104
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Phylogenetic diversity of bird assemblages along different land-use gradients: regional and continental analysis Margarida Ladeira Felício Gonçalves Dissertação Mestrado em Biologia da Conservação 2013

UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

  • Upload
    vunhu

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE BIOLOGIA ANIMAL

Phylogenetic diversity of bird assemblages along different land-use

gradients: regional and continental analysis

Margarida Ladeira Felício Gonçalves

Dissertação

Mestrado em Biologia da Conservação

2013

Page 2: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE BIOLOGIA ANIMAL

Phylogenetic diversity of bird assemblages along different land-use

gradients: regional and continental analysis

Margarida Ladeira Felício Gonçalves

Dissertação orientada por Professor Dr. Roland Brandl, Departamento de

Ecologia,Phillips-Universität Marburg e Professor Dr. Carlos Fernandes, Departamento

de Biologia Animal, FCUL

Mestrado em Biologia da Conservação

2013

Page 3: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

Dedicatória

À minha mãe.

Embora ausente, o teu amor é a minha força, iluminando o meu

caminho.

Page 4: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

Thankful note/Agradecimentos

Primarily I would like to thank PhD Prof. Roland Brandl from Philipps-

Universität Marburg for accepting me as his Master student, accompanying me

and teaching me throughout my ERASMUS placement. For his patience, total

availability, tolerance and dedication put upon my work.

To his workgroup, a special thanks to Eugene Egorov for all the patience,

data and information provided and to Maike Franzen for all the co-work,

company and friendship.

Um agradecimento ao Prof. Dr. Carlos Fernandes, da FCUL, por me ter

aceitado como sua orientanda, pela disponibilidade e dedicação, sobretudo nos

últimos meses de trabalho.

À sua equipa, queria agradecer pessoalmente ao André Silva pela

disponibilidade e prontidão.

Ao meu Pai, pela força, esperança e amor. Por acreditar sempre em mim

e no meu trabalho.

Aos meus irmãos, sobrinhos, cunhados e tios-avós pela força, apoio e

preocupação.

A todos os meus amigos que sempre me apoiaram.

Page 5: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

Contents

Summary ............................................................................................................ 1

Resumo .............................................................................................................. 3

1. Introduction .................................................................................................. 7

1.1 Phylogenetic diversity and conservation ............................................... 7

1.2 Processes structuring assemblages ...................................................... 8

1.3 Effect of anthropogenic land-use on phylogenetic diversity................... 9

1.3.1 Agriculture .................................................................................... 10

1.3.2 Urbanization.................................................................................. 11

1.4 Aims .................................................................................................... 12

2. Methods ..................................................................................................... 14

2.1 Data collection ..................................................................................... 14

2.2 Phylogeny ........................................................................................... 15

2.3 Spatial distribution of species .............................................................. 16

2.4 Phylogenetic structure of assemblages ............................................... 16

2.5 Effects of anthropogenic land-use on phylogenetic diversity ............... 17

2.5.1 Definition of land-use, bioclimatic and trait variables .................... 17

2.5.2 Generalized Additive Models ........................................................ 22

3. Results ....................................................................................................... 25

3.1 Spatial distribution of species .............................................................. 25

3.2 Phylogenetic structure of assemblages ............................................... 26

3.3 Effects of anthropogenic land-use on phylogenetic diversity ............... 26

4. Discussion ................................................................................................. 41

4.1 Spatial distribution and phylogenetic structure of assemblages .......... 41

4.2 Anthropogenic land-use impact ........................................................... 42

4.3 Implications for conservation ............................................................... 48

5. References ................................................................................................ 50

6. Appendix .................................................................................................... 59

Page 6: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

1

Summary

Land-use intensification leads to the transformation of natural habitats

into antrhopogenic ones, such as farmland and meadows or, in its widest

sense, into urban areas. These habitats act as environmental filters, selecting

only those species whose traits enables them to survive, and although a

potential species richness increase, such species belong only to a set of a few

lineages. Following an evolutionary conservative approach, it is thus expected a

decrease of phylogenetic diversity of assemblages with increasing amount of

transformed habitats.

The present study evaluates the phylogenetic diversity (mean

phylogenetic and mean nearest neighbour distance) of native breeding bird

assemblages, considering the impact of land-use at regional and continental

scale, using Generalized Additive Models (GAMs); species richness was used

for comparative reasons only. Regionally, across Bavaria, it was used

presence/absence maps within 34 km2 grids and different land-use types; in a

European-wide study it was analysed which factors contribute to this

assemblage composition, in general and which of them differ between natural

and antrhopogenic sites.

Overall it was found that the occurrence of bird species is driven by

habitat filtering and not competition, regardless the scale of analysis. Within

regional analysis although species richness increased with increasing

percentage of anthropogenic land-use, both measures of phylogenetic diversity

showed an overall decrease. For European-wide analysis, overall diversity was

positivivelly related to area and climate. Natural and anthropogenic sites show

Page 7: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

2

no significant differences, except only for species richness regarding body mass

(g) and percentage of insectivores.

In a world where urbanization is increasing at an exponential rate it is

important to analyse and recognize what processes and which factors

contribute the most for shaping animal assemblages. These results confirm the

elevated impact that anthropogenic habitats, especially urban areas, have upon

shaping bird assemblages, acting as strong environmental filters, with a

powerful evolutionary force.

Key-words: phylogenetic structure, habitat filtering, urbanization, Generalized

Additive Models

Page 8: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

3

Resumo

A diversidade filogenética foi primariamente aplicada ao estudo da

conservação, sendo que as espécies prioritárias eram seleccionadas com base

na sua taxonomia. Hoje-em-dia, a importância da aplicação desta medida de

biodiversidade extende-se também ao estudo das comunidades, promovendo o

conhecimento dos processos evolutivos que levam à composição da sua

estrutura filogenética, bem como da interacção existente entre as espécies

constituintes. Dois processos são vistos como centrais nesta temática: (1)

exclusão competitiva entre espécies que limita a sua coexistência a longo

prazo; e (2) filtragem ambiental de espécies que persistem numa comunidade

devido à sua tolerância a factores abióticos. O primeiro processo leva a uma

sobre-dispersão filogenética, que tende a limitar a coexistência de espécies

relacionadas entre si, conduzindo a uma diversidade filogenética superior à

esperada sob condições aleatórias de estrutura comunitária. Pelo contrário, o

segundo processo leva a um agrupamento filogenético, no qual espécies

relacionadas tendem a coexistir e a diversidade filogenética revela-se menor

que o esperado.

A intensificação do uso-da-terra tem, nas últimas décadas, levado à

transformação do ambiente em habitats antropogénicos, nomeadamente em

terrenos agrícolas e de pastoreio, ou num sentido mais extremo, em áreas

urbanas. É do conhecimento geral que tais habitats altamente modificados

actuam como filtros ambientais, selecionando apenas algumas espécies com

determinadas características que lhes permitem sobreviver e que pertencem

assim, a apenas deteterminadas linhagens. Seguindo um contexto evolutivo

Page 9: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

4

conservacionista espera-se que, em áreas antropogénicas as espécies tendam

a coexistir, levando à diminuição da diversidade filogenética, mesmo quando

um aumento da riqueza específica se poderá também verificar.

Como tal, o presente estudo avalia a diversidade filogenética de

comunidades de aves nativas nidificantes, considerando o impacte do uso-da-

terra, tanto a nível regional como a nível continental. A diversidade filogenética

foi calculada usando duas medidas diferentes: distância filogenética média,

mais sensível a padrões que se verificam a nível geral, em toda a árvore; e a

distância média ao vizinho mais próximo, mais sensível a padrões que ocorrem

nas extremidades da árvore filogenética. Para a análise foram usados modelos

estatísticos, nomeados Modelos Aditivos Generalizados (GAMs), nos quais a

função de ligação dos Modelos Lineares é substituída por uma função não

paramétrica, estimada através de curvas de alisamento que permitem

descrever a forma da função e revelar possíveis não linearidades nas relações

estudadas. A riqueza específica foi também incorporada, apenas para termos

comparativos.

Regionalmente, o estudo foi efectuado no estado alemão da Baviera,

usando dados de presença/ausência de espécies, recolhidos entre 1996 e

1999 em mapas com grelhas de cerca de 34 km2 e testando a influência da

percentagem de diferentes tipos de uso-da-terra. A nível continental, foram

usados estudos de presença/ausência documentados em vinte-e-dois países

europeus entre 1973 e 2008, testando a influência da área de estudo e

variação temporal na comunidade de aves europeias, bem como os diferentes

factores que contribuem para a composição desta comunidade, em geral e os

Page 10: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

5

que induzem a possíveis disparidades que se observam na composição entre a

comunidade existente em ambientes naturais e a comunidade antropogénica.

Os resultados provenientes da distribuição espacial das espécies

demostram que a ocorrência das espécies de aves analisadas é determinada

por filtragem ambiental e não exclusão competitiva, independentemente da

escala analisada. Isto leva a um processo de agrupamento filogenético e a uma

menor diversidade filogenética do que seria de esperar sob condições neutrais.

Na Baviera, como esperado, apesar de registado um aumento da riqueza

específica com o aumento da percentagem de todos os tipos de uso-de-terra

definidos, foi igualmente verificado um decréscimo da diversidade filogenética,

para ambas as medidas calculadas. A nível europeu a riqueza específica e

ambas as medidas de diversidade filogenética foram positivamente

relacionadas com o aumento da área de estudo e clima, nomeadamente o

aumento da temperatura. Contrariamente ao esperado, não foram detectadas

diferenças significativas a nível filogenético entre ambientes naturais e

antropogénicos; estas diferenças só ocorreram para a riqueza específica

relativamente a duas variáveis: massa corporal (g) e percentagem de espécies

insectívoras.

Estes resultados mostram, primariamente, a importância de incorporar

não só diversas medidas de diversidade, bem como diferentes escalas de

observação em estudos relativos à análise e gestão de comunidades. Mostram

também o impacte que diferentes tipos de uso-da-terra, nomeadamente zonas

urbanas, têm na organização e estruturação destas comunidades, actuando

como ambientes filtradores que seleccionam as espécies com características

que lhes permitem sobreviver e adaptar à presença constante do Homem. A

Page 11: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

6

nível europeu, os resultados enfatizam a importância que áreas contínuas e de

grande dimensão têm na gestão das comunidades de aves, sobretudo em

zonas com condições climáticas favoráveis à reprodução e nidificação destas

espécies, como por exemplo, em países do sul da Europa. Contrariamente ao

esperado, não foram detectadas diferenças significativas entre comunidades

europeias naturais e antropogénicas, no espaço temporal analisado; apenas

foram detectadas diferenças em relação à riqueza específica, com maior

número de espécies de menores dimensões e aumento do número de espécies

com uma maior percentagem de aves insectívoras em zonas antropogénicas. A

longo prazo, este processo selectivo poderá levar a um fenómeno de

homogeneização biótica, intimamente ligado à perda de biodiversidade a nível

global.

Este estudo promove, assim, a aplicação de acções de gestão que

mantenham as espécies existentes e que aumentem a diversidade filogenética

das comunidades analisadas, podendo os resultados ser abrangidos a outras

regiões com características semelhantes, assim como a outros taxa existentes.

Num futuro onde a urbanização crescerá a níveis exponenciais, é importante

perceber as condições que estes habitats proporcionam e o potencial oferecido

em termos de biodiversidade.

Palavras-chave: estrutura filogenética, filtragem ambiental, urbanização,

Modelos Aditivos Generalizados

Page 12: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

7

1. Introduction

1.1 Phylogenetic diversity and conservation

Understanding the mechanisms and processes that shape the

distribution of phylogenetic diversity along environmental gradients can become

crucial to the study of the potential effects of global change, identification of

vulnerable ecosystems or species and the proposal of meaningful conservation

measures to mitigate the current diversity crisis (Winter et al. 2013). Successful

conservation strategies should thus retain as large an amount of phylogenetic

diversity as available resources permit (Faith et al. 2004) and this parameter

can be targeted directly into conservation planning (Rodrigues & Gaston 2002;

Rolland et al. 2012).

Faith (1992) was among the first researcher that quantified phylogenetic

diversity (PD) as the cumulative length of the branches connecting the root of

the phylogenetic tree, representing the common ancestral lineage, to the

evolving tips, represented by species. Phylogenetic branch lengths are a

continuous metric of relatedness and this measure was primarily applied to

conservation, where the priority taxa to be protected reflected a certain value of

biodiversity (Minh et al. 2006). With the increasing availability of phylogenetic

information it is now possible to develop more sophisticated methods to infer

processes that structure the composition of species assemblages at different

scales (Pavoine et al. 2005; Webb et al. 2002).

Conservation research has been primarily focused on a global-scale of

phylogenetic diversity loss; however the loss of PD at smaller spatial scales is

Page 13: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

8

of equal concern, since losing diversity at any scale can lead to a reduced

potential for assemblages to respond to changing environmental conditions,

through a reduction of genetic diversity (Morlon et al. 2011). Also, assemblages

share a greater fraction of PD than species, suggesting that single isolated

areas can be more efficient at preserving phylogenetic diversity than species

richness (Swenson 2009).

1.2 Processes structuring assemblages

Species’ features are known to influence their interaction with other

species and with the environment. If, on the one hand, phylogenetically closely

related species are ecologically similar and therefore tend to co-occur, it is also

expected that related species compete with each other, which constrains their

coexistence (Losos 2008). In this way, depending on scale, bird assemblages

are structured by a series of processes that can range from neutral or niche-

based processes at small scales to speciation and global extinction at larger

scales (Cavender-Bares et al. 2009). Such processes are expected to leave a

distinct signal in the phylogenetic structure of assemblages (Cadotte et al.

2010) since ecologically similar species also tend to be phylogenetically related

and therefore ecological factors of assembly composition are reflected in

phylogenetic patterns (Helmus et al. 2007).

Niche-based processes may be divided into competitive interactions and

environmental filtering. Assuming that phylogenetically related species occupy

similar niches, competitive interactions should lead to assemblages in which

species are phylogenetically less related (phylogenetic overdispersion) whereas

Page 14: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

9

environmental filtering should lead to assemblages in which species are

phylogenetically more related (phylogenetic clustering) when compared to

assemblages solely structured by neutral processes (Burns & Strauss 2011;

Emerson & Gillespie 2008; Kluge & Kessler 2011).

About 60 years ago researchers started to use the species to genus ratio

as a simple measure of phylogenetic structure to search for competitive

interactions, a niche-based process (Elton 1946). These competitive

interactions should be particularly important between closely related species

and therefore assemblages structured by competition should lead to a lower

species to genus ration than expected by chance (Mayfield & Levine 2010).

The importance of the various processes that structure a community

depends on spatial (and temporal) scale (Devictor et al. 2010). By previous

studies (Vamosi et al. 2009) it is known that competitive interactions may

become important on small scales whereas habitat filtering may be important on

larger scales. Nevertheless, in a recent study (Gotelli et al. 2010) it has been

shown for birds across Denmark, that competitive interactions leave a signal in

the co-occurrence of species analysed on a grain size up to four orders of

magnitude larger than the territory size, slightly contradicting previous

statements.

1.3 Effect of anthropogenic land-use on phylogenetic diversity

Beside biotic processes, the most important determinant of specie’s

distribution is the scattering of habitat across a landscape (Franklin 2009;

Peres-Neto et al. 2012). Furthermore, the characteristics, distribution and area

Page 15: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

10

of the various habitats are influenced by human activities, thereby changing the

habitat that is available for the species across that landscape (Butler et al.

2010).

Anthropogenic land-use, defined as special human created habitats,

such as farmland, meadows and urban areas, covers growing proportions of the

global landscape (Filippi-Codaccioni et al. 2010). Particularly, agriculture and

urbanization lead to fragmentation of natural areas, offering a set of special

conditions for birds and other wildlife species by modifying processes like

predation, interspecific competition and diseases, which structure bird

assemblages. Only a subset of species may be able to cope with such special

conditions (Alberti 2005). Consequently, one of the most recognized

disturbances that may lead to niche-based processes in assemblages is human

changed land-cover and land-use (Fuller & Gaston 2009). However, it is also

known that anthropogenic habitats can accommodate an astonishingly rich flora

and fauna, which can achieve large population sizes (Chiari et al. 2010; Hole et

al. 2005; Rodewald & Shustack 2008).

1.3.1 Agriculture

Agriculture is considered the most important type of land use in Europe;

however, nowadays it is also acknowledge that agricultural intensification is the

major cause of decline in the abundance and diversity of bird species in this

continent since the 1970’s (Donald et al. 2001). This intensification has led to

the fragmentation and simplification of habitat, with increasing monocultures

and fewer non-cultivated land, due to increased use of agrochemicals and

Page 16: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

11

machinery, which reduces food and nest availability for birds (Batáry et al. 2007;

Belfrage et al. 2005).

Nevertheless, a range of birds are still known to depend on agricultural

land, especially in winter (Atkinson et al. 2005) and more than 50% of the

existing habitats in Europe occur in farmland (Söderström et al. 2001),

supporting more bird species of conservation concern than any other habitat

type (Wilson et al. 2005). This is possible because throughout European

countries one can find different farming systems and management practices

[e.g. organic vs. conventional farming (Darnhofer et al. 2010; Fuller et al. 2005);

set-aside land (Buskirk & Willi 2004); and agri-environment schemes (Donald &

Evans 2006)], which result in a vast spectrum of specie’s responses (Reidsma

et al. 2006).

1.3.2 Urbanization

Urbanization is a complex process of land conversion and it is now

considered the fastest growing land-cover type, showing an exponential growth

in Europe since the end of the 19th century (Antrop 2004). This process affects

bird species through profound and permanent changes in the habitat (Bowman

& Marzluff 2001).

However, much like agriculture, cities may also benefit birds through

higher resource abundance, lower predator pressure (Jokimäki & Huhta 2000;

Shochat et al. 2010), ameliorated climatic conditions, increased water

availability and increased habitat availability that results from edge effects and

ornamental vegetation (Marzluff 2005). Therefore, considered at the landscape

Page 17: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

12

scale, cities may have a positive effect on species richness (Kühn et al. 2004;

Mehr et al. 2011), especially due to an increasing adaptation from exotic

species (Loss et al. 2009).

