23

Unidad 3 Tecnologias Inalambricas

Embed Size (px)

Citation preview

UNIDAD 3 TECNOLOGIAS INALAMBRICAS

Las redes comerciales actuales evolucionan para dar soporte a la gente que está en continuo movimiento. Empleados y empleadores, estudiantes y docentes, agentes del gobierno y aquellos a quienes sirven, aficionados a los deportes y compradores están todos en continuo movimiento y muchos de ellos están "conectados". Tal vez usted tiene un teléfono celular al que envía mensajes instantáneos cuando se encuentra lejos de su computadora. Esta es la visión de ambiente móvil donde las personas pueden llevar su conexión a la red consigo cuando se trasladan.

Hay muchas infraestructuras diferentes (LAN conectada por cable, redes del proveedor de servicios) que permiten que exista este tipo de movilidad, pero en un ambiente de negocios, lo más importante es la WLAN.

La productividad ya no está restringida a una ubicación de trabajo fija o a un período de tiempo definido. Las personas esperan ahora estar conectadas en cualquier momento y en cualquier lugar, desde la oficina hasta el aeropuerto o incluso en el hogar. Los empleados que viajan solían estar restringidos a utilizar teléfonos públicos para verificar sus mensajes y para devolver algunas llamadas telefónicas entre vuelos. Ahora pueden verificar su correo electrónico, correo de voz y estado de los productos en asistentes personales digitales (PDA) mientras están en ubicaciones temporales diferentes.

Muchas personas cambiaron su forma de vivir y aprender en el hogar. Internet es un servicio estándar en muchos hogares, junto con el servicio de TV y teléfono. Incluso el método para acceder a Internet cambió de servicio temporal de discado vía módem a DSL dedicado o servicio por cable. Los usuarios domésticos buscan muchas de las mismas soluciones flexibles inalámbricas que buscan los trabajadores de oficina. Por primera vez, en 2005, se compraron más computadoras portátiles con Wi-Fi habilitado que computadoras personales fijas.

Además de la flexibilidad que ofrecen las WLAN, el costo reducido es un beneficio importante. Por ejemplo: con una infraestructura inalámbrica ya ubicada, se ahorra al moverse una persona dentro del edificio, al reorganizar un laboratorio, o al moverse a ubicaciones temporarias o sitios de proyectos. En promedio, el costo de IT de mover a un empleado a una nueva ubicación dentro del sitio es de $375 (USD).

3.1 CLASIFICACION DE REDES INALAMBRICAS: PAN, LAN, WAN.

LAN inalámbricas

Las LAN inalámbricas 802.11 extienden las infraestructuras LAN Ethernet 802.3 para proveer opciones adicionales de conectividad. Sin embargo, se utilizan componentes y protocolos adicionales para completar las conexiones inalámbricas.

En una LAN Ethernet 802.3 cada cliente tiene un cable que conecta el NIC del cliente a un switch. El switch es el punto en el que el cliente obtiene acceso a la red.

En una LAN inalámbrica, cada cliente utiliza un adaptador inalámbrico para obtener acceso a la red a través de un dispositivo inalámbrico como un router inalámbrico o punto de acceso. El adaptador inalámbrico en el cliente se comunica con el router inalámbrico o punto de acceso mediante señales RF. Una vez conectados a la red, los clientes inalámbricos pueden acceder a los recursos de la red como si estuvieran conectados a la red mediante cable.

Estándares de LAN inalámbricas

LAN inalámbrica 802.11 es un estándar IEEE que define cómo se utiliza la radiofrecuencia (RF) en las bandas sin licencia de frecuencia médica, científica e industrial (ISM) para la Capa física y la sub-capa MAC de enlaces inalámbricos.

Cuando el 802.11 se emitió por primera vez, prescribía tasas de datos de 1 - 2 Mb/s en la banda de 2,4 GHz. En ese momento, las LAN conectadas por cable operaban a 10 Mb/s, de modo que la nueva tecnología inalámbrica no se adoptó con entusiasmo. A partir de entonces, los estándares de LAN inalámbricas mejoraron continuamente con la edición de IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, y el borrador 802.11n.

