113
ESTANDARIZACIÓN Y VALIDACIÓN DE LA TÉCNICA DE RECUENTO DE CÉLULAS SOMÁTICAS DEL EQUIPO DCC DeLaval FRENTE A LA TÉCNICA DE MICROSCOPÍA DIRECTA EN LA ORGANIZACIÓN LA ALQUERÍA S.A. NOHORA MILENA GÓMEZ HURTADO TRABAJO DE GRADO Presentado como requisito parcial Para optar al título de Microbiólogo Industrial PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE CIENCIAS CARRERA DE MICROBIOLOGÍA INDUSTRIAL BOGOTÁ D.C. AÑO 2008

VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

ESTANDARIZACIÓN Y VALIDACIÓN DE LA TÉCNICA DE RECUENTO

DE CÉLULAS SOMÁTICAS DEL EQUIPO DCC DeLaval FRENTE A LA

TÉCNICA DE MICROSCOPÍA DIRECTA EN LA ORGANIZACIÓN LA

ALQUERÍA S.A.

NOHORA MILENA GÓMEZ HURTADO

TRABAJO DE GRADO

Presentado como requisito parcial

Para optar al título de

Microbiólogo Industrial

PONTIFICIA UNIVERSIDAD JAVERIANA

FACULTAD DE CIENCIAS

CARRERA DE MICROBIOLOGÍA INDUSTRIAL

BOGOTÁ D.C.

AÑO 2008

Page 2: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

2

NOTA DE ADVERTENCIA

Artículo 23 de la Resolución N° 13 de Julio de 1946

“La Universidad no se hace responsable por los conceptos emitidos por sus alumnos

en sus trabajos de tesis. Solo velará porque no se publique nada contrario al dogma y

a la moral católica y por que las tesis no contengan ataques personales contra persona

alguna, antes bien se vea en ellas el anhelo de buscar la verdad y la justicia”

Page 3: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

3

ESTÁNDARIZACIÓN Y VALIDACIÓN DE LA TÉCNICA DE RECUENTO

DE CÉLULAS SOMÁTICAS DEL EQUIPO DCC DeLaval FRENTE A LA

TÉCNICA DE MICROSCOPÍA DIRECTA EN LA ORGANIZACIÓN LA

ALQUERÍA S.A.

NOHORA MILENA GÓMEZ HURTADO

APROBADO

_____________________________ Olga Cristina Gamba, Microbióloga

Director ________________________ _________________________ David Gómez, Microbiólogo Mayerly Gómez, Bacterióloga Jurado Jurado

Page 4: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

4

ESTÁNDARIZACIÓN Y VALIDACIÓN DE LA TÉCNICA DE RECUENTO

DE CÉLULAS SOMÁTICAS DEL EQUIPO DCC DeLaval FRENTE A LA

TÉCNICA DE MICROSCOPÍA DIRECTA EN LA ORGANIZACIÓN LA

ALQUERÍA S.A.

NOHORA MILENA GÓMEZ HURTADO

APROBADO

_________________________ ________________________

Ingrid Schuler, PhD Janeth Arias, M.Sc - M.Ed Decano Académico Director de Carreras

Page 5: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

5

Gracias a Dios por ser mi luz y mi fuerza cada día. A mis padres por brindarme el

amor más grande y puro, por ser mi apoyo y mis más inmensos motivos. A mis

hermanitas por acompañarme y compartir cada uno de los momentos de mi vida. A

toda mi familia por ser mi soporte, por tantos valores que contribuyeron a mi

formación y me hacen ser lo que soy hoy en día. A todas las personas importantes en

mi vida, GRACIAS.

Page 6: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

6

AGRADECIMIENTOS

A la organización Alquería S.A., por la financiación total del proyecto, en especial a

las doctoras Olga Cristina Gamba y Mayerly Gómez, por su valiosa colaboración.

A todas las personas que de una u otra forma con su colaboración y amistad

incondicional participaron en la elaboración de este proyecto.