1.4 Aims

In a previous study, Pfeifer et al. (2009) evaluated bird species

assemblages across Bavaria and discovered that species richness increased

with increasing proportion of anthropogenic habitats, such as cities or industrial

areas, when species richness was evaluated on a grain of approximately 34

km2. Similarly, a study on bats for the same area found also an increase of

species richness with increasing percentage of anthropogenic habitats; however

a decrease of phylogenetic relatedness between species (Riedinger et al.

2013). This leads to the idea that such modified habitats may have contrasting

effects on species richness and phylogenetic diversity.

Following this, the main goal of the present study is to understand what

phylogenetic signals anthropogenic habitats leave on native breeding bird

assemblages, when focusing on different scales. At the regional scale across

Bavaria on a grain of 34 km2 and by using broad habitat types, labelled land-

cover types; at the continental scale across Europe, along a spatial and

temporal gradient, using a grain from 1.04 and 108 333 km2 during thirty-five

years, and also testing which factors contribute to significant differences

between natural and anthropogenic assemblages.

More specifically it aims to 1) test the hypothesis that competitive

interactions influence the distribution of native breeding bird species across

Page 18: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

13

Bavaria, in particular and Europe, in general; 2) evaluate the phylogenetic

structure of both assemblages, determining if they are more (phylogenetic

clustering) or less related (phylogenetic overdispersion) than expected when

compared with an assemblage structured by neutral processes; 3) test the

hypothesis of an expected decrease of phylogenetic diversity with increasing

proportion of anthropogenic habitats at regional scale; 4) evaluate wich factors

contribute to the phylogenetic structure of European’s bird assemblage in

general; and 5) test the hypothesis that natural and antrhopogenic areas within

Europe present significant differences regarding some or all of these factors.

Page 19: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

14

2. Methods

2.1 Data collection

Data collection was performed differently for both parts of the study,

since they differ in the scale of analysis. Both regional and continental studies

were thought considering the information available for bird community ranges

and data resolution concerning land-use types, climate and ecological variables.

Regional analysis was performed in Bavaria, a federal state in the south

east of Germany, covering an area of 70 547.82 km², half of which is classified

as agricultural land. Annual mean temperature varies from 14.4 ˚C and 2.1 ˚C

and mean annual precipitation between 850 mm and 1000 mm (Bezzel et al.

2005). Bird’s distribution originated from the same mapping project used by

Pfeifer et al. (2009), using grid maps with information recorded between 1996

and 1999 collected by Bavaria’s Environmental State Secretary, Ornithology

Station Garmisch-Partenkirchen (Bezzel et al. 2005). Each grid covered an

average area of 33.9 km2 (minimum 32.9 km2; maximum 35.1 km2), and only

grids fully within the Bavarian borders were used (1927 grid cells out of a total

of 2285 – Appendix A). The presence/absence of native breeding bird species

was recorded across these grids and only those who represented > 5% of total

observations were used for the analysis, with the exception of those whose

genera wasn’t represented yet, so that all genera recorded were present in the

data (in total 157 species - Appendix B).

Continental analysis was achieved with a total of 127 studies reporting

the presence/absence of bird species from 22 European countries collected

Page 20: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

15

between 1973 and 2008 (Appendix C). Species were only selected if

considered native and breeding within the country where they were present.

Studies were categorized according to the level of human impact/urbanization

of the site where they were performed: pristine sites to small fields, including

several types of habitats (e.g. mountains, river sides and forests) were

classified as Natural (80 studies); agricultural areas and villages with more than

1 000 inhabitants to capital cities were classified as Anthropogenic areas (47

studies). Species selection was the same as for Bavaria: only species with more

than 5% of total observations were used for the analysis, with the exception of

those whose genera wasn’t represented yet, so that all genera recorded were

present in the data (in total 297 species - Appendix D).

2.2 Phylogeny

The basis for the evaluation of phylogenetic relatedness within

assemblages was a phylogeny retrieved from a global phylogeny of birds (Jetz

et al. 2012b). For both assemblages studied it was obtained a phylogeny

corresponding to the species sampled in each matrix data, after the following

process. First, for the species recorded in each assembalge a set with 100

phylogenies was retrieved from www.birstree.org using the Ericson All Species

Source Tree [10 000 trees covering 9 993 species each (Jetz et al. 2012a)]. For

each tree a distance matrix was calculated between species using the function

distTips in the add-on package adephylo in R (Jombart 2013) and after, the

mean distance across all 100 matrices. These matrices constitute an estimate

of the phylogenetic distance between species and the distance was about twice

Page 21: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

16

to the common ancestor. The final tree for each phylogeny (Appendix E & F)

constituted the hierarchical cluster analysis of the previous calculated mean,

using the un-weighted average linkage algorithm.

2.3 Spatial distribution of species

In order to test the hypothesis that competitive interactions influence the

distribution of species for both assemblages, it was used the function

comm.phylo.cor in the add-on package picante in R (Kembel 2010) with 999

randomizations to evaluate significance. This function characterizes the

distributional overlap across a community, checking for a correlation between

co-occurrence patterns of species and phylogenetic distance between them.

This index is based upon Schoener’s index, originally used to measure

overlap in habitat use or diet (Schoener 1970). An index of 0 indicates that two

species never occur together in the same grid and an index of 1 indicates that

the two species always occur together. Other available indexes were used

(Jaccard, Checkerboard and DOij indexes), since they only differ by the way co-

occurrence is estimated and therefore provide almost the same results (Hardy

2008).

2.4 Phylogenetic structure of assemblages

After this, and also using the add-on package picante in R, it was

evaluated the phylogenetic structure of the assemblages, using the matrix of

average phylogenetic distance and by calculating the standardized effect size of

Page 22: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

17

the mean phylogenetic distance (SESMPD) and of the mean nearest neighbour

distance (SESMNTD), whose functions are as follows:

( )

where index.obs is, respectively, the observed mean phylogenetic distance or

mean nearest neighbour distance in communities; index.rand.mean is the mean

distance calculated from a null model and index.rand.st is the standard

deviation of the index across null communities. Values < 0 indicate phylogenetic

under-dispersion (clustering) whereas values > 0 indicate phylogenetic over-

dispersion. The null model was obtained by reshuffling species names across

the tips of the phylogeny, using 999 runs. This model keeps the occurrence, as

well as recorded number of species within grids unchanged.

2.5 Effects of anthropogenic land-use on phylogenetic diversity

2.5.1 Definition of land-use, bioclimatic and trait variables

To test for the hypothesis of a decrease phylogenetic diversity with

increasing proportion of anthropogenic land-use types at regional scale and

evaluate the factors that contribute to European assemblage as well as for

differences between natural and antrhopogenic sites, it was analysed the

response of the effect size of the mean phylogenetic distance as well as the

effect size of the mean nearest neighbour distance to different land-use

variables and both area and time variation. It was also analysed the response of

Page 23: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

18

space (Latitude and Longitude), bioclimatic and trait variables as control. This

process was achieved using Generalized Additive Models – GAMs.

For Bavaria, it was used the same land-use (habitat) and climate data as

both Pfeifer et al. (2009) and Riedinger et al. (2013). Data included one set that

characterized the climate, extracted from the 19 bioclimatic variables available

in WorldClim (http://www.worldclim.org) using a spatial resolution of 30

seconds. The second set of data consisted of percentages of area covered by

broad habitat types in each grid and its location (Latitude and Longitude). This

land-cover was derived from the land-cover classes after the European wide

mapping project CORINE (Coordinated Information of the European

Environment), which uses LANDSAT-7 satellite images (scale 1:100 000)

collected in 2000 (http://www.corine.dfd.dlr.de). Several classes were grouped

into seven broad land-use types (Table 1), which were used in subsequent

analysis. Both data sets were read into ArcGis 10.2.

For continental analysis each study was characterized by both a spatial

compoent, representing the dimension of the study-area in km2, with a minimum

area of 1.04 km2 and a maximum area of 108 333 km2 and a temporal

component, represented by the average year of each study, along thirty-five

years. Land-use was performed by quantatively selecting the study-site as

natural or anthropogenic, as mentioned earlier and climate was analysed using

only 4 of the 19 bioclimatic variables from WordClim, since only these were

thought to best define the seasonality differences that occur intra-continent

(bio5, bio6, bio13 and bio14). Climate data was also read into ArcGis 10.2.

Page 24: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

19

Table 1. Land-use types formed from the CORINE land-cover classes. For each class it was

given the code used by the CORINE web site.

Land-use types Code CORINE land-cover classes

Farmland

211 Non-irrigated arable land

221 Vineyards

222 Fruit trees and berry plantations

Meadow

231 Pastures

243 Agricultural land with areas of natural vegetation

321 Natural grassland

Wetland

322 Moors and heathland

411 Inland marshes

412 Peat bogs

331 Beaches, dunes, sand

511 Water courses

512 Water bodies

Deciduous forest 311 Broadleaf forest

Coniferous forest 312 Coniferous forest

Mix forest 313 Mix forest

Anthropogenic habitats

121 Industrial, commercial and public units

124 Airport

131 Mineral extraction sites

132 Dump sites

111 Continuous urban fabric

112 Discontinuous urban fabric

123 Port areas

133 Construction sites

141 Green urban areas

142 Sport and leisure facilities

122 Road and rail networks and associated land

For both assemblages it was also added a trait set characterizing

biological variables for each species analysed, including body mass (g), trophic

niche, clutch size (Cramp et al. 1994; Dunning 1993) and population size

Page 25: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

20

(retrieved from http://www.iucnredlist.org and http://birdlife.org) since all of them

contribute for specie’s sensitivity to human impact and consequent priority for

management planning. All of these variables, although specie’s specific were

converted into assembalge based, in order to minimize within site/study

variation due to specie’s trait differences. This was accomplished by calculating

the logarithmic mean of body mass (g), clutch size (per year) and population

size (pairs x 10000), averaged across all species that were present on each site

or study and average percentage of species with each diet category (e.g.

carnivores) (Table 2 & 3).

Table 2. Trait variables analyse for Bavarian assemblage. SD stands for standard deviation;

also included the 25% and 97.5% range of each trait sample.

Bavaria

Mean ± SD 25% 97.5%

Body mass (g) 48.36 ± 9.446 42.439 67.046

% Carnivores 9.890 ± 2.899 7.828 15.058

% Insectivores 44.46 ± 3.629 42.169 51.341

% Omnivores 27.17 ± 3.223 25 34.311

% Piscivores 1.583 ± 1.380 0 4.440

% Granivores 16.890 ± 2.605 15.068 22.346

% Scavengers 0.295 ± 0.605 0 1.754

Clutch size (year) 5.980 ± 0.228 5.835 6.456

Population size (pairs x 1000) 4.083 ± 1.720 3.421 6.365

Page 26: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

21

Table 3. Trait variables analyse for natural and anthropogenic sites within European-wide

assemblage. SD stands for standard deviation; also included the 25% and 97.5% range of

each trait sample.

Since the bioclimatic set contained a large amount of data and variables

were highly correlated, this set was summarized with principal component

analysis based on the correlation matrix for each assemblage and then the first

two principal components where used for further analysis (Appendix G). Both

components summarized together an average of 70% of the total variance. In a

general way, PC1 is a measure of annual temperature and precipitation

whereas PC2 measures the seasonal variability of the climate.

Before anyfurther analysis it is important to test the existence of

collinearity between response variables in order to prevent weak results and

facilitate variables’ relation prediction (Dormann et al. 2013). Collinearity was

tested with simple pairwise correlation coefficient (r) for each variable within

each assemblage and the threshold was set at r > 0.7.

European natural sites European anthropogenic sites

Mean ± SD 25% 97.5% Mean ± SD 25% 97.5%

Body mass (g) 73.99 ± 42.078 52.374 163.589 50.28 ± 13.070 41.761 75.041

% Carnivores 10.5 ± 4.060 8.649 18.193 8.575 ± 2.881 5.742 12.617

% Insectivores 49.17 ± 4.848 45.213 60.031 47.13 ± 4.933 43.584 52.549

% Omnivores 23.98 ± 4.132 20.572 31.119 26.25 ± 4.361 23.181 35.635

% Piscivores 3.143 ± 2.890 1.127 12.071 1.579 ± 1.364 0 4.85

% Granivores 13.880 ± 3.704 11.746 21.966 15.840 ± 3.967 12.596 22.228

% Scavengers 0.710 ± 0.760 0 2.592 0.189 ± 0.350 0 0.959

Clutch size (year) 5.633 ± 0.415 5.384 6.333 5.830 ± 0.252 5.652 6.256

Population size (pairs x 1000)

37.850 ± 26.929 19.702 100.720 3.513 ± 0.906 2.848 5.213

Page 27: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

22

For both Bavarian and European assemblages it was found a high

correlation between Latitude and PC1 (Bavarian r = 0.71; Anthropogenic sites r

= 0.85; P < 0.001) and clutch size and population size (Bavarian r = 0.77;

Anthropogenic sites r = 0.99; P < 0.001), so both Latitude and clutch size were

removed from both data. Only for Europe, the percentage of Piscivores and

body mass were highly related (r = 0.75; P < 0.001), so the first variable was

removed from this data.

2.5.2 Generalized Additive Models

Generalized Additive Models – GAMs – were first introduced by Hastie &

Tibshirani (1986) and are extensions of Generalized Linear Models (GLMs)

where the linear predictor is given by a specified sum of smooth functions of

covariates. It can be simply defined as follows:

( ) ( ) ( )

where the response variable yi can be defined by smooth functions k1 and k2 of

covariates x1 and x2. It predicts some known smooth monotonic function of the

expected value of the response variable, which may follow any exponential

family distribution, permitting the use of a quasi-likelihood approach (Wood

2006).

The effect sizes of the mean phylogenetic distance and of the mean

nearest neighbour distance were used as response variables for statistical

analysis using function gam from package mgcv in R (Wood 2013). For

Page 28: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

23

comparative reasons it is also used the value of species richness. This package

solves the smoothing parameter estimation problem using the Generalized

Cross Validation (GSV) criterion, based upon the number of data, deviance and

effective degrees of freedom of the implemented model. The lower the GSV

score the better the model, with higher percentage of deviance explained.

For Bavaria, land-use data, both principal components of the climate data

and trait data were used as independent variables; for European-wide

assemblage it was the same, except for the land-use data analysis, which was

characterized by a factor that indicated if a study belonged to the natural or

antrhopogenic data set and the addition of both spatial and temporal

components within each site. This method of Generalized Additive Models

allows fitting curvilinear relationships and for this analysis it was used thin plate

splines as smoothers, starting with the default settings (k = 10) for Bavaria and

decreasing it to 5 for European-wide assemblage to obtain more robust models,

since the number of replicates was lower. Also, for European analysis the land-

use factor was added to the model in two different ways: individually, without a

smooth function describing it; and as a by-function for each independent

variable, allowing testing for significant differences between data-sets, within

Europe.

Furthermore, trait data can sometimes present a high correlation with

phylogenetic measures and space data always shows spatial autocorrelation,

which compromises additionally hypothesis testing. To remove the first

correlation, it was increased the default of the dimension of the basis used to

represent the smooth terms for trait variables and to control for spatial

autocorrelation it was also included the factor space in the gam models [see

Page 29: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

24

also Dormann et al. (2007)]. For Bavaria the default of the dimension used to

represent the smooth term was increased to 40 and for European assemblage

to 10.

Also, the available significance tests for the smoothers are only

aproximate, and so it was followed a conservative approach, accepting

significance only if P < 0.01.

Page 30: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

25

3. Results

3.1 Spatial distribution of species

The correlation between the phylogenetic distance averaged across all

100 distance matrices of the bird species with their co-occurrence was

significantly negative for both assemblages (Bavaria matrix correlation = - 0.29;

European matrix correlation = - 0.22; P ≈ 0.001). This means that phylogenetic

related species tend to co-occur more than expected, regardless the scale of

analysis.

Calculating this matrix correlation using distance matrices of each of the

100 trees retrieved for each assemblage analysed, also showed a negative

correlation for all matrices, with similar average numbers (Figure 1).

Figure 1. Histograms showing the distribution of matrix correlations for all 100 trees for both Bavarian

(on the right) and European (on the left) assemblages.

Page 31: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

26

3.2 Phylogenetic structure of assemblages

The effect size of the mean phylogenetic distance and of the mean

nearest neighbour distance were moderately correlated for Bavaria and

European-wide assemblages (Bavarian r = 0.19; P < 0.001; European-wide r =

0.28; P < 0.01; both not corrected for spatial autocorrelation). The effect size of

the mean phylogenetic distance also showed a moderate to low correlation with

species richness for both assemblages (Bavarian r = 0.12; P < 0.001; European

r = 0.18; P < 0.05; both not corrected for spatial autocorrelation).

Averaged across all grids and studies, the effect sizes of the mean

phylogenetic distance as well as of the mean nearest neighbour distance were

negative for both assembalges and differed significantly from zero (Bavarian

SESMPD = - 4.37; t = -138.7; P < 0.01; Bavarian SESMNTD = -1.24; t = - 42; P <

0.001; European SESMPD = - 5.31; t = - 24.2; P < 0.001; European SESMNTD = -

1.88; t = - 19.6; P < 0.001), indicating community clustering in respect to

phylogeny at both tree-wide and closer-to-tips phylogenetic scale, regardless of

scale.

3.3 Effects of anthropogenic land-use on phylogenetic diversity

Considering Bavaria, GAMs results showed a relationship between land-

use variables and both measures of phylogenetic diversity, as well as species

richness (Table 4). The effect size of the mean phylogenetic distance was

related to meadows and anthropogenic habitats, presenting a decrease with the

increasing percentage of both (Figure 2).

Page 32: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

27

Table 4. Results from Generalized Additive Models performed for Bavarian assemblage using species richness and both measures of phylogenetic

diversity as response variables. Est. Std. represents the estimated standard deviation; Std. Error the estimated error. Edf represents the estimated

degrees of freedom for each independent variable; Ref. df the estimated residual degrees of freedom for each variable. For each response variable is

also presented the R-square adjusted value - R-sq (adj) –, the GSV score and the explained deviation of each model. Significant values (P < 0.01) are

highlighted. For the land-use types, highlighted F values show an increase of the response variable with that land-use type variable.

