die Foldaseüberexpression in B. glumae die gleichen

Auswirkungen auf die Lipaseproduktion hat. Voraussetzung waren auch hier

Kulturbedingungen die zu einer hohen Lipaseexpression führen. Jedoch war der maximale

Anstieg der Lipaseausbeute mit einem Faktor von 20, verglichen mit der 40 fachen

Steigerung in P. aeruginosa deutlich geringer zeigte, aber die gleiche

Wuchsphasenabhängigkeit (El Khattabi, 2001). Der Umstand, dass eine

Produktionssteigerung der Lipase nur erreicht wird, wenn aufgrund induzierender

Bedingungen eine hohe Expressionsrate des Lipaseoperons gewährleistet ist, spricht für eine

suboptimale Foldaseexpression unter diesen Bedingungen. Dies könnte tatsächlich bedeuten,

dass die synthetisierte Menge an Foldase nicht ausreicht, die entsprechende Menge an Lipase

zu aktivieren (El Khattabi, 2001). Zwar unterliegt nicht korrekt gefaltene Lipase im

Periplasma einem schnellen proteolytischen Abbau (El Khattabi, 2001; Liebeton et al., 2001;

Urban et al., 2001), eine Insuffizienz der Foldaseproduktion als alleinige Begründung

vorausgesetzt, würde dies aber bedeuten, dass bei einer 40 fachen Steigerung der

Lipaseproduktion bei normaler Expression des Lipaseoperons nur eins von 40 synthetisierten

Lipasemolekülen in enzymatisch aktiver Form in das Kulturmedium sekretiert würde. Die

beschriebene Steigerung der Lipaseproduktion wäre dann lediglich darauf zurückzuführen,

dass durch die Überexpression der Foldase ein gravierendes Ungleichgewicht bei der

natürlichen Expression von Lipase und Foldase ausgeglichen würde. Plausibel schien es

daher, als Ursache für die gesteigerte Lipaseproduktion, eine Anpassung der

Lipaseexpression in Relation zur verfügbaren Foldasemenge zu postulieren. Dem

Foldaseprotein käme dann die Funktion eines direkten oder indirekten Induktors der

Lipaseexpression zu. Voraussetzung hierfür wäre die Existenz regulatorischer Mechanismen,

die es der Zelle erlauben, die Lipase- von der Foldaseexpression zu entkoppeln.

Page 86: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

76

Die LipH-Konzentration wirkt nicht auf die lipA-Transkription

Es lagen zwei unterschiedliche Befunde vor. Die Überexpression der Foldase in trans zum

Lipaseoperon bewirkte eine Steigerung der Lipaseproduktion, das Mass der Steigerung hing

aber von den Expressionsbedingungen des Lipaseoperons ab. War dieses episomal kodiert

und stand unter Kontrolle des konstitutiven lac-Promotors, war ein Anstieg der

Lipaseproduktion um den Faktor 1,3 durch eine leicht verbesserte Foldaseexpression, bzw.

um den Faktor 1,5 bei massiver Überproduktion der Foldase möglich.

Demgegenüber bewirkte die Überproduktion in trans zum chromosomal kodierten Operon

einen Steigerungsfaktor von maximal 40. Zu beachten war allerdings die insgesamt höhere

Expression sowohl der Lipase, als auch der Foldase durch die Verwendung des starken

heterologen lac-Promotors in Kombination mit einem Multikopieeffekt im erstgenannten

Fall. Zwar waren die maximalen Lipaseausbeuten unter beiden Bedingungen vergleichbar,

eine Auslastung des Expressionssystems war aber als Grund für die vergleichsweise

geringere Steigerung nicht gänzlich auszuschliessen. Eine Überproduktion von Sec-abhängig

in das Periplasma transportierten Proteinen (Müller, 1999), wie auch von inneren

Membranproteinen (Samuelson et al., 2001; Urbanus et al., 2001) kann zu einer für die Zelle

lethalen Blockierung des essentiellen Translokasekomplexes aus den SecY/E/G-Proteinen

führen. Eine solche Überlastung der zellulären Transportfunktionen als Ursache der geringen

Produktionssteigerung schien jedoch im vorliegenden Fall wenig wahrscheinlich, da die

maximale Lipaseausbeute in den beschriebenen Wirtsstämmen zur T7-abhängigen

Expression um eine Grössenordnung höher lag und von P. aeruginosa toleriert wurde (s.

Ergebnisse; Kapitel A.).

Eine alternative Erklärung für die unterschiedlichen Induktionsfaktoren bei LipH-

Überproduktion war daher die Annahme, dass die Expression des Operons unter Kontrolle

des heterologen lac-Promotors Ursache für den geringeren Anstieg der Lipaseproduktion

war. Das in diesen Experimenten benutzte DNA-Fragment trug neben den für LipA und LipH

kodierenden Bereichen nur 81 bp des Stromaufwärtsbereiches vor dem

Translationsinitiationskodon des lipA-Gens. Damit entspricht dieser Bereich in etwa der

Länge des nativen 5'-untranslatierten Bereiches, wenn das Operon von dem RpoN-

abhängigen Promotor transkribiert wird, dessen Transkriptionsstart bei –71 bp bezogen auf

den lipA-Translationsstart ermittelt wurde (Düfel, 2000). Unter transkriptioneller Kontrolle

des zweiten Operonpromotors über dessen Regulation bisher nichts bekannt ist, entsteht ein

Transkript, dessen 5'-untranslatierter Bereich mit 401 Nukleotiden aussergewöhnlich lang ist

(Düfel, 2000).

Page 87: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

77

Das zur episomalen Expression benutzte Fragment im Plasmid pUCPLip1 enthielt also weder

die native 5‘-untranslatierte Region noch den zweiten Promotor P2 (Düfel, 2000) des

Lipaseoperons. Grundsätzlich kamen daher sowohl transkriptionelle wie auch

posttranskriptionelle Regulationsmechanismen in Frage, die dieser Region auf DNA- oder

RNA-Ebene bedürfen und unter dem Einfluss einer gesteigerte Foldaseproduktion

verstärkend auf die Lipaseexpression wirken konnten. Die potentielle Rolle des Promotors P2

wurde anhand einer episomal kodierten transkriptionellen lacZ-Reportergenfusion (Düfel,

2000) mit einem 581 bp grossen DNA-Fragment aus dem stromaufwärts Bereich des lipA-

Gens untersucht, die neben P2 auch den RpoN-abhängigen Promotor P1 enthalten sollte und

zur Charakterisierung der lipA-Transkription benutzt wurde.

Die Foldaseüberproduktion führte zu keiner Steigerung der ß-Galctosidasesynthese, was

darauf schliessen lässt, dass die im Wt-Stamm beobachtete starke Induktion nicht auf eine

Aktivierung der Transkription zurückzuführen war (Abb. 22).

Die Lipaseexpression wird posttranskriptionell gesteigert

Unter Verwendung eines für das Lipaseoperon kodierenden DNA-Fragments, das ebenfalls

den grösseren lipA-Stromaufwärtsbereich enthielt (pUCPSKLip1X), wurde dessen Einfluss

auf die Lipaseexpression direkt nachgewiesen. Dazu wurde das Operon wie in den

Experimenten zuvor unter die transkriptionelle Kontrolle des im Expressionsvektor

vorhandenen lac-Promotors gestellt. Der Vergleich der extrazellulären Lipaseaktivitäten

zeigte, dass ohne die LipH-Überexpression in trans keine Unterschiede bei der

Lipaseproduktion auftraten, unabhängig davon, welcher Stromaufwärtsbereich zwischen dem

lac-Promotor und dem lipA-Translationsstart lagen (Abb. 21). Dies bedeutet, dass unter den

gewählten Bedingungen für beide Konstrukte eine vergleichbare Transkription gewährleistet

war. Nebenbei zeigt dies, dass zwischen dem P2 Promotor und dem Translationsstart des

lipA-Gens mit hoher Wahrscheinlichkeit keine die Transkription terminierenden Elemente

lokalisiert sind. Das in der gleichen Orientierung wie lipA transkribierte ligT-Strukturgen für

eine 2‘-5‘-RNA-Ligase (Stover et al., 2000) in dessen 3‘-terminaler Hälfte der P2 Promotor

des Lipaseoperons liegt, besitzt demnach keine unter den hier gewählten Bedingungen

wirksamen Terminationsstrukturen.

Die LipH-Überproduktion in trans zum plasmidkodierten Lipaseoperon führte in P.

aeruginosa PABS1 nur unter Verwendung des vollständigen untranslatierten Bereiches

(pUCPSKLip1X) zu einer deutlichen Steigerung der extrazellulär detektierbaren

Lipaseaktivität (Abb. 21).

Page 88: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

78

Die Stärke der Induktion lag nach 24 h Wuchs bei diesem Konstrukt mit einem

Anstiegsfaktor von sieben deutlich über dem Niveau des Kontrollstammes (Faktor 1,5), der

die verkürzte Variante des Lipaseoperons exprimierte (pUCPLip1).

Der maximal erzielbare Zuwachs war jedoch geringer als der Vergleichswert bei

chromosomaler Expression des Operons, der nach 24 h Wuchsdauer bei einem Faktor von 13

lag. Das Vorhandensein des nativen untranslatierten Bereiches des Lipaseoperons im Plasmid

pUCPSKLip1X bewirkte also eine deutliche Steigerung der Lipaseexpression. Da gezeigt

wurde, dass dieser Effekt nicht auf einer Transkriptionsaktivierung beruht, muss die Ursache

hierfür ein posttranskriptionell wirksamer Mechanismus sein, der eine Anpassung der

Lipaseexpression als zelluläre Antwort auf die Foldaseüberproduktion bewirkt.

Tab. 9 Beispiele für bakterielle Gene mit posttranskriptioneller Regulation der Genexpression. Diezugrundeliegenden Regulationsmechanismen sind abhängig von der Existenz der 5‘-untranslatierten Region(UTR).

Organismus Gen Regulationsmechanismus Referenz

Anabaena variabilis rbpA1 temperaturabhängige Transkript-Akkumulation;erhöhte mRNA-Stabilität durchSekundärstrukturbildung

Sato & Nakamura,1998

Caulobacter crescentus fljK Kopplung von Flagellinexpression undAssemblierungsrate; Regulator FlbT bindet UTR,induziert (beschleunigt) mRNA-Degradierung

Anderson &Gober, 2000

E. coli cspA 1. temperaturabhängige Sekundärstrukturänderungbedingt verbesserten Zugang von Ribosomen 2.Temperaturabhängigkeit der Transkriptstabilität

Yamanaka et al.,1999

E. coli fhlA OxyS "antisense"-RNA maskiert RBS Altuvia et al., 1998E. coli ompA Konkurrenz des Hfq-Protein um RBS bewirkt

verminderte Translation und dadurch verstärkteTranskriptdegradierung

Vytvytska et al.,2000

E. coli papA Transkriptstabilisierung Bricker & Belasco,1999

E. coli rpoH temperaturabhängige Sekundärstrukturänderungbedingt verbesserten Zugang von Ribosomen

Morita et al., 1999

E. coli rpoS Komplex aus OxyS und Hfq inhibiert Translation Zhang et al., 1998E. coli rpoS Histon-ähnliches Protein HU aktiviert Translation Balandina et al.,

2001P. syringae hrpA Veränderung der Transkriptstabilität Taira et al., 1999P. aeruginosa lasB "Translational Enhancer"-Region, genauer

Mechanismus unbekanntBrumlik & Storey,1998

P. aeruginosa pilK Deletion einer RNA-Sekundärstruktur verhindertTranslation, genauer Mechanismus unbekannt

Darzins, 1995

P. aeruginosa algC Mechanismus unbekannt, aber UTR essentiell fürTranslation

Fujiwara &Chakrabarty, 1994

Page 89: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

79

Bemerkenswert ist in diesem Zusammenhang auch, dass eine Kultivierung von Stämmen,

welche das Plasmid pUCPSKLip1X mit der längeren UTR trugen, über 24 h hinaus zu einer

deutlichen Zelllyse führte. Ebenso erwies sich der Zusatz des Alkans n-Hexadecan zur

zusätzlichen Induktion der Lipaseexpression als toxisch. Während Stämme, die die kürzere

UTR-Variante trugen unter diesen Bedingungen problemlos wuchsen, auch wenn zusätzlich

in trans das LipH-Überexpressionsplasmid pBBL8 vorhanden war, zeigten Stämme mit der

Plasmidkombination pUCPSKLip1X und pBBL8 keinen signifikanten Wuchs (Daten nicht

gezeigt). Die Entkopplung der nativen Transkriptionskontrolle durch Verwendung des

starken lac-Promotors bei gleichzeitiger Induktion durch n-Hexadecan und LipH-

Überproduktion wurde von den Zellen also nur dann toleriert, wenn die native UTR nicht

vorhanden war, die posttranskriptionelle Aktivierung also nicht möglich war. Dies ist als

indirekter Hinweis darauf zu werten, dass n-Hexadecan neben der transkriptionsaktivierenden

Wirkung (Schneidinger, 1997) möglicherweise auch in die posttranskriptionelle Aktivierung

der Lipasexpression involviert ist.

Der molekulare Mechanismus, der der postranskriptionellen Steigerung der Lipaseexpression

in Abhängigkeit von der zellulären Foldasekonzentration zugrunde liegt, bedarf weiterer

detailierter Untersuchungen. In Tab. 9 sind prominente Beispiele postranskriptionell

regulierter Gene und, soweit bekannt, die Mechanismen der Regulation zusammengefasst,

darunter auch das zelldichteregulierte lasB-Gen der Elastase aus P. aeruginosa. Das GacA/

GacS-Zweikomponenten-Regulationssystem („global activator“) wurde als übergeordnetes

System zur Regulation virulenzassoziierter Zellfunktionen in P. aeruginosa identifiziert

(Reimmann et al., 1997; Parkins et al., 2001, Brinkman et al., 2001). Nachgewiesen ist auch

ein Einfluss auf die Lipaseexpression (Reimmann et al., 1997; Brinkman et al., 2001). Neben

einer Wirkung bei der Transkriptionsaktivierung besitzt das GacA-Protein die Funktion eines

Translationsaktivators (Blumer et al., 1999). Ob die als Voraussetzung für die GacA-

vermittelte Translationsaktivierung postulierte Konsensussequenz in der Nähe der RBS

(Blumer et al., 1999), oder eine konservierte Sekundärstruktur des Transkripts eine

entscheidende Rolle spielt, ist z.Zt. noch nicht abschliessend geklärt (C. Reimmann,

persönliche Mitteilung). Detaillierte Mutationsuntersuchungen der UTR des Lipaseoperons

sollten Aufschluss über eine evtl. Beteiligung des GacA-Proteins als Effektorprotein an dem

hier demonstrierten posttranskriptionellen Regulationsprozess zur Anpassung der

Lipaseexpression an die zelluläre Foldasekonzentration geben können.

Page 90: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

80

Sekretion der Foldase ins Periplasma- Ist die Foldase als lösliches Protein vollständig

funktionell?

Konstruktion von Foldasevarianten und subzelluläre Lokalisierung

Es wurde in dieser Arbeit gezeigt, dass in P. aeruginosa ein posttranskriptioneller

Regulationsmechansimus existiert, der in Abhängigkeit von der in der Zelle verfügbaren

Menge an Foldaseprotein die Expression der Lipase beeinflusst. Als Erklärung hierfür boten

sich zwei mögliche Alternativen an. Das LipH-Protein konnte direkt an der

posttranskriptionellen Aktivierung der Lipaseexpression beteiligt sein. Unabhängig von dem

zugrundeliegenden molekularen Wirkmechanismus, wäre hierfür zu verlangen, dass die

Foldase diese regulatorischeFunktion bereits im Zytoplasma der Zelle entfalten sollte. Eine

zweite Möglichkeit wäre, dass die Zelle über Mechanismen verfügt, die zur Biosynthese

aktiver und sekretierter Lipase notwendigen Prozesse zu überwachen und die Expression des

Lipasestrukturgens den physiologischen Gegebenheiten anzupassen.

Dem LipH-Protein käme somit möglicherweise zugleich die Funktion eines Faltungshelfers

und eines "molekularen Sensors" zu, der direkt oder unter Einbeziehung weiterer zellulärer

Faktoren die beschriebene Adaptation der Lipaseexpression vermitteln würde.

Alle z.Zt. bekannten und teilweise charakterisierten Foldaseproteine besitzen in der Nähe

ihres Aminoterminus eine potentiell die innere Membran durchspannende α-Helix (Tab. 8).

Dieser Transmembrandomäne schliesst sich ein Proteinbereich an, dessen AS-Sequenz in den

verschiedenen Foldaseproteinen sehr variabel ist. Der in Abb.23 dargestellte

Homologievergleich zeigte, dass sich signifikante Sequenzhomologien auf die C-terminalen

zwei Drittel der Proteine beschränken. Dieser Bereich konnte als hinreichend für die

Faltungsaktivität der Foldaseproteine identifiziert werden. Für die Lif-Proteine aus P.

aeruginosa PAO1, P. spec. 109 und B. glumae (Schneidinger, 1997; Shibata et al., 1998b, El

Khattabi et al., 1999) wurde nämlich gezeigt, dass die Membranankersequenzen für die

Aktivierung der jeweiligen Lipasen nicht essentiell sind. Auch die Deletion grosser Teile der

variablen Domänen führte nicht zu einem Funktionsverlust der Lif-Proteine aus P.

aeruginosa TE3285 und B. cepacia (Ihara et al., 1995; Quyen et al., 1999), wobei diese

Aussagen allerdings auf Experimenten zur in vito Aktivierung von Lipasen beruhen.

