62
-%* % &/+0 &**0*8 %#*% + &.) & #: $ ## %#0** <= &) #+ *" ****$%+ )9 +'% &* *) %+*+ -*&% & %#0+# 6 %-)&%$%+# &/&#&0 ')+$%+ & &)+&)0 % 6 +&#&0 ,#+0 & % 6 %+*+)0 %&) % -*&) <+)= 4 & + # 4) & #+ #)+ #+

University Alberta_Toxicity Bioassay Health Risk Assessment_xCELLigence_Webinar2014.pdf

Embed Size (px)

Citation preview

  • -%* %&/ +0 &**0*8%#* %+&.):

    $##%#0* *

  • )*%++ &%,+# %

    #+ *"****$%+ &%'+,#)$.&)" $) %) *"****$%+') $

    &.)& %$ # *"****$%+ $ #+&/ +0')&3# % +)(,# +0$&% +&) % )')+ ,#++&/ +0 %&+&/ +0 ,+% +0 &**0

    ,+,))%* % *"****$%+

  • +)$ %%+*& *"
  • +)$ %%+*& *"
  • 3% + &%+ *"# #) *!#-(!0' 7 /./*#0()# '/#*-/* *'*"$'.4./ (.

    - .0'/$)"!-*( 3+*.0- /*) )1$-*)( )/'#5-?

    *0)/1 - ./

  • ) + &%# *"****$%+)&**

    % .'%#$+ '%$#$)"'%)) %$$-

    1)%+ 3+ &%#/# '/#+-*' (.- 0. 4/#

    # ($'B

    &*:*'&%*****$%+

    #/- /# # '/#*0/*( ./$7 - )/

    3+*.0- ' 1 '.B

    /'&*,)****$%+

    *2(0#*!/# # ($'- + *+' 3+*. /*0-$)"+ -$**!/$( B*2()4+ *+' -

    3+*. B

    *")+) 1+ &%#/$./# 3/--$.&*!# '/#+-*' (.$)/# 3+*. +*+0'/$*)B

  • &/ +0*+ %
  • &$'&%%+*&+A@ * &%

    # ($'#-/ -$5/$*)

    *3$$/4 ./$)"*3$$/4/#24. -" / ./$)"

    *. @ .+*). )3/-+*'/$*)* '$)"

    % .'%#%, )-() $ $)76()$)*'-0 ( %$$)')-

  • ) $ + % *"****$%++'* ) + &%#'')& A@;A@

    Hazard identification

    In vivo animal experiments Endpoint assays (mortality) Epidemiological studies Environmental monitoring

    Chemical characterization Toxicity pathway identification Some targeted animal testing Population context

    Dose-response assessment

    Extrapolation of in vivo animal results to humans

    Modeling based on a battery of in vitro assays, systems biology and reverse toxicokinetics

    Exposure assessment

    Receptors Pathways of exposure Concentration, duration Internal dose

    Population data Exposure data (biomonitoring and personal exposure monitoring)

    Risk characterization

    Quantitative risk assessment models

    Biologically relevant health risk assessment

  • Emerging Technologies

  • +&*&)##*%#0* * '+ # '0*- . )

  • / %>%*+),$%++ &%

    %( $($1

  • ) % '#&/ %>

    cell 0 cell 0

  • &% +&) %##) )+ &%&%+/ %>%*+),$%+

    $11)"1/#1(1%, %"1/%"16=/755: $$$$

    11 ))))))) """""""""1/ ####1

  • ##,#)*'&%**++0+/ %>%*+),$%+

    ')%)"1/$-"%& %$"-) "# ()'-/7568 ') % ) """" $- """"%&)

  • $ #&/ +0)&3# %

  • &/ +0)&3# %)&!+&%'+,#)$.&)"