La elección típica sobre qué estándar WLAN utilizar se basa en las tasas de datos. Por ejemplo: 802.11a y g pueden admitir hasta 54 Mb/s, mientras que 802.11b admite hasta un máximo de 11 Mb/s, lo que implica que 802.11b es un estándar "lento" y que 802.11 a y g son los preferidos. Un cuarto borrador WLAN, 802.11n, excede las tasas de datos disponibles en la actualidad. El IEEE 802.11n debe ser ratificado para septiembre de 2008. La figura compara los estándares IEEE 802.11a, b y g.

Las tasas de datos de los diferentes estándares de LAN inalámbrica están afectadas por algo llamado técnica de modulación. Las dos técnicas de modulación comprendidas en este curso son: Espectro de dispersión de secuencia directa (DSSS) y Multiplexación por división de frecuencias octagonales (OFDM). No necesita saber cómo trabajan estas técnicas para este curso, pero debe saber que cuando un estándar utilice OFDM, tendrá tasas de datos más veloces. Además, el DSSS es más simple que el OFDM, de modo que su implementación es más económica.

802.11a

El IEEE 802.11a adoptó la técnica de modulación OFDM y utiliza la banda de 5 GHz.

Los dispositivos 802.11a que operan en la banda de 5 GHz tienen menos probabilidades de sufrir interferencia que los dispositivos que operan en la banda de 2,4 GHz porque existen menos dispositivos comerciales que utilizan la banda de 5 GHz. Además, las frecuencias más altas permiten la utilización de antenas más pequeñas.

Existen algunas desventajas importantes al utilizar la banda de 5 GHz. La primera es que, a frecuencia de radio más alta, mayor es el índice de absorción por parte de obstáculos tales como paredes, y esto puede ocasionar un rendimiento pobre

del 802.11a debido a las obstrucciones. El segundo es que esta banda de frecuencia alta tiene un rango más acotado que el 802.11b o el g. Además, algunos países, incluida Rusia, no permiten la utilización de la banda de 5 GHz, lo que puede restringir más su implementación.

802.11b y 802.11g

802.11b especificó las tasas de datos de 1; 2; 5,5 y 11 Mb/s en la banda de 2,4 GHz ISM que utiliza DSSS. 802.11g logra tasas de datos superiores en esa banda mediante la técnica de modulación OFDM. IEEE 802.11g también especifica la utilización de DSSS para la compatibilidad retrospectiva de los sistemas IEEE 802.11b. El DSSS admite tasas de datos de 1; 2; 5,5 y 11 Mb/s, como también las tasas de datos OFDM de 6; 9; 12; 18; 24; 48 y 54 Mb/s.

Existen ventajas en la utilización de la banda de 2,4 GHz. Los dispositivos en la banda de 2,4 GHz tendrán mejor alcance que aquellos en la banda de 5 GHz. Además, las transmisiones en esta banda no se obstruyen fácilmente como en 802.11a.

802.11n

El borrador del estándar IEEE 802.11n fue pensado para mejorar las tasas de datos y el alcance de la WLAN sin requerir energía adicional o asignación de la banda RF. 802.11n utiliza radios y antenas múltiples en los puntos finales, y cada uno transmite en la misma frecuencia para establecer streams múltiples. La tecnología de entrada múltiple/salida múltiple (MIMO) divide un stream rápido de tasa de datos en múltiples streams de menor tasa y los transmite simultáneamente por las radios y antenas disponibles. Esto permite una tasa de datos teórica máxima de 248 Mb/s por medio de dos streams.

WAN

Una WAN es una red de comunicación de datos que opera más allá del alcance geográfico de una LAN.