Species richness Mean phylogenetic distance Mean nearest neighbour distance

Est.

Std.

Std.

Error t-value P

Est.

Std.

Std.

Error t-value P

Est.

Std.

Std.

Error t-value P

Intercept 72.315 0.199 361.700 < 0.001 -4.368 0.012 -362.900 < 0.001 -1.241 0.017 -74.200 < 0.001

Edf Ref. df F P Edf Ref. df F P Edf Ref. df F P

PC1 climate 3.378 4.287 15.260 < 0.001 1.000 1.000 2.681 0.102 1.000 1.000 20.227 < 0.001

PC2 climate 5.453 6.610 9.014 < 0.001 3.492 4.442 4.404 < 0.001 1.000 1.000 0.266 < 0.01

Space 22.755 27.640 3.473 < 0.001 8.919 11.156 20.976 < 0.001 2.374 3.039 3.765 0.010

Farmland 1.473 1.810 21.270 < 0.001 4.044 5.013 1.566 0.166 1.000 1.000 0.112 0.738

Page 33: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

28

Species richness Mean nearest neighbour distance Mean phylogenetic distance

Edf Ref. df F P Edf Ref. df F P Edf Ref. df F P

Meadow 1.000 1.000 44.479 < 0.001 3.880 4.834 8.384 < 0.001 3.438 4.313 2.891 0.020

Wetland 4.351 5.283 8.388 < 0.001 1.000 1.000 0.740 0.390 1.960 2.469 7.823 < 0.001

Coniferous

forest 3.021 3.817 6.204 < 0.001 3.183 4.017 5.058 < 0.001 4.449 5.500 1.008 0.412

Deciduos forest 1.588 1.972 6.447 < 0.001 1.012 1.024 2.802 0.093 2.120 2.659 3.099 0.032

Mix forest 1.000 1.000 4.364 0.037 1.000 1.000 23.676 < 0.001 2.982 3.737 1.989 < 0.001

Anthropogenic

habitats 1.077 1.150 89.362 < 0.001 1.000 1.000 39.900 < 0.001 4.126 5.124 4.338 < 0.001

Body mass 4.708 5.919 22.361 < 0.001 5.109 6.377 480.892 < 0.001 5.305 6.609 1.258 0.268

Pop. size 14.380 17.330 5.587 < 0.001 12.843 15.555 4.342 < 0.001 2.558 3.099 34.201 < 0.001

Carnivores 9.303 11.605 5.642 < 0.001 35.842 37.525 3.839 < 0.001 12.807 15.841 1.928 0.015

Insectivores 4.679 5.995 16.566 < 0.001 12.366 15.202 4.755 < 0.001 1.000 1.000 6.166 0.013

Omnivores 14.982 18.459 6.633 < 0.001 5.587 7.122 7.071 < 0.001 7.566 9.527 3.198 < 0.001

Piscivores 20.512 24.551 7.954 < 0.001 8.176 10.008 4.380 < 0.001 1.000 1.000 63.091 < 0.001

Page 34: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

29

Species richness Mean nearest neighbour distance Mean phylogenetic distance

Edf Ref. df F P Edf Ref. df F P Edf Ref. df F P

Granivores 12.376 15.215 5.236 < 0.001 10.348 12.801 2.481 < 0.01 2.565 3.481 1.438 0.222

Scavengers 8.715 10.566 21.144 < 0.001 3.795 4.630 25.324 < 0.001 3.344 4.054 5.698 < 0.001

R-sq (adj.) 0.724 0.854 0.228

GSV score 82.872 0.298 0.557

Dev. Explained 74.40% 86.30% 25.30%

Page 35: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

30

The effect size of the mean nearest neighbour distance was related to

wetlands and anthropogenic habitats. It showed a moderate decrease with the

increasing percentage of the first and with the second presented a hump-

Figure 2. Scatterplots of the Generalized Additive Model for Bavarian assemblage relative to the

effect size of mean phylogenetic distance versus percentage of anthropogenic habitats (on top)

and percentage of meadows (on bottom). Red line represents the fit evaluated at the mean of the

independent variable and blue lines represent the fitted lines of ± two times the standard error of

the independent variable.

Page 36: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

31

shaped relationship, where nearest neighbour distance increased slightly until

the percentage of anthropogenic habitats reached about 15% and beyond this

point it decreased (Figure 3).

Figure 3. Scatterplots of the Generalized Additive Model for Bavarian assemblage relative

to the effect size of mean nearest neighbour distance versus percentage of wetlands (on

top) and percentage of anthropogenic habitats (on bottom). Red line represents the fit

evaluated at the mean of the independent variable and blue lines represent the fitted lines

of ± two times the standard error of the independent variable.

Page 37: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

32

Species richness increased with the increased percentage of wetlands,

meadows (Figure 4), farmland and anthropogenic habitats (Figure 5).

Figure 4. Scatterplots of the Generalized Additive Model for Bavarian assemblage relative to

species richness versus percentage of wetlands (on top) and percentage of meadows (on bottom).

Red line represents the fit evaluated at the mean of the independent variable and blue lines

represent the fitted lines of ± two times the standard error of the independent variable.

Page 38: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

33

Influence of climate variables and of total or single trait variables were

always significant for all three response variables (Table 4).

Figure 5. Scatterplots of the Generalized Additive Model for Bavarian assemblage relative to

species richness versus percentage of farmland (on top) and percentage of anthropogenic

habitats (on bottom). Red line represents the fit evaluated at the mean of the independent

variable and blue lines represent the fitted lines of ± two times the standard error of the

independent variable.

Page 39: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

34

Considering European-wide assemblage, Generalized Additive Models

results presented significant relationship between the spatial component and

the effect size of the mean phylogenetic distance, as well as with species

richness (Table 5), with increased phylogenetic diversity (Figure 6) and number

of species (Figure 7) with area (km2).

Climate was significantly related to all three response variables, with

increasing species richness and overall phylogenetic diversity with increasing

mean annual temperature and low precipitation (PC1). Space had no influence

in any of the variables; total or single trait variables were always significant for

all three response variables.

Figure 6. Scatterplot of the Generalized Additive Model for European-wide assemblage relative to the

effect size of mean phylogenetic distance versus area (log in km2). Red line represents the fit evaluated

at the mean of the independent variable and blue lines represent the fitted lines of ± two times the

standard error of the independent variable.

Page 40: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

35

Table 5. Results from Generalized Additive Models performed for European-wide assemblage using species richness and both measures of

phylogenetic diversity as response variables. Est. Std. represents the estimated standard deviation; Std. Error the estimated error. Edf represents

the estimated degrees of freedom for each independent variable; Ref. df the estimated residual degrees of freedom for each variable. For each

response variable is also presented the R-square adjusted value - R-sq (adj) –, the GSV score and the explained deviation of each model.

Significant values (P < 0.01) are highlighted. Regarding the independent variables, highlighted F values show an increase of the response variable

with that independent variable. It is also showen the results of the land-use factor interaction with each independent variable, allowing a between

natural and anthropogenic sites interpretation.

Species richness Mean phylogenetic distance Mean nearest neighbour distance

Est.

Std.

Std.

Error t value |t|

Est.

Std.

Std.

Error t value |t|

Est.

Std.

Std.

Error t value |t|

Intercept 123.785 5.257 23.546 < 0.001 -5.434 0.268 -20.270 < 0.001 -1.554 0.307 -5.065 < 0.001

Land-use 13.371 9.630 1.389 0.170 -0.371 0.404 -0.920 0.360 0.207 1.743 0.119 0.906

Edf Ref. df F P Edf Ref. df F P Edf Ref. df F P

PC1 climate 3.626 3.879 9.450 < 0.001 3.307 3.705 4.032 < 0.01 1.000 1.000 13.468 < 0.001

PC2 climate 1.000 1.000 3.444 0.068 1.000 1.000 0.130 0.720 1.000 1.000 0.464 0.498

Page 41: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

36

Species richness Mean phylogenetic distance Mean nearest neighbour distance

Edf Ref. df F P Edf Ref. df F P Edf Ref. df F P

Space 2.566 3.181 2.305 0.081 2.682 3.340 1.019 0.390 1.893 2.360 1.534 0.214

Area 3.791 3.954 27.377 < 0.001 1.000 1.000 11.895 < 0.001 1.000 1.000 0.000 0.987

Year 2.123 2.580 1.641 0.190 2.723 3.243 3.228 0.024 1.000 1.000 0.022 0.884

Body mass 3.801 3.955 5.689 < 0.001 2.897 3.415 13.967 < 0.001 2.021 2.527 3.934 0.016

Pop. size 2.584 3.069 8.390 < 0.001 1.000 1.000 0.017 0.896 3.972 3.997 2.653 0.039

Carnivores 2.640 3.201 2.898 0.038 1.000 1.000 5.524 0.021 3.518 3.876 8.167 < 0.001

Insectivores 3.148 3.553 3.466 0.016 1.847 2.249 3.268 0.038 2.027 2.470 2.113 0.115

Omnivores 3.936 3.990 8.461 < 0.001 2.503 3.004 1.626 0.189 1.000 1.000 10.444 < 0.01

Granivores 2.927 3.361 4.707 < 0.01 3.527 3.782 4.148 < 0.01 1.000 1.000 9.560 < 0.01

Scavengers 3.836 3.961 5.843 < 0.001 3.506 3.825 6.844 < 0.001 2.368 2.809 2.756 0.051

Land-use*PC1 climate 1.073 1.073 1.893 0.170 1.077 1.077 0.396 0.546 1.077 1.077 0.006 0.947

Page 42: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

37

Species richness Mean phylogenetic distance Mean nearest neighbour distance

Edf Ref. df F P Edf Ref. df F P Edf Ref. df F P

Land-use*PC2 climate 2.098 2.513 0.626 0.573 1.077 1.077 1.728 0.189 1.077 1.077 0.181 0.691

Land-use*Space 2.561 2.974 3.555 0.019 1.422 1.650 1.955 0.149 2.461 2.905 0.969 0.406

Land-use*Area 1.073 1.073 1.829 0.178 1.077 1.077 1.468 0.227 2.275 2.631 2.794 0.052

Land-use*Year 2.164 2.620 1.749 0.168 1.077 1.077 0.761 0.389 1.077 1.077 0.191 0.682

Land-use*Body mass 2.881 3.051 6.926 < 0.001 1.077 1.077 0.064 0.819 1.077 1.077 0.122 0.747

Land-use*Pop. size 1.073 1.073 1.062 0.306 1.077 1.077 0.930 0.339 1.077 1.077 1.371 0.243

Land-use*Carnivores 1.073 1.073 4.491 0.035 1.077 1.077 2.729 0.099 1.077 1.077 0.455 0.516

Land-use*Insectivores 3.971 4.047 7.788 < 0.001 2.854 3.304 0.906 0.446 2.701 3.171 1.853 0.140

Land-use*Omnivores 1.073 1.073 0.936 0.338 1.077 1.077 2.137 0.144 1.077 1.077 0.305 0.560

Land-use*Granivores 1.917 2.293 2.353 0.095 2.732 3.234 1.014 0.392 3.724 3.978 2.916 0.026

Land-use*Scavengers 1.073 1.073 1.761 0.186 1.077 1.077 1.938 0.164 2.010 2.116 0.491 0.624

Page 43: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

38

Species richness Mean phylogenetic distance Mean nearest neighbour distance

R-sq (adj.) 0.964 0.898 0.704

GSV score 124.560 0.963 0.527

Dev. Explained 98.1% 93.4% 80.4%

Page 44: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

39

Relative to the effect of the land-use factor, it was only significant for

species richness regarding species’ body mass (g) and percentage of

Insectivores, indicating significant differences between natural and antrhopogenic

sets for both variables (Table 5). Studies composed of bird species with average

body mass between 50 and 100 g are those who contribute more to species

richness at European-wide scale. It’s in natural sites where this variable reaches

its highest value and also where it can be found the sites with the biggest animals

(Figure 8). Considering the percentage of insectivorous species, it presents an

assymptotic relationship with species richness, with higest richness in natural

sites where there are about 40% insectivores and in anthropogeic sites where

there are about 55% insectivores, assemblage wide. It’s also in natural sites

where it can be found the highest percentage of insectivores (Figure 8).

Figure 7. Scatterplot of the Generalized Additive Model for European-wide assemblage relative to

species richness versus area (log in km2). Red line represents the fit evaluated at the mean of the

independent variable and blue lines represent the fitted lines of ± two times the standard error of the

independent variable.

Page 45: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

40

Figure 8. Scatterplots of the Generalized Additive Model for European-wide assemblage relative to species

richness versus body mass (g) (on top) and percentage of insectivores (on bottom), with significant

differences considering land-use. Red line represents the fit evaluated at the mean of both independent

variables. Blue dots represent natural sites; black dots represent antrhopogenic sites.

Page 46: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

41

4. Discussion

4.1 Spatial distribution and phylogenetic structure of assemblages

Assemblage-wide analysis of co-occurrence as well as overall patterns

of phylogenetic relatedness within assemblages measured by the mean

phylogenetic distance as well as by the mean nearest neighbour distance

showed that, regardless of considered grain, environmental filtering is more

important than competitive interactions in shaping bird assemblages.

This is similar to the results obtain for bats within Bavaria (Riedinger et

al. 2013) but contradicts the findings from Denmark (Gotelli et al. 2010), which

showed signs of competition across a similar spatial scale. Like Denmark,

present-day Bavaria offers an ideal geographic setting for co-occurrence

analysis of avian species at regional scale, since there are no major geographic

barriers to avian dispersal. Furthermore, no in situ speciation occurred in

Bavaria, otherwise endemic species or at least subspecies should occur.

However, Gotelii et al. (2010) analysed the structure within selected guilds

whereas the present study used all genera observed. Therefore, the present

approach might have diluted signs of competition.

However, using the approach followed on the present study it is possible

to conclude that across all genera which may occur on a grid, competition is in

general not important, given the assumption that the intensity of competitive

interactions decreases with increasing phylogenetic intensity. Therefore, the

present analysis is not showing that competition is not occurring; it states only

that it is not important for the distribution of species at the considered grain.

Page 47: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

42

Although it might seem contradictory that similar species can be able to

co-exist and competitive interactions might be overcame, in other studies

(Stamps 1991; Stephens & Sutherland 1999) it has been acknowledge that a

positive relationship between the suitability of a patch and the number of

conspecifics is not uncommon, leading to aggregative behaviour, even in

territorial birds. This, allied with the fact that sometimes bird species can

aggregate to form colonies during breeding season, might contribute to

clustering of the assemblages studied and the co-occurrence found.

4.2 Anthropogenic land-use impact

At the regional level, for Bavaria, and according to previous predictions,

there was an overall decrease of both measures of phylogenetic diversity with

increased percentage of land-use, more specifically, anthropogenic habitats and

meadows. This decrease occurred despite the fact that species richness was

significantly increasing with the percentage of most land-type analysed, even

when only native species were selected.

Both measures of phylogenetic diversity capture a different aspect of the

phylogenetic structure. Mean phylogenetic distance is thought to be more

sensitive to tree-wide patterns of phylogenetic clustering and evenness (Kembel

2010). Mean nearest neighbour distance, which is the mean distance that

separates each species in the community from its closest relative, is thought to

be more sensitive to patterns close to the tips of the phylogeny (Kraft et al.

2007).

This difference is already evident when comparing the distribution of

effect sizes between both measures, since, although both were negative, the

Page 48: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

43

effect size of the mean phylogenetic distance was always more negative than

the effect size of the mean nearest neighbour distance.

Considering bird’s evolutionary history, Aves class is divided into

Paleognathae (compromising ratites and tinamous) and Neognathae (all

others); furthermore, the last one is split into Galloanserae (chickens, ducks and

allies) and Neoaves (all others) (Hackett et al. 2008).

The slight, punctual increase of the effect size of mean nearest

neighbour distance with the percentage of anthropogenic habitats (until 15% of

their occupancy) can be explained by the occurrence of numerous species of

birds belonging to the lineage of the Galloanseres. Increasing percentage of

existing water within city parks and gardens within anthropogenic habitats leads

to momentary increase of these species, highly associated with water

availability and/or open habitats.

Furthermore, this lineage diverged from the Neoaves in the Mid-

Cretaceous (120 to 90 M.y. ago). When analysing the effect size of the mean

phylogenetic distance all pairs of species belonging to both lineages are

included and therefore the influenced of Galloanseres presence is deluded,

leading to decreasing values. In contrast, the effect size of the mean nearest

neighbour distance includes only pairs within each lineage and its value

becomes higer. This suggests that habitat affiliation evolved very early in the

history of birds [e.g. Prinzing et al. (2001) for plants].

In agreement with other studies from plants in Germany (Knapp et al.

2008) and bats in Bavaria (Riedinger et al. 2013) in the present study and in

particular for anthropogenic habitats, although species richness increased,

phylogenetic diversity decreased with the percentage of such land-type. This

Page 49: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

44

means that, also for birds, the necessary traits to cope with the pressures of

urban habitats are confined to certain lineages, less sensitive to human

presence. It may indicate that with the further increase of species with

increasing amount of urban habitats, species from already occurring lineages

are added to the assemblages, a clear sign of habitat filtering.

Overall, the hump-shaped relationship found between the effect size of

the mean nearest neighbour distance and anthropogenic habitats can be

explained by the intermediate disturbance hypothesis (Wilkinson 1999). A small

level of urbanization within an area can lead to more complex and

heterogeneous conditions, supporting more species of birds, and consequently,

more different lineages, especially in suburban areas at the interface between

urban and more natural areas (Andersson 2006; Blair 2004). This increase in

environmental heterogeneity and resource availability promotes increasing

structural aspects of the environment, allowing more species from different

lineages to be added to the assemblage.

Regarding agriculture, only species richness was related to the

percentage of this land-type. Although non-significant, the relationship between

percentage of agriculture and phylogenetic diversity was positive. This might be

explained by the fact that, although half of Bavarian territory is classified as

agricultural land, according to data from the Bavarian Ministry of Agriculture and

Forestry (http://www.stmelf.bayern.de) most farm holdings are small (less than

50 ha) and those with highest dimensions are under strict management actions.