Page 7: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

7

TABLA DE CONTENIDOS

1. Introducción…………………………………………………………………….20

2. Marco teórico……………………………………………………..……….…......22

2.1. Organización Alquería………………………………………………..…………22

2.2. Definición de Células Somáticas.………………………………………...……..24

2.2.1. Función de Células Somáticas………………………………………...………25

2.3. Definición de Mastitis…………………………………………………………...25

2.3.1. Patógenos más comunes………………………………………………...…….29

2.3.2. Detección de mastitis……………………………………………….…………30

2.3.2.1. Examen físico de la ubre…………………………………………..………..30

2.3.2.2. Aspecto de la leche………………………………………………..………...31

2.3.2.3. Cultivo bacteriano……………………………………………….…………..31

2.4. Técnicas para la detección de Células Somáticas…………………...…………..31

2.4.1. Prueba de mastitis de California (CMT)……………………...……………….31

2.4.2. Prueba de Wisconsin …………………..…………………..………………….32

2.4.3. Coulter Counter….……………………………………………………………33

2.4.4. Fossomatic…………………………………………………………………….33

2.4.5. Recuento bajo microscopio.…...……………………………...……………….34

2.4.5.1. Aplicaciones del Método de Microscopio Directo………………………….35

2.4.5.1.1. Aplicaciones a la leche cruda por pasteurizar……………...……………...35

2.4.5.1.2. Aplicación a la leche pasteurizada………………………………………..36

2.4.5.1.3. Aplicaciones a la leche en polvo………………………………………….37

2.4.5.2. Fuentes de error en el método de microscopía directa……………………...37

2.4.5.3. Recuentos de grumos bacterianos…………………………….………….….38

2.4.5.4. Clasificación de las muestras………………………………………………..39

2.5. Equipo DCC DeLaval…………………………………………………………...40

2.6. Parámetros estadísticos………………………………..…………………...……41

2.6.1. Validación……………………………………………………………...……...41

2.6.1.1. Planificación………………………………………………………………...41

Page 8: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

8

2.6.1.2. Calificación del diseño…………………………………...………………….42

2.6.1.3. Calificación de la instalación…………………………..……………………42

2.6.1.4. Calificación del funcionamiento.…………………….………………..…….42

2.6.1.5. Calificación de desempeño…..……………………………………...………43

2.6.2. Validación Primaria…………………………………………………….……..43

2.6.3. Validación Secundaria..………………………………………………..……...44

2.6.4. Tipos de Validación…………………………………………………….……..45

2.6.4.1. Validación Prospectiva…………….………………………………….…….45

2.6.4.2. Validación Retrospectiva.……………….……………………………..……45

2.6.4.3. Validación Concurrente….……………………………………………….....46

2.6.4.4. Revalidación………………………………………………………………...46

2.6.5. Parámetros analíticos para la validación de una técnica o método…………....47

2.6.5.1. Precisión………………………………………………………………….....47

2.6.5.1.1. Repetibilidad………………………………………………………………47

2.6.5.1.2. Reproducibilidad…………………………………………………….…….47

2.6.5.1.3. Solidez y Robustez…………………………………………….………….48

2.6.5.2. Selectividad………………………………………………………………….48

2.6.5.3. Especificidad……………………………………………………………...…48

2.6.5.4. Linealidad…………………………………………………………...………49

2.6.5.5. Exactitud……………………………………………………………...……..49

2.6.5.6. Estabilidad…………………………………………………………...……...49

2.6.5.7. Límite de detección…………………………………………………………49

2.6.5.8. Límite de cuantificación…………………………………………………….49

3. Justificación y Formulación del problema……………………..………………50

4. Objetivos……………………………………………….…………………………53

4.1. Objetivo General………………………………………………………………...53

4.2. Objetivos Específicos…………………………………………………………...53

5. Metodología……………………………………...…………………...…………..54

Page 9: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

9

5.1. Recuento de células somáticas por microscopía directa (Método de

Referencia)……………………………………………………….……………...…...54

5.1.1. Alistamiento de la muestra……………………………………..……………..54

5.1.2. Ejecución de la prueba………………………………………………………...54

5.1.3. Lectura de las células somáticas………………………………………………55

5.1.4. Interpretación de resultados…………………………………………...………56

5.2. Recuento de células somáticas del DCC DeLaval………………………………57

5.2.1. Alistamiento de la muestra……………………………………………………57

5.2.2. Alistamiento del cassette……………………………………………………...57

5.2.3. Operación del equipo…………………………………………………….……58

5.2.4. Validación de la técnica………………………………………………..……...58

5.3. Análisis estadístico………………………………………………………....…...59

6. Resultados y Discusión…………………...……………………………….………63

6.1. Estandarización de las técnicas………………………………………………….63

6.2. Presentación y descripción de datos…………………………………………….63

6.3. Ensayos para la validación de la técnica………………………………………...63

6.3.1. Ensayo de precisión…………………………………………………………...70

6.3.1.1. Ensayo de repetibilidad……………………………………………………...70

6.3.1.1.1. Ensayo de repetibilidad dentro del método de microscopía directa (análisis

de parámetros estadísticos)………………………………………………...………...70

6.3.1.1.2. Ensayo de repetibilidad dentro del método de microscopía directa (prueba

de hipótesis)……………………………………………………………..…………...76

6.3.1.1.3. Ensayo de repetibilidad dentro del método de equipo DCC DeLaval

(análisis de parámetros estadísticos)…………………………………………............79

6.3.1.1.4. Ensayo de repetibilidad dentro del método de equipo DCC DeLaval (prueba

de hipótesis)……………………………………………………………………..…...84

6.3.1.1.5. Ensayo de repetibilidad entre método de microscopia directa y equipo DCC

DeLaval…………………………………………………………………….………...87