    -6.38

    -3.160.05

    3.266.48

    9.69

    EC RATE

    8.37

    5.70

    3.03

    0.35

    -2.32-4.99

    EC Adoptation

    -4.40

    -3.05

    -1.71

    -0.36

    0.99

    2.34

    EC Efficiency

    PLOT OF EC EFFICIENCY BY EC ADOPTATION BY EC RATE

    cluster: CLUSTER ONE CLUSTER TWO

    CLUSTER THREE CLUSTER FOUR

    CLUSTER FIVE CLUSTER SIX

    CLUSTER SEVEN

    Mean Graph For CytochalasinB

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    A549

    ARPE

    BEAS

    HEPG

    SKNS

    VSMC

    Hazard Identification Toxicity Profiling

    Cytochalasin B - VSMC

    Log10 concentration (uM)

    -4 -3 -2 -1 0 1 2

    T

    o

    x

    i

    c

    E

    f

    f

    e

    c

    t

    -150

    -100

    -50

    0

    50

    100

    15024 hr48 hr72 hr96 hr

    HTS Cell Panel

    Cell Population Kinetics

    Dose-Response

    Mean Graph

    Cluster Analysis Mode of Action

    GHS Classification

    Reverse Toxicokinetics

    In Vivo LD50

    Exposure Standards; Health Risk Assessment

    Population Exposure

    Risk Characterization

    Bioinformatics

    Chemical Characterization

    Chemicals

    Metabolites

    In Vitro Dose

    Mutagenicity Assay

    Specialized Assays

    LD50 (mmol/kg) vs KC50 (mM)_geomean in 6 Human Cell Lines

    log KC50 (mM)_geomean

    -10 -8 -6 -4 -2 0 2 4 6

    l

    o

    g

    L

    D

    5

    0

    R

    a

    t

    (

    m

    m

    o

    l

    /

    k

    g

    )

    -6

    -4

    -2

    0

    2

    4

    logLD50 (mmol/kg) = 0.560xlogKC50 + 0.155

    regression line (r = 0.86, r2 = 0.74)RC(12) Prediction Line (r =0.87, r2 = 0.77)Log-5 (RC12) Log +5 (RC12) RC(282) Prediction line (r = 0.67, r2 = 0.45)

  • &/ +0)&3# %)&!+!+ -*

    *0- *!# ($'.-).+*-/)!/

    /#24*! 3+*.0- *' 0'-$)$/$/$)" 1 )/

    0@ ''0'-*-") '' - .+*). . ''0'- 7 /.$..0 ' .$*).

    -")H.4./ (I+/#*'*"4

    )$1$0'*-")$.($. .

    *+0'/$*) 7 /.*.4./ ( 7 /.

    #)$.(*!/$*)

    * *!/$*)*3$$/4+/#24

    1 -. *0/*( +/#24*0- /**0/*( +/#24

    0

    .

    @

    7

    /

    +

    /

    #

    2

    4

    #)$.(

    *3$

    1 *01. Human exposure standards 2. Prediction of in vivo starting doses 3. GHS Classification of chemicals

  • &/ +0)&3# %)&!+/') $%+#* %

    )1$-*)( )/'*)/($))/. ! - ) *(+*0).HI ! - ) # ($'.HI

    -$*-$/4# ($'. /#24/$1/*-.@)#$$/*-. +- . )//$1 .*!'..@

    3+ -$( )/'# ($'.KUOO

    '') 'FT ''$) .

    $( @ .+*). 0-1 . *. @ .+*). 0-1 .TO

  • &/ +0)&3# %)&!+##%#

    Cell Line(* Origin Cell Type +Q $1 - +/* ''0'--$)*(@PW 4 *-('- /$)' ''H+$"( )/ ITSW 0)" )*-$)*(H'1 *'-.' ''I@@ -$) 0-*'./*(Q 0)" *-('-*)#$' ''..VS)/ *-('.(''$)/ ./$) $) 4 )' '' )*-$)*(E@ *-/ *-('.(**/#(0.' H*-/IRR *0. (-4* $-*'./