Es war daher von Interesse, den Einfluss der subzellulären LipH-Lokalisation auf die

Physiologie der Lipaseaktivierung in P. aeruginosa in vivo zu untersuchen. Dabei wurde

einerseits die Effizienz der Lipaseproduktion und andererseits die Wirksamkeit des LipH-

abhängigen Regulationsmechanismus auf die Lipaseexpression untersucht.

Page 91: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

81

Zur Charakterisierung der lokalisationsabhängigen Faltungseffizienz wurden basierend auf

dem Expressionsplasmid pBBL7-IR2 zwei Varianten des Lipaseoperons konstruiert. Die

darin enthaltenen lipH-Strukturgene kodierten für LipH-Proteine, die an ihrem

Aminoterminus um die ersten 20 AS-Reste verkürzt waren, bzw. diese durch das

Signalpeptid der Pectatlyase aus E. chrysanthemi ersetzt waren (Abb. 24 A.). Dieses

Signalpeptid sollte eine Sec-abhängige Translokation der Foldase in das Periplasma

gewährleisten und wurde ausgewählt, da seine Funktionalität in P. aeruginosa bereits

demonstriert war (Rösmann, 1998; Wilhelm, 2001). Um sowohl die beabsichtigte

Lokalisation der Foldasevarianten wie auch deren Effizienz auf die Faltung, bzw. die

Sekretion der Lipase ohne Hintergrund an Wt-Foldase untersuchen zu können, erfolgte deren

Expression zunächst in der Lipase/Foldase-negativen Mutante P. aeruginosa PABS1. Die

Fraktionierung der Zellen mit anschliessender Immunodetektion ergab im wesentlichen die

beabsichtigte subzelluläre Lokalisierung der LipH-Varianten. Die N-terminal um die

Membranankersequenz verkürzte LipH-CP-Variante war hauptsächlich in der CP-fraktion

detektierbar, während die Variante mit Signalsequenz in gleichen Anteilen löslich im

Periplasma und in der CP-Fraktion vorlag (Abb. 24 B.). Auch bei der Wt-Variante von LipH

waren zytoplasmatisch signifikante Proteinmengen nachweisbar. Da es sich bei den

gewählten Expressionsbedingungen um Überexpressionsbedingungen handelte, ist diese

Verteilung wahrscheinlich auf einen unvollständigen Transport des Proteins zurückzuführen

und wurde auch schon in anderem Zusammenhang beobachtet (Schneidinger, 1997). Bei

Überexpression von Sec-abhängig transportierten Proteinen kann es sowohl zu einer

Auslastung der Exportkapazität (Müller, 1999) oder der Signalpeptidprozessierung kommen

(DeGier & Luirinck, 2001). Ähnliches ergab auch ein experimenteller Ansatz zur

Charakterisierung der physiologischen Funktion des Membranankers im PulC-Proteins für

die TypII-Sekretion in Klebsiella oxytoca (Possot et al., 1999).

Periplasmatisches LipH ist für LipA funktionell, nicht aber für LipC

Der Vergleich der extrazellulären, im Kulturmedium detektierbaren Lipaseaktivitätswerte,

ergab eine deutliche Abhängigkeit zwischen Lokalisierung des LipH-Proteins und der

Lipaseproduktion. Verglichen mit dem Wt-LipH, wurde bei Verwendung der

periplasmatischen Variante LipH-SS lediglich etwa ein Drittel der Lipasemenge sekretiert

(Abb. 25). Interessant ist, dass mit der zytoplasmatischen Variante ebenfalls eine sehr geringe

extrazelluläre Lipaseaktivität detektierbar war, die zwar im Vergleich zum Wt-LipH nur 3%

betrug, aber höher lag als die des Kontrollstamms mit dem Plasmid pBBL9, der kein

Foldasegen trug.

Page 92: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

82

Da die periplasmatische Lokalisation einen Sec-abhängigen Transport über die innere

Membran voraussetzte, war nicht auszuschliessen, dass die reduzierte Lipaseproduktion auf

die gleichzeitige Überexpression von Lipase und LipH-SS zurückzuführen war, durch die

möglicherweise eine Konkurrenz beider Proteine um die Translokation entstand. Durch

Immunopräzipitationsexperimente konnte gezeigt werden, dass die Prälipase aus B. cepacia

im Zytoplasma Komplexe mit der zugehörigen Foldase bildet (Hobson et al., 1995). In

diesem Zusammenhang wurde neben der Funktion als Faltungsmediator auch eine Funktion

der Foldase beim Transport über die innere Membran und der Prozessierung des

Signalpeptids diskutiert (Aamand et al., 1994). Es war daher für die zytoplasmatische

Variante ebensowenig auszuschliessen, dass die drastisch reduzierte Lipaseproduktion auf

eine potentielle Inhibierung des Exports durch zytoplasmatische Interaktionen des Proteins

mit der Lipase zurückzuführen war. Eine Expression von nicht funktionsfähigen Proteinen in

trans, wie auch eine stöchiometrische Unausgewogenheit von relevanten Faktoren, wurde als

Grund für z.B. die Fehlfunktion von Sekretionsapparaten beschrieben (Possot & Pugsley,

1994; Pugsley, 1993).

Um sowohl eine Transportinhibierung durch zytoplasmatische LipH/ Lipase-Interaktion, wie

auch die Überlastung des Sec-Apparats durch Expression der Signalsequenzvariante als

Ursache für die reduzierte Lipaseproduktion ausschliessen zu können, wurden die LipH-

varianten in Kombination mit dem Lipaseoperon im Plasmid pUCPlip1 in P. aeuginose

PABS1 exprimiert. Der in Abb. 26 dargestellte Vergleich der so erhaltenen extrazellulären

Lipaseaktivitäten belegt, dass die Expression der zytoplasmatischen und periplasmatischen

Foldase in trans keinen Einfluss auf die Lipaseproduktion hatte. Da unter diesen

Bedingungen in der Zelle jeweils simultan sowohl die Wt-Foldase und eine der Varianten

vorhanden waren, kommt eine Transdominanz der Varianten als Erklärung für die geringere

Lipaseproduktion nicht in Frage. Bei Interferenzen der Foldasevarianten mit den

Sekretionskomponenten des Sec-Apparats oder nichtproduktiven zytoplasmatischen

Interaktionen mit der Lipase wäre vielmehr auch unter diesen Bedingungen ein Absinken der

Lipaseproduktion zu erwarten gewesen. Im Umkehrschluss bedeutet dies, dass das

periplasmatische LipH-Protein tatsächlich funktionell ist und die Synthese aktiver Lipase

LipA erlaubt, dies aber mit reduzierter Effizienz.

Obwohl P. aeruginosa PABS1 eine Deletion grosser Teile beider Gene des Lipaseoperons

trägt, produzierte der Stamm bei Expression der Foldase eine geringe, aber signifikante

Lipaseaktivität. Diese war nicht auf das lipolytisch aktive EstA-Protein (Wilhelm et al.,

1999) zurückzuführen, da auch in der auf P. aeruginosa PABS1 basierenden LipA/EstA-

Mutante P. aeruginosa PASCHII unter diesen Bedingungen die gleiche Aktivität auftrat

Page 93: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

83

(Abb. 27). Diese Aktivität beruht vielmehr auf der 1999 beschriebenen Lipase LipC, deren

Aktivierung in vivo (Martinez et al., 1999), wie auch in vitro von der Foldase LipH abhängt

(Friedrich, 2001). Die Expression der Foldasevarianten in P. aeruginosa PABS1 / PASCHII

führte zu keiner detektierbaren extrazellulären Lipaseaktivität. Im Unterschied zu der

Funktionalität gegenüber der Lipase LipA war also die periplasmatische Foldasevariante

nicht geeignet, die Synthese aktiven LipC-Proteins zu vermitteln.

Als weiteres Merkmal einer Funktionalität der Foldasevarianten wurde deren Fähigkeit

untersucht, den bereits beschriebenen posttranskriptionell wirksamen regulatorischen Effekt

auf die Lipaseexpression zu vermitteln. Die Expression der Foldasevarianten im Wt-Stamm

P. aeruginosa PAO1 führte im Unterschied zur Expression der Wt-Foldase zu keiner

Steigerung der Lipaseproduktion. Da dies für beide Varianten galt, wurde somit zum einen

gezeigt, dass die regulatorische Funktion auf die Lipaseexpression mit hoher

Wahrscheinlichkeit nicht auf zytoplasmatische Interaktionen zurückzuführen ist.

Da gezeigt werden konnte, dass die periplasmatische Variante eine in vivo Aktivierung der

Lipase LipA vermitteln kann, bedeutet dies gleichzeitig, dass die zelluläre Verfügbarkeit

alleine nicht die Ursache für die Anpassung der Lipaseexpression an die synthetisierte Menge

funktioneller Foldase sein kann. Vielmehr scheint die korrekte Positionierung der Foldase in

der inneren Membran ein notwendiges Kriterium für die regulatorische Umsetzung der

Lipaseexpressionsanpassung zu sein. Das, um die Membranankersequenz, verkürzte LipH-

Protein konnte als funktionell charakterisiert werden und führte in vitro zu einer effizienten

Aktivierung auch der Lipase LipC (Friedrich, 2001). Es ist daher wenig plausibel, dass die

periplasmatische Variante ohne Membrananker in vivo zwar eine quantitative Aktivierung

der Lipase LipA, nicht aber der Lipase LipC vermitteln kann. Die Ursache hierfür kann z.Zt.

noch nicht abschliessend beurteilt werden. Ein spekulativer Erklärungsansatz ist jedoch, dass

die Foldase(konzentration) auch einen regulatorischen Effekt auf die Expression des lipC-

Gens ausübt. Über die LipC-Genregulation ist wenig bekannt. Die Informationen

beschränken sich auf die Tatsache, dass lipC auf transkriptioneller Ebene nur sehr schwach

exprimiert wird (Martinez et al., 1999; Heckmann, 2001). Transkriptionell wird das Gen von

PilX und PilY1 reprimiert (Martinez et al., 1999), zwei Membranproteinen, die im

Zusammenhang mit der Biosynthese von TypIV-Pili als essentiell beschrieben wurden (Alm

et al., 1996). Der Expressionsstamm P. aeruginosa PABS1 (PASCHII) wurde gewählt, weil

er aufgrund der erwähnten Deletion im Lipaseoperon kein Wt-Foldaseprotein produziert. Es

ist also denkbar, dass P. aeruginosa PABS1 bei Expression der membranverankerten Foldase

aktives LipC produzierte, weil eine Aktivierung der LipC-Genexpression erst möglich ist,

wenn korrekt positioniertes Foldaseprotein in der Zelle vorliegt.

Page 94: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

84

Dies würde bedeuten, dass die fehlende LipC-Produktion nicht auf einem Faltungsdefekt der

periplasmatischen LipH-Variante beruhen würde, sondern ebenfalls auf dem Verlust der

regulatorischen Funktion von LipH bei nicht nativer subzellulärer Lokalisation.

Zusammengenommen können anhand der in dieser Arbeit beschriebenen in vivo

Expressionsuntersuchungen zwei distinkte Funktionen der Foldase aus P. aeruginosa für die

physiologie der Produktion enzymatisch aktiver Lipase postuliert werden. Die Faltung der

Lipase LipA erfolgt unabhängig vom Vorhandensein der nativen Membranankersequenz und

damit unabhängig von der Lokalisierung der Foldase an der inneren Membran. Die zweite

Funktion betrifft die ebenfalls in dieser Arbeit beschriebene regulatorische Rolle der Foldase

auf die Lipasegenexpression. Diese ist nur bei nativer Verankerung des Foldaseproteins in

der inneren Membran gewährleistet.

Der Domänenaufbau der Foldaseproteine-Hinweis auf die Funktion?

Der Homologievergleich der Foldaseproteine ergab den in Abb. 23 gezeigten Aufbau aus

aminoterminaler hydrophober Domäne mit Membranankersequenz, der variablen Region und

der carboxyterminalen Domäne mit vorhergesagt vorwiegend α-helikalem Aufbau. In der C-

terminalen Domäne konzentrieren sich die Sequenzhomologien der Foldaseproteine

zueinander. Durch Domänenaustauschexperimente zwischen den Foldasen aus P. aeruginosa

und B. glumae konnte in Expressionsstudien im heterologen Wirt E. coli gezeigt werden, dass

ein Bereich aus 138 AS-Resten am C-Terminus die Spezifität gegenüber der entsprechenden

Lipase vermittelt (El Khattabi et al., 1999). Durch Zufallsmutagenese konnten in der Foldase

aus P. aeruginosa TE3285 ebenfalls in der C-terminalen Domäne drei Positionen identifiziert

werden, deren Veränderung zum Verlust der Faltungsaktivität führte, darunter auch die

Position Tyrosin 99 (Shibata et al., 1998b) am Beginn der C-terminalen Domäne, die in allen

Foldasen konserviert ist (Abb. 23). Diese Befunde, zusammen mit den bereits genannten

Ergebnissen, dass sowohl die Membranankersequenz, wie auch grosse Teile der variablen

Region ohne Verlust der Faltungsaktivität deletier- oder ersetzbar waren, legt den Schluss

nahe, dass die carboxyterminale Domäne die faltungsvermittelnde, also eigentlich aktive

Domäne für die Interaktion mit der Lipase und ihre Aktivierung darstellt.

Die weiterführende computergestützte Untersuchung der Foldaseproteinsequenzen ergab

darüberhinaus ein weiteres gemeinsames Merkmal der wahrscheinlich faltungsaktiven

Domäne (Tab 8). Die Anwendung dreier unabhängiger Algorithmen zur Vorhersage der

Sekundärstruktur (Lupas, et al., 1991; Berger et al., 1995; Wolf et al., 1997) zeigte, dass die

carboxyterminale Domäne α-helikale Strukturen enthält, die mit hoher Wahrscheinlichkeit

Bestandteil sog. "coiled-coils" sind.

Page 95: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

85

Diese "coiled-coil"-Strukturen werden allgemein als Merkmal von Proteinen zur

Oligomerisierung oder Multimerisierung angesehen (Burkhard et al., 2001). Die mögliche

Bedeutung dieser "coiled-coils" für eine potentielle Interaktion der Foldase mit anderen

Proteinen für die Physiologie der Lipasesynthese in P. aeruginosa wird später in diesem

Kapitel vorgestellt.

Als ein weiteres, möglicherweise für die Funktion relevantes Merkmal der analysierten

Foldasesequenzen ergab sich das Vorhandensein von 1-3 Cysteinresten (Tab. 8), mit

Ausnahme der Proteine aus P. aeruginosa, P. alcaligenes, P. wisconsinensis und P. spec.

KFCC10818. Die Verteilung der Cysteinreste in den Proteinen ist dabei nicht einheitlich,

auffällig ist aber, dass die relativ nah verwandten Proteine (Abb. 23) aus X. fastidosa und B.

glumae jeweils drei Reste enthalten, wobei zwei in geringem Abstand zueinander im

aminoterminalen Teil des Proteins liegen, der Bestandteil des Membranankers ist.

Alle anderen vorhandenen Cysteinreste liegen in der variabelen Region des Proteins oder am

Anfang der konservierten Domäne. Die nah verwandten Proteine der Spezies Acinetobacter

weisen im unterschied zu allen anderen Foldasen zwei Cysteinreste innerhalb der variabelen

Region auf. Diese könnten potentiell an der Bildung einer intramolekularen Disulfidbindung

beteiligt sein. Ebenso ist es möglich, dass die singulären Cysteinreste in den Foldasen aus

anderen Gattungen Bestandteil von gemischten Disulfiden sind, die zu einer Dimerisierung

durch die Ausbildung intermolekularer Disulfidbrücken führen könnten. Es wird daher

interessant sein, die Bedeutung der Cysteinreste dieser Foldasen auf ihre potentielle Funktion

bei der Synthese der entsprechenden Lipasen detailliert zu untersuchen.

Identifizierung eines "klassischen" Lipaseoperons aus P. fragi

Im Rahmen der hier durchgeführten Datenbankrecherchen wurde ein "klassisches"

Lipaseoperon aus P. fragi identifiziert, dessen DNA-Sequenz bereits 1993 unter den Access.-

Nr. E04513 und E04514 veröffentlicht wurde. Dieses kodiert für eine wahrscheinlich der

Familie I.2 zuzuordnende, also den Lipasen aus der Spezies Burkholderia am nächsten

verwandte, Lipase LipB und ein Foldaseprotein. Die Lipase LipB weist, anders als die bisher

bekannte Lipase LipA (Aoyama et al., 1988), ein vorhergesagtes spaltbares Signalpeptid auf

(ohne Abbildung), wird also vermutlich Sec-abhängig sekretiert und weist die konservierten

Cysteinreste der Familie I.1 und I.2-Lipasen auf (Abb. 1). Die Abwesenheit von

Cysteinresten zur Ausbildung intramolekularer Disulfidbindungen, das Fehlen eines

Signalpeptids und eines in der Nähe des lipA-Gens kodierten Foldaseproteins führte zu der

Annahme, bei LipA handele es sich um ein zytoplasmatisches Protein (M. Lotti, persönliche

Mitteilung).