6.3.1.2. Ensayo de reproducibilidad……………………………………..…………..90

Page 10: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

10

6.3.1.2.1. Ensayo de reproducibilidad dentro del método de microscopía directa

(análisis de parámetros estadísticos)…………………………………………..……..91

6.3.1.2.2. Ensayo de reproducibilidad dentro del método de microscopía directa

(prueba de hipótesis)…………………………………………………..……………..93

6.3.1.2.3. Ensayo de reproducibilidad dentro del método de Equipo DCC DeLaval

(análisis de parámetros estadísticos)………………………………............................96

6.3.1.2.4. Ensayo de reproducibilidad dentro del método de Equipo DCC DeLaval

(prueba de hipótesis)……………………………………………….………………...99

6.3.2. Ensayo de exactitud……………………………………...…………………..102

7. Conclusiones………………………………………………..…………………...105

8. Recomendación…………………………………………………………………106

9. Referencias bibliográficas……………….……………………………………..107

Page 11: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

11

LISTA DE TABLAS

Tabla 1. Resultados de lecturas de células somáticas por microscopio (M) y equipo

(E)……………………………………………………………………………………64

Tabla 2. Promedio de lecturas de células somáticas por microscopio y equipo…….67

Tabla 3. Análisis de desviación estándar, varianza, coeficiente de variación y valores

mínimos y máximos de la prueba de repetibilidad con el ensayo de microscopía

directa………………………………………………………………………………...71

Tabla 4. Análisis de desviación estándar, varianza, coeficiente de variación y valores

mínimos y máximos de la prueba de repetibilidad con el ensayo de microscopía

directa………………………………………………………………………………...71

Tabla 5. Análisis de desviación estándar, varianza, coeficiente de variación y valores

mínimos y máximos de la prueba de repetibilidad con el ensayo de microscopía

directa………………………………………………………………………………...72

Tabla 6. Análisis de desviación estándar, varianza, coeficiente de variación y valores

mínimos y máximos de la prueba de repetibilidad con el ensayo de microscopía

directa………………………………………………………………………………...72

Tabla 7. Análisis de desviación estándar, varianza, coeficiente de variación y valores

mínimos y máximos de la prueba de repetibilidad con el ensayo de microscopía

directa………………………………………………………………………………...73

Page 12: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

12

Tabla 8. Análisis de desviación estándar, varianza, coeficiente de variación y valores

mínimos y máximos de la prueba de repetibilidad con el ensayo de microscopía

directa………………………………………………………………………………...73

Tabla 9. Análisis de desviación estándar, varianza, coeficiente de variación y valores

mínimos y máximos de la prueba de repetibilidad con el ensayo de microscopía

directa………………………………………………………………………………...74

Tabla 10. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo de

microscopía directa…………………………………………………………………..75

Tabla 11. Resultados de pruebas pareadas para las réplicas 1 y 2 del método de

microscopía directa………………………………………...………………………...76

Tabla 12. Resultados de pruebas pareadas para las réplicas 2 y 3 del método de

microscopía directa…………………………………………………………………..76

Tabla 13. Resultados de intervalos de confianza y pruebas T para las réplicas 1 y 2

del método de microscopía directa…………………………………………………..77

Tabla 14. Resultados de intervalos de confianza y pruebas T para las réplicas 2 y 3

del método de microscopía directa…………………………………………………..77

Tabla 15. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo del Equipo

DCC DeLaval………………………………………………………………………..79

Page 13: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

13

Tabla 16. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo del Equipo

DCC DeLaval………………………………………………………………………..80

Tabla 17. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo del Equipo

DCC DeLaval………………………………………………………………………..80

Tabla 18. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo del Equipo

DCC DeLaval………………………………………………………………………..81

Tabla 19. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo del Equipo

DCC DeLaval………………………………………………………………………..81

Tabla 20. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo del Equipo

DCC DeLaval………………………………………………………………………..82

Tabla 21. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo del Equipo

DCC DeLaval………………………………………………………………………..82

Tabla 22. Análisis de desviación estándar, varianza, coeficiente de variación y

valores mínimos y máximos de la prueba de repetibilidad con el ensayo del Equipo

DCC DeLaval………………………………………………………………………..83

Tabla 23. Resultados de pruebas pareadas para las réplicas 1 y 2 del método de

Equipo DCC DeLaval………………………………………………………………..84

Page 14: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

14

Tabla 24. Resultados de pruebas pareadas para las réplicas 2 y 3 del método de

Equipo DCC DeLaval………………………………………………………………..85

Tabla 25. Resultados de intervalos de confianza y pruebas T para las réplicas 1 y 2

del método de Equipo DCC DeLaval………………………………………………..85

Tabla 26. Resultados de intervalos de confianza y pruebas T para las réplicas 2 y 3

del método de Equipo DCC DeLaval………………………………………………..85

Tabla 27. Resultados de pruebas pareadas para los métodos de Microscopia Directa y

