32
1 UV-Vis, Fluorescence, Phosphorescence, FTIR, and Raman Spectroscopy Speaker 王王王 Adviser Hsien-Chang Chang 2011.10.26 Vibrational spectroscopy Infrared spectroscopy Raman spectroscopy Raman spectrosc opy Frequency (Hz) Wavelength (m) 10 6 10 9 1 10 3 10 12 10 15 10 18 10 -9 10 -6 10 -3 10 21 10 -12 Microwaves radar Infrared Ultraviolet X-rays Visible light γ-rays 400 nm 700 nm 1 10 3 Wavelength (nm) Wavenumber (cm -1 ) Cosmic rays Electroni c excitatio n E=hν=hc/λ h= 6.62×10 -27 J-s c= 3×10 10 cm/s AM radio Short wave radio TV ,FM Millimeter waves, telemetry Electronic excitation Fluorescence Phosphorescence Infrared spectrosc opy

UV-Vis, Fluorescence, Phosphorescence, FTIR, and Raman Spectroscopy

  • Upload
    shawn

  • View
    322

  • Download
    3

Embed Size (px)

DESCRIPTION

E=hν=hc/λ h= 6.62×10 -27 J-s c= 3 ×10 10 cm/s. Electronic excitation : Fluorescence Phosphorescence. Vibrational spectroscopy : Infrared spectroscopy Raman spectroscopy. Electronic excitation. Infrared spectroscopy. Raman spectroscopy. - PowerPoint PPT Presentation

Citation preview

Page 1: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

1

UV-Vis, Fluorescence, Phosphorescence, FTIR, and Raman Spectroscopy

Speaker :王竣弘 Adviser : Hsien-Chang Chang 2011.10.26

Vibrational spectroscopy : Infrared spectroscopy Raman spectroscopy

Raman spectroscopy

Frequency (Hz)

Wavelength (m)

106 109

1103

1012 1015 1018

10-910-610-3

1021

10-12

Mic

row

aves

rada

r

Infra

red

Ultr

avio

let

X-ra

ys

Visible light

γ-ra

ys

400 nm700 nm

1 103

Wavelength (nm)

Wavenumber (cm-1)

Cosm

icra

ys

Electronicexcitation

E=hν=hc/λ h= 6.62×10-27 J-s

c= 3×1010 cm/s

AM ra

dio

Shor

t wav

e ra

dio

TV ,F

M

Mill

imet

er

wav

es,

tele

met

ry

Electronic excitation : Fluorescence Phosphorescence

Infrared spectroscopy

Page 2: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

2

光的直進性 光的折射 光的全反射 光徑的可逆性

光的干涉 光的繞射 光電效應光的色散現象

光的特性

電子光子

金屬

Page 3: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

3

光譜的分類 產生方式波長 本質

按波長區域在一些可見光譜的紅端之外,存在著波長更長的紅外線;同樣,在紫端之外,則存在有波長更短的紫外線。紅外線和紫外線都不能為肉眼所覺察,但可通過儀器加以記錄。因此,除可見光譜,光譜還包括有紅外光譜與紫外光譜。按產生本質按產生本質,光譜可分為分子光譜 ( 帶狀光譜 ) 與原子光譜 ( 線狀光譜 ) 。在分子中,能量電子態 > 能量振動態 > 能量轉動態。因此在分子的電子態之間的躍遷中,總是伴隨著振動躍遷和轉動躍遷的,因而許多光譜線就密集在一起而形成分子光譜。因此,分子光譜又叫做帶狀光譜。在原子中,當原子以某種方式從基態提升到較高的能態時,原子內部的能量增加了,這些多餘的能量將被以光的形式發射出來,於是產生了原子的發射光譜,亦即原子光譜。因為這種原子能態的變化是非連續量子性的,所產生的光譜也由一些不連續的亮線所組成,所以原子光譜又被稱作線狀光譜。

紫外光譜可見光譜紅外光譜

Page 4: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

4

Part 1: UV-Vis( 紫外-可見分光光度法 )

可見光及紫外光之燈管做為光源,通過濾光鏡調整色調後,經聚焦後通過單色光分光稜鏡,再經過狹縫選擇波長,使成單一且特定波長之光線,其後射入樣品管中之水樣中,再射入光電管中將光能轉換為電器訊號。藉由樣本及空白水樣間所吸收之光能量差與標準液之能量吸收值相比較,便可律定樣本中之待測物濃度

濾光鏡

Page 5: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

5

Beer-Lamber Law (also known as Beer's law or the Beer–Lambert–Bouguer law )

A :吸收度 a : 吸收係數 l :厚度 c :濃度

I0 :入射光強度 I1 :透射光強度

1

0logIIA

clIIA a

1

0log

clA a

入射光

偵測器

Page 6: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

6

Nicotinamide adenine dinucleotide (NAD+)• It is a coenzyme found in all living

cells.