Page 96: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

86

Alternativ wurde postuliert, dass die Lipase LipA aufgrund der genannten Unterschiede zu

den nah verwandten Pseudomonas- und Burkholderia-Lipasen für die Faltung bzw. die

Sekretion einen Signalpeptid- und Foldase-unabhängigen Mechanismus nutze (Sullivan et al.,

1999). Zwar wurde kürzlich eine potentiell zytoplasmatisch lokalisierte Lipase aus P.

fluorescens publiziert (Beven et al., 2001), jedoch erscheint es auch plausibel, dass P. fragi

eine einzelne und eine weitere im Operon mit der Foldase kodierte Lipase besitzt, die wie

LipA und LipC aus P. aeruginosa von der selben Foldase aktiviert werden. In P. aeruginosa

wird z.Zt. die Existenz eines alternativen Signalpeptid-unabhängigen Sekretionsweges

vermutet, über den wahrscheinlich eine Chitinase (J. Tommassen, persönliche Mitteilung)

und ein Lektin sekretiert werden (Tielker, 2001). Es wird daher ebenso interessant sein, zu

untersuchen, welche Rolle die Foldase aus P. fragi, deren Gen z.Zt. kloniert wird (D.

Janosch, F. Rosenau, K.-E. Jäger, unveröffentlicht), bei der Aktivierung und Sekretion der

Lipasen LipA und LipB spielt.

LipH: ein Faltungshelfer und Sekretionsvermittler

Die Bedeutung der Membranankersequenz für die Funktion wurde ansatzweise für die

Foldase aus B. glumae charakterisiert. Analog den Experimenten in dieser Arbeit wurde die

Foldase durch die Fusion mit einem spaltbaren Signalpeptid in das Periplasma des

heterologen Wirtes E. coli dirigiert und war unter diesen Bedingungen faltungsaktiv (El

Khattabi et al., 1999). Bei Expression dieser Variante im homologen Wirt, wurde das

Foldaseprotein im extrazellulären Medium nachgewiesen und sein Stabilität innerhalb der

Zelle war abhängig von der gleichzeitigen Produktion der Lipase, es ist aber nicht klar, ob die

Lipase auch in aktiver Form sekretiert wurde (El Khattabi et al., 1999). Anhand der Sekretion

der nicht membranverankerten Foldase wurde die physiologische Funktion des

Membranankers in einer Sekretionsverhinderung unter nativen Bedingungen gesehen (El

Khattabi et al., 1999).

Bislang konnte kein allgemein gültiges molekulares Signal in Substratproteinen für Xcp-

homologe Sekretionsapparate identifiziert werden (Sandkvist, 2001). Gut untersucht sind

allerdings die Proteine, die in den Exportapparaten für die Substraterkennung verantwortlich

sind. Dies sind die XcpQ-homologen Porenproteine der äusseren Membran und die XcpP-

homologen Proteine der inneren Membran (Sandkvist, 2001; Bleves et al., 1999). In den

XcpP-homologen Proteinen wurden hierfür spezielle Domänen zur Protein-Protein-

Interaktion identifiziert (Sandkvist, 2001). Im Unterschied zu den entsprechenden Proteinen

aus Erwinia spec. (Bouley et al., 2001) besitzt das XcpP-Protein aus P. aeruginosa keine sog.

PDZ-Domäne, sondern eine "coiled-coil"-Domäne (Bleves et al., 1999).

Page 97: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

87

Für XcpP, wie auch die homologen Proteine aus Erwinia konnte gezeigt werden, dass die

korrekte Positionierung des Proteins in der Membran essentiell für die uneingeschränkte

Funktion bei der Sekretion ist (Bleves et al., 1999; Bouley et al., 2001).

Wie das XcpP-Protein besitzt auch das LipH-Protein eine vorhergesagte "coiled-coil"-

Struktur zur potentiellen Interaktion mit anderen Proteinen (s.o). Es konnte in dieser

Arbeitgezeigt werden, dass das LipH-Protein bei nicht nativer Lokalisierung, also ohne

Membranankersequenz, zwar faltungsaktiv gegenüber der Lipase LipA ist, die regulatorische

Funktion von LipH ist aber ebensowenig gewährleistet, wie seine aktivierende Funktion

gegenüber der Lipase LipC. Eine mögliche Erklärung für den Unterschied in der LipH-

Wirkung ist in der wahrscheinlich unterschiedlichen Sekretion beider Lipasen zu vermuten.

Die Lipase LipC wurde in Experimenten zur Identifizierung eines XcpQ-homologen Proteins

gefunden, aufgrund der Tatsache, dass auch in einer XcpQ-Mutante eine enzymatisch aktive

Lipase sekretiert wurde (Martinez et. al., 1999).

Verantwortlich für die Sekretion ist das alternative Porin xqhA (xcpQ-homolog) (Martinez et

al., 1998), das in einem Operon mit dem Gen xphA für ein XcpP-homologes Protein kodiert

wird. Eine Funktion des "Moduls" aus XqhA und XphA könnte es sein, als Ersatz für

XcpP/XcpQ die Spezifität des Xcp-Apparates unter noch nicht bekannten physiologischen

Bedingungen zu ändern (Wilhelm et al., 2001). Ein weiteres Argument für eine andere

Spezifität ist, dass das XphA-Protein im Unterschied zu XcpP keine "coiled-coil"-Domäne

besitzt (Wilhelm et al., 2001; Abb. 34).

Ein weiterer Hinweis auf eine mögliche Abhängigkeit der LipC-Sekretion von XphA ergab

sich aus der Charakterisierung des auf dem heterologen Wirt P. putida basierenden Lipase-

Expressions/Sekretionssystems (Ergebnisse, Teil A). Das Vorhandensein der 12 xcp-Gene

war ausreichend, die Lipase LipA in das Kulturmedium zu sekretieren. Eine Sekretion von

LipC, dessen Gen in einem Expressionsvektor in einem synthetischen Operon mit dem lipH-

Gen vorlag, war hingegen in diesem Stamm nicht möglich (ohne Abbildung).

Eine gängige Hypothese zur Erkennung der Lipasen durch Komponenten des Xcp-Apparats

besagt, dass wahrscheinlich das Signal zur Sekretion sowohl in der Lipase selbst, zum Teil

aber auch im Foldaseprotein lokalisiert ist (Filloux et al., 1998; El Khattabi, 2001; Sandkvist,

2001). Ein Unterschied in der Erkennung des LipH/ Lipase-Komplexes durch XcpP bzw.

XphA könnte somit den Unterschied in der beobachteten Funktionalität von LipH bei der

Synthese aktiver LipaseA bzw. LipaseC erklären.

Page 98: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

88

Abb. 34: Vorhersage von "coiled-coil"-Domänen in XphA und XcpP. Die Vorhersage wurde mit dem"Multicoil"-Programm (Wolf et al., 1997) durchgeführt. Die Kurven geben bezogen auf die Aminosäurepositionim Protein die Wahrscheinlichkeit an, mit der helikale Bereiche Teil von "coiled-coil"-Strukturen zur Protein-Protein-Interaktion sind. Linke Seite: XpHA, Rechte Seite: XcpP

Das LipH aus P. aeruginosa besitzt überdies eine Bindungsaffinität gegenüber nativer

enzymatisch aktiver Lipase, wobei diese Interaktion mit einer Inhibierung der Enzymaktivität

einhergeht (Schneidinger 1997; Seuter, 1998). Es ist daher möglich, dass die Foldase über die

Faltungsaktivität hinaus auch in vivo eine Inhibierung gegenüber den Lipasen ausübt.

Dies vorausgesetzt, könnte die Interaktion des Foldase/ Lipase-Komplexes mit den

jeweiligen Komponenten des Sekretionsapparates den abschliessenden Schritt der

Lipaseaktivierung darstellen. Ein ähnlicher Mechanismus wurde auch für die Elastase LasB

aus P. aeruginosa beschrieben, deren abschliessende Aktivierung nach der Faltung durch das

Propeptid eine Interaktion mit dem Exportapparat erfordert (Braun et al., 2000). Die Elastase

selbst hat neben der Funktion als sekretierter Virulenzfaktor auch eine intrazelluläre

Funktion. Unter Bedingungen in der die Elastasesekretion reduziert ist, führt die

Oligomerisierung des periplasmatischen Enzyms zu einer Prozessierungsaktivität gegenüber

einem regulatorischen Protein der Alginatbiosynthese (Kamath et al., 1998). Die Lipasen aus

P. aeruginosa wurden als relevant für die Biofilmbildung bzw. die Biofilmarchitektur

identifiziert (Heckmann, 2001; Rosenau et al., 2001). Darüberhinaus liegen erste Befunde

vor, dass dieser Effekt mit hoher Wahrscheinlichkeit auf eine veränderte Produktion des P.

aeruginosa-Rhamnolipids zurückzuführen ist und einhergeht mit einer geänderten

Zelloberflächenstruktur (A. Smolski, S. Wilhelm, U. Zähringer, F. Rosenau, K.-E. Jäger,

unveröffentlicht). Die Lipasen könnten also ebenfalls neben der extrazellulären Funktion

noch weitere Funktionen, etwa im Periplasma, haben. Es wäre daher denkbar, dass die

Interaktion mit der Foldase einerseits und eine abschliessende Auflösung des Komplexes

durch Bindung an die Sekretionskomponenten andererseits der Zelle eine Möglichkeit bietet,

den Anteil im Periplasma aktiver Lipasemoleküle zu steuern.

Page 99: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

89

Wie die periplasmatischen Chaperone zur Pilusbiosynthese uropathogener E. coli-Stämme

wurden die Lif-Proteine als "sterische Chaperone" identifiziert (El Khattabi et al., 1999). Das

PapD-Protein aus E. coli wirkt einerseits als Faltungshelfer der Pilinuntereinheiten, zum

anderen verhindert es die Polymerisation des Pilus im Periplasma, indem es

Interaktionsflächen der Pilinmonomere maskiert (Barnhart et al., 2000). Die Effizienz des

Faltungsprozesses bzw. der Sekretion wird von zwei unabhängigen

Signaltransduktionssystemen anhand der periplasmatischen Konzentration fehlgefaltener

Pilinmonomere überwacht, durch die dann die Expression periplasmatischer Proteasen und

Faltungshelfer induziert werden kann (Jones et al., 1997).

Es ist daher denkbar, dass der in dieser Arbeit demonstrierte induzierende Effekt der

Foldasekonzentration auf die Lipaseexpression, der nur bei korrekter Verankerung des

Proteins in der inneren Membran zum tragen kommt, eine vergleichbare Grundlage hat und

der Überwachung des Faltungs-/ Sekretionsprozesses dient. Es wird daher interessant sein,

den möglichen Mechanismus der Signaltransduktion und die molekulare Grundlagen der

Signalgenerierung zu untersuchen.

Die Foldase wird unabhängig von der Lipase LipA synthetisiert

Die Regulation des Lipaseoperons erfolgt auf transkriptioneller Ebene durch die zwei bereits

beschriebenen Promotoren P1 und P2 (Düfel, 2000). Die Sequenz des P1-Promotors zeigt

Homologien zu der Konsensussequenz RpoN-(σ54) abhängiger Promotoren und die

Beteiligung dieses Simafaktors an der Regulation konnte ebenfalls demonstriert werden

(Schneidinger, 1997). Solche Promotoren werden in der Regel als Antwort auf Umweltreize

durch spezifische Aktivatorproteine aktiviert (Shingler, 1996; Wösten, 1998). Mit dem

LipQ/R-Zweikomponentenregulationssystem konnte ein solches die Transkription des

Lipaseoperons aktivierendes Protein (LipR) identifiziert werden (Düfel, 2000).

Darüberhinaus wurde bei der weiteren Charakterisierung der Lipaseregulation ein

Zusammenhang mit dem übergeordneten ChpA-Regulatorprotein identifiziert (Düfel, 2000).

Dieses besitzt sechs sog. Histidin-Phosphotransferase-Domänen und zeigt in seinem

Carboxyterminus darüberhinaus Sequenzhomologien zu den Chemotaxisproteinen CheY und

CheW und ist wahrscheinlich in die Regulation zahlreicher Virulenzfaktoren in P.

aeruginosa involviert (C. Withchurch & J. Mattick, persönliche Mitteilung). In einer ChpA-

negativen Mutante war anhand einer transkriptionellen Fusion der lipA-Promotorregion keine

Transkriptionsaktivität feststellbar, was darauf zurückzuführen war, dass die Transkription

der Strukturgene für das LipQ/R-Zweikomponentensystem reprimiert war (Düfel, 2000).

Page 100: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

90

Trotz der nicht messbaren Transkriptionsaktivität der lipA-Promotorregion, produzierte die

ChpA-Mutante eine geringe lipolytische Aktivität, die auf das EstA-Protein zurückgeführt

wurde (Düfel, 2000), bei dem es sich allerdings um ein Enzym der äusseren Membran

handelt (Wilhelm et al., 1999), dessen Aktivität nur in minimalem Ausmass im

Kulturmedium nachweisbar ist (Wilhelm, 2001).

Bei Kultivierung der Bakterien in einem anderen Nährmedium erwies sich der beschriebene

Effekt als reproduzierbar (Abb. 28).

Bei der Messung der ß-Galaktosidaseaktivitäten einer episomalen lacZ-Fusion der lipA-

Promotorregion wurde deutlich, dass in der ChpA-Mutante im Vergleich zum Wt-Stamm P.

aeruginosa PAO1 das Lipaseoperon nicht, oder nur in äusserst geringen Masse transkribiert

wird. Demgegenüber stand der Befund, dass in der ChpA-Mutante eine unter diesen

Bedingungen signifikante lipolytische Aktivität nachweisbar war (Abb. 29). Die qualitative

Untersuchung dieser Aktivität durch Anzucht der Bakterien auf Nachweisagarplatten (ohne

Abbildung) erlaubte die Vermutung, dass die beobachtete Aktivität aufgrund der deutlichen

positiven Reaktion gegenüber dem langkettigen Triolein eher durch eine der Lipasen, als

durch die Esterase EstA verursacht wurde. Ein weiteres Indiz für diese Vermutung war das,

auch in GZE der ChpA-Mutante immunologisch nachweisbare, LipH-Protein (Abb. 29, B).

Als Erklärungsmöglichkeiten boten sich im wesentlichen drei Annahmen: I. die episomale

Reportergenfusion hatte nicht die tatsächlichen Promotoraktivitäten widergegeben und die

Lipaseaktivität beruhte auf der Lipase LipA. Dies hätte bedeutet, dass die Regulation der im

Chromosom kodierten Kopie des Lipaseoperons anders wäre als die der Reportergenfusion.

II. Das Lipaseoperon wurde in so geringem Mass transkribiert, dass die Promotoraktivität

unter der Nachweisgrenze lag. III. Die Lipaseaktivität beruhte auf der Lipase LipC. Bei der

bereits beschriebenen Abhängigkeit der LipC-Aktivierung von der Foldase LipH, musste dies

allerdings gleichzeitig bedeuten, dass die Foldase auch synthetisiert werden kann, wenn die

bekannten Promotoren des Lipaseoperons nicht aktiv sind.

Der Beweis, dass die in der ChpA-Mutante produzierte Lipaseaktivität auf die Lipase LipC

zurückzuführen war, wurde erbracht, indem in der ChpA-Mutante durch ein

Allelenaustauschverfahren mittels homologer Rekombination, eine Inaktivierung des lipC-

Gens durchgeführt (3.5.3) wurde. Da die resultierende Doppelmutante P. aeruginosa PAFRcl

keine signifikante extrazelluläre Lipaseaktivität mehr produzierte (Abb. 30), war die im

ChpA-negativen Hintergrund produzierte Lipaseaktivität auf die Lipase LipC

zurückzuführen.

Page 101: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

91

Das lipH-Gen des Lipaseoperons wird unabhängig von lipA transkribiert

Es wurde gezeigt, dass enzymatisch aktive Lipase C synthetisiert werden kann, auch wenn

mittels Reportergenfusionen keine Transkription des Lipaseoperons nachweisbar ist. Dies

führte zu der Frage nach der Herkunft der zur Aktivierung von LipC notwendigen Foldase.

Es wurde in dieser Arbeit gezeigt, dass in P. aeruginosa die Expression des Foldasegens

posttranskriptionell reguliert wird. Eine effektive posttranskriptionelle Steigerung der

Foldaseproduktion hätte also bei einer basalen Transkription des Lipaseoperons, die unter der

methodischen Nachweisgrenze hätte liegen müssen, Ursache für die Synthese von LipH sein

können. Die vom Wt-Stamm durch Immunodetektion nicht unterscheidbare LipH-Menge

liess diese Erklärung allerdings weniger wahrscheinlich erscheinen.

Plausibler erschien die Annahme, dass das Lipaseoperon interne als Promotoren wirkende

Sequenzen enthält, die auf transkriptioneller Ebene die Entkopplung der Foldase- von der

Lipasesynthese erlauben. Die gesonderte Transkription einzelner Gene aus Operons gehört

zum regulatorischen Repertoire von Prokaryonten und dient im Allgemeinen der Anpassung

an physiologische Gegebenheiten, die eine veränderte Expression der betroffenen Genen

erfordern (LeBlanc et al., 1999; Varmanen et al., 2000; Ludwig et al., 2001).