Las WAN se diferencian de las LAN en varios aspectos. Mientras que una LAN conecta computadoras, dispositivos periféricos y otros dispositivos de un solo edificio u de otra área geográfica pequeña, una WAN permite la transmisión de datos a través de distancias geográficas mayores. Además, la empresa debe suscribirse a un proveedor de servicios WAN para poder utilizar los servicios de red de portadora de WAN. Las LAN normalmente son propiedad de la empresa o de la organización que las utiliza.

Las WAN utilizan instalaciones suministradas por un proveedor de servicios, o portadora, como una empresa proveedora de servicios de telefonía o una empresa proveedora de servicios de cable, para conectar los sitios de una organización entre sí con sitios de otras organizaciones, con servicios externos y con usuarios remotos. En general, las WAN transportan varios tipos de tráfico, tales como voz, datos y video.

Las tres características principales de las WAN son las siguientes:

Las WAN generalmente conectan dispositivos que están separados por un área geográfica más extensa que la que puede cubrir una LAN.

Las WAN utilizan los servicios de operadoras, como empresas proveedoras de servicios de telefonía, empresas proveedoras de servicios de cable, sistemas satelitales y proveedores de servicios de red.

Las WAN usan conexiones seriales de diversos tipos para brindar acceso al ancho de banda a través de áreas geográficas extensas.

¿Por qué son necesarias las WAN?

Las tecnologías LAN proporcionan velocidad y rentabilidad para la transmisión de datos dentro de organizaciones, a través de áreas geográficas relativamente pequeñas. Sin embargo, hay otras necesidades empresariales que requieren la comunicación entre sitios remotos, incluidas las siguientes:

Los empleados de las oficinas regionales o las sucursales de una organización necesitan comunicarse y compartir datos con la sede central.

Con frecuencia, las organizaciones desean compartir información con otras organizaciones que se encuentran a grandes distancias.

Por ejemplo, los fabricantes de software comunican periódicamente información sobre productos y promociones a los distribuidores que venden sus productos a los usuarios finales.

Con frecuencia, los empleados que viajan por temas relacionados con la empresa necesitan acceder a la información que se encuentra en las redes corporativas.

Además, los usuarios de computadoras domésticas necesitan enviar y recibir datos que recorren distancias cada vez mayores. Aquí se ofrecen algunos ejemplos:

Ahora es común en muchos hogares que los consumidores se comuniquen con bancos, tiendas y una variedad de proveedores de bienes y servicios a través de las computadoras.

Los estudiantes buscan información para las clases mediante índices de bibliotecas y publicaciones ubicadas en otras partes del país y del mundo.

Como, obviamente, no es posible conectar computadoras a nivel nacional o mundial de la misma manera en la que las computadoras de una LAN se conectan con cables, han evolucionado diferentes tecnologías para cubrir esta necesidad. Internet se está utilizando cada vez más como una alternativa económica al uso de una WAN empresarial para algunas aplicaciones. Hay nuevas tecnologías disponibles para las empresas que proporcionan seguridad y privacidad para las comunicaciones y las transacciones a través de Internet. El uso de redes WAN solas o en combinación con Internet permite a las organizaciones y a los particulares satisfacer sus necesidades de comunicaciones de área extensa.

3.2 ESTANDARES Y PROTOCOLOS DE COMUNICACIÓN: BLUETOOTH, INFRARROJO, WIFI, WIMAX.

Wi-Fi

La certificación Wi-Fi la provee la Wi-Fi Alliance (http://www.wi-fi.org), una asociación de comercio industrial global sin fines de lucro, dedicada a promover el crecimiento y aceptación de las WLAN. Apreciará mejor la importancia de la certificación Wi-Fi si considera el rol de la Wi-Fi Alliance en el contexto de los estándares WLAN.

Los estándares aseguran interoperabilidad entre dispositivos hechos por diferentes fabricantes. Las tres organizaciones clave que influencian los estándares WLAN en todo el mundo son:

ITU-R

IEEE

Wi-Fi Alliance

El ITU-R regula la asignación del espectro RF y órbitas satelitales. Éstos se describen como recursos naturales finitos que se encuentran en demanda por parte de clientes, como redes inalámbricas fijas, redes inalámbricas móviles y sistemas de posicionamiento global.