    JI0-- )/ '''$) .> +Q

  • +%#0* *

  • $?: %)') %+ %

    +&&0

  • $?: %)') %+ %#,*+) %

    -6.38

    -3.160.05

    3.266.48

    9.69

    EC RATE

    8.37

    5.70

    3.03

    0.35

    -2.32-4.99

    EC Adoptation

    -4.40

    -3.05

    -1.71

    -0.36

    0.99

    2.34

    EC Efficiency

    PLOT OF EC EFFICIENCY BY EC ADOPTATION BY EC RATE

    cluster: CLUSTER ONE CLUSTER TWO

    CLUSTER THREE CLUSTER FOUR

    CLUSTER FIVE CLUSTER SIX

    CLUSTER SEVEN

    -6.38

    -3.160.05

    3.266.48

    9.69

    EC RATE

    8.37

    5.70

    3.03

    0.35

    -2.32-4.99

    EC Adoptation

    -4.40

    -3.05

    -1.71

    -0.36

    0.99

    2.34

    EC Efficiency

    PLOT OF EC EFFICIENCY BY EC ADOPTATION BY EC RATE

    cluster: CLUSTER ONE CLUSTER TWO

    CLUSTER THREE CLUSTER FOUR

    CLUSTER FIVE CLUSTER SIX

    CLUSTER SEVEN

    '*/*!-*2/#9$ )44")4/

  • %)'+&Mean Graph For CytochalasinB

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    A549

    ARPE

    BEAS

    HEPG

    SKNS

    VSMC

    Mean Graph For CytochalasinD

    -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

    A549

    ARPE

    BEAS

    HEPG

    SKNS

    VSMC

    Mean Graph For LatrunculinB

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    A549

    ARPE

    BEAS

    HEPG

    SKNS

    VSMC

    Mean Graph For LatrunculinA

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    A549

    ARPE

    BEAS

    HEPG

    SKNS

    VSMC

    MeMeMeMeMeMeanananananan GGGGGGrarararararaphphphphphphp FFFFFForororororor CytochalasinB

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    A549

    AAARPE

    BBEAS

    HHHHEPG

    SSKNS

    VVVVSMC

    MeMeMeMeMeMeanananananan GGGGGGrarararararaphphphphphphp FFFFFForororororor CytochalasinD

    -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

    A549

    ARPE

    BEAS

    HEPG

    SKNS

    VSMC

    Mean Graph For LatrunculinB

    -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    A549

    ARPE

    BEAS

    HEPG

    SKNS

    VSMC

    Mean Graph For LatrunculinA

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

    A549

    AARPE

    BBEAS

    HHEPG

    SSKNS

    VVVVSMC

  • ) + &%&+&) *

    9 C$;".

    9 CC?$;".

    9 C?B??$;".

    9 B??A7???$;".9 A???C7???$;".

  • ) + &%&+&) * Slope Inter-

    cept RC-IC NRU RTCA

    Dose Finding

    RTCA Definitive

    RTCA Definitive

    Measure IC50 IC50 KC50 KC50 KC50 Cell Line M

    HNK 9 Human

    Geomean ACHN HepG2

    Chemical 347 51 12 12 12

    RC (374) 0.435 0.625 40% 29% 50% 42% 36%

    Over-predicted 34% 40% 50% 50% 46%

    Under-predicted 26% 31% 0% 8% 9%

    Correlation with LD50 values ( r )

    0.67

    0.68 0.64 0.91(*

    0.84 0.69

    JIACHN r = 0.91, HepG2 r = 0.64

  • ) + &%&C?LD50 (mmol/kg) vs KC50 (mM)_geomean in 6 Human Cell Lines

    log KC50 (mM)_geomean

    -10 -8 -6 -4 -2 0 2 4 6

    l

    o

    g

    L

    D

    5

    0

    R

    a

    t

    (

    m

    m

    o

    l

    /

    k

    g

    )

    -6

    -4

    -2

    0

    2

    4

    logLD50 (mmol/kg) = 0.560xlogKC50 + 0.155

    regression line (r = 0.86, r2 = 0.74)RC(12) Prediction Line (r =0.87, r2 = 0.77)Log-5 (RC12) Log +5 (RC12) RC(282) Prediction line (r = 0.67, r2 = 0.45)