Durch die Konstruktion einer Serie von transkriptionellen Fusionen interner DNA-Fragmente

aus dem Lipaseoperon mit dem promotorlosen lacZ-Gen des Promotortestvektors pML5BG

und die Bestimmung der ß-Galaktosidaseaktivitäten wurden Hinweise auf die tatsächliche

Existenz interner Promotoren im Lipaseoperon erhalten (Abb. 31). Dabei wiesen sowohl ein

internes Fragment aus dem lipA-Gen bis zum Translationsstopkodon der Lipase (lipPP), wie

auch ein Fragment, das das lipH-Gen einschliesslich der vollständigen IR enthielt (lipPE)

signifikante Promotoraktivität im Wt-Stamm P. aeruginosa PAO1 auf (Abb. 31). Dies

bedeutet, das beide Fragmente promotorähnliche Strukturen enthalten mussten.

Durch die computerunterstützte Analyse des lipA-Fragments wurden drei Sequenzbereiche

identifiziert (lipA int. 1-3), die Homologien zu RpoN-abhängig regulierten Promotoren

aufwiesen und 770, 604 und 460 Nukleotide vor dem lipA-Stopkodon lagen. Die Abb. 35

zeigt den Vergleich dieser drei lipA-internen potentiellen RpoN-Bindestellen. Unter den drei

potentiellen Bindestellen weist die Sequenz lipA int.1 die insgesamt grösste Ähnlichkeit zu

anderen bekannten RpoN-abhängig regulierten Promotoren auf, darunter auch die

experimentell bestätigten Promotoren der Lipase (Schneidinger, 1997), der äusseren

Membranesterase EstA (Wilhelm, 2001) und der des Pilingens pilA (Nunn et al., 1990).

Page 102: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

92

Das zweite Fragment mit Promotoraktivität enthielt die Sequenzen stromabwärts des lipA-

Stopkodons bis zum Ende des lipH-Gens. Eine in diesem Fragment lokalisierte

Promotorstruktur musste, falls sie in die transkriptionelle Kontrolle der Foldaseexpression

involviert sein sollte, musste daher in der 49 Nukleotide umfassenden IR stromaufwärts des

lipH-Startkodons liegen.

P. aeruginosa phhABC C G G T A T C G A T A A G G C AP. aeruginosa pilA T G G C A T G G T A A A T G C TP. aeruginosa lipA T G G C A C G G T T C C T G C GP. aeruginosa estA T G G C A A T G A G C C T G C TP. aeruginosa lipA int. 1 C G G C A T T C C C A G C G C CP. aeruginosa lipA int. 2 G G G C C G A C C A T C C G C TP. aeruginosa lipA int. 3 G G G C T G G T C A A C A G C CKonsensus Kustu et al. (1989) G G N N N N N N N N N N G CKonsensus Totten et al. (1990) T G G Y A Y R N N N N T T G C AKonsensus Merrik et al. (1993) T G G C A C N N N N N T T G C A/TKonsensus Schneidinger (1997) T G G C A Y N G N W N W T G C T

-24 -12

Abb. 35 Sequenzvergleich der potentiellen lipA-internen Promotoren (int.1-int.3) mit RpoN-abhängigenPromotoren aus P. aeruginosa und verschiedenen Konsensussequenzen (verändert nach Wilhelm, 2001).Durch Fettdruck hervorgehobene Basen sind in mindestens fünf der Sequenzen konserviert. Die Basen derkonservierten –12 und –24 Region sind durch Unterstreichung markiert.

Da der stromabwärts des lipH-Gens gelegene orf PA2864 in der entgegengesetzten

Orientierung transkribiert wird (Stover et al., 2000), war drüberhinaus die Existenz eines

Promotors im lipH-Gen selbst auszuschliessen. Das Vorhandensein und die Funktionalität

dieses potentiellen Promotors wurde durch Insertion einer sog. Ω-Resistenzkassette in die mit

dem lipA-Stopkodon überlappenden PpuMI-Restriktionsschnittstelle gesichert. Die Ω-

Resistenz-kassette enthält terminierende Signale sowohl für die Transkription, wie auch die

Translation, sodass die Expression stromabwärts gelegener Gene vollständig unterbunden

wird (Alexeyev et al., 1995). Die Expression dieses veränderten Operons in episomaler Form

unter Kontrolle des lac-Promotors führte im Vergleich zum Wt-Operon zu einer immer noch

signifikanten Lipaseproduktion, während die Insertion der Ω-Resistenzkassette zwischen

dem heterologen Promotor und dem Translationsstart der Lipase die Lipaseproduktion

vollständig verhinderte und so die Wirksamkeit der Transkriptionstermination demonstrierte.

Die zwar reduzierte, aber noch deutliche Lipaseproduktion trotz Integration der Ω-

Resistenzkassette am Ende des lipA-Gens entsprach den Erwartungen und erklärt sich durch

die Expression des lipA-Gens durch den starken heterologen lac-Promotor und eine

vergleichsweise geringere Expression des Foldasegens, die einen funktionellen Promotor

oberhalb des lipH-Gens voraussetzt.

Page 103: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

93

Nebenbei ist dies ein weiteres Indiz dafür, dass bei einem Ungleichgewicht der Lipase- und

Foldaseexpression die synthetisierte Foldasemenge limitierend auf die Lipaseproduktion

wirkt.

Der Beweis für die Funktionalität des postulierten Promotors wurde durch allelen Austausch

des Wt-Operons gegen die Integrationsvariante im Wt-Stamm P. aeruginosa PAO1 erbracht.

Der resultierende Stamm P. aeruginosa PAFRGmP produzierte eindeutig extrazelluläre

enzymatisch aktive Lipase, die Termination der Transkription am Ende des lipA-Gens

verhinderte also nicht die Produktion der hierfür notwendigen Foldase. Die Lipaseproduktion

war im Vergleich zum Wt-Stamm sogar etwa doppelt so hoch. Dieser Befund lässt sich zur

Zeit nicht befriedigend erklären. Die in dieser Arbeit gezeigte Abhängigkeit der Lipase- von

der Foldaseproduktion vorausgesetzt, deckt sich dieser Befund aber mit den gemessenen

Promotoraktivitäten der internen Fragmente aus dem Lipaseoperon (3.5.4), bei denen

ebenfalls das Vollängenfragment, das beide potentiellen Promotoren trug, eine niedrigere ß-

Galaktosidaseaktivität aufwies, als das lipPE-Fragment mit dem IR-Promotor. Da die

Terminierung der Transkription vor der IR die Lipaseproduktion nicht unterbunden hatte,

beweist dies, dass die IR einen Promotor zur transkriptionellen Kontrolle der

Foldasegenexpression enthalten musste, durch den die Entkopplung der lipH-Transkription

und somit die Synthese der Foldase unabhängig von der LipaseA möglich war.

Das lipH-Gen wird als "leaderless"-mRNA transkribiert

Die exakte Lokalisierung des Promotors warf aufgrund der räumlichen Gegebenheiten der IR

einige Fragen auf. Das prokaryontische RNA-Polymerase-Holoenzym bestehend aus den

α2ββ'σ-Untereinheiten besetzt beim ersten Kontakt zur DNA einen Bereich, der im Minimum

die Nukleotide –55 bis –5 vor dem eigentlichen Transkriptionsstart umfasst (DeHaseth et al.,

1998). Da gezeigt wurde, dass exakt die 49 bp der IR ausreichen, die Synthese funktioneller

Foldase zu gewährleisten, musste die Bindung der Polymerase vollständig in dieser Region

erfolgen. Da das Foldasegen trotz Insertion der Ω-Kassette, also ohne den nativen

Stromaufwärtsbereich aus dem lipA-Gen, transkribiert wurde, mussten Bindestellen für evtl.

notwendige regulatorische Proteine ebenfalls in den 49 bp der IR liegen.

Durch "Primerextension"-Analyse von Gesamt-RNA aus P. aeruginosa PAO1 und der

ChpA-Mutante wurden im wesentlichen drei spezifische lipH-Transkripte unterschiedlicher

Länge identifiziert (Abb. 33). Eines dieser Fragmente entsprach seiner Länge nach einem

Transkriptionsstart unmittelbar am Translationsstart des lipH-Gens (Abb. 33).

Page 104: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

94

Dieser Transkriptionsstart spiegelt somit die erwähnten sterischen Gegebenheiten zur

Bindung der RNA-Polymerase in der IR wider und erfüllt die Bedingung, dass zur Synthese

der Foldase das vollständige lipH-Gentranskript zur Verfügung steht. Allerdings enthält das

Transkript keine RBS zur konventionellen Translationsinitiation, vielmehr handelt es sich um

eine sog. "leaderless"-mRNA, also ein Transkript ohne untranslatierten Bereich. Beispiele für

"leaderless"-Transkripte wurden bereits in Streptomyces spec., C. crescentus und auch in E.

coli identifiziert (Jones et al., 1992; Winzeler & Shapiro, 1997; O'Donnel & Janssen, 2001).

Der genaue Mechanismus der Translationsinitiation, also der Ribosomenbindung ist noch

nicht vollständig verstanden, man nimmt derzeit an, dass die Interaktion des Ribosoms bzw.

der gebundenen tRNA mit dem Startkodon hierfür im wesentlichen ausreicht (Moll et al.,

2001). Ebensowenig geklärt ist die physiologische Bedeutung, es wird aber vermutet, dass

die Transkription als "leaderless"-mRNA besonders in der Stationärphase von Bedeutung ist,

um die effiziente Translation der so transkribierten Gene zu gewährleisten (U. Bläsi,

persönliche Mitteilung), da sich in dieser Phase die zelluläre Ausstattung an Komponenten

des Translationsapparats drastisch verändert (Ishihama, 1999). Die in dieser Arbeit gezeigte

mRNA des lipH-Gens ist derzeit das einzige in P. aeruginosa beschriebene "leaderless"-

Transkript. Die Transkription ohne UTR gibt auch eine Erklärung für den bereits erwähnten

Befund, dass die beabsichtigte Optimierung der RBS nicht den erwarteten Effekt auf die

lipH-Expression hatte. In diesen Experimenten kamen die Effekte der IR-Modifikationen,

insbesondere bei der Deletion der repetitiven Sequenzen besonders in der Stationärphase zum

Tragen.

Dies kann daher mit der Deletion des IR-Promotors erklärt werden, durch den eine

Transkription als "leaderless"-mRNA unterbunden wurde.

Der in dieser Arbeit nachgewiesene Promotor zur Entkopplung der Expression von Foldase

und Lipase A liegt vollständig innerhalb der IR des Lipaseoperons. Damit muss die Bindung

der RNA-Polymerase in diesem Bereich erfolgen. Die Sequenz der IR weist keine

signifikanten Homologien zu bekannten Promotoren aus P. aeruginosa auf, interessant sind

aber die bereits erwähnten repetitiven Sequenzen am Beginn der IR. Diese weisen einen

Abstand von zehn Nukleotiden zueinander auf, bei einer Windungshöhe der DNA-Helix von

ebenfalls zehn Basen liegen die Sequenzen also jeweils auf der selben Seite der DNA.

Repetitive Sequenzen wurden als Bindestellen für DNA-bindende Aktivatorproteine

beschrieben, im Falle der Transkriptionsaktivatoren bzw. Repressoren der AraC/ XylS-

Familie können die zur Bindung erforderlichen Sequenzen sowohl aus invertierten wie auch

direkt repetitiven Sequenzen bestehen (Gallegos et al., 1997), wobei die Bindestellen dieser

Proteine können dabei auch mit der Bindestelle des RNA-Polymeraseholoenzyms überlappen

Page 105: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

4. Diskussion

95

(Reeder & Schleif, 1993), sodass bei der Rekrutierung der Polymerase der verantwortliche

Aktivator von der Bindestelle verdrängt werden kann (Busby & Ebright, 1994). Dies kann für

den lipH-Promotor bedeuten, dass eine Aktivierung durch ein solches AraC-homologes

Protein erfolgen kann. Im Genom von P. aeruginosa wurden insgesamt 468 Gene für

Proteine mit wahrscheinlich regulatorischer Funktion identifiziert, wobei im Vergleich zu

anderen prokaryontischen Genomen die AraC-homologen Proteine deutlich überrepräsentiert

sind (Stover et al., 2000). Dies wird es interessant machen, die Regulation des hier

identifizierten Promotors und die von lipA unabhängige Expression des lipH-Gens näher zu

untersuchen.

Page 106: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

97

6. Literatur

Aamand, J.L., Hobson, A.H., Buckley, C.M.,Jorgensen, S.T., Diderichsen, B. & Mc Connel,D.J. (1994) Chaperone-mediated activation in vivo ofa Pseudomonas cepacia lipase. Mol. Gen. Genet.245:556-564

Akatsuka, H., Kawai, E., Omori, K. & Shibatani,T. (1995) The three genes lipB, lipC, and lipDinvolved in the extracellular secretion of the Serratiamarcescens lipase which lacks an N-terminal signalpeptide. J. Bacteriol. 177:6381-6389

Alberghina, L. & Lotti, M. (1998) Lipases andLipids: Structure, Specifity and Applications inBiocatalysis. Chem. Phys. Lipids 93 Special Issue

Alexeyev, M.F., Shokolenko, I.N. & Croughan,T.P. (1995) Improved antibiotic-resistance genecassettes and omega elements for Escherichia colivector construction and in vitro deletion/insertionmutagenesis. Gene 160:63-67

Alm, R.A., Hallinan, J.P., Watson, A.A. & Mattick,J.S. (1996) Fimbrial biogenesis genes ofPseudomonas aeruginosa: pilW and pilX increase thesimilarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcalPilC homologue. Mol. Microbiol. 22:161-173

Altschul, S.F., Gish, W., Miller, W. & Lipman,D.J. (1990) Basic local alignment search tool. J. Mol.Biol. 215:403-410

Altschul, S.F., Madden, T.L., Schaffer, A.A.,Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.(1997) Gapped BLAST and PSI-BLAST: a newgeneration of protein database search programs.Nucleic Acids Res. 25:3389-3402

Altuvia, S., Zhang, A., Argaman, L., Tiwari, A. &Storz, G. (1998) The Escherichia coli OxySregulatory RNA represses fhlA translation byblocking ribosome binding. EMBO J. 17:6069-6075

Anderson, P.E. & Gober, J.W. (2000) FlbT, thepost-transcriptional regulator of flagellin synthesis inCaulobacter crescentus, interacts with the 5'untranslated region of flagellin mRNA. Mol.Microbiol. 38:41-52.

Anderson, D.M. & Schneewind, O. (1997) A m-RNA signal for the type III secretion of Yop proteinsby Yersinia enterocolitica. Science 278:1140-1143

Andro, T., Chambost, J.P., Kotoujansky, A.,Cattaneo, J., Bertheau, Y., Barras, F., VanGijsegem, F. & Coleno, A.(1984) Mutants ofErwinia chrysanthemi defective in secretion ofpectinase and cellulase. J. Bacteriol. 160:1199-1203

Aoyama, S., Yoshida, N. & Inouye, S. (1988)Cloning, sequencing and expression of the lipase genefrom Pseudomonas fragi IFO-12049 in E. coli. FEBSLett. 242:36-40.