Equipo DCC DeLaval………………………………………………………………..88

Tabla 28. Resultados de intervalos de confianza y pruebas T para los métodos de

Microscopia Directa y Equipo DCC DeLaval……………………………………….88

Tablas 29. Resultados de reproducibilidad entre analistas en el método de

Microscopía Directa………………………………………………………………….91

Tabla 30. Resultados de reproducibilidad entre analistas en el método de

Microscopía Directa………………………………………………………………….91

Tabla 31. Resultados de reproducibilidad entre analistas en el método de

Microscopía Directa………………………………………………………………….92

Tabla 32. Resultados de pruebas pareadas entre analistas por el método de

microscopía directa…………………………………………………………………..93

Tabla 33. Resultados de intervalos de confianza y pruebas T para los analistas 1 y 2

en el método de microscopía directa………………………………………………....94

Page 15: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

15

Tabla 34. Resultados de reproducibilidad entre analistas en el método de Equipo

DCC DeLaval………………………………………………………………………..97

Tabla 35. Resultados de reproducibilidad entre analistas en el método de Equipo

DCC DeLaval………………………………………………………………………..97

Tabla 36. Resultados de reproducibilidad entre analistas en el método de Equipo

DCC DeLaval………………………………………………………………………..98

Tabla 37. Resultados de pruebas pareadas entre analistas por el método de Equipo

DCC DeLaval………………………………………………………………………..99

Tabla 38. Resultados de intervalos de confianza y pruebas T para los analistas 1 y 2

en el método de Equipo DCC DeLaval……………………………………………...99

Tabla 39. Resultados de pruebas pareadas para la medición de exactitud…………103

Tabla 40. Resultados de intervalos de confianza y pruebas T para la medición de

exactitud…………………………………………………………………………….103

Page 16: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

16

LISTA DE FIGURAS

Figura 1. Representación gráfica del promedio de lecturas obtenidas de células

somáticas con Microscopio y Equipo DCC DeLaval………………………………..69

Figura 2. Prueba de hipótesis para evaluación de repetibilidad entre réplicas 1 y 2 del

método de microscopia directa………………………………………………………77

Figura 3. Prueba de hipótesis para evaluación de repetibilidad entre réplicas 2 y 3 del

método de microscopia directa………………………………………………………78

Figura 4. Prueba de hipótesis para evaluación de repetibilidad entre réplicas 1 y 2 del

método de Equipo DCC DeLaval……………………………………………………86

Figura 5. Prueba de hipótesis para evaluación de repetibilidad entre réplicas 2 y 3 del

método de Equipo DCC DeLaval……………………………………………………86

Figura 6. Prueba de hipótesis para evaluación de repetibilidad entre Métodos……..88

Figura 7. Análisis de varianzas entre los métodos de Equipo y Microscopio………90

Figura 8. Prueba de hipótesis para evaluación de reproducibilidad entre analistas en

el Método de Microscopia Directa…………………………………………………...94

Figura 9. Análisis de varianzas entre analistas dentro del método de microscopio...96

Figura 10. Prueba de hipótesis para evaluación de reproducibilidad entre analistas en

el Método de Equipo DCC DeLaval………………………………………………..100

Figura 11. Análisis de varianzas entre analistas dentro del método de equipo……102

Page 17: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

17

Figura 12. Prueba de hipótesis para evaluación de exactitud……………………104

Page 18: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

18

RESUMEN

Las empresas productoras de alimentos tienen el deber de brindar alta calidad a sus

consumidores. Este es el caso de la empresa Alquería S.A., quien se ha destacado

durante muchos años por ofrecer a sus clientes productos de muy buena calidad.

Debido a que los alimentos que esta empresa elabora pueden comprometer la salud de

sus consumidores, es necesario llevar a cabos análisis microbiológicos, pues de esta

manera se puede determinar o no si hay confiabilidad y niveles de calidad propios en

cada producto, para que este pueda salir al comercio.

Esto conlleva a realizar análisis confiables que aseguran la calidad de los resultados

emitidos por el laboratorio de microbiología de la empresa Alquería S.A.

Los programas de control interno de un laboratorio incluyen evaluación continua y/o

monitoreos de los principales materiales y objetos que se utilizan dentro de los

análisis, como equipos, reactivos e instrumentos, además de la validación de

procedimientos técnicos. También se deben incluir manuales de procedimientos y

documentación en general, por tal motivo antes de hacer la validación para este

proyecto, fue necesario estandarizar cada una de las técnicas evaluadas, para sí poder

garantizar un buen desarrollo del procedimiento y que este se realice en forma

correcta cada vez que se ejecute.