So, although agriculture is a land-type highly developed within Bavaria, its

impact might be deluded by strong management actions, therefore leading to an

Page 50: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

45

increase in species richness and having a positive influence on bird

phylogenetic diversity.

Contrary to agriculture, the effect size of the mean phylogenetic distance

was negatively related to the percentage of meadows. Such land-type can be

defined as grassland not grazed by domestic livestock and, within Bavaria, most

agricultural land is occupied by crop land, especially cereal yield. Therefore

such land-type leads to a decrease in bird phylogenetic diversity, through

habitat filtering.

At continental-wide scale sample area seems to be the most important

factor shaping species richness and mean phylogenetic distance, with

increasing number of species and mean phylogenetic distance with increasing

area (km2). This is explained accordingly to the More Individuals Hypothesis

(MIH), which predicts a positive relationship between species richness and

available energy. Such hypothesis has been suggested for bird communities

(Hurlbert 2004), assuming that larger areas contain greater food resources,

therefore supporting more individuals; communities with more individuals

include also different species. A larger number of species distantly related leads

to an increase of mean phylogenetic distance with increasing area.

However, this also contradicts previous statements (Vamosi et al. 2009),

since competitive interactions were thought to be more important at small

spatial scales whereas habitat filtering should became more important at larger

scales. In the present study, as the study-area increases the effect size of the

mean phylogenetic distance assumes higher values, with more unrelated

species being added to the assemblage. This indicates phylogenetic

overdispersion of assemblages for bigger areas. Since overdispersion means

Page 51: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

46

that less related species are co-occurring, is normally caused by competitive

interactions. Therefore, at smaller spatial scales habitat filtering seems to be

more important in shaping European-wide bird assemblage, whereas at bigger

spatial scales, competitive interactions have a major role. This might be

explained by the fact that, as the area increases more species, and more

lineages, are added to the assemblage. Species closely related will compete for

resources and eliminate each other, ultimately leading to an assemblage where

the mean distance that separates each species from the tree root – the mean

phylogenetic distance– assumes higher values, and the effect size assumes

positive ones.

Climate, summarized by PC1, also had a positive relationship with

species richness and mean nearest neighbour distance, with increasing number

of species and phylogenetic diversity with increasing temperature. This is

explained according to the metabolic theory, which states that almost all rates of

biological acitivity increase with temperature, leading to increasing energy and

productivity (Brown et al. 2004). According to Allen et al. (2007) community

species abundance is predicted to increase with the rate of consumptition of net

primary production, which in turn, increases with increasing temperature.

Therefore, available ecosystem energy helps to accumulate biodiversity through

an increase in species richness and also increasing phylogenetic diversity.

Time had no significant effect upon any response variable analysed

within Europe. Since only thirty-five years were represented in the present

study, it is thought to be not enough time to show a response upon richness or

phylogeny of the assemblage. However non-significant it was registered an

increase of all biodiversity variables with time; this is overall optimistic, since it

Page 52: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

47

confirms that the management actions performed within European Union to

improve biodiversity, especially regarding agriculture, are presenting good

results (EEA 2010).

Contrary to previous predictions, there were no significant overall

differences between natural and antrhopogenic sites within Europe. Only two

trait variables analysed at the species richness level where significantly different

between land-use: specie’s body mass (g) and percentage of insectivores.

In natural sites one can find the biggest animals; this is explained by the

fact that bigger animals need bigger home ranges, with heterogeneity of offered

resources. In a study about the body mass of house sparrows (Passer

domesticus), one of the most common species recorded within urban areas,

Liker et al. (2008) discovered that birds within more urbanized areas were

smaller than the ones living in natural areas and such difference was probably

due to adaptative divergence to environmental variances. In the present study

this is confirmed for all species dated within Europe.

Urban areas, as mentioned before, benefit from highly favourable climatic

conditions, which may contribute to an increase in insect biomass, leading to

changes in urban bird communities at the throphic level (Faeth et al. 2005), with

bird species feeding primarily on this higly available, energetic food resource,

especially during breeding season. This leads to a maximum of urban species

richness when there is about 55% insectivores within the assemblage, contrary

to the 40% registered within natural sites.

Page 53: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

48

4.3 Implications for conservation

The present study holds important results regarding human impact upon

the structure of bird assemblages. Its results focus on urban impact, considered

the most anthropogenically transformed, permanent and fastest growing habitat

in the world. As proved by this study, although its heterogeneity might provide

food resources availability, and consequently, more niches (Stevens et al.

2011), leading to a surprising increase in species richness, this is only true for

certain species, both at regional and continental scale (Chace & Walsh 2006).

Urban assemblages are composed of a few, certain lineages that have

specific traits that allow them to cope with this particular environment.

Therefore, increasing urban spread throughout the world could untimely lead to

a phenomenon of biotic homogenization (Gregory et al. 2005; Olden 2006),

where assemblages become more and more phylogenetically alike, with similar

lineages and species.

Anthropogenic habitats can, in this way, be a potent selective force

capable of shaping the behaviour of species [e.g. voice characteristics

(Slabbenkoorn & Peet 2003) and flight distance (Moller 2008)] and interactions

between organisms (Moller 2009). This may lead, in the longer term, to change

in population genetics acting also as a powerful evolutionary force (Grimm et al.

2008).

It is important to perform more phylogenetic assemblage studies similar

to this one, particularly comparing several metrics and scales, to understand the

processes that influence assemblages under growing anthropogenic impact.

The present study showed that regionally, although species richness might be

favoured by increasing antrhopogenic habitats, the same is not true for

Page 54: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

49

phylogenetic diversity. Also, farmland seems to be the habitat with the least

impact upon bird assemblages within Bavaria. At a continental scale, for

Europe, it was showen that bot spatial area and climate have a positive

influence upon both species richness and phylogenetic diversity, pressing the

issue towards a better management, with more continuous areas of

heterogeneous habitat, especially in southern Europe, where climate is more

favourable, particularly during breeding season.

Together with experimental studies [e.g. Tilman et al. (2001) and Spehn

et al. (2005) on plants; Hairston Jr. et al. (2005) on birds; and Ezard et al.

(2009) on mammals], it might be possible in the future to complement

conservation biology with urbanization and agriculture. With proper

management planning future anthropogenic land-use might have the right

characteristics and dimensions that allow them to aggregate large and

phylogenetically heterogeneous communities, contributing to worldwide

ecological diversity.

Page 55: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

50

5. References1

Alberti, M. 2005. The effects of urban patterns on ecosystem function.

International Regional Science Review 28:168-192.

Andersson, E. 2006. Urban landscapes and sustainable cities. Ecology and

Society 11:34-40.

Antrop, M. 2004. Landscape change and the urbanization process in Europe.

Landscape and Urban Planning 67:9-26.

Allen, A. P., J. F. Gilloly, and J. H. Brown. 2007. Recasting the species-energy

hypothesis: the different roles of kinetic and potential energy in regulating

biodiversity. Pages 283-299. Scaling biodiversity. Cambridge University

Press, Cambridge.

Atkinson, P. W., R. J. Fuller, J. A. Vickery, G. J. Conway, J. R. B. Tallowin, R.

E. N. Smith, K. A. Haysom, T. C. Ings, E. J. Asteraki, and V. K. Brown.

2005. Influence of agricultural management, sward structure and food

resources on grassland field use by birds in lowland England. Journal of

Applied Ecology 42:932-942.

Batáry, P., A. Báldi, and S. Erdös. 2007. Grassland versus non-grassland bird

abundance and diversity in managed grasslands: local, landscape and

regional scale effects. Biodiversity Conservation 16:871-881.

Belfrage, K., J. Björklund, and L. Salomonsoon. 2005. The effects of farm size

and organic farming on diversity of birds, pollinators, and plants in a

Swedish landscape. Ambio 34:582-588.

Bezzel, E., I. Geiersberger, G. von Lossow, and R. Pfeifer 2005. Brutvögel in

Bayern. Verbreitung 1996 bis 1999. Eugen Ulmer KG, Stuttgart.

Blair, R. 2004. The effects of urban sprawl on birds at multiple levels of

biological organization. Ecology and Society 9:2-22.

Bowman, R., and J. M. Marzluff. 2001. Integrating avian ecology into emerging

paradigms in urban ecology. Pages 569-578 in J. M. Marzluff, R.

Bowman, and R. Donnelly, editors. Avian Ecology and conservation in an

urbanizing world. Kluwer Academic Publishers, Dorrecht.

1 References according to Conservation Biology Jornal.

Page 56: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

51

Brown, J. H., J. E. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004.

Toward a metabolic theory of ecology. Ecology 85:1771-1789.

Burns, J. H., and S. Y. Strauss. 2011. More closely related species are more

ecologically similar in an experimental test. PNAS 108:5302-5307.

Buskirk, J., and Y. Willi. 2004. Enhancement of farmland biodiversity within set-

aside land. Conservation Biology 18:987-994.

Butler, S. J., L. Boccaccio, R. D. Gregory, P. Vorisek, and K. Norris. 2010.

Quantifying the impact of land-use change to European farmland bird

populations. Agriculture, Ecosystems and Environment 137:348-357.

Cadotte, M. W., T. J. Davies, J. Regetz, S. Kembel, E. Cleland, and T. H.

Oakley. 2010. Phylogenetic diversity metrics for ecological communities:

integrating species richness, abundance and evolutionary history.

Ecology Letters 13:96-105.

Cavender-Bares, J., K. H. Kozak, P. V. A. Fine, and S. Kembel. 2009. The

merging of community ecology and phylogenetic biology. Ecology Letters

12:693-715.

Chace, J. F., and J. J. Walsh. 2006. Urban effects on native avifauna: a review.

Landscape and Urban Planning 74:46-69.

Chiari, C., M. Dinetti, C. Licciardello, G. Licitra, and M. Pautasso. 2010.

Urbanization and the more-individuals hypothesis. Journal of Animal

Ecology 79:366-371.

Cramp, S., D. J. Brooks, E. Dunn, and C. M. Perrins 1994. Handbook of the

birds of Europe, the Middle East and North Africa. Oxford University

Press, Oxford.

Darnhofer, I., T. Lindenthal, R. Bartel-Kratochvil, and W. Zollitsch. 2010.

Conventionalisation of organic farming practices: from structural criteria

towards an assessment based on organic principles. A review.

Agronomy for Sustainable Development 30:67-81.

Devictor, V., D. Mouillot, C. Meynard, F. Jiguet, W. Thuiller, and N. Mouquet.

2010. Spatial mismatch and congruence between taxonomic,

phylogenetic and functional diversity: the need for integrative

conservation strategies in a changing world. Ecology Letters 13:1030-

1040.

Page 57: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

52

Donald, P. F., R. E. Green, and M. F. Heath. 2001. Agricultural intensification

and the collapse of Europe's farmland bird populations. Proceedings of

The Royal Society Biology 268:25-29.

Donald, P. F., and A. D. Evans. 2006. Habitat connectivity and matrix

restoration: the wider implications of agri-environment schemes. Journal

of Applied Ecology 42:209-218.

Dormann, C. F., J. M. McPherson, M. B. Araújo, R. Bivand, J. Bollinger, G. Carl,

R. G. Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kühn, R. Ohlemüller,

P. R. Peres-Neto, B. Reineking, B. Schröder, F. M. Schurr, and R.

Wilson. 2007. Methods to account for spatial autocorrelation in the

analysis of species distributional data: a review. Ecography 30:609-628.

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R.

García Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T.

Münkenmüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder,

A. K. Skidmore, D. Zurell, and S. Lautenbach. 2013. Collinearity: a

review of methods to deal with it and a simulation study evaluating their

performance. Ecogeography 36:27-46.

Dunning, J. B. 1993. CRC Handbook of Avian Body Masses. CRC Press, Boca

Raton.

EEA, E. E. A. 2010. 10 messages for 2010 - agricultural ecosystems. EEA

Publication Offices, Copenhagen.

Elton, C. 1946. Competition and the structure of ecological communities.

Journal of Animal Ecology 15:54-68.

Emerson, B. C., and R. G. Gillespie. 2008. Phylogenetic analysis of community

assembly and structure over space and time. Trends in Ecology and

Evolution 23:619-630.

Ezard, T. H. G., S. D. Côté, and F. Pelletier. 2009. Eco-evolutionary dynamics:

disentangling phenotypic, environmental and population fluctuations.

Philosophical Transactions of the Royal Society B 364:1491-1498.

Faeth, S. H., P. S. Warren, E. Shochat, and W. A. Marussich. 2005. Trophic

dynamics in urban communities. BioScience 55.

Faith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological

Conservation 61:1-10.

Page 58: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

53

Faith, D. P., C. A. M. Reid, and J. Hunter. 2004. Integrating phylogenetic

diversity, complementarity, and endemism for conservation assessment.

Conservation Biology 18:255-261.

Filippi-Codaccioni, O., V. Devictor, Y. Bas, J. Clobert, and R. Julliard. 2010.

Specialist response to proportion of arable land and pesticide input in

agricultural landscapes. Biological Conservation 143:883-890.

Franklin, J. 2009. Mapping species distributions. Cambridge University Press,

Cambridge.

Fuller, R. J., L. R. Norton, R. E. Feber, P. J. Johnson, D. E. Chamberlain, A. C.

Joys, F. Mathews, R. C. Stuart, M. C. Townsend, W. J. Manley, M. S.

Wolfe, D. W. Macdonald, and L. G. Firbank. 2005. Benefits of organic

farming to biodiversity vary among taxa. Biology Letters 1:431-434.

Fuller, R. A., and K. J. Gaston. 2009. The scaling of green space coverage in

European cities. Biology Letters 5:352-255.

Gotelli, N. J., G. R. Graves, and C. Rahbek. 2010. Macroecological signals of

species interactions in the Danish avifauna. PNAS 107:5030-5035.

Gregory, R. D., A. van Strien, P. Vorisek, A. W. G. Meyling, D. G. Noble, R. P.

B. Foppen, and D. W. Gibbons. 2005. Developing indicators for

European birds. Phylosophical Transactions of The Royal Society

360:269-288.

Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and

J. M. Briggs. 2008. Global change and the ecology of cities. Science

319:756-760.

Hackett, S. J., R. T. Kimball, S. Reddy, R. C. K. Bowie, E. L. Braun, M. J.

Braun, J. L. Chojnowski, W. A. Cox, K.-L. Han, J. Harshman, C. J.

Huddleston, B. D. Marks, K. J. Miglia, W. S. Moore, F. H. Sheldon, D. W.

Steadman, C. C. Witt, and T. Yuri. 2008. A phylogenomic study of birds

reveals their evolutionary history. Pages 1763-1767. Science.

Hairston Jr., N. G., S. P. Ellner, M. A. Geber, T. Yoshida, and J. A. Fox. 2005.

Rapid evolution and the convergence of ecological and evolutionary time.

Ecology Letters 8:1114-1127.

Page 59: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

54

Hardy, O. J. 2008. Testing the spatial phylogenetic structure of local

communities: statistical performances of different models and test

statistics on a locally neutral community. Journal of Ecology 96:914-926.

Hastie, T., and R. Tibshirani. 1986. Generalized Additive Models. Statistical

Science 1:297-318.

Helmus, M. R., K. Savage, M. W. Diebel, J. T. Maxted, and A. R. Ives. 2007.

Separating the determinants of phylogenetic community structure.

Ecology Letters 10:917-925.

Hole, D. G., A. J. Perkins, J. D. Wilson, I. H. Alexander, P. V. Grice, and A. D.

Evans. 2005. Does organic farming benefit biodiversity? Biological

Conservation 122:113-130.

Hurlbert, A. H. 2004. Species-energy relationships and habitat complexity in

bird communities. Ecology Letters 7:714-720.

Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012a. A

Global Phylogeny of Birds. http://birdtree.org.

Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012b. The

global diversity of birds in space and time. Nature 491:444-448.

Jokimäki, J., and E. Huhta. 2000. Artificial nest predation and abundance of

birds along an urban gradient. The Condor 102:838-847.

Jombart, T. 2013. Adephylo: exploratory analyses for the phylogenetic

comparative method, cran.r-project.org.

Kembel, S. 2010. An introduction to the picante package.

Kluge, J., and M. Kessler. 2011. Phylogenetic diversity, trait diversity and

niches: species assembly of ferns along a tropical elevational gradient.

Journal of Biogeography 38:394-405.

Knapp, S., I. Kühn, O. Schweiger, and S. Klotz. 2008. Challenging urban

species diversity: contrasting phylogenetic patterns across functional

groups in Germany. Ecology Letters 11:1054-1064.

Kraft, N. J. B., W. K. Cornwell, C. O. Webb, and D. D. Ackerly. 2007. Trait

evolution, community assembly, and the phylogenetic structure of

ecological communities. The American Naturalist 170:271-283.

Kühn, I., R. Brandl, and S. Klotz. 2004. The flora of German cities is naturally

species rich. Evolutionary Ecology Research 6:749-764.

Page 60: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

55

Liker, A., Z. Papp, V. Bókony, and Á. Z. Lendvai. 2008. Lean birds in the city:

body size and condition of house sparrows along the urbanization

gradient. Journal of Animal Ecology 77:789-795.

Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and

the relationship between phylogenetic relatedness and ecological

similarity among species. Ecology Letters 11:995-1007.

Loss, S. R., M. O. Ruiz, and J. D. Brawn. 2009. Relationships between avian

diversity, neighborhood age, income, and environmental characteristics

of an urban landscape. Biological Conservation 142:2578-2585.

Marzluff, J. M. 2005. Island biogeography for an urbanizing world: how

extinction and colonization may determine biological diversity in human-

dominated landscapes. Urban Ecossystems 8:157-177.

Mayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive

exclusion on the phylogenetic structure of communities. Ecology Letters

13:1085-1093.

Mehr, M., R. Brandl, T. Hothorn, F. Dziock, B. Försten, and J. Müller. 2011.

Land use is more important than climate for species richness

composition of bat assemblages on a regional scale. Mammalian Biology

76:451-460.

Minh, B. Q., S. Klaere, and A. von Haeseler. 2006. Phylogenetic diversity within

seconds. Systematic Biology 55:769-773.