Aristarkhov, A., Mikulskis, J.G., Belasco, J.G. &Lin, C.C. (1996) Translation of the adhE transcript toproduce ethanol dehydrogenase requires RNase IIIcleavage in Escherichia coli. J. Bacteriol. 178:4327-4332

Arpigny, J.L. & Jaeger, K.-E. (1999) Bacteriallipolytic enzymes: classification and properties.Biochem. J. 343:177-189

Athanasopoulos, V., Praszkier, J. & Pittard, A.J.(1999) Analysis of elements inbolbed in pseudoknot-dependent expression and regulation of the repA geneof an IncL/M plasmid. J. Bacteriol. 181:1811-1819

Balandina, A., Claret, L., Hengge-Aronis, R. &Rouviere-Yaniv, J. (2001) The Escherichia colihistone-like protein HU regulates rpoS translation.Mol. Microbiol. 39:1069-1079

Bally, M., Filloux, A., Akrim, M., Ball, G.,Lazdunski, A. & Tommassen, J. (1992) Proteinsecretion in Pseudomonas aeruginosa:characterization of seven xcp genes and processing ofsecretory apparatus components by prepilin peptidase.Mol. Microbiol. 6:1121-1131

Bardwell, J.C.A., Régnier, P., Chen, S.-M.,Nakamura, Y., Grunberg-Manago, M. & Court, D.(1989) Autoregulation of RNaseIII operon by mRNAprocessing. EMBO J. 8:3401-3407

Bardwell, J.C.A., McGovern, K. & Beckwith, J.(1991) Identification of a protein requires for disulfidebond formation in vivo. Cell 67:581-589

Barnhart, M.M., Pinkner, J.S., Soto, G.E., Sauer,F.G., Langermann, S., Waksman, G., Frieden, C.& Hultgren, S.J. (2000) PapD-like chaperonesprovide the missing information for folding of pilinproteins. Proc. Natl. Acad. Sci. USA 97:7709-7714

Barras, F., van Gijsegem, F. & Chatterjee A.K.(1994) Extracellular enzymes and pathogenesis ofsoft-rot Erwinia. Annu. Rev. Phytopathol. 32:201-234

Page 107: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

98

Berger, B., Wilson, D.B., Wolf, E., Tonchev, T.,Milla, M. & Kim, P.S. (1995) Predicting coiled coilsby use of pairwise residue correlations. Proc. Natl.Acad. Sci. USA. 92:8259-8263

Beven, C.A., Dieckelmann, M. & Beacham, I.R.(2001) A strain of Pseudomonas fluorescens with twolipase-encoding genes, one of which possibly encodescytoplasmic lipolytic activity. J. Appl. Microbiol.90:979-987

Binet, R., Létoffé, S., Ghigo, J.M., Delepelaire, P.& Wandersman, C. (1997) Protein secretion byGram-negative bacterial exporters: a review. Gene192:7-11

Birnboim, H.C. & Doly, J. (1979) A rapid alkalineextraktion procedure for screening recombinantplasmid DNA. Nucleic. Acids Res. 7:1513-1523

Bitter, W., Koster, M.,Latijnhouwers, M., de Cock,H. & Tommassen, J. (1998) Formation of oligomericrings by XcpQ and PilQ, which are involved inprotein transport across the outer membrane ofPseudomonas aeruginosa. Mol. Microbiol. 27:209-219

Bleves, S., Voulhoux, R., Michel, G., Lazdunski,A., Tommassen, J. & Filloux, A. (1998) Thesecretion apparatus of Pseudomonas aeruginosa:identification of a fifth pseudopilin, XcpX (GspKfamily). Mol. Microbiol. 27:31-40

Bleves, S., Gerard-Vincent, M., Lazdunski, A. &Filloux, A. (1999) Structure-function analysis ofXcpP, a component involved in general secretorypathway-dependent protein secretion in Pseudomonasaeruginosa. J. Bacteriol. 181:4012-4019

Blow, D. (1990) More of the catalytic triad. Nature343:694-695

Blumer, C., Heeb, S., Pessi, G. & Haas, D. (1999)Global GacA-steered control of cyanide andexoprotease production in Pseudomonas fluorescensinvolves specific ribosome binding sites. Proc. Natl.Acad. Sci. USA 96:14073-14078

Bortoli-German, I., Brun, E., Py, B., Chippaux, M.& Barras, F. (1994) Periplasmic disulphide bondformation is essential for cellulase secretion by theplant pathogen Erwinia chrysanthemi. Mol.Microbiol. 11:545-553

Boucher, J.C., Schurr, M.J. & Deretic, V. (2000)Dual regulation of mucoidy in Pseudomonasaeruginosa and sigma factor antagonism. 36:341-351

Bouley, J., Condemine, G. & Shevchik, V.E. (2001)The PDZ domain of OutC and the N-terminal regionof OutD determine the secretion specificity of thetype II out pathway of Erwinia chrysanthemi. J. Mol.Biol. 308:205-219

Bouvet, P. & Belasco, J.G. (1992) Control of RNaseE-mediated RNA degradation by 5' terminal basepairing in E. coli. Nature 360:488-491

Bradford, M.M. (1976) A rapid and sensitive methodfor quantification of microgram quantities of proteinutilizing the principle of protein-dye binding. Anal.Biochem. 72:248-254

Brady, L., Brzozowski, A., Derewenda, Z.S.,Dodson, E., Dodson, G., Turkenburg, J.P.,Christiansen, L., Huge-Jensen, B., Norskov, L.,Thim, L. & Menge, U. (1990) A serine protease triadforms the catalytic center of a triacylglycerol lipase.Nature 343:767-770

Brandts, J.F. & Lin, L.N. (1986) Prolineisomerization studied with proteolytic enzymes.Methods Enzymol. 131:107-126

Braun, P., Tommassen, J. & Filloux, A. (1996) Roleof the propeptide in folding and secretion of elastaseof Pseudomonas aeruginosa. Mol. Microbiol. 19:297-306

Braun, P.,de Groot, A., Bitter, W. & Tommassen,J. (1998) Secretion of elastinolytic enzymes and theirpropetides by Pseudomonas aeruginosa. J. Bacteriol.180:3467-3469

Braun, P., Bitter, W. & Tommassen, J. (2000)Activation of Pseudomonas aeruginosa elastase inPseudomonas putida by triggering dissociation of thepropeptide-enzyme complex. Microbiology 146:2565-2572.

Braun, P., Ockhuijsen, C., Eppens, E., Koster, M.,Bitter, W. & Tommassen, J. (2001) Maturation ofPseudomonas aeruginosa elastase. Formation of thedisulfide bonds. J. Biol. Chem. 276:26030-26035

Brendel, V., Bucher, P., Nourbakhsh, I.R.,Blaisdell, B.E. & Karlin, S. (1992) Methods andalgorithms for statistical analysis of proteinsequences. Proc. Natl. Acad. Sci. USA 89:2002-2006

Brenner, S. (1988) The molecular evolution of genesand proteins:a tale of two serines.Nature 334:528-530

Bricker, A.L. & Belasco, J.G. (1999) Importance ofa 5' stem-loop for longevity of papA mRNA inEscherichia coli. J. Bacteriol. 181:3587-3590

Brinkman, F.S., Macfarlane, E.L., Warrener, P. &Hancock, R.E. (2001) Evolutionary relationshipsamong virulence-associated histidine kinases. Infect.Immun. 69:5207-5211

Brint, J.M. & Ohman, D.E. (1995) Synthesis ofmultiple exoproducts in Pseudomonas aeruginosa isunder the control of RhlR-RhlI, another set ofregulators in strain PAO1 with homology to theautoinducer-responsive LuxR-LuxI family. J.Bacteriol. 177:7155-7163

Page 108: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

99

Brok, R., van Gelder, P.,Winterhalter, M., Ziese,U., Koster, A.J., de Cock, H., Koster, M.;Tommassen, J. & Bitter, W. (1999) The C-terminaldomain of the Pseudomonas secretin XcpQ formsoligomeric rings with pore activity. J. Mol. Biol.294:1169-1179

Brumlik, M.J., van der Goot, G.F., Wong, K.R. &Buckley, J.T. (1997) The disulfide bond in theAeromonas hydrophila lipase/acyltransferasestabilizes the structure but is not required for secretionor activity. J. Bacteriol. 179:7155-7163

Brumlik, M.J. & Storey, D.G. (1998) Post-transcriptional control of Pseudomonas aeruginosalasB expression involves the 5' untranslated region ofthe mRNA. FEMS Microbiol. Lett. 159:233-239

Brunel, C., Romby, P., Sacerdot, C., deSmit, M.,Graffe, M., Dondon, J., van Ehresmann, B.,Ehresmann, C. & Springer, M. (1995) Stabilisedsecondary structure at a ribosomal binding siteenhances tranlational repression in E. coli. J. Mol.Biol. 253:277-290

Brunschwig; E. & Darzins, A. (1992) A two-component T7 system for the overexpression of genesin Pseudomonas aeruginosa. Gene 111:35-41

Burkhard, P., Stetefeld, J. & Strelkov, S.V. (2001)Coiled coils: a highly versatile protein folding motif.Trends Cell. Biol. 11:82-88

Busby, S. & Ebright, R,H. (1994) Promoterstructure, promoter recognition, and transcriptionactivation in prokaryotes. Cell. 79:743-746

Carrier,T.M. & Keasling, J.D. (1997) Controllingmessenger RNA stability in bacteria: Strategies forengineering gene expression. Biotechnol. Prog.13:699-708

Chapon-Herve, V., Akrim, M., Latifi, A., Williams,P., Lazdunski, A. & Bally, M. (1997) Regulation ofthe xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa. MolMicrobiol. 24:1169-1178.

Chihara-Siomi, M., Yoshikawa, K., Oshima-Hirayama, N., Yamamoto, K., Sogabe, Y.,Nakatani, T., Nishioka, T. & Oda, J. (1992)Purification, molecular cloning, and expression oflipase from Pseudomonas aeruginosa. Arch.Biochem. Biophys. 296:505-513

Chomczynski, P. & Sacchi, N. (1987) Single-stepmethod of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. Anal.Biochem. 162:156-159

Cornelis, G.R. (2000) Type III secretion: a bacterialdevice for close combat with cells of their eucaryotichost. Phil. Trans. R. Soc. Lond. 355:681-693

Cornelis, G.R. & Wolf-Watz, H. (1997) TheYersinia Yop virulon: a bacterial system forsubverting eucaryotic cells. Mol. Microbiol. 23:861-867

Cox, M.M., Gerritse, G. & Quax, W.J. (1994)Cloning and expression of a lipase modulator genefrom pseudomonas pseudoalcaligenes. Patent: WO9402617-A 1 GIST BROCADES NV (NL)

Cserzo, M., Wallin, E., Simon, I., von Heijne, G. &Elofsson, A. (1997) Prediction of transmembranealpha-helices in prokaryotic membrane proteins: thedense alignment surface method. Protein Eng. 10:673-676

Cunningham, L. & Guest, J.R. (1998) Transcriptionand transcript processing in the sdhCDAB-sucABCDoperon of Escherichia coli. Microbiology 144:2113-2123

Danese, P.N. & Silhavy, T.J. (1998) Targeting andassembly of periplasmic and outer-membrane proteinsin Escherichia coli. Annu. Rev. Genet. 32:59-94

Darzins, A. (1995) The Pseudomonas aeruginosapilK gene encodes a chemotactic methyltransferase(CheR) homologue that is translationally regulated.Mol. Microbiol. 15:703-717

Darzins, A. & Casadaban, M.J. (1989) Mini-D3112Bacteriophage transposable elements for geneticanalysis of Pseudomonas aeruginosa. J. Bacteriol.171:3909-3916

de Gier, J.W. & Luirink, J. (2001) Biogenesis ofinner membrane proteins in Escherichia coli.Mol. Microbiol. 40:314-322

de Groot, A., Heijnen, I., de Cock, H., Filloux, A.& Tommassen, J. (1994) Characterization of type IVpilus genes in plant growth-promoting Pseudomonasputida WCS358. J Bacteriol. 176:642-650

de Groot, A., Krijger, J.J., Filloux, A. &Tommassen, J. (1996) Characterization of type IIprotein secretion (xcp) genes in the plant growth-stimulating Pseudomonas putida, strain WCS358.Mol Gen Genet. 250:491-504.

deHaseth, P.L., Zupancic, M.L. & Record, M.T.Jr. (1998) RNA polymerase-promoter interactions:the comings and goings of RNA polymerase. J.Bacteriol. 180:3019-3025

De Lorenzo, V., Herrero, M., Metzke, M. &Timmis, K.N. (1991) An upstream XylR- and IHF-induced nucleo protein complex regulates the σ54-dependent Pu promotor of TOL plamid. EMBO J.10:1159-1167

Page 109: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

100

den Blaauwen, T. & Driessen, A.J. (1996) Sec-dependent protein translocation in bacteria. Arch.Microbiol. 165:1-8

Derewenda, Z.S. & Derewenda, U. (1991)Relationships among serine hydrolases: evidence for acommon structural motif in triacylglycerol lipases andesterases. Biochem. Cell Biol. 69:842-851

deSmit, M.H. & van Duin, J. (1990) Secondarystructure of the ribosome binding site determinestranslational efficiency: a quantitative analysis. Proc.Natl. Acad. Sci. USA 87:7668-7672

deSmit, M.H. & van Duin, J. (1994) Translationalinitiation on structured messengers. Another role ofthe Shine-Dalgarno interaction. J. Mol. Biol. 235:173-184

Diwa, A., Bricker, A.L., Jain, C. & Belasco, J.G.(2000) An evolutionarly conserved RNA stem-loopfunctions as a sensor that directs feedback regulationof RNase E gene expression. Genes Develop.14:1249-1260

Driessen, A.J., Fekkes, P. & van der Wolk, J.P.(1998) The Sec-system. Curr. Opin. Microbiol. 1:216-222

Düfel, H. (1995) Ortsgerichtete Mutagenese des GenslipA aus Pseudomonas aeruginosa. Diplomarbeit,Ruhruniversität Bochum

Düfel, H. (2000) Untersuchungen zur Regulation derLipase-Genexpression in Pseudomonas. Dissertation,Ruhr-Universität Bochum

Dunn, J.J. & Studier, F.W. (1975) Effect ofRNaseIII cleavage on translation of bacteriophage T7messenger RNAs. J. Mol. Biol. 99:487-499

Dunn, S.D. (1986) Effects of the modification oftransfer buffer composition and the renaturation ofproteins in gels on the recognition of proteins onWestern blots by monoclonal antibodies. Anal.Biochem. 157:144-153

Dunphy, G., Miyamoto, C. & Meighen, E. (1997) Ahomoserine lactone autoinducer regulates virulence ofan insect-pathogenic bacterium, Xenorhabdusnematophilus (Enterobacteriaceae). J. Bacteriol.179:5288-5291

Duong, F., Soscia, A., Lazdunski, A. & Murgier,M. (1994) The Pseudomonas fluorescens lipase has aC-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system. Mol.Microbiol. 11:1117-1126

Duong, F., Eichler, J., Price, A., Leonard, R.M. &Wickner W. (1997) Biogenesis of the Gram-negativebacterial envelope. Cell 91:567-573

Duong, F. & Wickner, W. (1997) Distinct catalyticroles of the SecYE, SecG and SecDFyajC subunits ofpreprotein translocase holoenzyme. EMBO J.16:2756-2768

Ehretsmann, C.P., Carpousis, A.J. & Krisch, H.M.(1992) mRNA degradation in procaryotes. FASEB J.6:3186-92.

El Khattabi, M., Ockhuisen, C., Bitter, W., Jaeger,K.-E. & Tommassen J. (1999) Specificity of thelipase-specific foldases of gram-negative bacteria andthe role of the membrane-anchor. Mol. Gen. Genet.261:770-776

El Khattabi, M., Van Gelder, P., Bitter, W. &Tommassen, J. (2000) Role of the lipase-specificfoldase of Burkholderia glumae as a steric chaperone.J Biol Chem. 275:26885-26891

El Khattabi, M. (2001) The lipase specific foldase ofBurgholderia glumae. Dissertation, UniversitätUetrecht, Niederlande

Eller, M. (1998) Erstellung einer Cosmid-Genbankund Klonierung aller xcp-Gene zur Produktion derextrazellulären Lipase aus Pseudomonas aeruginosaPAO1 im heterologen Wirt. Diplomarbeit, Ruhr-Universität Bochum

Fekkes, P. & Driessen, A.J. (1999) Protein targetingto the bacterial cytoplasmic membrane. Microbiol.Mol. Biol. Rev. 63:161-173

Filloux, A., Michel, G. & Bally, M. (1998) GSP-dependent protein secretion in Gram-negativebacteria: the Xcp system of Pseudomonas aeruginosa.FEMS Microbiol. Rev. 22:177-198

Frenken, L.G.J., Bos, J.W., Visser, C., Müller, W.,Tommassen, J. & Verrips, C.T. (1993a) Anaccessory gene, lipB, required for the production ofactive Pseudomonas glumae lipase. Mol. Microbiol.9:579-589

Frenken, L.G.J., de Groot, A., Tommassen, J. &Verrips C.T. (1993b) Role of lipB gene product inthe folding of the secreted lipase of Pseudomonasglumae. Mol. Microbiol. 9:591-599

Friedmann, A.M., Long, S.R., Brown, S.E.,Buikema, W.J. & Ausubel, F.M. (1982)Construction of a broad host range cosmid cloningvector and its use in genetic analysis of Rhizobiummutants. Gene 18:289-296

Friedrich, G. (2001) Biochemische undphysiologische Charakterisierung einer neuen Lipaseaus Pseudomonas aeruginosa. Diplomarbeit, Ruhr-Universität Bochum

Page 110: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

101

Fu, X., Inouye, M. & Shinde, U. (2000) Foldingpathway mediated by an intramolecular chaperone.The inhibitory and chaperone functions of thesubtilisin propeptide are not obligatorily linked. J.Biol. Chem. 275:16871-16878

Fujiwara, S. & Chakrabarty, A.M. (1994) Post-transcriptional regulation of the Pseudomonasaeruginosa algC gene. Gene 146:1-5

Gallegos, M.T., Schleif, R., Bairoch, A., Hofmann,K. & Ramos, J.L. (1997) Arac/XylS family oftranscriptional regulators. Microbiol. Mol. Biol. Rev.61:393-410

Gamper, M., Ganter, B., Polito, M.R. & Haas, D.(1992) RNA processing moldulates the expression ofthe arcDABC operon in Pseudomonas aeruginosa. J.Mol. Biol. 226:943-957

Gamper, M. & Haas, D. (1993) Processing of thePseudomonas arcDABC mRNA requires functionalRNase E in Escherichia coli. Gene 129:119-122

Gerritse, G., Ure, R., Bizoullier, F. & Quax, W.(1998) The phenotype enhancement method identifiesthe Xcp outer membrane secretion machinery fromPseudomonas alcaligenes as a bottleneck for lipaseproduction. J. Biotechnol. 64:23-28

Givaudan, A. & Lanois, A. (2000) flhDC, theflagellar master operon of Xenorhabdusnematophilus: requirement for motility, lipolysis,extracellular hemolysis, and full virulence in insects.J. Bacteriol. 182:107-115

Gold, L. & Stormo, G.D. (1990) High-leveltranslation initiation. Methods Enzymol. 185:89-93

Govan, J.R.W. & Deretic, V. (1996) Microbialpathogenesis in cystic fibrosis. Microbiol. Rev.60:539-574

Gosh, P.K., Saxena, R.K., Gupta, R., Yadav, R.P.& Davidson, S. (1996) Microbial lipases: productionand applications. Sci. Prog. (Northwood, U.K.)79119-79157

Hall, M.N., Gabay, J., Debarbouille, M. &Schwartz, M. (1982) A role for mRNA secondarystructure in the control of translation initiation. Nature(London) 295:616-618

Hamood, A.N., Wick, M.J. & Iglewski, B.H. (1990)Secretion of toxin A from Pseudomonas aeruginosaPAO1, PAK, and PA103 by Escherichia coli. Infect.Immun. 58:1133-1140

Hanahan, D. (1983) Studies on transformation ofEscherichia coli with plasmids. J. Mol. Biol. 166:557-580

Hardie, K.R., Schulze, A., Parker, M.W. &Buckley, J.T. (1995) Vibrio spp. secrete proaerolysinas a folded dimer without the need for disulphidebond formation. Mol. Microbiol. 17:1035-1044

Hazbón, M., Düfel, H., Cornelis, P., André, C. &Jaeger, K.-E. (2001) Molecular characterization of anoperon encoding an extracellular lipase fromPseudomonas wisconsinensis. in Vorbereitung

Heckmann, S. (2001) Einfluss des lipolytischenSystems aus Pseudomonas aeruginosa auf dieBiofilmbildung. Diplomarbeit, Ruhr-UniversitätBochum.