    L

    D

    5

    0

    LDLDLDLDLDLD50 ((((((mmmmmmmm llolololol/k/k/k/k/k/k ))g)g)g)g) vvvvssss KCKCKCKCKCKC50 (((((( MMmMmMmMmM))))))_gegegegeomomomomeaeaeaeannnn iiinininin 666666 HHHHHHumumumumanananan CCCCCC llelelelelllllll LiLiLiLiLiLinenenenessss

    log KC50 (mM)_geomean

    -10 -8 -6 -4 -2 0 2 4 6

    l l

    o

    l

    o

    g g

    L L L

    m

    m

    m

    m

    l

    o

    l

    o

    l

    /

    k

    /

    k

    /

    k

    )

    g

    )

    g

    )

    -6

    -4

    -2

    0

    2

    4

    logLD50 (mmol/kg) = 0.560xlogKC50 + 0.155

    regression line (r = 0.86, r2 = 0.74)RC(12) Prediction Line (r =0.87, r2 = 0.77)Log-5 (RC12) Log +5 (RC12)RC(282) Prediction line (r = 0.67, r2 = 0.45)

    L

    D

    5

    0

  • * % & #*'&%**+&) +#+ *"*

    Gene mutation Reporter gene

    Gene expression Biomarkers

    Molecular initiating

    event

    Cellular effects

    Organelle responses

    Receptor binding Ligands

    Protein adducts DNA adducts

    Ligand binding Enzyme activity Co-activators

    Chemical x-actions

    Gene activation Protein production

    Signaling

    Injury Stress

    Apoptosis Autophagy Necrosis

    Transformation

    Cytotoxicity Flow cytometry

    Imaging

    Biochemical assays s Molecular assays s Cellular assays

    )

    '

    *

    !

    .

    .

    4

    .

    Point of departure

    concentration in vitro

    Acceptable concentration

    in vitro (g/l)

    1

    -

    .

    7

    /

    .

    In vivo human exposure standard

    (mg/kg/day)

    Point of

    Systems biology

    Reverse toxicokinetics

    Toxicity pathway

  • +),# +0%,$%#+

    %)* %',# .)%**%&%)%&,+.+)*,''# *&),$%&%*,$'+ &%

    $'+*&%+)&'&% + - + *< %,*+)07) ,#+,)=&%$ )& #%$ #.+)(,# +0

    ,#+&)0%* /$*)'+ -!*-() ./)-. (+'$)")/ ./$)"- ,0$- ( )/. $-*$'H?*'$

  • +),# +0%/
  • #** 3+ &%&&)*

  • +)&/ +0*+ % ,).+) &+#.+)
  • Standard Water Toxicity Bioassays

    ) &3*) #,$ %*% % + &%< )&+&/= $%&'#,*'#+0,),*$&)+# +0 '% $% $$& # 1+ &%%)')&,+ &%

    (5*)@$* "-*

  • -#&'$%+&:*+)&/ +0 &**0 Develop and demonstrate the utility of a human cell-

    based / %> screening assay to assess toxicity of various source waters

    Introduce a toxicity index to evaluate degrees of toxicity in various types of water *$/11/)"1/$'&*" ) %$TCRC Curve

    Dose-response

    Curve Toxicity Heat

    Map Water Toxicity

    Index Bar

    S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S120

    1

    2

    3

    4

    5

    6

    7

    8

    Water SamplesT

    o

    x

    i

    c

    i

    t

    y

    I

    n

    d

    e

    x

    Concentration

    W

    a

    t

    e

    r

    S

    a

    m

    p

    l

    e

    s

    Colormap for Toxicity Index in HepG2

    80% 60% 40% 30% 20% 10%

    S1

    S2

    S3

    S4

    S5

    S6

    S7

    S8

    S9

    S10

    S11

    S12

    1

    2

    3

    4

    5

    6

    7

    8

    9

  • Sorry,thedatawillbesharedonceitispublished.

  • Sorry, the data will be shared once it is published.Sorry,thedatawillbesharedonceitispublished.

  • Sorry,thedatawillbesharedonceitispublished.

  • Sorry,thedatawillbesharedonceitispublished.

  • Sorry the data will be shared once it is publishedSorry,thedatawillbesharedonceitispublished.

  • Sorry,thedatawillbesharedonceitispublished.