Moller, A. P. 2008. Flight distance of urban birds, predation and selection for

urban life. Behavioral Ecology and Sociobiology 63:63-75.

Moller, A. P. 2009. Successful city dwellers: a comparative study of the

ecological characteristics of urban birds in the Western Palearctic.

Oecologia 159:849-858.

Morlon, H., D. W. Schwilk, J. A. Bryant, P. A. Marquet, A. G. Rebelo, C. Tauss,

B. J. Bohannan, and J. L. Green. 2011. Spatial patterns of phylogenetic

diversity. Ecology Letters 14:141-149.

Olden, J. D. 2006. Biotic homogenization: a new research agenda for

conservation biogeography. Journal of Biogeography 33:2027-2039.

Page 61: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

56

Pavoine, S., S. Ollier, and D. Pontier. 2005. Measuring diversity from

dissimilarities with Rao's quadratic entropy: are any dissimilarities

suitable? Theoretical Population Biology 6:231-239.

Peres-Neto, P. R., M. A. Leibold, and S. Dray. 2012. Assessing the effects of

spatial contingency and environmental filtering on metacommunity

phylogenetics. Ecology 93:14-30.

Pfeifer, R., J. Müller, J. Stadler, and R. Brandl. 2009. Welchen Einfluss haben

urbane Lebensräume auf die Artenvielfalt? Eine quantitative Analyse am

Beispiel der Vogelwelt Bayerns. Ornithologisher Anzeiger 48:126-142.

Prinzing, A., W. Durka, S. Klotz, and R. Brandl. 2001. The niche of higher

plants: evidence for phylogenetic conservatism. Proceedings of the

Royal Society - Biological Sciences 268:2283-2389.

Reidsma, P., T. Tekelenburg, M. van den Berg, and R. Alkemade. 2006.

Impacts of land-use change on biodiversity: an assessment of

agricultural biodiversity in the European Union. Agriculture, Ecosystems

and Environment 114:86-102.

Riedinger, V., J. Müller, J. Stadler, W. Ulrich, and R. Brandl. 2013.

Assemblages of bats are phylogenetically clustered on a regional scale.

Basic and Applied Ecology 14:74-80.

Rodewald, A. D., and D. P. Shustack. 2008. Consumer resource matching in

urbanizing landscapes: are synanthropic species over-matching?

Ecology 89:515-521.

Rodrigues, A. S. L., and K. J. Gaston. 2002. Maximising phylogenetic diversity

in the selection of networks of conservation areas. Biological

Conservation 105:103-111.

Rolland, J., M. W. Cadotte, J. Davies, V. Devictor, S. Lavergne, N. Mouquet, S.

Pavoine, A. Rodrigues, W. Thuiller, L. Turcati, M. Winter, L. Zupan, F.

Jabot, and H. Morlon. 2012. Using phylogenies in conservation: new

perspectives. Biology Letters 8:692-694.

Schoener, T. W. 1970. Nonsynchronous spatial overlap pf lizards in patchy

habitats. Ecology 51:408-418.

Page 62: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

57

Shochat, E., S. B. Lerman, J. M. Anderies, P. S. Warren, S. H. Faeth, and C. H.

Nilon. 2010. Invasion, competition, and biodiversity loss in urban

ecosystems. BioScience 60:199-208.

Slabbenkoorn, H., and M. Peet. 2003. Birds sing at a higher pitch in urban

noise. Nature 424:doi: 10.1038/424267a.

Spehn, E. M., A. Hector, J. Joshi, M. Scherer-Lorenzen, B. Schmid, E. Bazeley-

White, C. Beierkuhnlein, M. C. Caldeira, M. Diemer, P. G.

Dimitrakopoulos, J. A. Finn, H. Freitas, P. S. Giller, J. Good, R. Harris, P.

Högberg, K. Huss-Danell, A. Jumpponen, J. Koricheva, P. W. Leadley,

M. Loreau, A. Minns, C. P. H. Mulder, G. O'Donovan, S. J. Otway, C.

Palmborg, J. S. Pereira, A. B. Pfisterer, A. Prinz, D. J. Read, E.-D.

Schulze, A.-S. D. Siamantziouras, A. C. Terry, A. Y. Troumbis, F. I.

Woodward, S. Yachi, and J. H. Lawton. 2005. Ecosystem effects of

biodiversity manipulations in European grasslands. Ecological

Monographs 75:37-63.

Stamps, J. A. 1991. The effect of conspecifics on habitat selection in territorial

species. Behavioral Ecology and Sociobiology 28:29-36.

Stephens, P. A., and W. J. Sutherland. 1999. Consequences of the Allee effect

for behaviour, ecology and conservation. Trends in Ecology and

Evolution 14:401-405.

Stevens, R. D., G. M. M., J. S. Tello, and D. A. Ray. 2011. Phylogenetic

structure illuminates the mechanistic role of environmental heterogeneity

in community organization. Journal of Animal Ecology 81:455-462.

Swenson, N. G. 2009. Phylogenetic resolution and quantifying the phylogenetic

diversity and dispersion of communities. PLOS One 4:1-8.

Söderström, B., B. Svensson, K. Vessby, and A. Glimskar. 2001. Plants, insects

and birds in semi-natural pastures in relation to local habitat and

landscape factors. Biodiversity Conservation 10:1839-1863.

Tilman, D., P. B. Reich, J. Knops, D. Wedin, T. Mielke, and C. Lehman. 2001.

Diversity and productivity in a long-term grassland experiment. Science

294:843-845.

Page 63: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

58

Vamosi, S. M., S. B. Heard, J. C. Vamosi, and C. O. Webb. 2009. Emering

patterns in the comparative analysis of phylogenetic community

structure. Molecular Ecology 18:572-592.

Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002.

Phylogenies and community ecology. Annual Review of Ecology and

Systematics 33:475-505.

Wilkinson, D. M. 1999. The disturbing history of intermediate disturbance. Oikos

84:145-147.

Wilson, J. D., M. J. Whittingham, and R. B. Bradbury. 2005. The management

of crop structure: a general approach to reversing the impacts of

agricultural intensification on birds? Ibis 147:1-13.

Winter, M., V. Devictor, and O. Schweiger. 2013. Phylogenetic diversity and

nature conservation: where are we? Trends in Ecology & Evolution

28:199-204.

Wood, S. N. 2006. Generalized Additive Models: an introduction with R.

Chapman & Hall/CRC, New York.

Wood, S. 2013. Mixed GAM computation vehicle with GCV/AIC/REML

smoothness estimation, cran.r-project.org.

Page 64: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

59

6. Appendix

Appendix A. Map retrieved from Bezzel et al. (2005) representing an example of a species distribution

map used to collect the regional data in the present study. Here all 2285 grid cells are represented, but

only those who where fully within Bavaria – 1927 - where used for the analysis.

Page 65: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

60

Appendix B. List of the 157 bird species recorded in Bavaria between 1996 and 1999 by alphabetic order of the species name. Species are

presented by their scientific name. Nº observations is the value of observed presences for the sum of all grid cells during the same period. Status

represents the status of the species according to the UICN Red List of Threated Species (http://www.iucnredlist.org/); LC – Least Concern; NE –

Near Threatened. Trend stands for population trend in Germany at present days according to accounts in Birds in Europe: population estimates,

trends and conservation status (Birdlife International 2004 – http://www.birdlife.org). Near threatened and threatened species are highlighted.

Species Nº observations Order Family Status Trend

Accipiter gentilis 1107 Falconiformes Accipitridae LC Secure

Accipiter nisus 1298 Falconiformes Accipitridae LC Secure

Acrocephalus arundinaceus 102 Passeriformes Sylviidae LC Secure

Acrocephalus palustris 1556 Passeriformes Sylviidae LC Secure

Acrocephalus schoenobaenus 99 Passeriformes Sylviidae LC Secure

Acrocephalus scirpaceus 841 Passeriformes Sylviidae LC Secure

Actitis hypoleucos 179 Charadriiformes Scolopacidae LC Declining

Aegithalos caudatus 985 Passeriformes Aegithalidae LC Secure

Aegolius funereus 355 Strigiformes Strigidae LC Secure

Alauda arvensis 1745 Passeriformes Alaudidae LC Depleted

Alcedo atthis 719 Coraciiformes Alcedinidae LC Depleted

Anas crecca 187 Anseriformes Anatidae LC Secure

Anas platyrhynchos 1773 Anseriformes Anatidae LC Secure

Anas strepera 139 Anseriformes Anatidae LC Depleted

Anser anser 150 Anseriformes Anatidae LC Secure

Page 66: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

61

Species Nº observations Order Family Status Trend

Anthus pratensis 355 Passeriformes Motacillidae LC Secure

Anthus trivialis 1372 Passeriformes Motacillidae LC Secure

Apus apus 1435 Apodiformes Apodidae LC Secure

Ardea cinerea 618 Ciconiiformes Ardeidae LC Secure

Asio otus 924 Strigiformes Strigidae LC Secure

Aythya ferina 298 Anseriformes Anatidae LC Declining

Aythya fuligula 1017 Anseriformes Anatidae LC Declining

Bonasa bonasia 119 Galliformes Phasianidae LC Secure

Bubo bubo 204 Strigiformes Strigidae LC Depleted

Buteo buteo 1855 Falconiformes Accipitridae LC Increasing

Carduelis cannabina 1146 Passeriformes Fringillidae LC Declining

Carduelis carduelis 1745 Passeriformes Fringillidae LC Secure

Carduelis chloris 1871 Passeriformes Fringillidae LC Secure

Carduelis flammea 294 Passeriformes Fringillidae LC Decreasing

Carduelis spinus 687 Passeriformes Fringillidae LC Secure

Certhia brachydactyla 1342 Passeriformes Certhiidae LC Secure

Certhia familiaris 1378 Passeriformes Certhiidae LC Stable

Charadrius dubius 435 Charadriiformes Charadriidae LC Secure

Ciconia ciconia 154 Ciconiiformes Ciconiidae LC Depleted

Ciconia nigra 126 Ciconiiformes Ciconiidae LC Rare

Page 67: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

62

Species Nº observations Order Family Status Trend

Cinclus cinclus 735 Passeriformes Cinclidae LC Secure

Circus aeruginosus 354 Falconiformes Accipitridae LC Secure

Coccothraustes coccothraustes 1135 Passeriformes Fringillidae LC Secure

Columba oenas 679 Columbiformes Columbidae LC Secure

Columba palumbus 1876 Columbiformes Columbidae LC Secure

Corvus corax 399 Passeriformes Corvidae LC Secure

Corvus corone 1841 Passeriformes Corvidae LC Secure

Corvus monedula 530 Passeriformes Corvidae LC Secure

Coturnix coturnix 807 Galliformes Phasianidae LC Depleted

Crex crex 118 Gruiformes Rallidae LC Depleted

Cuculus canorus 1656 Cuculiformes Cuculidae LC Secure

Cygnus olor 623 Anseriformes Anatidae LC Secure

Delichon urbicum 1823 Passeriformes Hirundinidae LC Declining

Dendrocopos major 1879 Piciformes Picidae LC Secure

Dendrocopos medius 281 Piciformes Picidae LC Secure

Dendrocopos minor 570 Piciformes Picidae LC Secure

Dryocopus martius 1423 Piciformes Picidae LC Secure

Emberiza citrinella 1811 Passeriformes Emberizidae LC Secure

Emberiza schoeniclus 1071 Passeriformes Emberizidae LC Secure

Erithacus rubecula 1902 Passeriformes Muscicapidae LC Secure

Page 68: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

63

Species Nº observations Order Family Status Trend

Falco peregrinus 101 Falconiformes Falconidae LC Secure

Falco subbuteo 708 Falconiformes Falconidae LC Secure

Falco tinnunculus 1749 Falconiformes Falconidae LC Declining

Ficedula albicollis 160 Passeriformes Muscicapidae LC Secure

Ficedula hypoleuca 642 Passeriformes Muscicapidae LC Secure

Fringilla coelebs 1916 Passeriformes Fringillidae LC Secure

Fulica atra 1220 Gruiformes Rallidae LC Secure

Gallinago gallinago 317 Charadriiformes Scolopacidae LC Declining

Gallinula chloropus 1080 Gruiformes Rallidae LC Secure

Garrulus glandarius 1850 Passeriformes Corvidae LC Secure

Glaucidium passerinum 343 Strigiformes Strigidae LC Secure

Hippolais icterina 1189 Passeriformes Sylviidae LC Secure

Hirundo rustica 1864 Passeriformes Hirundinidae LC Depleted

Jynx torquilla 402 Piciformes Picidae LC Declining

Lanius collurio 1544 Passeriformes Laniidae LC Depleted

Larus ridibundus 187 Charadriiformes Laridae LC Secure

Locustella fluviatilis 180 Passeriformes Sylviidae LC Secure

Locustella naevia 1021 Passeriformes Sylviidae LC Secure

Loxia curvirostra 707 Passeriformes Fringillidae LC Secure

Lullula arborea 148 Passeriformes Alaudidae LC Depleted

Page 69: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

64

Species Nº observations Order Family Status Trend

Luscinia megarhynchos 315 Passeriformes Muscicapidae LC Secure

Luscinia svecica 289 Passeriformes Muscicapidae LC Secure

Mergus merganser 211 Anseriformes Anatidae LC Secure

Miliaria calandra 153 Passeriformes Emberizidae LC Declining

Milvus migrans 343 Falconiformes Accipitridae LC Unkown

Milvus milvus 482 Falconiformes Accipitridae NT Declining

Motacilla alba 1895 Passeriformes Motacillidae LC Secure

Motacilla cinerea 1410 Passeriformes Motacillidae LC Secure

Motacilla flava 683 Passeriformes Motacillidae LC Secure

Muscicapa striata 1473 Passeriformes Muscicapidae LC Depleted

Nucifraga caryocatactes 542 Passeriformes Corvidae LC Secure

Numenius arquata 165 Charadriiformes Scolopacidae NT Declining

Oriolus oriolus 716 Passeriformes Oriolidae LC Secure

Parus ater 1751 Passeriformes Paridae LC Stable

Parus caeruleus 1894 Passeriformes Paridae LC Secure

Parus cristatus 1446 Passeriformes Paridae LC Declining

Parus major 1918 Passeriformes Paridae LC Increasing

Parus montanus 1220 Passeriformes Paridae LC Secure

Parus palustris 1472 Passeriformes Paridae LC Decreasing

Passer domesticus 1857 Passeriformes Passeridae LC Declining

Page 70: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

65

Species Nº observations Order Family Status Trend

Passer montanus 1712 Passeriformes Passeridae LC Declining

Perdix perdix 882 Galliformes Phasianidae LC Vulnerable

Pernis apivorus 488 Falconiformes Accipitridae LC Stable

Phoenicurus ochruros 1885 Passeriformes Muscicapidae LC Secure

Phoenicurus phoenicurus 910 Passeriformes Muscicapidae LC Depleted

Phylloscopus bonelli 106 Passeriformes Sylviidae LC Declining

Phylloscopus collybita 1910 Passeriformes Sylviidae LC Secure

Phylloscopus sibilatrix 1360 Passeriformes Sylviidae LC Declining

Phylloscopus trochilus 1829 Passeriformes Sylviidae LC Secure

Pica pica 1687 Passeriformes Corvidae LC Secure

Picus canus 650 Piciformes Picidae LC Depleted

Picus viridis 1182 Piciformes Picidae LC Stable

Podiceps cristatus 413 Podicipediformes Podicipedidae LC Secure

Prunella modularis 1813 Passeriformes Prunellidae LC Secure

Pyrrhula pyrrhula 1505 Passeriformes Fringillidae LC Secure

Rallus aquaticus 259 Gruiformes Rallidae LC Secure

Regulus ignicapilla 1647 Passeriformes Reguliidae LC Stable

Regulus regulus 1684 Passeriformes Reguliidae LC Decreasing

Remiz pendulinus 157 Passeriformes Remizidae LC Increasing

Riparia riparia 282 Passeriformes Hirundinidae LC Depleted

Page 71: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

66

Species Nº observations Order Family Status Trend

Saxicola rubetra 539 Passeriformes Muscicapidae LC Secure

Scolopax rusticola 487 Charadriiformes Scolopacidae LC Declining

Serinus serinus 1594 Passeriformes Fringillidae LC Secure

Sitta europaea 1848 Passeriformes Sittidae LC Secure

Streptopelia decaocto 1666 Columbiformes Columbidae LC Secure

Streptopelia turtur 607 Columbiformes Columbidae LC Declining

Strix aluco 1330 Strigiformes Strigidae LC Secure

Sturnus vulgaris 1871 Passeriformes Sturnidae LC Declining

Sylvia atricapilla 1899 Passeriformes Sylviidae LC Secure

Sylvia borin 1722 Passeriformes Sylviidae LC Secure

Sylvia communis 1130 Passeriformes Sylviidae LC Secure

Sylvia curruca 1345 Passeriformes Sylviidae LC Secure

Tachybaptus ruficollis 732 Podicipediformes Podicipedidae LC Secure

Tetrao urogallus 113 Galliformes Phasianidae LC Secure

Troglodytes troglodytes 1896 Passeriformes Troglodytidae LC Secure

Turdus merula 1918 Passeriformes Turdidae LC Secure

Turdus philomelos 1899 Passeriformes Turdidae LC Secure

Turdus pilaris 1789 Passeriformes Turdidae LC Secure

Turdus torquatus 110 Passeriformes Turdidae LC Secure

Turdus viscivorus 1594 Passeriformes Turdidae LC Secure

Page 72: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

67

Species Nº observations Order Family Status Trend

Tyto alba 400 Strigiformes Tytonidae LC Declining

Vanellus vanellus 952 Charadriiformes Charadriidae LC Vulnerable

Page 73: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

68

Appendix C. List of the 127 studies that made out the European-wide analysis, listed by alphabetic

order of the country, and within country by name of the place/city of each study. It is also attached the

correspondent list of references.