Henderson, I.R., Navarro-Garcia, F. & Nataro,J.P. (1998) The great escape: structure and functionof the autotransporter proteins. Trends Microbiol.6:370-378

Henderson, I.R., Capello, R. & Nataro, J.P. (2000)Autotransporter proteins, evolution and redefiningprotein secretion. Trends Microbiol. 8:529-532

Hobbs, M. & Mattick, J.S. (1993) Commoncomponents in the assembly of type 4 fimbriae, DNAtransfer systems, filamentous phage and protein-secretion apparatus: a general system for theformation of surface-associated protein complexes.Mol. Microbiol. 10:233-243

Hobson, A.H., Buckley, C.M., Aamand, J.L.,Jorgensen, S.T., Diderichsen, B. & McConnell,D.J. (1993) Activation of a bacterial lipase by itschaperone. Proc. Natl. Acad. Sci. USA 90:5682-5686

Hobson, A.H., Buckley, C.M., Jorgensen, S.T.,Diderichsen, B. & McConnell, D.J. (1995)Interaction of Pseudomonas cepacia DSM3959 lipasewith its chaperone, LimA. J. Biochem. (Tokyo)118:575-581

Holloway, B.W., Krishnapillai, V. & Morgan, A.F.(1979) Chromosomal genetics of Pseudomonas.Microbiol. Rev. 43:73-102

Hueck, C.J. (1998) Type III protein secretionsystems in bacterial pathogens of animals and plants.Microbiol Mol. Biol. Rev. 62:379-433

Ianenko, A.S., Gorbunova, S.A. & Krylov, N.(1983) Changes in the nature of the cell growth ofPseudomonas aeruginosa PAO from the conjugativeintroduction of plasmid RP4. Genetika 19:1387-1389

Ihara F., Okamoto I., Nihira T., Yamada Y. (1992)Requirement in trans of the downstream limL gene foractivation of lactonizing lipase from Pseudomonas sp.109. J. Ferment. Bioeng. 73 337-342

Page 111: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

102

Ihara, F., Okamoto, I., Akao, K., Nihira, T. &Yamada, Y. (1995) Lipase modulator protein (LimL)of Pseudomonas sp. Strain 109. J. Bacteriol. 177:254-258

Iizumi, T., Nakamura, K., Shimada, Y., Sugihara,A., Tominaga, Y. & Fugase, T. (1991) Cloning,nucleotide sequencing, and expression in Escherichiacoli of a lipase and its activator genes fromPseudomonas sp. KWI-56. Agric. Biol. Chem.55:2349-2357

Ishihama, A. (1999) Modulation of the nucleoid, thetranscription apparatus, and the translation machineryin bacteria for stationary phase survival.Genes Cells4:135-43

Jaeger, K.-E., Ransac, S., Koch, H.B., Ferrato, F.& Dijkstra, B.W. (1993) Topologicalcharacterization and modeling of the 3D structure oflipase from Pseudomonas aeruginosa. FEBS Lett.332:143-149

Jäger, K.-E. (1994) Extrazelluläre Enzyme vonPseudomonas aeruginosa als Virulenzfaktoren.Immun. Infekt. 22:177-180

Jaeger, K.-E., Ransac, S., Dijkstra, B.W., Colson,C., van Heuvel, M. & Misset, O. (1994) Bacteriallipases. FEMS Microbiol. Rev. 15:29-63

Jaeger, K.-E., Schneidinger, B., Liebeton, K.,Haas, D., Reetz, M.T., Philippou, S., Gerritse, G.,Ransac, S. & Dijkstra, B.W. (1996) Lipase ofPseudomonas aeruginosa: Molecular biology andbiotechnological application, p.319-330. In T.Nakazawa et al. (eds.), Molecular Biology ofPseudomonads. American Society for Microbiology,Washington D.C.

Jaeger, K.-E., Schneidinger, B., Rosenau, F.,Werner, M., Lang, D., Dijkstra, B.W., Zonta, A. &Reetz, M.T. (1997) Bacterial lipases forbiotechnological applications. J. Mol. Catalys. B:Enzymatic 3:3-12

Jaeger, K.-E. & Reetz, M.T. (1998) Microbiallipases form versatile tools for biotechnology. TrendsBiotechnol. 16:396-403

Jaeger, K.-E., Dijkstra, B.W. & Reetz M.T. (1999)Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnologicalapplications of lipases, Annu. Rev. Microbiol.53:315-351

Jones, R.L. 3rd, Jaskula, J.C. & Janssen, G.R.(1992) In vivo translational start site selection onleaderless mRNA transcribed from the Streptomycesfradiae aph gene. J. Bacteriol. 174:4753-4760

Jones, C.H., Danese, P.N., Pinkner, J.S., Silhavy,T.J. & Hultgren, S.J. (1997) The chaperone-assistedmembrane release and folding pathway is sensed bytwo signal transduction systems. EMBO J. 16:6394-6406

Jorgensen, R.A., Rothstein, S.J. & Reznikoff, W.S.(1979) A restriction enzyme cleavage map of Tn5 andlocation of a region encoding neomycin resistance.Mol. Gen. Genet. 177:65-72

Jörgensen, S., Skov, K.W. & Diderichsen, B. (1991)Cloning, sequence, and expression of a lipase genefrom Pseudomonas cepacia: lipase production inheterologous hosts requires two Pseudomonas genes.J. Bacteriol. 173:559-567

Kamath, S., Kapatral, V. & Chakrabarty, A.M.(1998) Cellular function of elastase in Pseudomonasaeruginosa: role in the cleavage of nucleosidediphosphate kinase and in alginate synthesis. Mol.Microbiol. 30:933-941

Kameyama, L.L., Fernandez, L., Court, D.L. &Guarneros, G. (1991) RNaseIII activation ofbacteriophage lambda N synthesis. Mol. Microbiol.5:2953-2963

Kawai, E., Idei, A., Kumura, H., Shimazaki, K.,Akatsuka, H. & Omori, K. (1999) The ABC-exporter genes involved in the lipase secretion areclustered with the genes for lipase, alkaline protease,and serine protease homologues in Pseudomonasfluorescens No. 33. Biochim. Biophys. Acta1446:377-382

Kazlauskas, R.J. & Bornscheuer, U.T. (1998)Biotransformations with Lipases. in: Kelly, D.R.,(ed.), Biotechnology, Vol. 8a, Wiley-VCH,Weinheim, pp. 37-191

Kessler, E., Safrin, M., Gustin, J.K. & Ohman, D.(1998) Elastase and the LasA protease ofPseudomonas aeruginosa are secreted with theirpropeptides. J. Biol. Chem. 273:30225-30231

Kim, E.K., Jang, W.H., Ko, J.H, Kang, J.S., Noh,M.J. & Yoo, O.J. (2001) lipase and its modulatorfrom Pseudomonas sp. strain KFCC 10818: proline-to-glutamine substitution at position 112 inducesformation of enzymatically active lipase in theabsence of the modulator. J Bacteriol. 183:5937-5941.

Kok, R.G., Christoffels, V.M., Vosman, B. &Hellingwerf, K.J. (1993) Growth-phase-dependentexpression of the lipolytic system of Acinetobactercalcoaceticus BD413:Cloning of a gene, encodingone of the esterases. J. Gen. Microbiol. 139:2329-2342

Page 112: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

103

Kok, R.G., van Thor, J.J., Nutgeren-Roodzant, I.,Brouwer, M.B.W., Egmond, M.R., Nudel, C.B.,Vosman, B. & Hellingwerf, K.J. (1995a)Characterization of the extracellular lipase, LipA, ofAcinetobacter calcoaceticus BD413 and sequenceanalysis of the cloned structural gene. Mol. Microbiol.15:803-818

Kok, R.G., van Thor, J.J., Nutgeren-Roodzant, I.,Vosman, B. & Hellingwerf, K.J. (1995b)Characterization of lipase-deficient mutants ofAcinetobacter calcoaceticus BD413: identification ofa periplasmic lipase chaperone essential for theproduction of extracellular lipase. J. Bacteriol.177:3295-3307

Kok R.G., Nudel C.B., Gonzalez R.H., Nutgeren-Roodzant I., Hellingwerf K.J. (1996) Physiologicalfactors affecting production of extracellular lipase(LipA) in Acinetobacter calcoaceticus BD413: fattyacid repression of lipA expression and degradation ofLipA. J. Bacteriol. 177:6025-6035

Kojima, S., Yanai, H. & Miura, Ki. (2001)Accelerated refolding of subtilisin bpn' by tertiary-structure-forming mutants of its propeptide. J.Biochem. (Tokyo) 130:471-474

Koster, M., Bitter, W. & Tommassen, J. (2000)Protein secretion mechanisms in Gram-negativebacteria. Int. J. Med. Microbiol. 290:325-331

Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop II,R.M. & Peterson, K.M. (1994) pBBR1MCS: abroad-host-range cloning vector. BioTechniques16:800-802

Kulakova, L., Galkin, A., Kurihara, T.,Yoshimura, T. & Esaki, N. (1999) Cold-activeserine alkaline protease from the psychrotrophicbacterium Shewanella strain ac10: gene cloning andenzyme purification and characterization. Appl.Environ. Microbiol. 65:611-617

Kustu, S., Santero, E., Keener, J., Popham, D. &Weiss, D. (1989) Expression of σ54 (ntrA)-dependentgenes is probably united by a common mechanism.Microbiol. Rev. 53:367-376

Labes, M., Pühler, A. & Simon, R. (1990) A newfamily of RSF-derivedexpression and lacZ-fusionbroad-host-range vectors of Gram-negative bacteria.Gene 89:37-46

Laemmli, U.K. (1970) Cleavage of structural proteinsduring the assembly of the head of bacteriophage T4.Nature(London) 227:680-685

Latifi, A., Winson, M.K., Foglino, M., Bycroft,B.W., Stewart, G.S.A.B. & Lazdunski, A. (1995)Williams, P. Multiple homologues of LuxR and LuxIcontrol expression of virulence determinants andsecondary metabolites through quorum sensing inPseudomonas aeruginosa PAO1. Mol. Microbiol.17:333-343

LeBlanc, H., Lang, A.S. & Beatty, J.T. (1999)Transcript cleavage, attenuation, and an internalpromoter in the Rhodobacter capsulatus puc operon.J. Bacteriol. 181:4955-4960

Lewenza, S., Conway, B., Greenberg, E.P. &Sokol, P.A. (1999) Quorum sensing in Burkholderiacepacia: identification of the LuxRI homologsCepR/I. J. Bacteriol. 181:748-756

Li, X., Tetling, S., Winkler, U.K., Jaeger, K.-E. &Benedik, M.J. (1995) Gene cloning, sequenceanalysis, purification and secretion by Escherichiacoli of an extracellular lipase from Serratiamarcescens. Appl. Environ. Microbiol. 61:2674-2680

Liebeton, K., Zonta, A., Schimossek, K., Nardini,M., Lang, D., Dijkstra, B.W., Reetz, M.T. &Jaeger, K.-E. (2000) Directed evolution of anenantioselective lipase. Chem Biol.7:709-718

Liebeton, K., Zacharias, A. & Jaeger, K.-E. (2001)Disulfide bond in Pseudomonas aeruginosa lipasestabilizes the structure but is not required forinteraction with its foldase. J. Baceriol. 183:597-603

Lindeberg, M., Boyd, C.M., Keen, N.T. & Collmer,A. (1998) External loops at the C terminus of Erwiniachrysanthemi pectate lyase C are required for species-specific secretion through the out type II pathway. J.Bacteriol. 180:1431-1437

Liu, J. & Walsh, C.T. (1990) Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmichomolog of cyclophilin that is not inhibited bycyclosporin A. Proc. Natl. Acad. Sci. USA 87:4028-4032Lu, H.M., Mizushima, S,. & Lory, S. (1993) Aperiplasmic intermediate in the extracellular secretionpathway of Pseudomonas aeruginosa exotoxin A. J.Bacteriol. 175:7463-7467

Lu, H.M. & Lory, S. (1996) A specific targetingdomain in mature exotoxin A is requiered for itsextracellular secretion from Pseudomonasaeruginosa. EMBO J. 15:429-436

Ludwig, H., Homuth, G., Schmalisch, M., Dyka,F.M., Hecker, M. & Stulke, J. (2001) Transcriptionof glycolytic genes and operons in Bacillus subtilis:evidence for the presence of multiple levels of controlof the gapA operon. Mol. Microbiol. 41:409-422

Page 113: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

104

Lupas, A., Van Dyke, M. & Stock, J. (1991)Predicting coiled coils from protein sequences.Science 252:1162-1164

Mackie, G.A. & Genereaux, J.L. (1993) The role ofRNA structure in determining RNase E-dependentcleavage sites in the mRNA for ribosomal protein S20in vitro. J. Mol. Biol. 234:998-1012

Mackie, G.A. (1998) Ribonuclease E is a 5'-end-dependent endonuclease. Nature 395:720-723

MacNab, R.M. (1999) The bacterial flagellum:reversible rotary propellor and type III exportapparatus. J. Bacteriol. 181:7149-7153

Marie-Claire, C., Yabuta, Y., Suefuji, K.,Matsuzawa, H. & Shinde, U. (2001) Foldingpathway mediated by an intramolecular chaperone:the structural and functional characterization of theaqualysin I propeptide. J. Mol. Biol. 305:151-165

Martin-Farmer, J. & Janssen, G.R. (1999) Adownstream CA repeat sequence increases translationfrom leadered and unleadered mRNA in Escherichacoli. Mol. Microbiol. 31:1025-1038

Martinez, A., Ostrovsky, P. & Nunn, D.N. (1998)Identification of an additional member of the secretinsuperfamily of proteins in Pseudomonas aeruginosathat is able to function in type II protein secretion.Mol. Microbiol. 28:1235-1246

Martínez, A., Ostrovsky, P. & Nunn, D.N. (1999)LipC, a second lipase of Pseudomonas aeruginosa, isLipB and Xcp dependent and is transcriptionallyregulated by pilus biogenesis components. Mol.Mikrobiol. 34:317-326

Mathews, D.H., Sabina, J, Zuker, M. & Turner,D.H. (1999) Expanded sequence dependence ofhtermodynamik parameters improves prediction ofRNA secondary structure. J. Mol. Biol. 288:911-940

Matsudaira, P.T. (1989) A practical guide to proteinand peptide purification for microsequencing.Academic Press Inc. p. 57

McDowall, K.J., Lin-Chao, S. & Cohen, S.N.(1994) A+U content rather than a particularnucleotide order determines the specificity of RNaseE cleavage. J. Biol. Chem. 269:10790-10796

McIver, K.S., Kessler, E., Olson, J.C. & Ohman,D.E. (1995) The elastase propeptide functions as anintramolecular chaperone required for elastase activityand secretion in Pseudomonas aeruginosa. Mol.Microbiol. 18:877-889

McKenney, D., Brown, K.E. & Allison, D.G. (1995)Influence of Pseudomonas aeruginosa exoproducts onvirulence factor production in Burkholderia cepacia:evidence of interspecies communication. J. Bacteriol.177:6989-6992

McVay, C.S. & Hamood, A.N. (1995) Toxin Asecretion in Pseudomonas aeruginosa: the role of thefirst 30 amino acids of the mature toxin. Mol. Gen.Genet. 249:515-525

Membrillo-Hernández, J. & Lin, E.C.C. (1999)Regulation of expression of the adhE gene, encodingethanol oxidoreductase in Escherichia coli:Transcription from a downstream promoter andregulation by Fnr and RpoS. J. Bacteriol. 181:7571-7579

Merrick, M.J. (1993) In a class of its own - the RNApolymerase sigma factor σ54 (σN). Mol.Microbiol.10:903-909