Para este proyecto se llevó a cabo la estandarización y validación de la técnica de

recuento de células somáticas del equipo DCC DeLaval frente a la técnica de

microscopía directa en la Organización La Alquería S.A. Por medio de los resultados

obtenidos fue posible validar esta técnica, ya que fueron analizados estadísticamente

y se evidenció un lato grado de concordancia en los coeficientes de variación de los

diferentes ensayos de repetibilidad y reproducibilidad realizados, además de

Page 19: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

19

determinar que el método alterno (Equipo DCC DeLaval) es exacto con respecto al

método de referencia (Microscopía Directa).

Page 20: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

20

1. INTRODUCCIÓN

Las células somáticas están constituidas por una asociación de leucocitos y células

epiteliales. Los leucocitos se introducen en la leche en respuesta a la inflamación que

puede aparecer debido a una enfermedad o, a veces, a una lesión (Blowey y

Edmondson, 1995). La inflamación es un mecanismo de protección de la glándula

para ayudar a eliminar los microorganismos y sus toxinas y reparar los tejidos

afectados (Ma et al., 2000).

El contenido de células somáticas en la leche nos permite conocer datos claves sobre

la función y el estado de salud de la glándula mamaria lactante y debido a su cercana

relación con la composición de la leche da un criterio muy importante sobre la

calidad de esta (Danków et al. 2003).

Las bacterias ambientales están presentes en el medio ambiente de la vaca, en su piel,

pesebre, charcos de agua, etc. y penetran en la ubre cuando se dan determinadas

condiciones. Una vez que las bacterias atacan las células del interior de la glándula

mamaria la respuesta inmunitaria del organismo es enviar glóbulos blancos de la

sangre para neutralizar a las bacterias invasoras. Estos glóbulos blancos son en

esencia lo que constituye los conteos de células somáticas (CCS). Un alto CCS en la

leche de vacas individuales o en el tanque de enfriado significa que las bacterias han

invadido la glándula de la vaca (García, 2004).

Cada leche contiene células somáticas, las cuales en una glándula sana sólo se

presentan en un número pequeño. En este caso se trata de células de tejido (células

epiteliales) y células inmunes, (neutrófilos polimorfonucleares, granulocitos,

macrófagos, linfocitos). La importancia biológica de las células somáticas es que

participan en la defensa contra infecciones de la ubre. Cuando hay estímulos o

Page 21: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

21

enfermedades de la glándula mamaria aumenta en contenido de células somáticas,

con lo cual el número de células inmunes aumenta considerablemente (Danków et al.

2003).

Efectuar conteos celulares somáticos es un procedimiento común, sobre todo en la

industria láctea para medir la calidad de la leche. En el establo se utiliza como

indicador de las infecciones. Cuando el conteo de células somáticas (CCS) resulta

elevado, ya sea de una vaca o del tanque enfriador, indica que hay un problema de

mastitis. El recuento de células somáticas, es el número de células existentes en leche.

Se utiliza como indicador de la infección de la glándula mamaria (Blowey y

Edmondson, 1995).

La mastitis causa pérdidas económicas múltiples, la prevención es la mejor inversión

y no queda dudas que lograr un ambiente higiénico en el interior de la sala de ordeño

y por fuera, donde las vacas caminan, comen y duermen es la forma ideal de

mantener aceptables los recuentos de células somáticas.

Cada rodeo lechero con problemas de mastitis y calidad de leche debería conocer su o

sus causas y así, mayoría tendría solución. Tomar conciencia de esto es importante

porque provoca el desafío de buscar los motivos o las causas. El productor y

Veterinario actuantes deben formar un equipo para encontrar las causas y ofrecer

soluciones de acuerdo al sistema de producción donde interactúan.

Todo esto se hace de gran importancia debido a que la leche es un alimento que

presenta un alto grado de consumo y uno de los propósitos principales de la empresa

Alquería es ofrecer a sus consumidores productos de excelente calidad los cuales se

encuentren en condiciones óptimas para contribuir de esta manera en la nutrición y

salud de la población.