Country Place/City

Austria

Dürrenstein (Leditznig & Pekny 2008)

Krappfeld Kärten (Lentner 1997)

Tirol (Landmann 1996)

Vienna (Sziemer & Holzer 2005)

Vienna (Wichmann & Purtscher 2009)

Belgium Brussel (Weiserbs & Jacob 2005)

Bulgaria Sofia (Iankov 2005)

Czech Republic Prague (Stastný et al. 2005)

Finland

Seskar Arquipelago (Vasilyeva 2002)

Suurpelto Agricultural Area (Heikkinen & Korpela 2001)

Tornio (Huhtalo & Järvinen 1977)

France

Caen (Lang 2006)

Grand Haze Marshes (Lecocq 1992)

Le Havre (Lang 2006)

Montepellier (Caula et al. 2008)

Normandie (Normand 1992)

Rouen (Lang 2006)

Saint-Lo (Lang 2006)

Saint-Severe Forerst (Bruno 2005)

Germany

Aberseewand (Scherzinger 1982)

Auer Weidmoos Rosenheim (Nitsche 2004)

Augsburg (Bauer 2000)

Bayern (Bezzel et al. 2005)

Berlin (Witt 2005)

Bielefeld (Laske 1991)

Bodensee (Bauer & Heine 1992)

Bonn (Rheinwald 2005)

Bremen (Seitz & Dallmann 1992)

Chemnitz (Flöter et al. 2006)

Fränkischen Weihergebiet (Kraus & Krauss 2003)

Grossraum Bonn (Wink 1980)

Page 74: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

69

Country Place/City

Germany

Hagen (Welzel 2009)

Haidenaabtal/Oberpfalz (Bastian 1993)

Hamburg (Musow 2005)

Hoyerswerda-Neustadt (Krüger 1973)

Kemnather Hügelland (Möhrlein 2001a)

Kreis & Stadt Ansbach (Ranftl & Dornberger 2002)

Kreis und Stadt Würzburg (Uhlich 1991)

Kreises Soest (Illner et al. 1989)

Kreises Waren (Kremp & Krägenow 1976)

Landkreis Eichsfeld (Hartmann 2004)

Mainz (Thomas 1983)

Mönchengladbach (Hurtmann 2005)

Osnabrück (Kooiker 1994)

Ostdeutschlad (Nicolai 1993)

Ostoberfranken (Gubitz et al. 1993)

Plössberger Hügelland (Möhrlein 2001b)

Rheinland (Nordrhein) (Wink et al. 2005)

Rötelseeweihergebietes (Zach 2002)

Rückhaltebeckens Straussfurt (Laussmann & Frick 2008)

Sachsen (Steffens et al. 1998)

Stadtgebiet Eisenach (Mey 2005)

Stadtgebiet Nürnberg (Veitengruber 1995)

Thüringen (Rost & Grimm 2004)

Wasserburg & Rosenheim (Mieslinger 1997)

Werdenfelser Land (Bezzel & Lechner 1978)

Italy

Alta Valsessera (Popy et al. 2010)

Bergamo (Cairo et al. 2006)

Campagnia (Atripaldi et al. 1989)

Carpeneto County (Spano 1984)

Distritto Mendrisiotto (Lardelli 1988)

Florence (Dinetti 2005)

Genova (Borgo et al. 2005)

Monte Goadagnolo (Lorenzetti et al. 2004)

Monti Simbruini Regional Park (de Pisi & Fusacchia 2005)

Piemonte e Val d'Aosta (Mingozzi et al. 1988)

Page 75: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

70

Country Place/City

Italy

Provincia Verona (de Franceschi 1991)

River Serchio (Tuscany) (Verducci & Chines 2009)

Rome (Cignini & Zapparoli 2005)

Torino (Maffei 2001)

Lithuania Lake Kretuonas (Logminas & Rianba 1999)

Moldova Landscape Park Izmailskie Islands (Potapov 2001)

Poland

Bagna Struskie Bogs (Solowej & Wysocki 2001)

Bialowieza National Park (Wesolowski et al. 2003)

Bystrzyckie Mountains (Mikusek 1996)

Damnica (Gorski 1988)

Former Military Camp North Przemkow (Adamski & Czapulak 2002)

Gliwic (Betleja 2007)

Krkonose Biosphere Reserve (Flousek & Gramsz 1999)

Lake Luknajno (Osojca 2005)

Lower Narew Valley (Rzepala et al. 1999)

Lublin (Biadun 2005)

Meadows Lake Miedwie (Guentzel & Wysocki 2004)

Miedzyodrze Area (Lawicki et al. 2007)

Modrzewina Natural Reserve (Chmielewski 1992)

Ner River Valley (Mielczarek 2006)

Nida River Valley (Polak & Wilniewczyc 2001)

Odra Valley (Hedba & Wyszynski 2002)

Ogrodniki (Golawski & Dombrowski 2004)

Olszyn (Novakowski 1996)

Paprotina (Golawski & Dombrowski 2004)

Pilica River Floodland (Chmielewski et al. 1993)

Potegowo (Gorski 1988)

Protection Forest Szast (Zmihorski 2008)

Przemysl province (Hordowski & Kunysz 1991)

Stolowe Mountains (Mikusek & Dyrcz 2003)

Tarnow region (Martyka et al. 2002)

Tomaszowa Mazowieckiego (Sosnowski 1994)

Torun (Zalewski 1994)

Varsaw (Luniak 2005)

Page 76: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

71

Country Place/City

Portugal

Lisbon (Geraldes & Costa 2005)

Minho (Moreira et al. 2001)

Paul do Taipal (Tenreiro 2002)

Serra da Nogueira (Patacho 2002)

Russia Moscow (Konstantinov & Zakharov 2005)

St. Petersburg (Khrabryi 2005)

Slovakia

Bratislava (Feriancová-Masárová & Kalivodová 2005)

Gory Opawskie Landscape Park (Hedba 2001)

Prievidza (Sotnár 1994)

Senne Fishponds (Wieland 1999)

Slovenia Drawa River (Braèko 1997)

Spain

Alto Vinalopó (Alicante) (Campos 2001)

Catalunya (Llobet & Estrada 2004)

Comunidad de Madrid (Martí 1994)

Comunidad de Valencia (Polo & Polo 2003)

Comunidad Valenciana (Moliner 1991)

Menorca (Salom 1997)

Navarra (Aldaroso 1985)

Parque Nacional Aigüestortes (Blanch 2005)

Valencia (Murgui 2005)

Sweden Örebro (Sandström & Mikusinski 2006)

Ukraine Bozhanovo (Lukashuk 1996)

United Kingdom

Cheshire and Wirral (Norman 2008)

County Durham (Bowey & Westerberg 2000)

Lundy (Davis et al. 2007)

Malvern Hills (Duncan 2008)

Sheffield (Fuller et al. 2009)

Appendix C. References

Adamski, A., and A. Czapulak. 2002. Birds of the former military training ground

North Przemkow. Ptaki Slaska 14:63-89.

Page 77: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

72

Aldaroso, J. E. 1985. Navarra: atlas de aves nidificantes: 1982-1984. Caja de

Ahorros de Navarra, Pamplona.

Atripaldi, U., A. Lavadera, and M. Fraissinet 1989. Atlante degli uccelli nidificanti

in Campania, 1983-1987. Campania, Assessorato Agricoltura, Caccia,

Pesca e le Foreste, Salerno.

Bastian, H. V. 1993. Die Brutvogelfauna einer Feuchtweise im Heidenaabtal,

Oberpfalz. Bedeutung, Gefährdungen, Schutzforderungen.

Ornithologische Verhandlungen 32.

Bauer, H.-G., and G. Heine. 1992. Die Entwicklung der Brutvogelbestände am

Bodensee: Vergleich halbquantitativer Rasterkartierungen 1980/81 und

1990/91. Journal für Ornithologie 133:1-22.

Bauer, U. 2000. Die Brutvögel von Augsburg im Stadt- und Landkreis und dem

angrenzenden Lechtal. Naturwissenschaftlicher Verein für Schwaben,

Augsburg.

Betleja, J. 2007. Atlas of the Breeding Birds of Gliwice: distribution and numbers

in the period 1988-1990. Muzeum Górnoslaskie, Bytom.

Bezzel, E., and F. Lechner 1978. Die Vögel des Werdenfelser Landes. Kilda-

Verlag, Greven.

Bezzel, E., I. Geiersberger, G. von Lossow, and R. Pfeifer 2005. Brutvögel in

Bayern. Verbreitung 1996 bis 1999. Eugen Ulmer KG, Stuttgart.

Biadun, W. 2005. Lublin. Pages 171-196 in J. G. Kelcey, and G. Rheinwald,

editors. Birds in European Cities. GINSTER Verlag, St. Katharinen.

Blanch, R. 2005. Atlas de las aves nidificantes del Parque Nacional del

Aigüestortes i Estany de Sant Maurici y su entorno, 1999-2003.

Ministerio de Medio Ambiente, Organismo Autónomo Parques

Nacionales, Madrid.

Borgo, E., L. Galli, C. Galuppo, N. Maranini, and S. Spanò 2005. Atlante

ornitologico della città di Genova, 1996-2000. Officine Grafiche Canessa,

Genova.

Bowey, K., and S. Westerberg 2000. A summer atlas of the breeding birds of

County Durham. Durham Bird Club, Durham.

Braèko, F. 1997. Ornithological Atlas of the Drawa River between Maribor and

Ptuj for the period of 1989-1992. Acrocephalus 18:57-96.

Page 78: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

73

Bruno, C. 2005. Birds inventory, 1999-2003, of Saint-Sever Forest, Calvados.

Le Cormoran 62:223-236.

Cairo, E., R. Facoetti, S. Ciocca, and M. Guerra 2006. Atlante degli uccelli di

Bergamo: specie nidificanti e specie svernanti, 2001-2004. Edizioni

junior, Bergamo.

Campos, B. 2001. Atlas de las aves nidificantes del Alto Vinalopó, Alicante.

Associación Villenense de Amigos de la Naturaleza, Villena, Alicante.

Caula, S., P. Marty, and J.-L. Martin. 2008. Seasonal variation in

species composition of an urban bird community in Mediterranean

France. Landscape and Urban Planning 87:1-9.

Chmielewski, S. 1992. Breeding avifauna of forest nature reserves Tomczyce

and Modrzewina. Notatki Ornitologizne 33:81-93.

Chmielewski, S., P. Kusiak, and J. Sosnowski. 1993. Breeding birds of the

lower Pilica floodland. Notatki Ornitologiczne 34:247-276.

Cignini, B., and M. Zapparoli. 2005. Rome. Pages 243-277 in J. G. Kelcey, and

G. Rheinwald, editors. Birds in European Cities. GINSTER Verlag, St.

Katharinen.

Davis, T., T. Jones, and M. Langman 2007. The Birds of Lundy.

de Franceschi, P. 1991. Atlante degli uccelli nidificanti in Provincia di Verona,

Veneto, 1983-1987. Pronvicia de Verona, Assessorato caccia, pesca e

tutela della fauna, Verona.

de Pisi, E., and P. Fusacchia. 2005. First results about nesting avifauna in Monti

Simbruini Regional Park, Central Italy. Gli uccelli d'Italia 30:47-62.

Dinetti, M. 2005. Florence. Pages 103-125 in J. G. Kelcey, and G. Rheinwald,

editors. Birds in European Cities. GINSTER Verlag, St. Katharinen.

Draugija, L. O. 2006. Lietuvos perinčių paukščių atlasas. Lututè, Launas.

Duncan, I. 2008. The breeding birds of the Malvern Hills. Malvern Hills

Conservators, Malvern.

Feriancová-Masárová, Z., and E. Kalivodová. 2005. Bratislava. Pages 55-79 in

J. G. Kelcey, and G. Rheinwald, editors. Birds in European Cities.

GINSTER Verlag, St. Katharinen.

Flousek, J., and B. Gramsz. 1999. Atlas of breeding birds in the Krkonose

Biosphere Reserve (Czech Republic/Poland). Vogelwelt 120.

Page 79: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

74

Flöter, E., D. Saemann, and J. Börner 2006. Brutvogelatlas der Stadt Chemnitz.

Hohenstein-Ernstthal.

Fuller, R. A., J. Tratalos, and K. J. Gaston. 2009. How many birds are there in a

city of half a million people? Diversity and Distributions 15:328-337.

Geraldes, P. L., and H. Costa. 2005. Lisbon. Pages 153-170 in J. G. Kelcey,

and G. Rheinwald, editors. Birds in European Cities. GINSTER Verlag,

St. Katharinen.

Golawski, A., and A. Dombrowski. 2004. Avifauna of chosen fragments of

agricultural landscape in eastern Poland. Notatki Ornitologiczne 45:44-

48.

Gorski, W. 1988. Birds breeding in the farmland of the Damnica Plateau (NW

Poland). Acta Ornithologica 24:29-63.

Gubitz, C., R. Pfeifer, and H. Eissmann 1993. Die Vogelwelt Ostoberfrankens;

Grundlage für eine Avifauna. Naturwissenschaftliche Gesellschaft,

Bayreuth.

Guentzel, S., and D. Wysocki. 2004. Breeding avifauna of the meadows at Lake

Miedwie (Western Pomerania). Notatki Ornitologiczne 45:91-99.

Hartmann, H.-B. 2004. Die Vogelwelt des Thüringischen Eichsfeldes - eine

Übersicht. Anzeiger des Vereins Thüringer Ornithologen 5:1-16.

Hedba, G. 2001. Breeding birds of the Gory Opawskie Landscape Park. Ptaki

Slaska 13:41-65.

Hedba, G., and M. Wyszynski. 2002. Breeding avifauna of the Odra Valley

section within Opole province. Ptaki Slaska 14:47-62.

Heikkinen, M., and J. Korpela. 2001. Breeding bird census of Suurpelto

agricultural area. Suurpellon linnustoselvitys 2000. LT-Consultants.

Hordowski, J., and P. Kunysz. 1991. Birds of the province of Przemysl. Notatki

Ornitologiczne 32:5-90.

Huhtalo, H., and O. Järvinen. 1977. Quantitative comparison of the urban bird

community in Tornio, northern Finland. Bird Study 24:179-185.

Hurtmann, H. 2005. Die Vögel der Stadt Mönchengladbach. Books on Demand,

Norerstedt.

Iankov, P. 2005. Sofia. Pages 279-305 in J. G. Kelcey, and G. Rheinwald,

editors. Birds in European Cities. GINSTER Verlag, St. Katharinen.

Page 80: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

75

Illner, H., W. Lederer, and K.-H. Loske 1989. Atlas der Brutvögel des Kreises

Soest: Mittelwestfalen 1981-1986: mit zusätzlichen Angaben aus

1987/88: Kartierungsergebnisse der Ornithologischen Arbeitsgruppen in

der ABU. Arbeitsgemeinschaft Biologischer Umweltschutz im Kreis Soest

ABU, Lohne.

Khrabryi, V. 2005. St. Petersburg. Pages 307-333 in J. G. Kelcey, and G.

Rheinwald, editors. Birds in European Cities. GINSTER Verlag, St.

Katharinen.

Konstantinov, V. M., and R. Zakharov. 2005. Moscow. Pages 197-214 in J. G.

Kelcey, and G. Rheinwald, editors. Birds in European Cities. GINSTER

Verlag, St. Katharinen.

Kooiker, G. 1994. Struktur und Quantität einer urbanen Avifauna am Beispiel

der grossstadt Osnabrück. Acta Ornithoecologica 3:73-96.

Kraus, M., and W. Krauss. 2003. 150 Jahre Avifaunistik im Fränkischen

Weihergebiet: Die Vogelwelt des A. J. Jäckel, 1822-1885, im Vergleich

mit heute. Ornithologischer Anzeiger, München 42:161-212.

Kremp, K., and P. Krägenow 1976. Die Vögel des Kreises Waren Waren.

Müritz-Museum, Waren.

Krüger, S. 1973. Siedlungsdichteuntersuchungen am Brutvogelbestand von

Hoyerswerda-Neustadt im Jahr 1971. Mitt. IG Avifauna DDR 6:89-100.

Landmann, A. 1996. Artenliste und Statusübersicht der Vogel Tirols. Egretta

39:71-108.

Lang, B. 2006. Atlas of breeding birds in any towns of Normandy. Le Cormoran

15:3-38.

Lardelli, R. 1988. Atlante degli ucelli nidificante nel Mendrisiotto: 1981-1985.

Laske, V. 1991. Die Vögel Bielefelds: ein Atlas der Brutvögel 1986-1988 und

weitere Beiträge zur Avifauna. Gieseking, Bielefeld.

Laussmann, H., and S. Frick. 2008. Di Vogelwelt des Rückhaltebeckens

Straussfurt mit besonderer Berücksichtigung der Wasservögel im

Zeitraum 2001-2005. Anzeiger des Vereins Thüringer Ornithologen 6:1-

32.

Page 81: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

76

Lawicki, L., D. Marchowski, W. Mrugowski, S. Niedzwiecki, J. Kaliciuk, P.

Smietana, and D. Wysocki. 2007. Avifauna of the Miedzyodrze region in

1994-2006. Notatki Ornitologiczne 48:38-54.

Lecocq, S. 1992. Birds of the Grand Haze Marshes. Le Cormoran 39:229-234.

Leditznig, C., and R. Pekny 2008. Die Brutvögel des Wildnisgebietes

Dürrenstein: Wildnis Dürrenstein. Schutzgebietsverwaltung Wildnisgebiet

Dürrenstein, Scheibbs.

Lentner, R. 1997. Die Vogelwelt der Kulturlandschaft des Krappfeldes in

Kärnten: Brutzeitlische Habitatpräferenzen, Strukturbeziehungen und

Managementvorschläge. Egretta 40:85-128.

Llobet, T., and J. Estrada 2004. Atles dels ocells nidificants de Catalunya 1999-

2002. Lynx Ed., Bellaterra, Barcelona.

Logminas, V., and G. Rianba. 1999. Ornithofauna of the surrounding forests of

Lake Kretuonas. Acta Zoologica Lituanica 9:211-214.

Lorenzetti, E., E. Ukmar, and C. Battisti. 2004. Comunità ornitische nidificanti

nel sito di importanza comunitaria Monte Guadagnolo, Monti Prenestini,

Italia Centrale. Alula 11:105-112.

Lukashuk, M. V. 1996. Peculiarities of the bird fauna of the settlement of

Bazhanovo, Krivory Rog district. Pages 105-108. 2nd Conference of

Young Ornithologists of Ukraine.