Mertens, N., Remaut, E. & Fiers, W. (1995) Tighttranscriptional control mechanism ensure stable high-level expression from T7 Promoter-based expressionplasmids. Bio/Technol. 13:175-179

Miller, J.H. (1972) Experiments in moleculargenetics. Cold Spring Habor laboratory, Cold SpringHabor, New York

Min-Jou, W., Haegeman, G., Ysebaert, M. Fiers,W. (1972) Nucleotide sequence of the gene coding forbacteriophage MS2 coat protein. Nature (London)237:82-88

Missiakas, D., Betton, J.M. & Raina, S. (1996) Newcomponents of protein folding in extracytoplasmiccompartments of Escherichia coli SurA, FkpA andSkp/OmpH. Mol. Microbiol. 21:871-884

Missiakas, D. & Raina, S. (1997) Protein folding inthe bacterial periplasm. J. Bacteriol. 179:2465-2471

Moll, I., Huber, M., Grill, S., Sairafi, P., Mueller,F., Brimacombe, R., Londei, P. & Bläsi, U. (2001)Evidence against an Interaction between the mRNAdownstream box and 16S rRNA in translationinitiation. J. Bacteriol. 183:3499-3505

Moore, J.T., Lippal, A., Maley, F. & Maley, G.F.(1993) Overcoming inclusion body formation in ahigh-level expression system. Protein Expression andPurification 4:160-163

Morita, M.T., Tanaka, Y., Kodama, T.S.,Kyogoku, Y., Yanagi, H. & Yura, T. (1999)Translational induction of heat shock transcriptionfactor sigma32: evidence for a built-in RNAthermosensor. Genes Dev. 13:655-665

Page 114: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

105

Morris, L., Cannon, W., Claverie Martin, F.,Austin, S. & Buck, M. (1994) DNA distorsion andnucleation of local DNA unwinding within sigma-54(sigma-N) holoenzym closed promotor complexes. J.Biol. Chem. 269:11563-11571

Müller, J.P. (1999) Effects of pre-proteinoverexpression on SecB synthesis in Escherichia coli.FEMS Microbiol. Lett. 176:219-227

Myöhänen, S. & Wahlfors, J. (1993) Automatedfluorescent primer extension. BioTechniques 14:16-17

Nakai, K. & Horton, P. (1999) PSORT: a programfor detecting sorting signals in proteins and predictingtheir subcellular localisation. Trends Biochem. Sci.24:34-35

Nardini, M. & Dijkstra, B.W. (1999) α/β Hydrolasefold enzymes: the family keeps growing. Curr. Opin.Struct. Biol. 3:732-737

Nardini, M., Lang, D.A., Liebeton, K., Jäger, K.-E.& Dijkstra, B.W. (2000) Crystal structure ofPseudomonas aeruginosa lipase in the openconformation: the prototype for family I.1 of bacteriallipases. J. Biol. Chem. 275:31219-31225

Nicas, T.I. & Iglewski, B.H. (1984) Isolation andcharacterization of transposon-induced mutants ofPseudomonas aeruginosa deficient in production ofexoenzyme S. Infect. Immun. 45: 470-474

Nielsen, H., Engelbrecht, J., Bunak, S. & vonHeinje, G. (1997) Identification of prokaryotic andeukaryotic signal peptides and prediction of theircleavage sites. Prot. Engineer. 10:1-6

Nirasawa, S., Nakajima, Y., Zhang, Z.Z., Yoshida,M. & Hayashi, K. (1999) Intramolecular chaperoneand inhibitor activities of a propeptide from abacterial zinc aminopeptidase. Biochem. J. 341:25-31.

Nishijyo, T., Haas, D. & Itoh, Y. (2001) The CbrA-CbrB two-component regulatory system controls theutilization of multiple carbon and nitrogen sources inPseudomonas aeruginosa. Mol. Microbiol. 40:917-931

Nunn, D., Bergman, S. & Lory, S. (1990) Productsof three accessory genes, pilB, pilC, and pilD, arerequired for biogenesis of Pseudomonas aeruginosapili. J. Bacteriol. 172:2911-2919

Ochsner, U.A., Koch, A.K., Fiechter, A. & Reiser,J. (1994) Isolation and characterization of aregulatory gene affecting rhamnolipid biosurfactantsynthesis in Pseudomonas aeruginosa. J. Bacteriol.176:2044-2054

Ochsner, U.A. & Reiser, J. (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactantsynthesis in Pseudomonas aeruginosa. Proc. Natl.Acad. Sci. USA 92:6424-6428

O'Donnell, S.M. & Janssen, G.R. (2001) Theinitiation codon affects ribosome binding andtranslational efficiency in Escherichia coli of cImRNA with or without the 5' untranslated leader. JBacteriol. 183:1277-1283.

Ogierman, M.A., Fallarino, A., Riess, T., Willimas,S.G., Attridge, S.R. & Manning, P. (1997)Characterization of the Vibrio cholerae El Tor lipaseoperon lipAB and a protease gene downstream of thehyl region. Microbiology 140:931-943

Okamoto, K., Baba, T., Yamanaka, H., Akashi, N.& Fujii, Y. (1995) Disulfide bond formation andsecretion of Escherichia coli heat-stable enterotoxinII. J. Bacteriol. 177:4579-4586

Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B.W.,Frolow, F., Franken, S.M., Harel, M., Remington,S.J., Silman, I., Schrag, J., Sussman, J.L.,Verschueren, K.H.G. & Goldman, A. (1992) Theα/β hydrolase fold. Protein Eng. 5:197-211

Ortaggi G., Jaeger K.-E. (1997) Microbial Lipasesin the Biocatalysis. J. Mol. Catal. B: Enzymatic140:931-943

Oshima-Hirayama N., Yoshikawa K., Nishioka T.,Oda J. (1993) Lipase from Pseudomonas aeruginosa:Production in Escherichia coli and activation in vitrowith a protein from the downstream gene. Eur. J.Biochem. 215: 239-246

Parkins, M.D., Ceri, H. & Storey, D.G. (2001)Pseudomonas aeruginosa GacA, a factor in multihostvirulence, is also essential for biofilm formation. Mol.Microbiol. 40:1215-1226.

Pedrotta, V. & Witholt, B. (1999) Isolation andcharacterization of the cis-trans-unsaturated fatty acidisomerase of Pseudomonas oleovorans GPo12. J.Bacteriol. 181:3256-3261

Peek, J.A. & Taylor, R.K. (1992) Characterizationof a periplasmic thiol:disulfide interchange proteinrequired for the functional maturation of secretedvirulence factors of Vibrio cholerae.Proc. Natl. Acad.Sci. USA. 89:6210-6214

Pelletier, I. & Altenbuchner, J. (1995) A bacterialesterase is homologous with non-haemhaloperoxidases and displays bromating activity.Microbiology 141:459-468

Page 115: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

106

Pesci, E.C. & Iglewski, B.H. (1999) Quorum sensingin Pseudomonas aeruginosa, in Dunny G.M., WinansS.C.(Eds.), Cell-cell signaling in Bacteria, ASMPress, Washington D.C., pp.147-155

Peterson, G.L. (1977) A simplification of the proteinassay method of Lowry et al. which is more generallyapplicable. Anal. Biochem. 83:346-356

Portier, C., Dondon, L., Grunberg-Manago, M. &Régnier, P. (1987) The first step in the functionalinactivation of the E. coli polynucleotidephosphorylase messenger is a ribonuclease IIIprocessing at the 5' end. EMBO J. 6:2165-2170

Possot, O. & Pugsley, A.P. (1994) Molecularcharacterization of PulE, a protein required forpullulanase secretion. Mol. Microbiol. 12:287-299

Possot, O.M., Gerard-Vincent, M. & Pugsley, A.P.(1999) Membrane association and multimerization ofsecreton component PulC. J.Bacteriol. 181:4004-4011

Pridmore, R.D. (1987) New and versatile cloningvectors with kanamycin-resistance marker. Gene56:309-312

Pugsley, A.P. (1992b) Translocation of a foldedprotein across the outer membran via the generalsecretory pathway in Escherichia coli. Proc. Natl.Acad. Sci. USA 89:12058-12062

Pugsley, A.P. (1993) The complete general secretorypathway in gram-negative bacteria. Microbiol. Rev.57:50-108

Quyen, D.T., Schmidt-Dannert, C. & Schmid R.D.(1999) High-level formation of active Pseudomonascepacia lipase after heterologous expression of theencoding gene and its modified chaperone inEscherichia coli and rapid in vitro refolding. Appl.Environ. Microbiol. 65:787-794

Rahfeld, J.U., Rucknagel, K.P., Stoller, G., Horne,S.M., Schierhorn, A., Young, K.D. & Fischer, G.(1996) Isolation and amino acid sequence of a new22-kDa FKBP-like peptidyl-prolyl cis/trans-isomeraseof Escherichia coli. Similarity to Mip-like proteins ofpathogenic bacteria. J. Biol. Chem.271:22130-22138

Raina, S. & Missiakas, D. (1997) Making andbreaking disulfide bonds. Annu. Rev. Microbiol.51:179-202

Ravnum, S. & Andersson, D.I. (2001) An adenosyl-cobalamin (coenzyme-B12)-repressed translationalenhancer in the cob mRNA of Salmonellatyphimurium. Mol. Microbiol. 39:1585-1594

Reeder, T. & Schleif, R. (1993) AraC protein canactivate transcription from only one position andwhen pointed in only one direction. J. Mol. Biol.231:205-218

Reetz, M.T. & Jaeger, K.-E. (2000) Enantioselectiveenzymes for organic synthesis created by directedevolution. Chemistry. 6:407-412

Régnier, P. & Arraiano, C.M. (2000) Degradationof mRNA in bacteria: emergence of ubiquitousfeatures. BioEssays 22:235-244

Reimmann, C., Beyeler, M., Latifi, A., Winteler,H., Foglino, M., Lazdunski, A. & Haas, D. (1997)The global activator GacA of Pseudomonasaeruginosa PAO positively controls the production ofthe autoinducer N-butyryl-homoserine lactone and theformation of the virulence factors pyocyanin, cyanide,and lipase. Mol. Microbiol. 24:309-319

Repoila, F. & Gottesmann, S. (2001) Signaltransduction cascade for regulation of RpoS:temperature regulation of DsrA. J. Bacteriol.183:4012-4023

Ringquist, S., Shinedling, S., Barrick, D., Green,L., Binkley, J., Stormo, G.D. & Gold, L. (1992)Translation initiation in Escherichia coli: sequenceswithin the ribosome-binding site. Mol Microbiol.6:1219-1229

Rosenau, F., Liebeton, K. & Jäger, K.-E. (1998)Überexpression extrazellulärer Enzyme inPseudomonas aeruginosa. Biospektrum 4:38-41

Rosenau, F. & Jäger, K.-E. (2000) Bacterial lipasesfrom Pseudomonas: Regulation of gene expressionand mechanisms of secretion. Biochimie 82:1023-1032

Rosenau, F., Heckmann, S., Stratmann, M.,Wingender, J., Fleming, H.C., Schmidt, R. &Jäger, K.-E. (2001) The extracellular lipase LipCaffects cell motility, cell surface hydrophobicity andbiofilm architecture of Pseudomonas aeruginosa.Proc. Natl. Acad. Sci. USA, eingereicht zurVeröffentlichung

Rösmann, S. (1998) Bedeutung bakteriellerSignalpeptide und der Lipase-spezifischen Foldase fürdie heterologe Expression der Lipase ausPseudomonas aeruginosa PAO1 in Escherichia coli.Diplomarbeit, Ruhruniversität Bochum

Rubin, B. & Dennis, E.A. (eds.) (1997a) Lipases,Part A: Biotechnology. Methods Enzymol., Vol. 284San Diego: Academic Press. pp. 408

Page 116: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

107

Rubin B. & Dennis E.A., eds. (1997b) Lipases, PartB: Enzyme Characterization and Utilization. MethodsEnzymol., Vol. 286 San Diego: Academic Press. pp.563

Russel, M. (1998) Macromolecular assembly andsecretion across the bacterial cell envelope: type IIprotein secretion systems. J. Mol. Biol. 279:485-499

Ryszka, M. (1999) Überexpression derCholesterinesterase von Pseudomonas sp. imhomologen Wirt und in den heterologen Wirten E.coli und P. aeruginosa. Diplomarbeit, Ruhr-Universität Bochum

Saito, H. & Richardson, C.C. (1981) Processing ofRNA by ribonucleaseIII regulates expression of gene1.2 of bacteriophage T7. Cell 27:533-542

Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989)Molecular cloning:A laboratory manual. Cold SpringHarbor Laboratory Press, New York

Samuelson, J.C., Jiang, F., Yi, L., Chen, M., deGier, J.W., Kuhn, A. & Dalbey, R.E. (2001)Function of YidC for the insertion of M13 procoatprotein in Escherichia coli: translocation of mutantsthat show differences in their membrane potentialdependence and Sec requirement. J. Biol. Chem.276:34847-34852

Sandkvist, M. (2001) Biology of type II secretion.Mol. Microbiol. 40:271-283

Sato, N. & Nakamura, A. (1998) Involvement of the5'-untranslated region in cold-regulated expression ofthe rbpA1 gene in the cyanobacterium Anabaenavariabilis M3. Nucleic. Acids Res. 26:2192-2199

Sauer, K. & Camper, A.K. (2001) Characterizationof Phenotypic Changes in Pseudomonas putida inResponse to Surface-Associated Growth. J. Bacteriol.183:6579-6589

Sauvonnet, N. & Pugsley, A.P. (1996) Identificationof two regions of Klebsiella oxytoca pullulanase thattogether are capable of promoting beta-lactamasesecretion by the general secretory pathway. Mol.Microbiol. 22:1-7

Schäfer, M. (1998) Ein neues lipolytisches Enzymvon Pseudomonas aeruginosa: Überexpression,Reinigung und physiologische Charakterisierung.Diplomarbeit, Ruhr-Universität Bochum

Schmid, R.D. & Verger, R. (1998) Lipases:Interfacial enzymes with attractive applications.Angew. Chem., Int. Ed. Engl. 37:1608-1633

Schneidinger, B. (1997) Überexpression undtranskriptionelle Regulation des Lipaseoperons vonPseudomonas aeruginosa und funktionelleCharakterisierung der Lipase-spezifischen FoldaseLipH. Dissertation, Ruhr-Universität Bochum,Germany

Schrag, J.D., Li, Y., Wu, S. & Cygler, M. (1991)Ser-His-Glu triad forms the catalytic site of the lipasefrom Geotrichum candidum. Nature 351:761-764

Schulte, G., Bohne, L. & Winkler U. (1982)Glycogen and various other polysaccharides stimulatethe formation of exolipase by Pseudomonasaeruginosa. Can. J. Microbiol. 28:636-642

Scotti, P.A., Valent, Q.A., Manting, E.H., Urbanus,M.L., Driessen, A.J., Oudega, B. & Luirink, J.(1999) Sec A is not required for signal recognitionparticle-mediated targeting and initial membraneinsertion of a nascent inner membrane protein. J. Biol.Chem. 274:29883-29888

Seuter, A. (1998) Molekulare Charakterisierung derInteraktion zwischen einer Lipase und einer Foldaseaus Pseudomonas aeruginosa. Diplomarbeit, Ruhr-Universität Bochum.