El ITU-R regula la asignación del espectro RF y órbitas satelitales. Éstos se describen como recursos naturales finitos que se encuentran en demanda por parte de clientes, como redes inalámbricas fijas, redes inalámbricas móviles y sistemas de posicionamiento global.

El IEEE desarrolló y mantiene los estándares para redes de área local y metropolitanas con la familia de estándares IEEE 802 LAN/MAN. El IEEE 802 es administrado por el comité de estándares IEEE 802 LAN/MAN (LMSC), que supervisa múltiples grupos de trabajo. Los estándares dominantes en la familia IEEE 802 son 802.3 Ethernet, 802.5 Token Ring, y 802.11 LAN inalámbrica.

A pesar de que el IEEE especificó estándares para los dispositivos de modulación RF, no especificó estándares de fabricación, de modo que las interpretaciones de los estándares 802.11 por parte de los diferentes proveedores pueden causar problemas de interoperabilidad entre sus dispositivos.

La Wi-Fi Alliance es una asociación de proveedores cuyo objetivo es mejorar la interoperabilidad de productos que están basados en el estándar 802.11, y certifica proveedores en conformidad con las normas de la industria y adhesión a

los estándares. La certificación incluye las tres tecnologías RF IEEE 802.11, así como la adopción temprana de los borradores pendientes de la IEEE, como el estándar 802.11n, y los estándares de seguridad WPA y WPA2 basados en IEEE 802.11i.

Los roles de estas tres organizaciones pueden resumirse de la siguiente manera:

El ITU-R regula la asignación de las bandas RF.

IEEE especifica cómo se modula RF para transportar información.

Wi-Fi asegura que los proveedores fabriquen dispositivos que sean interoperables.

3.3 DISPOSITIVOS Y CONFIGURACION

Dispositivos WAN

Las WAN utilizan numerosos tipos de dispositivos que son específicos para los entornos WAN, entre ellos:

Módem: modula una señal portadora analógica para codificar información digital y demodula la señal portadora para decodificar la información transmitida. Un módem de banda de voz convierte las señales digitales producidas por una computadora en frecuencias de voz que se pueden transmitir a través de las líneas analógicas de la red de telefonía pública. En el otro extremo de la conexión, otro módem vuelve a convertir los sonidos en una señal digital para que ingrese a una computadora o a una conexión de red. Los módems más rápidos, por ejemplo los módems por cable y los módems DSL, transmiten mediante el uso de frecuencias de banda ancha mayores.

CSU/DSU: las líneas digitales, por ejemplo las líneas portadoras T1 o T3, necesitan una unidad de servicio de canal (CSU, channel service unit) y una unidad de servicio de datos (DSU, data service unit). Con frecuencia, las dos se encuentran combinadas en una sola pieza del equipo, llamada CSU/DSU. La CSU proporciona la terminación para la señal digital y garantiza la integridad de la conexión mediante la corrección de errores y la supervisión de la línea. La DSU convierte las tramas de la línea Portadora T en tramas que la LAN puede interpretar y viceversa.

Servidor de acceso: concentra las comunicaciones de usuarios de servicios de acceso con marcación. Un servidor de acceso puede tener una mezcla de interfaces analógicas y digitales y admitir a cientos de usuarios al mismo tiempo.

Switch WAN: dispositivo de internetworking de varios puertos que se utiliza en redes portadoras. Estos dispositivos normalmente conmutan el tráfico, por ejemplo Frame Relay, ATM o X.25, y operan en la capa de enlace de datos del modelo de referencia OSI. Dentro de la nube también es posible utilizar switches de red pública de telefonía conmutada (PSTN, Public Switched Telephone Network) para conexiones de conmutación de circuitos, por ejemplo red digital de servicios integrados (ISDN, Integrated Services Digital Network) o conexión telefónica analógica.