Page 22: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

22

2. MARCO TEÓRICO Y REVISIÓN DE LITERATURA

2.1. Organización Alquería S.A.

Alquería es una expresión de origen español que significa “pequeña granja”. Inició

hace 45 años, como un aporte al compromiso con la salud del pueblo colombiano y

ante la responsabilidad de generar un cambio de hábito de consumo hacia la leche

pasteurizada, evitando así las innumerables enfermedades que produce la leche cruda,

sobretodo en la población infantil. Por esto, desde sus inicios, Alquería mantiene el

eslogan: “una botella de leche es una botella de salud”. En 1958, la calidad que

ofrecía el mercado era baja, sin embargo Alquería se distinguía como la marca que

ofrecía altísima calidad en su leche grado A, la especificación de esa época. El

negocio estaba básicamente concebido como el procesamiento, pasteurización y

distribución de leche en botellas de vidrio de 750 cc, a domicilio en hogares de

Bogotá. Para el año siguiente, Alquería sacó sus primeras producciones en envase de

cartón, dándole un vuelco al mercado que seguía con las botellas de vidrio. El cartón

utilizado como envase era de parafina y su recubrimiento se hacía en la planta de

Cajicá. El uso del cartón se constituye en la primera evidencia, del interés permanente

de Alquería por estar a la vanguardia en los envases, con el objetivo de siempre

ofrecerle al consumidor final un valor agregado que se traduzca en envases más

cómodos, más fáciles de manejar, más seguros, más económicos, más ecológicos y

que no ocupen mucho espacio. Posteriormente, Alquería sacó al mercado productos

envasados en bolsa plástica y mejoró el empaque de cartón, no recubierto de parafina

sino de plástico (Organización Alquería, 2008).

Desde 1992, Alquería obtuvo un contrato de sublicencia con Tampico Beverages Inc.,

dueña de la marca de los jugos Tampico en Estados Unidos. En 1995 se inició el

proyecto larga vida que convirtió a Alquería en la planta de ultra pasteurización más

Page 23: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

23

moderna y con mayor capacidad del Pacto Andino. El resultado de este proyecto ha

sido un crecimiento considerable en términos de ventas, número de clientes, el

liderazgo en una categoría nueva de mercado y mejores márgenes. En 1998, Alquería

se convirtió en licenciatario directo de Tampico Beverages Inc., para la producción y

distribución del Tampico en Bogotá y la Sabana. En el año 2.001 Alquería recibió la

certificación por parte del sello más importante de calidad en leches del mundo, el

sello Quality Chekd, el cual cada año es renovado gracias a la perseverancia en la

búsqueda de los más altos estándares de calidad en todos sus productos (Organización

Alquería, 2008).

En Octubre de 2003, el INVIMA certificó su línea de “LECHE Y PRODUCTOS

LACTEOS UHT” en el sistema HACCP y en Noviembre de ese mismo año, gracias

al trabajo realizado por cada una de las áreas, se recibe oficialmente la certificación

ISO 9001:2000 por parte del ICONTEC. Alquería, pensado siempre en sus clientes y

consumidores, lleva 45 años destacándose por la calidad e innovación tecnológica de

sus productos y servicios, por lo que hoy es una empresa líder con productos

ganadores como la leche UHT (larga vida) y el jugo Tampico. Las mediciones en el

mercado indican que la marca, la distribución, las características de envase, calidad y

precio son factores por los que clientes y consumidores prefieren con fidelidad los

productos de Alquería (Organización Alquería, 2008).

Alquería juega hoy y desde siempre un papel social muy importante, siendo el

principal empleador de la región, con casi 700 colaboradores a su servicio, más los

empleos indirectos que genera a través de los ganaderos, fleteros, tenderos y

proveedores (Organización Alquería, 2008).

Page 24: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

24

2.2. Definición de células somáticas

La leche contiene células que provienen de la descamación del epitelio mamario,

como del sistema inmune de la vaca. En principio se las denomino “Células

Somáticas” por considerarse que provenían del soma o cuerpo, fundamentalmente por

descamación.

Posteriormente se reconoció que los principales tipos celulares en una glándula

mamaria son leucocitos provenientes de la sangre, sin embargo el uso del término

termino “Células Somáticas”, se generalizo para caracterizar a las células presente en

la leche (García, 2004).

Cuando se produce la entrada de bacterias a la glándula mamaria, la multiplicación de

estas da lugar a la formación de sustancias que son reconocidas por los macrófagos

que como repuestas secretan moléculas que atraen a los glóbulos blancos que circulan

en la sangre. Estos glóbulos blancos son conocidos como Neutrófilos

Polimorfonucleares (PMN) (García, 2004).

Los PMN son atraídos a los sitios afectados, por lo que entran rápidamente en la

leche almacenada en los alvéolos e intenta ingerir y eliminar a los organismos

patógenos a la vez que estimulan la reacción inflamatoria. Paralelamente a este

proceso son retenidas células sanguíneas tales como linfocitos, plaquetas y

eosinófilos, pero la mayoría de las células que aparecen como repuesta a la infección

son PMN (más del 90%) (García, 2004). Cuando la inflamación es muy severa, el

número de PMN es muy alto, observándose grumos de pus (caso clínico) (García,

2004).