• The compound is a dinucleotide( 核苷酸 ), since it consists of two nucleotides joined through their phosphate groups( 磷酸基 ): with one nucleotide containing an adenosine( 腺苷 ) ring, and the other containing nicotinamide.

OPO3 NADP

Page 7: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

7

Absorbance spectra of NAD+ and NADH• The proton is released into

solution, while the reductant RH2 is oxidized and NAD+ reduced to NADH by transfer of the hydride to the nicotinamide ring.

• Both NAD+ and NADH absorb strongly in the ultraviolet due to the adenine base. For example, peak absorption of NAD+ is at a wavelength of 259 nm, with an extinction coefficient of 16,900 M-1cm-1. NADH also absorbs at higher wavelengths, with a second peak in UV absorption at 339 nm with an extinction coefficient of 6,220 M-1cm-1.

RH2 + NAD+ → NADH + H+ + R

A 340 nm : 6.22 = 0.001 M x 1 cm x 6,220 M-1cm-1

NADH Concentration

Oxidoreductase ( 氧化還原酶 )

Page 8: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

8

Direct versus coupled assays • UV light is often used, since the common coenzymes NADH and NADPH

absorb UV light in their reduced forms, but do not in their oxidised forms. • An oxidoreductase using NADH as a substrate could therefore be assayed

by following the decrease in UV absorbance at a wavelength of 340 nm as it consumes the coenzyme.

• the coupled assay for the enzyme hexokinase, which can be assayed by coupling its production of glucose-6-phosphate to NADPH production, using glucose-6-phosphate dehydrogenase.

Page 9: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

9

Role in redox metabolism of NAD(H) • The redox reactions catalyzed

by oxidoreductases are vital in all parts of metabolism, but one particularly important area where these reactions occur is in the release of energy from nutrients.

• Here, reduced compounds such as glucose are oxidized, thereby releasing energy.

• This energy is transferred to NAD+ by reduction to NADH, as part of glycolysis and the citric acid cycle.

Page 10: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

10

Part 2: 螢光、磷光

螢光:

磷光:

vFEX hvsshvs 010

吸收光子能量,電子從基態單態激發至激發單態 S1 ,接著以發光的形式放出能量,電子再度回到基態。螢光態的壽命為 10−8 至 10−5 秒。vFEX hvsTshvs 0110

吸收光子能量,電子從基態單態激發至激發單態 S1 ,接著經由系間跨越過程躍遷至能量較低的激發三重態 T1 ,最後以發光的形式放出能量, 電子再度回到基態。磷光的壽命為 10− 4 秒到數分鐘乃至數小時不等。

Page 11: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

11

用於對 DNA 進行自動測序的鏈末端終止法 在原初的方法中,需要對 DNA 的引子端進行螢光標記, 以便在測序凝膠板上確定 DNA 色帶的位置。 在改進方法中,對作為鏈終止劑的 4 種雙脫氧核苷酸

(ddTBP) 分別進行螢光標記,電泳結束後不同長度的 DNA分子彼此分開,經紫外線照射, 4 種被標記的雙脫氧核苷酸發出不同波長的螢光。通過分析螢光的光譜即可分辨出DNA 的序列

採用螢光標記的鏈終止劑所得到的 DNA 測序圖

Page 12: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

12

Part 3: IR system ( 紅外光譜法 )

Infrared

Near-infraredOvertone region

震動Infrared (mid) vibration-rotation

region震動 -旋轉

Far-infrared rotation-region

旋轉

Ultraviolet

光譜範圍

分子不是靜的物體,它們不僅相對地在運動著,即使在單一的分子內,其組成的原子核也隨時在改變著相對的位置。分子內之原子核相對運動的結果,便造成振動( vibration )或分子的旋轉( rotation )。