Router: proporciona puertos de interfaz de internetworking y acceso WAN que se utilizan para conectarse con la red del proveedor de servicios. Estas interfaces pueden ser conexiones seriales u otras interfaces WAN. En algunos tipos de interfaces WAN se necesita un dispositivo externo, como una CSU/DSU o un módem (analógico, por cable o DSL) para conectar el router al punto de presencia (POP, point of presence) local del proveedor de servicios.

Router núcleo: router que reside en el centro o backbone de la WAN y no en la periferia. Para cumplir con esta función, el router debe soportar varias interfaces de telecomunicaciones de la mayor velocidad que se utilice en el núcleo de la WAN y debe poder reenviar los paquetes IP a la velocidad máxima por todas esas interfaces. El router también debe admitir los protocolos de enrutamiento que se utilizan en el núcleo.

COMPONENTES DE INFRAESTRUCTURA INALAMBRICOS

NIC inalámbricos

Puede que ya esté utilizando una red inalámbrica en su hogar, en un cyber café local o en la escuela a la que concurre. ¿Alguna vez se preguntó qué componentes de hardware están involucrados en su acceso inalámbrico a la red local o a Internet? En este tema, aprenderá qué componentes están disponibles para implementar las WLAN y cómo se utiliza cada uno de ellos en la infraestructura inalámbrica.

Para revisar, los componentes constitutivos de una WLAN son estaciones cliente que conectan a los puntos de acceso, que se conectan, a su vez, a la infraestructura de la red. El dispositivo que hace que una estación cliente pueda enviar y recibir señales RF es el NIC inalámbrico.

Como un NIC Ethernet, el NIC inalámbrico, utiliza la técnica de modulación para la que está configurado y codifica un stream de datos dentro de la señal RF. Los NIC inalámbricos se asocian más frecuentemente a dispositivos móviles, como computadoras portátiles. En la década de los noventa, los NIC inalámbricos para computadoras portátiles eran tarjetas que se deslizaban dentro de la ranura PCMCIA. Los NIC inalámbricos PCMCIA son todavía comunes, pero muchos fabricantes comenzaron a incorporar el NIC inalámbrico dentro de la computadora portátil. A diferencia de las interfaces Ethernet 802.3 incorporadas en las PC, el NIC inalámbrico no es visible, ya que no es necesario conectar un cable a éste.

También surgieron otras opciones a través de los años. Las computadoras personales ubicadas en una instalación existente no conectada por cable pueden tener instalado un NIC PCI inalámbrico.

Existen, además, muchas opciones USB disponibles para configurar rápidamente una computadora, ya sea portátil o de escritorio, con o sin NIC inalámbrico.

Puntos de acceso inalámbricos

Un punto de acceso conecta a los clientes (o estaciones) inalámbricas a la LAN cableada. Los dispositivos de los clientes, por lo general, no se comunican directamente entre ellos; se comunican con el AP. En esencia, un punto de acceso convierte los paquetes de datos TCP/IP desde su formato de encapsulación en el aire 802.11 al formato de trama de Ethernet 802.3 en la red Ethernet conectada por cable.

En una infraestructura de red, los clientes deben asociarse con un punto de acceso para obtener servicios de red. La asociación es el proceso por el cual un cliente se une a una red 802.11. Es similar a conectarse a una red LAN conectada por cable. La asociación se discute en temas posteriores.

Un punto de acceso es un dispositivo de Capa 2 que funciona como un hub Ethernet 802.3. La RF es un medio compartido y los puntos de acceso escuchan todo el tráfico de radio (frecuencia). Al igual que con el Ethernet 802.3, los dispositivos que intentan utilizar el medio compiten por él. A diferencia de los NIC Ethernet, sin embargo, es costoso realizar NIC inalámbricos que puedan transmitir y recibir información al mismo tiempo, de modo que los dispositivos de radio no detectan colisiones. En cambio, los dispositivos WLAN están diseñados para evitarlos.