Las células somáticas son células corporales. Estas pasan a la leche procedente de la

sangre y del tejido glandular. El contenido de células somáticas en la leche permite

conocer el estado funcional y de salud de la glándula mamaria en periodo lactante;

Page 25: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

25

debido a su estrecha relación con la composición de la leche, es un criterio de calidad

muy importante (FEDEGAN, 2008).

De todas las células de la leche de un cuarto infectado, aproximadamente el 99%

serán leucocitos, mientras que el resto serán células secretoras que se originan de los

tejidos de la glándula mamaria. Juntos, esos dos tipos de células constituyen la cuenta

de células somáticas de la leche que comúnmente es expresada en mililitros (Philpot y

Nickerson, 1991).

2.2.1. Función de células somáticas

Las funciones que cumplen las células somáticas son combatir la infección por el

proceso de fagocitosis y la reparación del tejido secretor, que de acuerdo a la

gravedad de las lesiones, es la recuperación de la funcionalidad del mismo (García,

2004). Cada leche contiene células somáticas, las cuales en una glándula sana sólo se

presentan en un número pequeño. En este caso se trata de células de tejido (células

epiteliales) y células inmunes, (neutrófilos polimorfonucleares, granulocitos,

macrófagos, linfocitos). La importancia biológica de las células somáticas es que

participan en la defensa contra infecciones de la ubre. Cuando hay estímulos o

enfermedades de la glándula mamaria aumenta en contenido de células somáticas,

con lo cual el número de células inmunes aumenta considerablemente (Danków et al.

2003).

2.3. Definición de mastitis

La mastitis no es una enfermedad simple, es un complejo de enfermedades que por su

naturaleza misma no tiene soluciones simples. Lo simple de este complejo esta en el

entendimiento de que se da por la interacción de tres elementos:

Page 26: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

26

• Los microorganismos como agentes causales.

• La vaca como huésped.

• El ambiente que puede influir, tanto en la vaca como en los microorganismos.

(García, 2004)

Existen más de 100 microorganismos que pueden causar mastitis, que varían en la

ruta de acceso a la vaca y en la naturaleza de la mastitis que causan.

Algunas vacas son más susceptibles que otras para contraer la infección, a diferentes

edades y estados de lactación. Es por esto que las vacas juegan un papel muy activo

en el desarrollo de la mastitis. El ambiente en el que se encuentra el ganado, juega un

papel importante tanto en el número como en el tipo de microorganismos a los que la

vaca es expuesta y en la resistencia que esta pueda tener contra ellos.

Es importante observar que a través de buenas practicas de manejo, el ambiente

puede ser controlado para reducir la exposición de la ubre a los patógenos y para

aumentar la resistencia de esta a las infecciones (García, 2004).

La mastitis es una reacción inflamatoria de los tejidos secretores y/o conductores de

la leche de la glándula mamaria, como respuesta a una infección bacteriana o a una

lesión traumática. El término deriva del griego “mastos”, ubre e “itis”, inflamación

(García 2004).

La mastitis se define como una inflamación de la glándula mamaria en respuesta a

traumas o a una invasión de la ubre por microorganismos (Ma et al. 2000) que,

generalmente, ganan acceso a la glándula mamaria a través del esfínter del pezón.

Como resultado, se observa una inflamación de la glándula mamaria, acompañada de

cambios físicos, químicos y microbiológicos, que ocasionan un incremento en la

concentración de células somáticas y cambios patológicos en el tejido mamario. La

Page 27: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

27

mastitis se caracteriza por hinchazón, fiebre, enrojecimiento, dolor e interrupción de

las funciones normales de la ubre (Harmon, 1994; Kehrli y Shuster, 1994). Como

efecto de la inflamación ocurre inhibición de las fases tempranas de la vasodilatación,

edema, migración celular, proliferación de fibroblastos y deposición de colágeno

(Kehrli y Shuster, 1994). El primer cambio patológico que se observa en las vacas

con mastitis es el aumento en la permeabilidad capilar de los tejidos de la glándula

mamaria, lo cual puede afectar la barrera sangre-leche y permitir el paso de proteínas

del suero de la sangre a la leche (Kehrli y Shuster, 1994). El cloruro de sodio y otros

compuestos aumentan en la leche debido al paso de la sangre hacia ésta, causando

que el pH normal de 6.6 aumente hasta 6.9 (Harmon, 1994). Como mecanismo de

compensación osmótica se reduce la síntesis de lactosa a medida que aumenta la

concentración de cloruro de sodio en la leche (Auldist y Hubble, 1998).