Page 13: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

13

對稱伸縮 非對稱伸縮

剪刀式擺動 左右搖擺

上下搖擺 扭擺

分子運動 簡單的雙原子分子只有一種鍵,那就是伸縮。 更複雜的分子可能會有許多鍵,且振動可能會共軛出現,導致某種特徵頻率的紅外吸收可和化學組聯繫起來。 常在有機化合物中發現的 CH2組,可藉「對稱和非對稱伸縮」、「剪刀式擺動」、「左右搖擺」、「上下搖擺」和「扭擺」六種方式振動。

Page 14: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

14

IR :以光柵分光來取得單頻光,再移動光柵逐步掃瞄頻率的方法。FTIR :採用 Michelson 干涉儀取得干涉光譜,再轉換為頻譜。優點可同步取得全頻光譜縮短掃瞄時間及頻率解析度的提升。 比較對一個 400~4000 cm-1範圍的光譜,若解析度為 1 cm-1 ,傳統光柵分光儀同一時間點平均將只有 1/3600 的光源強度通過光柵到達偵測器, 99.97% 的光都被擋在外。

一般傳統光譜儀 傅氏轉換紅外線光譜儀

傳統 (IR) 與傅氏轉換紅外線光譜儀 (FTIR) 之原理

因 FTIR 不經過分光,同一時間可測得所有頻率的光,不需掃瞄,節省時間,故用傳統光譜測一樣品的時間可取得多次的干涉光譜,加以平均而獲得高訊號 / 雜訊比 (S/N) 的光譜。

Michelson interferometer

Page 15: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

15

麥克森干涉儀,是用分光鏡 (Beam Splitter) 使兩光束進行方向完全不同強度相等之一反射及一透射光束,當其再相遇時便形成干涉條紋。反射光束從平面鏡 M1反射,第二次通過分光鏡時透射而到屏幕。透射光束從平面鏡 M2反射,再由分光鏡反射而至屏幕,從鏡 M2反射之光束並未穿透分光鏡,這一點使得它與從鏡 M1反射之光束有光程差。麥克森干涉儀利用光波的干涉,使量測的精度提高到 1/2 個波長以內。

M1

M2

麥克森干涉儀(Michelson interferometer )

Page 16: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

16

其中的 d 僅有數公釐,而 r 長達 1 meter ,故 PS1 、 PA 、 PS 2 近似平行。

楊格雙狹縫干涉

Page 17: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

17

Fourier Transform of Interferogram

Multichannel

Page 18: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

18

衰減全反射 (Attenuated total reflection, ATR) •光束以一角度由 C點進入高折射率 n1 的介質 A ,當光束到達 A-B介質介面時,如果入射角 q大於A-B介質介面的全反射角,光束能量將在 B介質界面以指數函數衰減。若在 B介質 (折射率 n2) 上放置可吸收光子的分子,則當光束在 A介質內進行全反射的過程中則可偵測到置於 B介質分子的吸收光譜,置於 B介質的分子其吸收強度隨著距離 A-B界面越遠而呈指數含數遞減,此現象就稱之衰減全反射。

Page 19: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

19

樣品處理

氣體樣品及低沸點的液體樣品: 將低沸點的液體蒸汽或氣體樣品引入氣體槽中 (gas cell) 加以測定。液體樣品: 將純液體滴在鹽片上,再用另一鹽片夾起來,放在樣品架上固定。固體樣品: 固體樣品磨成細粉分散在液體油膏或固體粉末介質中進行測定。

紅外線光譜於材料上的應用相當廣泛,例如高分子聚合物材料、有機導電材料、清潔劑、介面活性劑等等。此外樣品依照物理狀態或不同的環境下,所呈現的紅外線光譜也不一樣,因此必須適當的處理樣品就能獲得正確的光譜。

Page 20: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

20

四個吸收頻帶於: 2952 、 1465 、 1380 、 720 cm-1 。2952 cm-1 為 C-H 的伸縮震動。1465 cm-1 為 C-H2 的變型振動。1380 cm-1 為 C-H3 的變形振動。720 cm-1 為 C-H2 的搖擺振動。

正辛烷紅外線吸收光譜

Page 21: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

21http://mail.ypu.edu.tw/~wnhuang/Biology%20ultrared/Biology%20ultrared.htm

生物分子之紅外線吸收光譜帶

Page 22: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

22

拉曼散射 (Raman scattering)