CSMA/CA

Los puntos de acceso supervisan una función de coordinación distribuida (DCF) llamada Acceso múltiple por detección de portadora con prevención de colisiones (CSMA/CA). Esto simplemente significa que los dispositivos en una WLAN deben detectar la energía del medio (estimulación de la RF sobre cierto umbral) y esperar hasta que éste se libere antes de enviar. Dado que se requiere que todos los dispositivos lo realicen, se distribuye la función de coordinar el acceso al medio. Si un punto de acceso recibe información desde la estación de un cliente, le envía un acuse de recibo para confirmar que se recibió la información. Este acuse de recibo evita que el cliente suponga que se produjo una colisión e impide la retransmisión de información por parte del cliente.

Routers inalámbricos

Los routers inalámbricos cumplen el rol de punto de acceso, switch Ethernet y router. Por ejemplo: los Linksys WRT300N utilizados son en realidad tres dispositivos en una caja. Primero está el punto de acceso inalámbrico, que cumple las funciones típicas de un punto de acceso. Un switch integrado de cuatro puertos full-duplex, 10/100 proporciona la conectividad a los dispositivos conectados por cable. Finalmente, la función de router provee un gateway para conectar a otras infraestructuras de red.

El WRT300N se utiliza más frecuentemente como dispositivo de acceso inalámbrico en residencias o negocios pequeños. La carga esperada en el dispositivo es lo suficientemente pequeña como para administrar la provisión de WLAN, 802.3 Ethernet, y conectar a un ISP.

Parámetros configurables para los puntos finales inalámbricos

La figura muestra la pantalla inicial para la configuración inalámbrica en un router Linksys inalámbrico. Varios procesos deben tener lugar para crear una conexión entre cliente y punto de acceso. Debe configurar los parámetros en el punto de acceso y, posteriormente, en el dispositivo de su cliente, para permitir la negociación de estos procesos.

El modo de red inalámbrica se remite a los protocolos WLAN: 802.11a, b, g, o n. Dado que 802.11g es compatible con versiones anteriores de 802.11b, los puntos de acceso admiten ambos estándares. Recuerde que si todos los clientes se conectan a un punto de acceso con 802.11g, se beneficiarán con las mejores velocidades de transmisión de datos. Cuando los clientes 802.11b se asocian con el punto de acceso, todos los clientes más veloces que se disputan el canal deben esperar que los clientes en 802.11b lo despejen antes de poder transmitir. Cuando un punto de acceso Linksys se configura para permitir clientes de 802.11b y 802.11g, opera en modo mixto.

Para que un punto de acceso admita tanto el 802.11a como los 802.11b y g, deberá tener una segunda radio para operar en la banda RF diferente.

Un identificador de servicio compartido (SSID) es un identificador único que utiliza los dispositivos cliente para distinguir entre múltiples redes inalámbricas cercanas. Varios puntos de acceso en la red pueden compartir un SSID. La figura muestra un ejemplo de los SSID que se distinguen entre las WLAN, cada uno de los cuales puede ser alfanumérico, con entrada de 2 a 32 caracteres de longitud, con distinción entre mayúsculas y minúsculas.

El estándar IEEE 802.11 establece el esquema de canalización para el uso de las bandas ISM RF no licenciadas en las WLAN. La banda de 2,4 GHz se divide en 11 canales para Norteamérica y 13 canales para Europa. Estos canales tienen una separación de frecuencia central de sólo 5 MHz y un ancho de banda total (u ocupación de frecuencia) de 22 MHz. El ancho de banda del canal de 22 MHz combinado con la separación de 5 MHz entre las frecuencias centrales significa que existe una superposición entre los canales sucesivos.