Luniak, M. 2005. Warsaw. Pages 389-415 in J. G. Kelcey, and G. Rheinwald,

editors. Birds in European Cities. GINSTER Verlag, St. Katharinen.

Maffei, G. 2001. L' avifauna della città di Torino: analisi ecologica e faunistica.

Museo regionale di scienze naturali, Torino.

Martyka, R., P. Skórka, J. D. Wójcik, and K. Majka. 2002. Birds of the Tarnow

region. Notatki Ornitologiczne 43:29-48.

Martí, R. 1994. Atlas de las aves nidificantes de la comunidad de Madrid.

Sociedad Española de Ornitología: Agencia de Medio Ambiente, Madrid.

Mey, E. 2005. Changes in the avifauna in city of Eisenach and surroundings,

western Thuringia, during the last 200 years. Anzeiger des Vereins

Thüringer Ornithologen 5:129-172.

Mielczarek, S. 2006. Avifauna of the Ner River Valley in 1984-2005. Notatki

Ornitologiczne 47:159-174.

Page 82: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

77

Mieslinger, N. 1997. 50 Jahre Vogelbeobachtungen am Inn zwischen

Wasserburg und Rosenheim. Ornithologischer Anzeiger 36:159-176.

Mikusek, R. 1996. Breeding avifauna of the Bystrzyckie Mountains. Ptaki Slaska

11:81-114.

Mikusek, R., and A. Dyrcz. 2003. Birds of the Stolowe Mountains. Notatki

Ornitologiczne 44:89-119.

Mingozzi, T., G. Boana, and C. Pulcher 1988. Atlante degli uccelli nidificanti in

Piemonte e Val d'Aosta: 1980-1984. Museo regionale di scienze naturali,

Torino.

Moliner, V. U. 1991. Atlas de las aves nidificantes de la comunidad valenciana.

Generalitat Valenciana, Valencia.

Moreira, F., P. G. Ferreira, F. C. Rego, and S. Bunting. 2001. Landscape

changes and breeding bird assemblages in northwestern Portugal: the

role of fire. Landscape Ecology 16:175-187.

Murgui, E. 2005. Valencia. Pages 335-358 in J. G. Kelcey, and G. Rheinwald,

editors. Birds in European Cities. GINSTER Verlag, St. Katharinen.

Musow, R. 2005. Hamburg. Pages 127-151 in J. G. Kelcey, and G. Rheinwald,

editors. Birds in European Cities. GINSTER Verlag, St. Katharinen.

Möhrlein, E. 2001a. Die Vogelarten des Hügellands um Kemnath.

Avifaunistischer Infodienst Bayern 8:73-82.

Möhrlein, E. 2001b. Die Vogelwelt des Plössberger Hügellandes.

Avifaunistischer Infodienst Bayern 8:65-72.

Nicolai, B. 1993. Atlas der Brutvögel Ostdeutschlands. Gustav-Fischer, Jena.

Nitsche, G. 2004. Die Brutvogelfauna des Auer Weidmooses, Lkr. Rosenheim

(Oberbayern): Langfristige Veränderungen und Effizienskontrolle der

Naturschutzgebiets-Ausweisung. Ornithologischer Anzeiger 43:55-68.

Norman, D. 2008. The Birds of Cheshire and Wirral: a breeding and wintering

atlas. Liverpool University Press, Liverpool.

Normand, G. o. 1992. Atlas des oiseaux nicheurs de Normandie et des îles

anglo-normandes: oeuvre collective des ornithologues normands.

Groupe ornithologique Normand, Caen.

Novakowski, J. J. 1996. Changes in the avifauna of Olsztyn. Acta Ornithologica

31:39-44.

Page 83: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

78

Osojca, G. 2005. Changes in the breeding avifauna of the Lake Luknajno

Biosphere Reserve in 1982-2002. Notatki Ornitologiczne 46:77-89.

Patacho, D. 2002. Atlas das aves nidificantes da Serra da Nogueira, resultados

e indicações para um plano de gestão. Airo 12:57-62.

Polak, M., and P. Wilniewczyc. 2001. Breeding birds of the Nida river valley.

Notatki Ornitologiczne 42:89-102.

Polo, A., and M. Polo. 2003. Aves de la Comunidad Valenciana 2000-2002.

Societat Valenciana d'Ornitologia, Valencia.

Popy, S., L. Bordignon, and R. Prodon. 2010. A weak upward elevational shift in

the distributions of breeding birds in the Italian Alps. Journal of

Biogeography 37:57-67.

Potapov, O. V. 2001. Ornithofauna of the regional landscape park Izmailskie

Islands. Transactions of the Azov-Black Sea Ornithological Station 4:25-

41.

Ranftl, H., and W. Dornberger 2002. Die Vögel des Landkreises und der

kreisfreien Stadt Ansbach. Bayerische Landesanstalt für Bodenkultur und

Pflanzenbau, Weidenbach.

Rheinwald, G. 2005. Bonn. Pages 41-54 in J. G. Kelcey, and G. Rheinwald,

editors. Birds in European Cities. GINSTER Verlag, St. Katharinen.

Rost, F., and H. Grimm. 2004. Kommentierte Artenliste der Vögel Thüringens.

Anzeiger des Vereins Thüringer Ornithologen 5:3-78.

Rzepala, M., Z. Kasprzykowski, A. Golawski, A. Górski, and A. Dmoch. 1999.

Birds of the valley of the Lower Narew River. Notatki Ornitologiczne

40:23-44.

Salom, A. 1997. Atlas dels ocells nidificants de Menorca. Grup Balear

d'Ornitologia i Defensa de la Naturalesa, Menorca.

Scherzinger, W. 1982. Die Spechte im Nationalpark Bayerischer Wald.

Nationalparkverwaltung Bayer, Grafenau.

Seitz, J., and K. Dallmann 1992. Die Vögel Bremens und der angrenzenden

Flussniederungen. BUND, Landesverband Bremen, Bremen.

Solowej, M., and D. Wysocki. 2001. Changes in the breeding birds community

of the Bagna Struskie Bogs in 1994-2000. Notatki Ornitologiczne 42:289-

294.

Page 84: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

79

Sosnowski, J. 1994. Awifauna miasta Tomaszowa Mazowieckiego. Muzeum w

Tomaszowie Mazowieckim, Tomaszów Maz.

Sotnár, K. 1994. Contribution to knowledge of some bird species in the center of

the Prievidza town. Tichodroma 7.

Spano, S. 1984. Uccelli nidificanti in territorio di Carpeneto, AL: variazioni quali-

quantitative nei recenti deccenni. Rivista Piemontese di Storia Naturale

5:117-129.

Stastný, K., V. Bejcek, and J. G. Kelcey. 2005. Prague. Pages 215-241 in J. G.

Kelcey, and G. Rheinwald, editors. Birds in European Cities. GINSTER

Verlag, St. Katharinen.

Steffens, R., R. Kretzschmar, and S. Rau 1998. Atlas der Brutvögel Sachsens.

Sächsisches Landesamt für Umwelt und Geologie, Dresden.

Sziemer, P., and T. Holzer. 2005. Vienna. Pages 359-388 in J. G. Kelcey, and

G. Rheinwald, editors. Birds in European Cities. GINSTER Verlag, St.

Katharinen.

Tenreiro, P. Q. 2002. Actualização do recenseamento ornitológico do Paul do

Taipal 1997-2000. Airo 12:110-112.

Thomas, B. 1983. Zur Avifauna von Mainz: Ergebnisse einer

Brutvogelrasterkartierung 1982. Naturhistorisches Museum Mainz,

Mainz.

Uhlich, D. 1991. Die Vogelwelt im Landkreis und der Stadt Würzburg.

Abhandlungen des Naturwissenschaftlichen Vereins Würzburg 32:3-64.

Vasilyeva, N. A. 2002. Data to the summer ornithofauna of the Seskar

Archipelago in easten part of the Gulf of Finland. Berkut 11:18-26.

Veitengruber, A. 1995. Verbreitung und Bestandsentwicklung der Vögel im

Stadtgebiet von Nürnberg. Ornithologischer Anzeiger 34:39-51.

Verducci, D., and A. Chines. 2009. Bird checklist, Serchio River, Central Italy.

Gli Uccelli d'Italia 35:7-18.

Weiserbs, A., and J.-P. Jacob. 2005. Brussels. Pages 81-101 in J. G. Kelcey,

and G. Rheinwald, editors. Birds in European Cities. GINSTER Verlag,

St. Katharinen.

Welzel, A. 2009. Die Brutvögel Hagens 1997 bis 2008. Hagen Biologische

Station Umweltzentrum, Hagen.

Page 85: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

80

Wesolowski, T., D. Czeszczewick, C. Mitrus, and P. Rowinski. 2003. Birds of

the Bialowieza National Park. Notatki Ornitologiczne 44:1-31.

Wichmann, G., and C. Purtscher 2009. Die Vogelwelt Wiens: Atlas der

Brutvögel. Wein Naturhistorisches Museum, Wein.

Wieland, A. 1999. Surveys of flora and fauna in the Senné fishponds area,

Slovakia, 1997.

Wink, M. 1980. Aussagemöglichkeit der Rasterkartierung für langfristige und

grossflächige Brutvogelbestandsveränderungen: Ergebnisse im

Grossraum Boon 1974-1978. Journal of Ornithology 121:245-256.

Wink, M., C. Dietzen, and B. Giessling 2005. Die Vögel des Rheinlandes

(Nordrhein): ein Atlas der Brut - und Wintervogelverbreitung 1990 bis

2000. Romneya-Verlag Wink, Neunkirchen: Verlag Natur in Buch und

Kunst Prestel, Dossenheim.

Witt, K. 2005. Berlin. Pages 17-39 in J. G. Kelcey, and G. Rheinwald, editors.

Birds in European Cities. GINSTER Verlag, St. Katharinen.

Zach, P. 2002. Die Vogelwelt des Rötelseeweihergebietes bei Cham/Oberpfalz

2001. Avifaunistischer Infodienst Bayern 9:18-31.

Zalewski, A. 1994. A comparative study of breeding bird populations and

associated landscape character, Torún, Poland. Landscape and Urban

Planning 29.

Zmihorski, M. 2008. Breeding birds community of the windthrow in the Piska

Forest, NE Poland. Notatki Ornithologiczne 49:39-56.

Page 86: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

81

Appendix D. List of the 297 bird species recorded for European-wide analysis by alphabetic order of the species name. Species are presented

by their scientific name. Nº observ. Natural is the value of observed presences for the sum of all studies within natural sites and Nº observ.

Anthropogenic is the value of observed presences for the sum of all studies within anthropogenic sites. Status represents the status of the

species according to the UICN Red List of Threated Species (http://www.iucnredlist.org/); LC – Least Concern; NE – Near Threatened. Trend

stands for population trend in Europe at present days according to accounts in Birds in Europe: population estimates, trends and conservation

status (Birdlife International 2004 – http://www.birdlife.org). Near Threatened and Threatened species are highlighted.

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Accipiter gentilis 54 24 Falconiformes Accipitridae LC Secure

Accipiter nisus 57 30 Falconiformes Accipitridae LC Secure

Acrocephalus arundinaceus 41 16 Passeriformes Sylviidae LC Secure

Acrocephalus palustris 44 28 Passeriformes Sylviidae LC Secure

Acrocephalus schoenobaenus 36 17 Passeriformes Sylviidae LC Secure

Acrocephalus scirpaceus 52 28 Passeriformes Sylviidae LC Secure

Actitis hypoleucos 34 12 Charadriiformes Scolopacidae LC Declining

Aegithalos caudatus 64 37 Passeriformes Aegithalidae LC Secure

Aegolius funereus 20 2 Strigiformes Strigidae LC Secure

Aegypius monachus 1 0 Falconiformes Accipitridae NT Rare

Alauda arvensis 63 36 Passeriformes Alaudidae LC Depleted

Alca torda 2 0 Charadriiformes Alcidae LC Secure

Alcedo atthis 55 26 Coraciiformes Alcedinidae LC Depleted

Page 87: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

82

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Alectoris rufa 13 2 Galiiformes Phasianidae LC Declining

Anas acuta 8 2 Anseriformes Anatidae LC Declining

Anas clypeata 34 8 Anseriformes Anatidae LC Declining

Anas crecca 32 11 Anseriformes Anatidae LC Secure

Anas penelope 9 1 Anseriformes Anatidae LC Secure

Anas platyrhynchos 68 39 Anseriformes Anatidae LC Secure

Anas querquedula 36 11 Anseriformes Anatidae LC Declining

Anas strepera 31 8 Anseriformes Anatidae LC Depleted

Anser anser 25 9 Anseriformes Anatidae LC Secure

Anthus campestris 26 6 Passeriformes Motacillidae LC Declining

Anthus pratensis 44 22 Passeriformes Motacillidae LC Secure

Anthus spinoletta 17 2 Passeriformes Motacillidae LC Secure

Anthus trivialis 59 28 Passeriformes Motacillidae LC Secure

Apus apus 53 43 Apodiformes Apodidae LC Secure

Apus pallidus 6 6 Apodiformes Apodidae LC Secure

Aquila chrysaetos 17 1 Falconiformes Accipitridae LC Rare

Aquila fasciatus 6 1 Falconiformes Accipitridae LC Endangered

Aquila pomarina 11 0 Falconiformes Accipitridae LC Declining

Ardea cinerea 38 12 Ciconiiformes Ardeidae LC Secure

Ardea purpurea 14 2 Ciconiiformes Ardeidae LC Declining

Ardeola ralloides 5 1 Ciconiiformes Ardeidae LC Declining

Page 88: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

83

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Arenaria interpres 1 0 Charadriiformes Scolopacidae LC Secure

Asio flammeus 9 4 Strigiformes Strigidae LC Depleted

Asio otus 60 27 Strigiformes Strigidae LC Secure

Athene noctua 39 22 Strigiformes Strigidae LC Declining

Aythya ferina 32 10 Anseriformes Anatidae LC Declining

Aythya fuligula 42 22 Anseriformes Anatidae LC Declining

Aythya nyroca 11 2 Anseriformes Anatidae NT Vulnerable

Bombycilla garrulus 2 0 Passeriformes Bombycillidae LC Secure

Bonasa bonasia 15 2 Galiiformes Phasianidae LC Secure

Botaurus stellaris 21 5 Ciconiiformes Ardeidae LC Depleted

Branta leucopsis 4 0 Anseriformes Anatidae LC Secure

Bubo bubo 31 6 Strigiformes Strigidae LC Depleted

Bubulcus ibis 5 1 Ciconiiformes Ardeidae LC Secure

Bucephala clangula 11 6 Anseriformes Anatidae LC Secure

Burhinus oedicnemus 11 1 Charadriiformes Burhinidae LC Vulnerable

Buteo buteo 69 30 Falconiformes Accipitridae LC Increasing

Calandrella brachydactyla 10 2 Passeriformes Alaudidae LC Declining

Calidris alpina 8 0 Charadriiformes Scolopacidae LC Depleted

Calonectris diomedea 4 0 Procellariiformes Procellariidae LC Vulnerable

Caprimulgus europaeus 38 10 Caprimulgiformes Caprimulgidae LC Depleted

Caprimulgus ruficollis 6 1 Caprimulgiformes Caprimulgidae LC Secure

Page 89: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

84

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Carduelis cannabina 62 35 Passeriformes Fringillidae LC Declining

Carduelis carduelis 66 41 Passeriformes Fringillidae LC Secure

Carduelis chloris 70 47 Passeriformes Fringillidae LC Secure

Carduelis citrinella 9 0 Passeriformes Fringillidae LC Secure

Carduelis flammea 28 10 Passeriformes Fringillidae LC Decreasing

Carduelis spinus 40 15 Passeriformes Fringillidae LC Secure

Carpodacus erythrinus 21 9 Passeriformes Fringillidae LC Secure

Casmerodius albus 5 1 Ciconiiformes Ardeidae LC Unkown

Certhia brachydactyla 57 32 Passeriformes Certhiidae LC Secure

Certhia familiaris 50 19 Passeriformes Certhiidae LC Stable

Cettia cetti 16 7 Passeriformes Sylviidae LC Secure

Charadrius alexandrinus 8 0 Charadriiformes Charadriidae LC Declining

Charadrius dubius 50 29 Charadriiformes Charadriidae LC Secure

Charadrius hiaticula 11 5 Charadriiformes Charadriidae LC Secure

Chen caerulescens 1 0 Anseriformes Anatidae LC Secure

Chersophilus duponti 2 0 Passeriformes Alaudidae NT Depleted

Chlidonias hybrida 7 0 Charadriiformes Laridae LC Depleted

Chlidonias niger 13 5 Charadriiformes Laridae LC Depleted

Ciconia ciconia 38 10 Ciconiiformes Ciconiidae LC Depleted

Ciconia nigra 20 2 Ciconiiformes Ciconiidae LC Rare

Cinclus cinclus 41 13 Passeriformes Cinclidae LC Secure

Page 90: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

85

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Circaetus gallicus 12 1 Falconiformes Accipitridae LC Stable

Circus aeruginosus 38 12 Falconiformes Accipitridae LC Secure

Circus cyaneus 13 0 Falconiformes Accipitridae LC Depleted

Circus pygargus 30 3 Falconiformes Accipitridae LC Secure

Cisticola juncidis 14 5 Passeriformes Cisticolidae LC Secure

Clamator glandarius 7 0 Cuculiformes Cuculidae LC Secure

Clangula hyemalis 1 0 Anseriformes Anatidae VU Secure

Coccothraustes coccothraustes 52 29 Passeriformes Fringillidae LC Secure

Columba livia 29 39 Columbiformes Columbidae LC Secure

Columba oenas 44 21 Columbiformes Columbidae LC Secure

Columba palumbus 71 40 Columbiformes Columbidae LC Secure

Coracias garrulus 12 0 Coraciiformes Coraciidae NT Vulnerable

Corvus corax 49 11 Passeriformes Corvidae LC Secure

Corvus corone 66 40 Passeriformes Corvidae LC Secure

Corvus frugilegus 22 21 Passeriformes Corvidae LC Secure

Corvus monedula 52 38 Passeriformes Corvidae LC Secure

Coturnix coturnix 63 23 Galiiformes Phasianidae LC Depleted

Crex crex 38 16 Gruiformes Rallidae LC Depleted

Cuculus canorus 75 33 Cuculiformes Cuculidae LC Secure

Cyanopica cyanus 1 0 Passeriformes Corvidae LC Secure

Cygnus olor 43 23 Anseriformes Anatidae LC Secure

Page 91: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

86

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Delichon urbicum 58 42 Passeriformes Hirundinidae LC Declining