Stokes side瑞立散射(Reyleigh scattering)

拉曼散射 (Raman scattering )

anti-Stokes side

Absorption Incident light

Transmitted light

• Elastic: (Rayleigh scattering)• Inelastic: (Raman scattering)

matter

激態

基態

hv h ( v -v’ )

激態

基態

hv hv

激態

基態

hv h ( v + v’ )

Observations of laser scattering from the sample

Vibrational energy levels

Scattered light

Page 23: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

23

μ= αE • E: 電場 μ:誘發偶極矩 α:極化率 ν0 : 電磁波頻率 E0 : 電場之振幅 • α0:平衡極化率 Δα:極化率最大改變量則誘發偶極矩為

※此式中的三項分別為Rayleigh散射 (ν0)anti-Stokes 線 (ν0+νk)Stokes 線 (ν0-νk)

tEE 00 2cos tE 00 2cos a

tkaaa 2cos)(0

tEtk 000 2cos]2cos)([ aa

])(2cos)(2[cos)(212cos 000000 ttEtE kk aa

拉曼光譜的極化誘發

Page 24: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

24

inVia

Page 25: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

25

Light Pathway of Raman System

Sample

Expander

FilterGrating

Prism

CCD

ND Filter

LaserMirror

Lens Lens Lens

Slit

Objective

633, 785 nm

1200, 1800 Lines/mmNotch/Edge

10X, 20X, 40X

578 pixel × 385 pixel(1 pixel=22 m)

擴束至 6 mm

40~45 m

Page 26: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

26

共振拉曼散射 (RR)(Resonance Raman scattering)

若激發光子之波長極接近分析物電子吸收峰的波長,其所引起的散射會使拉曼譜線強度增強,稱為共振拉曼散射 (resonance Raman scattering) 優點: 1. 訊號放大,易於辨別 2. 對於取得不易的試樣,即使低濃度亦可偵測 3.針對部份結構激發,突顯少數譜線,易於分析

Page 27: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

27

表面增顯拉曼光譜SERS(Surface-Enhanced Raman Spectroscopy)

將樣品吸附在膠態金屬顆粒 ( 通常是金、銀或銅材質 ) 的表面,或著吸附在這些金屬薄片的粗糙表面上。

吸附分子的拉曼圖普通常會增強 103 到 106 。 SERS effect arises from two mechanisms :EM (electromagnetic) enhancement mechanism

CHEM (chemical) enhancement mechanism

Surface Plasma Resonance

Charge Transfer

Page 28: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

28

Exciting laser

EM (electromagnetic) enhancement mechanism

coscos 03

3

0 EragEEr

05.0a

CHEM (chemical) enhancement mechanism

Surface Plasma Resonance

Charge Transfer

a: radius of the metal sphereλ: wavelength of incident lightEr: total electric field at a

distance r from the sphere surface

θ: the angle relative to the direction of the electric field

An electron transfers to the metal from HOMO.The hot electron transfers to LUMO via the metal.The electron return to its initial state and Stokes

photon creation.

r

Page 29: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

29

CCl4 spectrum

218 314 459758 & 786

doubly degenerate triply degenerate triply degenerate fully symmetric

Page 30: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

30

紅外光譜和拉曼光譜比較 紅外光譜 拉曼光譜

產生模式 吸收光譜 散射光譜激發光源 紅外線 紫外光 ~近紅外

光振動活化 偶極矩轉動 極化改變檢測水溶液樣本 水的紅外吸收 很

強,干擾大水的拉曼散射 很弱,干擾小

Page 31: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

31

紅外光譜 拉曼光譜粉末 容易 容易單晶 很難 很容易純液體 很容易 很容易水溶液 難 很容易氣體 容易 難聚合物纖維 很難 容易化合物部分特徵 優良 優良訊號取難易 容易 較難

Page 32: UV-Vis, Fluorescence, Phosphorescence,  FTIR, and Raman Spectroscopy

32

Investigation of the Interaction between Amino Acids and Au by Surface-Enhanced Infrared Spectroscopy

Reference electrode Counter

electrode

Working electrode (Au film) Si prism

Purge gas

IR beam

Gold film on silicon film

O

OCC

H

N

H

HR

Li-Chia Chen1, Taro Uchida2, Hsien-Chang Chang1, Masatoshi Osawa2

1Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan2Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan 32

H

Glycine