  • Speed (High-throughput screening) Early indication of hazard Human relevance Multiple cell types (Cell panel) Exposure relevance Mixtures Quick evaluation of environmental incidents Cost-effective

    %3+*&++/ %> &**0

  • +)+)&%+$ %%+*&)"

  • )&++ %,)+)) +

    ).&

  • )#,+ &%%#+ *"* ))$%0 2)%++0'*& )'#,+%+*)&$

    . )%&*&,)* $&*+ $'&)+%+++)+**%')+ #*

    ++-%&,%+&&%+) ,++&) &-*,#)%)*' )+&)0 **

    /#()0

  • ),# +0#+%/
  • ,)+1)+ #%,##,#)'&%**

    *$ )"1/$"-()/755=/688/;982;9=

  • C?#,*&&,)0'*&)+ ,#+* %::@##*

    *$ )"1/$"-()/755=/688/;982;9=

    Urban dustDiesel exhaust

  • &1)&,*A9C%%&')+ #*

  • 0+&+&/ +0)&3#*&,)+1 )&')+ #*
  • &/ +0)&3#%C?&)+ ,#+* %::@##*

    ')%)"1/$-"%& %$"-) "# ()'-/7568 '''' )))))))) %%%% )))))))) """""""""1/ $$$$----"""""""%"%"%"%&&&))))))))

    Quartz particles (Q66)Urban dust (SRM1649a)

    Concentrated air particles (CAPs)

  • / %> ))+ ,#+
  • %&+&/ +0 )&. %+)) %+,$%#+

    %*+0) *"*&%%&$+) #* %&$+) #*-,% (,+&/ ')&')+ *

    ,*&+ )'0* #')&')+ *

  • &/ +0)&3##*)+. +%%% A

    ')%)"1/$"-) # )/7568/=84>5

  • &/ +0)&3#&:@##*)+. +%)+ #*

    ')%)"1/$-"%& %$"-) "# ()'-/7568

  • ,+% +0 &**0

    ,++ &%*)%* %+*(,%&%,#&+ *. + %##,*0$,+%*

  • +)+0&),+% +0*+ % &%* )+ &%* $ #*+),+,)%#**7')&')+ * + *$7)+ - +07 & #+ - +0 &,+*&/'&*,)7 &- # # +07+)++ **,

    $+&* +) #+*+*&)%$,++ &%*

  • )&&&&%'+,++ &% &**0

    ''"-*2/#&$) /$. . '$) )/#- .#*' ..4'$-/$*)

    +-*0$$'$/4 *(+-$.*)*!$*..4. $11/)"1$" %$"#/7567/651655

  • &%#,* &%*,++ &%**0 -$&%*+)++')&&&&%'+&%&-#

    &**0&)+++ &%&$,++##* *$+&')&- *'&.),#+&. + )

    +)&,',+&)%&+&/ +0+*+ % -,*7&)+3)*++ $7##)&.+" %+ ,)-*

    &)+(,%+ 3+ &%&$,+%+##* )*,#+*&+ %. ++) %#&*)$%+

    . ++&*&+&%-%+ &%#%&+&/ +0**0 ,)+)'++ &%%-# + &%&+**0 *)(, )

    &)*)% %+,#$,+% %- )&%$%+#$ #*

  • ,+,))%* %&/ +0*+ %% *"****$%+

    %+ 3+ &%&+&/ +0'+.0*%$&&+ &%&$ #*

    %+)')++ &%%-#,+ &%&+ & # %&)$+ &%)&$#+) *"****$%+')*'+ -

    -#&'$%+&$% *+ ##0:*') + -$*& & #)*'&%*

    $)%&%.)*&''# + &% %',# #+) *"****$%+

  • ,+,))%* %%&0

    &%+ %, $')&-$%+& :+)&,',+*)% %+%& *

    -#&'$%+&+&/ +0:*3#$&% +&) % %*+),$%+*:*%* + -7'&)+#7*+#- *:&) )(,# +0%.+)+&/ +0****$%+

    ,#+ '#/ %& $'%))0*. +&+)##:*+%& *

  • "%&.#$%+*

    #&)+&)*8

    '&%*&)*8

  • #)&4*0A

    0 ./$*).B