Dendrocopos leucotos 9 5 Piciformes Picidae LC Secure

Dendrocopos major 69 39 Piciformes Picidae LC Secure

Dendrocopos medius 29 14 Piciformes Picidae LC Secure

Dendrocopos minor 54 28 Piciformes Picidae LC Secure

Dendrocopos syriacus 3 9 Piciformes Picidae LC Secure

Dryocopus martius 49 24 Piciformes Picidae LC Secure

Egretta garzetta 11 2 Ciconiiformes Ardeidae LC Increasing

Elanus caeruleus 1 0 Falconiformes Accipitridae LC Rare

Emberiza cia 21 3 Passeriformes Emberizidae LC Depleted

Emberiza cirlus 19 6 Passeriformes Emberizidae LC Secure

Emberiza citrinella 59 33 Passeriformes Emberizidae LC Secure

Emberiza hortulana 30 12 Passeriformes Emberizidae LC Depleted

Emberiza schoeniclus 51 29 Passeriformes Emberizidae LC Secure

Eremophila alpestris 2 0 Passeriformes Alaudidae LC Secure

Erithacus rubecula 72 40 Passeriformes Muscicapidae LC Secure

Erythropygia galactotes 3 0 Passeriformes Muscicapidae LC Vulnerable

Eudromias morinellus 3 0 Charadriiformes Charadriidae LC Secure

Falco naumanni 7 0 Falconiformes Falconidae LC Depleted

Falco peregrinus 30 14 Falconiformes Falconidae LC Secure

Falco subbuteo 50 19 Falconiformes Falconidae LC Secure

Page 92: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

87

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Falco tinnunculus 62 40 Falconiformes Falconidae LC Declining

Ficedula albicollis 17 7 Passeriformes Muscicapidae LC Secure

Ficedula hypoleuca 44 27 Passeriformes Muscicapidae LC Secure

Ficedula parva 20 12 Passeriformes Muscicapidae LC Stable

Fratercula arctica 2 0 Charadriiformes Alcidae LC Depleted

Fringilla coelebs 75 46 Passeriformes Fringillidae LC Secure

Fulica atra 55 31 Gruiformes Rallidae LC Secure

Fulmarus glacialis 3 0 Procellariiformes Procellariidae LC Secure

Galerida cristata 25 23 Passeriformes Alaudidae LC Depleted

Galerida theklae 8 0 Passeriformes Alaudidae LC Depleted

Gallinago gallinago 39 16 Charadriiformes Scolopacidae LC Declining

Gallinula chloropus 60 37 Gruiformes Rallidae LC Secure

Garrulus glandarius 69 40 Passeriformes Corvidae LC Secure

Glareola pratincola 3 0 Charadriiformes Glareolidae LC Declining

Glaucidium passerinum 19 3 Strigiformes Strigidae LC Secure

Grus grus 14 2 Gruiformes Gruidae LC Depleted

Gypaetus barbatus 3 0 Falconiformes Accipitridae LC Vulnerable

Gyps fulvus 7 0 Falconiformes Accipitridae LC Secure

Haematopus ostralegus 11 2 Charadriiformes Haematopodidae LC Secure

Haliaeetus albicilla 13 2 Falconiformes Falconidae LC Rare

Hieraaetus pennatus 10 0 Falconiformes Falconidae LC Rare

Page 93: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

88

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Himantopus himantopus 13 2 Charadriiformes Recurvirostridae LC Secure

Hippolais icterina 42 28 Passeriformes Sylviidae LC Secure

Hippolais polyglotta 18 7 Passeriformes Sylviidae LC Secure

Hirundo daurica 8 1 Passeriformes Hirundinidae LC Increasing

Hirundo rupestris 18 4 Passeriformes Hirundinidae LC Secure

Hirundo rustica 59 41 Passeriformes Hirundinidae LC Depleted

Hydrobates pelagicus 5 0 Procellariiformes Hydrobatidae LC Secure

Ixobrychus minutus 27 13 Ciconiiformes Ardeidae LC Depleted

Jynx torquilla 55 25 Piciformes Picidae LC Declining

Lagopus muta 10 0 Galiiformes Phasianidae LC Secure

Lanius collurio 62 29 Passeriformes Laniidae LC Depleted

Lanius excubitor 39 9 Passeriformes Laniidae LC Depleted

Lanius minor 9 3 Passeriformes Laniidae LC Declining

Lanius senator 17 3 Passeriformes Laniidae LC Declining

Larus argentatus 13 7 Charadriiformes Laridae LC Secure

Larus cachinnans 7 6 Charadriiformes Laridae LC

Larus canus 16 5 Charadriiformes Laridae LC Depleted

Larus fuscus 12 2 Charadriiformes Laridae LC Secure

Larus marinus 6 1 Charadriiformes Laridae LC Secure

Larus melanocephalus 15 3 Charadriiformes Laridae LC Secure

Larus michahellis 6 2 Charadriiformes Laridae LC

Page 94: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

89

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Larus ridibundus 28 12 Charadriiformes Laridae LC Secure

Limicola falcinellus 1 0 Charadriiformes Scolopacidae LC Declining

Limosa limosa 22 5 Charadriiformes Scolopacidae NT Vulnerable

Locustella fluviatilis 30 12 Passeriformes Sylviidae LC Secure

Locustella luscinioides 37 10 Passeriformes Sylviidae LC Secure

Locustella naevia 47 21 Passeriformes Sylviidae LC Secure

Loxia curvirostra 41 10 Passeriformes Fringillidae LC Secure

Lullula arborea 45 14 Passeriformes Alaudidae LC Depleted

Luscinia luscinia 18 13 Passeriformes Muscicapidae LC Secure

Luscinia megarhynchos 44 27 Passeriformes Muscicapidae LC Secure

Luscinia svecica 29 8 Passeriformes Muscicapidae LC Secure

Lymnocryptes minimus 2 0 Charadriiformes Scolopacidae LC Declining

Marmaronetta angustirostris 2 0 Anseriformes Anatidae VU Vulnerable

Melanitta fusca 3 0 Anseriformes Anatidae EN

Melanocorypha calandra 7 0 Passeriformes Alaudidae LC Declining

Mergellus albellus 2 0 Anseriformes Anatidae LC Declining

Mergus merganser 15 3 Anseriformes Anatidae LC Secure

Merops apiaster 21 9 Coraciiformes Meropidae LC Depleted

Miliaria calandra 48 21 Passeriformes Emberizidae LC Declining

Milvus migrans 34 7 Falconiformes Accipitridae LC Unkown

Milvus milvus 30 9 Falconiformes Accipitridae NT Declining

Page 95: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

90

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Monticola saxatilis 15 0 Passeriformes Muscicapidae LC Depleted

Monticola solitarius 13 4 Passeriformes Muscicapidae LC Depleted

Montifringilla nivalis 9 0 Passeriformes Passeridae LC Secure

Morus bassanus 2 0 Pelecaniformes Sulidae LC Secure

Motacilla alba 67 42 Passeriformes Motacillidae LC Secure

Motacilla cinerea 55 25 Passeriformes Motacillidae LC Secure

Motacilla flava 47 28 Passeriformes Motacillidae LC Secure

Muscicapa striata 70 40 Passeriformes Muscicapidae LC Depleted

Neophron percnopterus 7 0 Falconiformes Accipitridae EN Endangered

Netta rufina 18 1 Anseriformes Anatidae LC Secure

Nucifraga caryocatactes 22 3 Passeriformes Corvidae LC Secure

Numenius arquata 25 4 Charadriiformes Scolopacidae NT Declining

Nycticorax nycticorax 15 4 Ciconiiformes Ardeidae LC Depleted

Oenanthe hispanica 7 0 Passeriformes Muscicapidae LC Depleted

Oenanthe oenanthe 42 22 Passeriformes Muscicapidae LC Declining

Oriolus oriolus 60 31 Passeriformes Oriolidae LC Secure

Otis tarda 4 0 Gruiformes Otididae VU Vulnerable

Otus scops 16 7 Strigiformes Strigidae LC Depleted

Oxyura leucocephala 2 0 Anseriformes Anatidae EN Vulnerable

Pandion haliaetus 12 0 Falconiformes Accipitridae LC Rare

Panurus biarmicus 19 4 Passeriformes Timaliidae LC Secure

Page 96: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

91

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Parus ater 59 32 Passeriformes Paridae LC Stable

Parus caeruleus 66 43 Passeriformes Paridae LC Secure

Parus cristatus 50 27 Passeriformes Paridae LC Declining

Parus major 72 47 Passeriformes Paridae LC Increasing

Parus montanus 52 25 Passeriformes Paridae LC Secure

Parus palustris 56 27 Passeriformes Paridae LC Decreasing

Passer domesticus 58 44 Passeriformes Passeridae LC Declining

Passer montanus 59 36 Passeriformes Passeridae LC Declining

Pelecanus crispus 1 0 Pelecaniformes Pelecaniidae VU Rare

Perdix perdix 50 26 Galiiformes Phasianidae LC Vulnerable

Pernis apivorus 45 17 Falconiformes Accipitridae LC Secure

Petronia petronia 11 0 Passeriformes Passeridae LC Secure

Phalacrocorax carbo 16 4 Pelecaniformes Phalacrocoracidae LC Secure

Philomachus pugnax 6 4 Charadriiformes Scolopacidae LC Declining

Phoenicurus ochruros 54 36 Passeriformes Muscicapidae LC Secure

Phoenicurus phoenicurus 54 34 Passeriformes Muscicapidae LC Depleted

Phylloscopus bonelli 23 4 Passeriformes Sylviidae LC Declining

Phylloscopus collybita 70 36 Passeriformes Sylviidae LC Secure

Phylloscopus sibilatrix 54 29 Passeriformes Sylviidae LC Declining

Phylloscopus trochiloides 6 4 Passeriformes Sylviidae LC Secure

Phylloscopus trochilus 53 34 Passeriformes Sylviidae LC Secure

Page 97: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

92

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Pica pica 59 45 Passeriformes Corvidae LC Secure

Picoides tridactylus 6 0 Piciformes Picidae LC Depleted

Picus canus 36 15 Piciformes Picidae LC Depleted

Picus viridis 58 36 Piciformes Picidae LC Stable

Platalea leucorodia 2 1 Ciconiiformes Threskiornithidae LC Rare

Plegadis falcinellus 3 0 Ciconiiformes Threskiornithidae LC Declining

Pluvialis apricaria 6 0 Charadriiformes Charadriidae LC Secure

Podiceps cristatus 46 22 Podicipediformes Podicipedidae LC Secure

Podiceps grisegena 16 4 Podicipediformes Podicipedidae LC Secure

Podiceps nigricollis 24 7 Podicipediformes Podicipedidae LC Secure

Porphyrio porphyrio 2 1 Gruiformes Rallidae LC Secure

Porzana parva 15 2 Gruiformes Rallidae LC Secure

Porzana porzana 25 9 Gruiformes Rallidae LC Secure

Prunella collaris 15 0 Passeriformes Prunellidae LC Secure

Prunella modularis 66 32 Passeriformes Prunellidae LC Secure

Pterocles orientalis 4 0 Columbiformes Pteroclididae LC Declining

Puffinus puffinus 2 0 Procellariiformes Procellariidae LC

Pyrrhocorax graculus 11 0 Passeriformes Corvidae LC Secure

Pyrrhocorax pyrrhocorax 11 1 Passeriformes Corvidae LC Declining

Pyrrhula pyrrhula 54 27 Passeriformes Fringillidae LC Secure

Rallus aquaticus 46 19 Gruiformes Rallidae LC Secure

Page 98: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

93

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Recurvirostra avosetta 10 3 Charadriiformes Recurvirostridae LC Secure

Regulus ignicapilla 50 25 Passeriformes Reguliidae LC Stable

Regulus regulus 57 34 Passeriformes Reguliidae LC Decreasing

Remiz pendulinus 38 21 Passeriformes Remizidae LC Increasing

Riparia riparia 41 22 Passeriformes Hirundinidae LC Depleted

Rissa tridactyla 4 0 Charadriiformes Laridae LC Secure

Saxicola rubetra 54 18 Passeriformes Muscicapidae LC Secure

Saxicola torquatus 56 21 Passeriformes Muscicapidae LC Secure

Scolopax rusticola 37 13 Charadriiformes Scolopacidae LC Declining

Serinus serinus 55 36 Passeriformes Fringillidae LC Secure

Sitta europaea 64 33 Passeriformes Sittidae LC Secure

Somateria mollissima 4 0 Anseriformes Anatidae LC Secure

Stercorarius parasiticus 1 0 Charadriiformes Stercorariidae LC Secure

Sterna albifrons 12 5 Charadriiformes Laridae LC Secure

Sterna hirundo 26 10 Charadriiformes Laridae LC Secure

Streptopelia decaocto 52 41 Columbiformes Columbidae LC Secure

Streptopelia turtur 62 28 Columbiformes Columbidae LC Declining

Strix aluco 59 28 Strigiformes Strigidae LC Secure

Sturnus unicolor 9 1 Passeriformes Sturnidae LC Secure

Sturnus vulgaris 61 45 Passeriformes Sturnidae LC Declining

Sylvia atricapilla 75 43 Passeriformes Sylviidae LC Secure

Page 99: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

94

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Sylvia borin 64 33 Passeriformes Sylviidae LC Secure

Sylvia cantillans 13 5 Passeriformes Sylviidae LC Secure

Sylvia communis 68 37 Passeriformes Sylviidae LC Secure

Sylvia conspicillata 8 0 Passeriformes Sylviidae LC

Sylvia curruca 51 33 Passeriformes Sylviidae LC Secure

Sylvia hortensis 9 0 Passeriformes Sylviidae LC Depleted

Sylvia melanocephala 15 8 Passeriformes Sylviidae LC Secure

Sylvia nisoria 23 12 Passeriformes Sylviidae LC Secure

Sylvia undata 15 1 Passeriformes Sylviidae NT Depleted

Tachybaptus ruficollis 55 23 Podicipediformes Podicipedidae LC Secure

Tachymarptis melba 14 1 Apodiformes Apodidae LC Secure

Tadorna tadorna 15 4 Anseriformes Anatidae LC Secure

Tetrao tetrix 22 1 Galiiformes Phasianidae LC Depleted

Tetrao urogallus 16 0 Galiiformes Phasianidae LC Secure

Tetrax tetrax 6 0 Gruiformes Otididae NT Vulnerable

Tichodroma muraria 9 1 Passeriformes Sittidae LC Secure

Tringa glareola 6 2 Charadriiformes Scolopacidae LC Depleted

Tringa ochropus 16 4 Charadriiformes Scolopacidae LC Secure

Tringa totanus 25 8 Charadriiformes Scolopacidae LC Declining

Troglodytes troglodytes 69 37 Passeriformes Troglodytidae LC Secure

Turdus iliacus 12 8 Passeriformes Turdidae LC Secure

Page 100: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

95

Species Nº observ.

Natural Nº observ.

Urban Order Family Status Trend

Turdus merula 75 45 Passeriformes Turdidae LC Secure

Turdus philomelos 68 37 Passeriformes Turdidae LC Secure

Turdus pilaris 45 28 Passeriformes Turdidae LC Secure

Turdus torquatus 21 1 Passeriformes Turdidae LC Secure

Turdus viscivorus 60 26 Passeriformes Turdidae LC Secure

Tyto alba 45 22 Strigiformes Tytonidae LC Declining

Upupa epops 40 16 Coraciiformes Upupidae LC Declining

Uria aalge 2 0 Charadriiformes Alcidae LC Secure

Vanellus vanellus 58 28 Charadriiformes Charadriidae LC Vulnerable

Xenus cinereus 0 2 Charadriiformes Scolopacidae LC Secure

Page 101: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

96

Appendix E. Ultrametric tree of the molecular phylogeny estimated for the 157 Bavarian native breeding bird

species, according to the method used to obtained the Global Phylogeny of Birds by Jetz et al. (2012b). For

more details see Methods.

Page 102: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

97

Appendix F. Ultrametric tree of the molecular phylogeny estimated for the 297 European-wide assemblage

native breeding bird species, according to the method used to obtained the Global Phylogeny of Birds by

Jetz et al. (2012b). For more details see Methods.

Page 103: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

98

a

b

Page 104: UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ...repositorio.ul.pt/bitstream/10451/9543/1/ulfc103114_tm_margarida_g... · FACULDADE DE CIÊNCIAS DEPARTAMENTO

99

Variable Number Variable measured

Bio 1 Annual mean temperature (°C)

Bio 2 Mean diurnal range (mean of monthly Max temp – Min temp) (°C)

Bio 3 Isothermatity [(Bio 2 / Bio 7) *100]

Bio 4 Temperature seasonality (standard deviation*100)

Bio 5 Maximum temperature of warmest month (°C)

Bio 6 Minimum temperature of coldest month (°C)

Bio 7 Temperature annual range (Bio 5 – Bio 6) (°C)

Bio 8 Mean temperature of wettest quarter (°C)

Bio 9 Mean temperature of driest quarter (°C)

Bio 10 Mean temperature of warmest quarter (°C)

Bio 11 Mean temperature of coldest quarter (°C)

Bio 12 Annual precipitation (mm)

Bio 13 Precipitation of wettest month (mm)

Bio 14 Precipitation of driest month (mm)

Bio 15 Precipitation seasonality (Coefficient of Variation)

Bio 16 Precipitation of wettest quarter (mm)

Bio 17 Precipitation of driest quarter (mm)

Bio 18 Precipitation of warmest quarter (mm)

Bio 19 Precipitation of coldest quarter (mm)

Appendix H. Biplots of the principal component analysis of the 19 bioclimatic variables (See

Table above) within the WordClim databse across grids in Bavaria (a) and European-wide

studies (b). Numbers presented are after the numbers of grids/studies.