Shevchik, V.E., Bortoli-German, I., Robert-Baudouy, J., Robinet, S., Barras, F. & Condemine,G. (1995) Differential effect of dsbA and dsbCmutations on extracellular enzyme secretion inErwinia chrysanthemi. Mol. Microbiol. 16:745-753

Shibata, H., Kato, H. & Oda; J. (1998a) Calciumion-dependent reactivation of a Pseudomonas lipaseby its specific modulating protein, LipB. J. Biochem.123:136-141

Shibata, H., Kato, H. & Oda, J. (1998b) Molecularproperties and activity of amino-teminal truncatedforms of lipase activator protein. Biosci. Biotechnol.Biochem. 62:354-357

Shinde, U., Fu, X. & Inouye, M. (1999) A pathwayfor conformational diversity in proteins mediated byintramolecular chaperones. J. Biol. Chem. 274:15615-15621

Shingler, V. (1996) Signal sensing by σ54-dependentregulators: derepression as a control mechanism. Mol.Microbiol. 19:409-416

Simon, R., Priefer, U. & Pühler, A. (1983) A broadhost range mobilization system for in vitro geneticengeneering:transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784-791

Simonen, M. & Palva, J. (1993) Protein secretion inBacillus species. Microbiol. Rev. 57:109-137

Page 117: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

108

Simpson AJ, Reinach FC, Arruda P, Abreu FA,Acencio M, Alvarenga R, Alves LM, Araya JE,Baia GS, Baptista CS, Barros MH, Bonaccorsi ED,Bordin S, Bove JM, Briones MR, Bueno MR,Camargo AA, Camargo LE, Carraro DM, CarrerH, Colauto NB, Colombo C, Costa FF, Costa MC,Costa-Neto CM, Coutinho LL, Cristofani M, Dias-Neto E, Docena C, El-Dorry H, Facincani AP,Ferreira AJ, Ferreira VC, Ferro JA, Fraga JS,Franca SC, Franco MC, Frohme M, Furlan LR,Garnier M, Goldman GH, Goldman MH, GomesSL, Gruber A, Ho PL, Hoheisel JD, JunqueiraML, Kemper EL, Kitajima JP, Krieger JE,Kuramae EE, Laigret F, Lambais MR, Leite LC,Lemos EG, Lemos MV, Lopes SA, Lopes CR,Machado JA, Machado MA, Madeira AM,Madeira HM, Marino CL, Marques MV, MartinsEA, Martins EM, Matsukuma AY, Menck CF,Miracca EC, Miyaki CY, Monteriro-Vitorello CB,Moon DH, Nagai MA, Nascimento AL, Netto LE,Nhani A Jr, Nobrega FG, Nunes LR, Oliveira MA,de Oliveira MC, de Oliveira RC, Palmieri DA,Paris A, Peixoto BR, Pereira GA, Pereira HA Jr,Pesquero JB, Quaggio RB, Roberto PG, RodriguesV, de M Rosa AJ, de Rosa VE Jr, de Sa RG,Santelli RV, Sawasaki HE, da Silva AC, da SilvaAM, da Silva FR, da Silva WA Jr, da Silveira JF,Silvestri ML, Siqueira WJ, de Souza AA, de SouzaAP, Terenzi MF, Truffi D, Tsai SM, Tsuhako MH,Vallada H, Van Sluys MA, Verjovski-Almeida S,Vettore AL, Zago MA, Zatz M, Meidanis J,Setubal JC. (2000) The genome sequence of the plantpathogen Xylella fastidiosa. The Xylella fastidiosaConsortium of the Organization for NucleotideSequencing and Analysis. Nature 406:151-157

Smolke, C.D., Carrier, T.A. & Keasling, J.D.(2000) Coordinated differential expression of twogenes through directed mRNA cleavage andstabilization by secondary structures. Appl. Environ.Microbiol. 66:5399-5405

Steitz, J.A. (1969) Polypeptide chain initiation:nucleotide sequences of the three ribosomal bindingsites in bacteriophage R17 RNA. Nature (London)224:957-964

Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi,S.D,, Warrener, P., Hickey, M.J., Binkman, F.S.L.,Hufnagle, W.O., Kowalik. D.J., Lagrou, M.,Garber, R.L., Goltry, L., Tolentino, E.,Westbrock-Wadman, S., Yuan, Y., Brody, L.L.,Coulter, S.N., Folger, K.R., Kas, A., Larbig, K.,Lim, K., Spencer, D.l, Wong, G.K.-S., Wu, Z.,Paulsen, I.T., Reizer, J., Saier, M.H., Hancock,R.E.W., Lory, S. & Olson, M.V. (2000) Completegenome sequence of Pseudomonas aeruginosa PAO1;an opportunistic pathogen. Nature 406:959-964

Strom, M.S., Nunn, D. & Lory, S. (1991) Multipleroles of the pilus biogenesis protein PilD:involvement of PilD in excretion of enzymes fromPseudomonas aeruginosa. J. Bacteriol. 173:1175-1180

Stroud, R.M. & Walter, P. (1999) Signal sequencerecognition and protein targeting. Curr. Opin. Struct.Biol. 9:754-759

Studier, F.W. & Moffatt, B.A. (1986) Use ofbacteriophage T7 RNA polymerase to direct selectivehighlevel expression of cloned genes. J. Mol. Biol.189:113-130

Stuer, W., Jäger, K.-E. & Winkler, U.K. (1986)Purification of extracellular lipase from Pseudomonasaeruginosa. J. Bacteriol. 168:1070-1074

Sullivan E.R., Leahy J.G., Colwell R.R. (1999)Cloning and sequence analysis of the lipase and lipasechaperone-encoding genes from Acinetobactercalcoaceticus RAG-1, and redefinition of aproteobacterial lipase family and an analogous lipasechaperone family. Gene 230:277-286

Tabor, S. (1990) Expression using the T7 RNApolymerase/promoter system. In:Current protocols inmolecular biology, Vol.2. Ansubel, F.M., Brent, R.,Kingston, R.E., Moore, D.D., Seidman, J.G., Smith,J.A. & Struhl, K. (eds.). J. Wiley & Sons. Inc. S.16.2.1-16.2.11

Taira, S., Tuimala, J., Roine, E., Nurmiaho-Lassila, E.L., Savilahti, H. & Romantschuk, M.(1999) Mutational analysis of the Pseudomonassyringae pv. tomato hrpA gene encoding Hrp pilussubunit. Mol. Microbiol. 34:737-744

Tan, M.W. & Ausubel, F.M. (2000) Caenorhabditiselegans: a model genetic host to study Pseudomonasaeruginosa pathogenesis. Curr. Opin. Microbiol.3:29-34

Tanaka J., Ihara F., Nihira T., Yamada Y. (1999a)A low-Mr lipase activation factor cooperating withlipase modulator protein LimL in Pseudomonas sp.strain 109. Microbiology 145:2875-2880

Tanaka, J., Sudo, T., Ihara, F., Nihira, T. &Yamada, Y. (1999b) Increase production oflactonizing lipase (LipL) from Pseudomonas sp. strain109 by lipids and detergents. Biosci. Biotechnol.Biochem. 63: 900-904

Tanaka, J., Nihira, T. & Yamada, Y. (2000)Glutathione as an essential factor for chaperon-mediated activation of lactonizing lipase (LipL) fromPseudomonas sp. 109. J. Biochem. (Tokyo). 127:597-601

Page 118: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

109

Tielker, D. (2001) Klonierung, Überexpression,Reinigung und physiologische Charakterisierungzweier Lektine aus Pseudomonas aeruginosa.Diplomarbeit, Ruhr-Universität Bochum.

Tommassen, J., Filloux, A., Bally, M., Murgier, M.& Lazdunski, A. (1992) Protein secretion inPseudomonas aeruginosa. FEMS Microbiol. Rev.109:73-90

Totten, P.A., Lara, J.C. & Lory, S. (1990) The rpoNproduct of Pseudomonas aeruginosa is required forexpression of divers genes, ingluding the flagellingene. J. Bacteriol. 172:389-396

Ulbrandt, N.D., Newitt, J.A. & Bernstein, H.D.(1997) The E. coli signal recognition particle isrequired for the insertion of a subset of innermembrane proteins. Cell 88:187-196

Urban, A. (2000) Die Rolle der Thiol-Disulfid-Oxidoreduktasen DsbA und DsbC bei derProteinsekretion in Pseudomonas aeruginosa.Dissertation, Ruhr-Universität Bochum

Urban, A., Leipelt, M., Eggert, T. & Jäger, K.-E.(2001) DsbA and DsbC affect extracellular enzymeformation in Pseudomonas aeruginosa. J. Bacteriol.183:587-596

Urbanus, M.L., Scotti, P.A., Froderberg. L., Saaf,A., de Gier, J.W., Brunner, J., Samuelson, J.C.,Dalbey, R.E., Oudega, B. & Luirink, J. (2001) Sec-dependent membrane protein insertion: sequentialinteraction of nascent FtsQ with SecY and YidC.EMBO Rep. 2:524-529

Valent, Q.A., Scotti, P.A., High, S., De Gier, J.W.,von Heijne, G., Lentzen, G., Wintermeyer, W.,Oudega, B. & Luirink, J. (1998) The Escherichiacoli SRP and SecB targeting pathways converge at thetranslocon. EMBO J. 17:2504-2512

Van Etten, W.J. & Janssen, G.R. (1998) An AUGinitiation codon, not codon-anticodon complement-arity, is required for the translation of unleaderedmRNA in Escherichia coli. Mol Microbiol. 27:987-1001

Van Geest, M. & Lolkema, J.S. (2000) Membranetopology and insertion of membrane proteins: searchfor topogenic signals. Microbiol. Mol. Biol. Rev.64:13-33

Varmanen, P., Savijoki, K., Avall, S., Palva, A. &Tynkkynen, S. (2000) X-prolyl dipeptidylaminopeptidase gene (pepX) is part of the glnRAoperon in Lactobacillus rhamnosus. J.Bacteriol.182:146-154.

Vellanoweth, R.L. & Rabinowitz, J.C. (1992) Theinfluence of ribosome-binding-site elements ontranslational efficiency in Bacillus subtilis andEscherichia coli in vivo. Mol Microbiol. 6:1105-1114.

Vogelstein, B. & Gillespie, D. (1979) Preparative andanalytical purification of DNA from agarose. Proc.Natl. Acad. Sci. USA 76:615-619

Voisard, C.,Bull, C.T., Keel, C., Laville, J.,Maurhofer, M., Schnider, U., Defago, G. & Haas,D. (1994) In: Molecular ecology of rhizospheremicroorganisms. O'Hara, F., Dowling, D.N. &Boesten, B. (eds.). VCH Verlag, Weinheim,Deutschland. pp:67-89

von Heinje, G. (1990) The signal peptide. J. Membr.Biol. 115:195-201

Voulhoux, R., Taupiac, M.P., Czjzek, M.,Beaumelle, B. & Filloux, A. (2000) Influence ofdeletions within domain II of exotoxin A on itsextracellular secretion from Pseudomonasaeruginosa. J. Bacteriol. 182:4051-4058

Vytvytska, O., Moll, I., Kaberdin, V.R., vonGabain, A. & Blasi, U. (2000) Hfq (HF1) stimulatesompA mRNA decay by interfering with ribosomebinding. Genes Dev. 14:1109-1118

Wandersman, C. (1996) Secretion across thebacterial outer membrane. In: Neidhardt, F.C., CurtissIII, R., Ingrahama, J.L., Lin, E.C.C., Low, K.B.,Magasanik, B., Riley, M., Reznikoff, W.S.,Schaechter, M. & Umbarger, H.E. (eds.). Escherichiacoli and Salmonella: cellular and molecular biology,2nd ed. ASM Press, Washington D.C., pp. 955-966

Watson, A.A., Alm, R.A., Mattick, J.S. (1996)Construction of improved vectors for Proteinproduction in Pseudomonas aeruginosa. Gene172:163-164

Watson, J.D. & Crick, F.H.C. (1953) Molecularstructure of nucleic acid. A structure for deoxyribosenucleic acid. Nature 171:737-745

Weingart, C.L. & Hooke, A.M. (1999) Regulationof expression of the nonhemolytic phospholipase C ofBurkholderia cepacia. Curr. Microbiol. 39:336-341

Wilhelm, S., Tommassen, J. & Jäger, K.-E. (1999)A novel lipolytic enzyme located in the outermembrane of Pseudomonas aeruginosa. J. Bacteriol.181: 6977-6986

Wilhelm, S. (2001) Identifizierung undCharakterisierung des Sekretionsweges der EsteraseEstA aus Pseudomonas aeruginosa. Dissertation,Ruhr-Universität Bochum

Page 119: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

6. Literatur

110

Wilhelm, S., Rosenau, F. & Jaeger, K.-E. (2001)Proteinsecretion in Gram-negative bacteria andPseudomonas aeruginosa. FEMS Microbio. Lett.eingereicht zur Veröffentlichung

Wilson, K.J. & Yuan, P.M. (1989) Protein andpeptide purification. In:Protein sequencing, a practicalapproach. Findley, J.B.C. & Geisow, M.J. (eds.). IRLPress Oxford

Windgassen, M. (2000) Proteinsekretion inPseudomonas aeruginosa: Untersuchung der Rolleperiplasmatischer Proteasen durch Insertions-mutagenese. Diplomarbeit, Ruhr-Universität Bochum

Winkler, U.K. & Stuckmann, M. (1979) Glycogen,hyaluronate, and some other polysaccharides greatlyenhance the formation of exolipase by Serratiamarcescens. J. Bacteriol. 138:663-670

Winson, M.K., Camara, M., Latifi, A., Foglino, M.,Chhabra, S.R., Daykin, M., Bally, M., Capon, V.,Salmond, G.P., Bycroft, B.W., Lazdunski, A.,Stewart, G.S.A.B. & Williams, P. (1999) MultipleN-acyl-L-homoserine lactone signal moleculesregulate production of virulence determinants andsecondary metabolites in Pseudomonas aeruginosa.Proc. Natl. Acad. Sci. USA 92:9427-9431

Winteler H.V., Schneidinger B., Jaeger K.-E.,Haas D. (1996) Anaerobically controlled expressionsystem derived from the arcDABC operon ofPseudomonas aeruginosa: application to lipaseproduction. Appl. Environ. Microbiol. 62:3391-3398

Winzeler, E. & Shapiro, L. (1997) Translation of theleaderless Caulobacter dnaX mRNA. J. Bacteriol.179:3981-3988

Withers, H., Swift, S. & Williams, P. (2001)Quorum sensing as an integral component of generegulatory networks in Gram-negative bacteria. Curr.Opin. Microbiol. 4:186-193

Withold, B., Boekhout, M., Brock, M. Kingma, J.,van Heerikhuizen, H. & de Leij, L. (1976) Anefficient and reproducible procedure for the formationof Spheroplasts from variously grown Escherichiacoli. Anal. Biochem. 74:160-170

Wösten, M.M.S.M. (1998) Eubacterial sigma factors.FEMS Microbiol. Rev. 22:127-150

Wohlfahrt, S., Hoesche, C., Strunk, C. & Winkler,U.K. (1992) Molecular genetics of the extracellularlipase of Pseudomonas aeruginosa PAO1. J. Gen.Microbiol. 138:1325-1335

Wolf, E., Kim, P.S. & Berger, B. (1997) MultiCoil:a program for predicting two- and three-strandedcoiled coils. Protein Sci. 6:1179-1189

Woodson, S.A. (1998) Ironing out the kinks: splicingand translation in bacteria. Genes Develop. 12:1243-1247

Yamanaka, K., Mitta, M. & Inouye, M. (1999)Mutation analysis of the 5' untranslated region of thecold shock cspA mRNA of Escherichia coli. J.Bacteriol. 181:6284-6291

Yannish-Perron, C., Vieria, J. & Messing, J. (1985)Improved M13 cloning vectors and hoststrains:Nucleotide sequences of M13mp18 andpUC19 vectors. Gene 33:103-119

Yanofsky, C. (2000) Transcription attenuation: onceviewed as a novel regulatory strategy. J. Bacteriol.182:1-8

Young, G.M., Schmiel, D.H. & Miller, V.L. (1999)A new pathway for the secretion of virulence factorsby bacteria: The flagellar export apparatus functionsas a protein secretion system. Proc. Natl. Acad. Sci.USA 96:6456-6461

Zhang, A., Altuvia, S., Tiwari, A., Argaman, L.,Hengge-Aronis, R. & Storz, G. (1998) The OxySregulatory RNA represses rpoS translation and bindsthe Hfq (HF-I) protein. EMBO J. 17:6061-6068

Zuker, M., Jaeger, J.A., Turner, D.H. (1991) Acomparison of optimal and suboptimal RNAsecondary structures predicted by free energyminimization with structures determined byphylogenetic comparison. Nucleic Acids Res.19:20707-2714

Page 120: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

7. Anhang

EcoRIPaeI

EcoRI

lipA lipH

lipA‘ T7-Pol lacIq lipA‘ lipH

lipA lipH

lipA‘ T7-Pol lacIq lipA‘ lipH

T7 ExpressionsstammP.aeruginosa PAFRT7.7

Konjugationund homologeRekombination

Subklonierungim SuizidvektorpME3087

Chromosom vonP.aeruginosa

pMELipT7

pLip3-S

T7-Pol lacIq te ttRttL tepEB1

PaeI

Konstruktion des T7-Expressionsstammes Pseudomonas aeruginosa PAFRT7.7. Die"Expressionskassette" wurde in das Lipasegen inseriert und diese dadurch inaktiviert. Durch Allelen-Austausch wurde die Kassette in das Chromosom integriert. (verändert nach Rosenau et al., 1998)

Page 121: Überexpression der Lipase aus Pseudomonas aeruginosa und ... · Überexpression der Lipase aus Pseudomonas aeruginosa und physiologische Charakterisierung der Foldasefunktion Dissertation

LEBENSLAUF

Name Frank Rosenau

geboren am 01.12.68

in Neviges

Familienstand ledig

Wohnort Im Hölken 13

45549 Sprockhövel

Schulbildung

1975-1979 Grundschule Neviges und Grundschule Ennepetal

1979-1988 Märkisches Gymnasium in Schwelm

Studium

10/88 - 08/95 Studiengang Biologie, Abschluß: Diplom

Ruhr-Universität Bochum

Thema der Diplomarbeit: Ortsgerichtete Mutagenese zu Herstellung

"Elektronen-Spin"-markierbarer Lipase aus Pseudomonas aeruginosa

am Lehrstuhl für Biologie der Mikoorganismen

AG Priv.Doz. Dr. K.-E. Jäger

Anstellung

01/96 - 08/97 wissenschaftlicher Mitarbeiter in der gleichen Arbeitsgruppe im

Rahmen einer Kooperation mit der Firma Boehringer Mannheim

Promotion

08/97 - 01/02 Promotion am Lehrstuhl für Biologie der Mikoorganismen

Thema der Arbeit: Überexpression der Lipase aus Pseudomonas

aeruginosa und die physiologische Charakterisierung der

Foldasefunktion. Betreuer der Dissertation: Priv.Doz. Dr. K.-E. Jäger

Tag der mündlichen Prüfung 14.01.02