Las optimizaciones para las WLAN que requieren puntos de acceso múltiple se configuran para utilizar canales no superpuestos. Si existen tres puntos de acceso adyacentes, utilice los canales 1, 6 y 11. Si sólo hay dos, seleccione dos canales cualesquiera con al menos 5 canales de separación entre ellos, como el canal 5 y el canal 10. Muchos puntos de acceso pueden seleccionar automáticamente un canal basado en el uso de canales adyacentes. Algunos productos monitorean

continuamente el espacio de radio para ajustar la configuración de canal de modo dinámico en respuesta a los cambios del ambiente.

Asociación punto de acceso y cliente

Una parte clave del proceso de 802.11 es descubrir una WLAN y, luego, conectarse a ella. Los componentes principales de este proceso son los siguientes:

Beacons - Tramas que utiliza la red WLAN para comunicar su presencia.

Sondas - Tramas que utilizan los clientes de la WLAN para encontrar sus redes.

Autenticación - Proceso que funciona como instrumento del estándar original 802.11, que el estándar todavía exige.

Asociación - Proceso para establecer la conexión de datos entre un punto de acceso y un cliente WLAN.

El propósito principal de la beacon es permitir a los clientes de la WLAN conocer qué redes y puntos de acceso están disponibles en un área dada, permitiéndoles, por lo tanto, elegir qué red y punto de acceso utilizar. Los puntos de acceso pueden transmitir beacons periódicamente.

Aunque las beacons pueden transmitirse regularmente por un punto de acceso, las tramas para sondeo, autenticación y asociación se utilizan sólo durante el proceso de asociación (o reasociación).

Proceso conjunto 802.11 (Asociación)

Antes de que un cliente 802.11 pueda enviar información a través de una red WLAN, debe atravesar el siguiente proceso de tres etapas:

Etapa 1 - Sondeo de 802.11

Los clientes buscan una red específica mediante un pedido de sondeo a múltiples canales. El pedido de sondeo especifica el nombre de la red (SSID) y las tasas de bit. Un cliente típico de WLAN se configura con el SSID deseado, de modo que los pedidos de sondeo del cliente WLAN contienen el SSID de la red WLAN deseada.

Si el cliente WLAN sólo quiere conocer las redes WLAN disponibles, puede enviar un pedido de sondeo sin SSID, y todos los puntos de acceso que estén configurados para responder este tipo de consulta, responderán. Las WLAN con la característica de broadcast SSID deshabilitada no responderán.

Etapa 2 - Autenticación 802.11

802.11 se desarrolló originalmente con dos mecanismos de autenticación. El primero, llamado autenticación abierta, es fundamentalmente una autenticación NULL donde el cliente dice "autentícame", y el punto de acceso responde con "sí". Éste es el mecanismo utilizado en casi todas las implementaciones de 802.11.

Un segundo mecanismo de autenticación se basa en una clave que es compartida por la estación del cliente y el punto de acceso llamado Protección de equivalencia por cable (cable WEP). La idea de la clave WEP compartida es que le permita a una conexión inalámbrica la privacidad equivalente a una conexión por cable, pero cuando originalmente se implementó este método de autenticación resultó deficiente. A pesar de que la clave de autenticación compartida necesita estar incluida en las implementaciones de cliente y de punto de acceso para el cumplimiento general de los estándares, no se utiliza ni se recomienda.

Etapa 3 - asociación 802.11

Esta etapa finaliza la seguridad y las opciones de tasa de bit, y establece el enlace de datos entre el cliente WLAN y el punto de acceso. Como parte de esta etapa, el cliente aprende el BSSID, que es la dirección MAC del punto de acceso, y el punto de acceso traza un camino a un puerto lógico conocido como el identificador de asociación (AID) al cliente WLAN. El AID es equivalente a un puerto en un switch. El proceso de asociación permite al switch de infraestructura seguir la pista de las tramas destinadas para el cliente WLAN, de modo que puedan ser reenviadas.

Una vez que un cliente WLAN se asoció con un punto de acceso, el tráfico puede viajar de un dispositivo a otro.

3.4 MECANISMOS Y PROTOCOLOS DE SEGURIDAD: WEP, WAP, PA, PSK, WEP2, FILTRADO DE MACs.