Los neutrófilos se mueven rápidamente desde el torrente sanguíneo hacia los cuartos

afectados, en respuesta a la presencia de cuerpos extraños en los tejidos de la ubre y a

la irritación que acompaña la invasión patogénica, causando así aumentos en la

concentración de células somáticas en la leche (Kehrli y Shuster, 1994). El proceso de

proliferación de los microorganismos contribuye a la destrucción del tejido secretor,

reduciéndose así la concentración en la leche de los componentes sintetizados en la

glándula mamaria tales como la caseína y la lactosa (Harmon, 1994). El tejido

afectado es reemplazado por tejido conectivo, lo cual resulta en una pérdida

permanente de la habilidad productiva del animal (Shuster y Harmon, 1992; Shuster

et al., 1993).

El número de células somáticas que entran a la glándula depende del tipo y cantidad

de patógenos que ganan acceso a la ubre (Peters, 2002). Se utiliza el término RCS

preferentemente al recuento de células blancas, debido a que en el RCS se incluyen

tanto las células epiteliales, producto de la descamación normal de los tejidos internos

de la ubre en adición a las células blancas, cuya función principal es controlar es

combatir infecciones (Peters, 2002). Típicamente, entre 15% y 17% de las células

Page 28: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

28

presentes en los RCS de cuartos no infectados son epiteliales, 30% son macrófagos,

30% son neutrófilos y 25% son linfocitos. En cuartos infectados, se observa un

cambio en la distribución de los tipos de células, ocasionando que los neutrófilos

pueden alcanzar una proporción de hasta un 90% (Sordillo et al., 1989). Debido a que

la población de leucocitos en la ubre aumenta a medida que se agudiza la infección,

los RSC constituyen un buen indicador del grado de mastitis tanto en cuartos

individuales de la ubre como en muestras compuestas de leche de cuartos de vacas

individuales y en muestras del tanque de almacenamiento (Suriyasathaporn et al.,

2000).

El uso de los RCS para evaluar la salud de la ubre ha mostrado ser una herramienta

útil para la detección y control de la mastitis y para la identificación de los principales

patógenos causantes de ésta (Kehrli y Shuster, 1994). Dependiendo de la severidad de

la infección, la mastitis puede clasificarse como clínica, subclínica o crónica (Peters,

2002). La mastitis clínica se caracteriza por síntomas observables, tanto en la leche

como en la ubre. La mastitis clínica puede diagnosticarse al observar secreciones

lácteas con apariencia anormal, por ejemplo con coágulos o sanguinolentos. El animal

afectado por este tipo de mastitis exhibe fiebre, muestra la ubre hinchada y sensible y,

si la condición persiste, podría transformarse en mastitis crónica.

La mastitis subclínica no es detectable a simple vista. La leche y la ubre aparentan

estar en condiciones normales, aunque la composición de la leche es anormal. La

mastitis subclínica es de larga duración, difícil de detectar y predomina más en el hato

que la forma clínica a la cual generalmente antecede (Philpot y Nickerson, 1991).

Uno de los cambios principales que ocurren durante la mastitis subclínica, y que sirve

para su detección, es el aumento en la concentración de leucocitos en la leche (Peters,

2002). La mastitis crónica es una infección persistente que está la mayor parte del

tiempo en forma subclínica pero ocasionalmente se convierte en la forma clínica

activa (Kehrli y Shuster, 1994).

Page 29: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

29

2.3.1. Patógenos más comunes

Se han aislado más de 135 especies de microorganismos de infecciones

intramamarias en el ganado lechero (Smith y Hogan, 1998). Aunque existen

numerosas especies de bacterias, hongos, levaduras, micoplasmas y virus, los géneros

Staphylococcus y Streptococcus continúan siendo responsables de más del 90 % de

las infecciones intramamarias (Bradley, 2002). Se estima que entre el 80 y 90 % de

los casos de mastitis son ocasionados por la invasión de microorganismos patógenos

específicos en los pezones y tejidos de la ubre, causando infecciones intramamarias.

El resto de los casos resultan de traumas, con o sin invasión secundaria de

microorganismos (Bramley y Dodd, 1984).

Los organismos causantes de la mastitis se clasifican como “contagiosos” o

“ambientales” basado en el lugar más frecuente de exposición (Ruegg, 2004). Los

patógenos contagiosos más comunes son Staphylococcus aureus, Streptococcus

agalactiae y Mycoplasma bovis, aunque cepas de Staphylococcus uberis también

pueden ser transmitidas por la leche. La fuente principal de infecciones causadas por

patógenos contagiosos son los cuartos infectados de otras vacas y la transmisión

ocurre generalmente en el ordeño (Peeler et al., 2000).

Las gotas de leche remanentes en las unidades de ordeño, toallas o servilletas

compartidas o las manos de los ordeñadores, son las fuentes más comunes de

exposición a los patógenos contagiosos. La mayoría de las cepas de S. aureus y S.

agalactiae son altamente adaptadas al huésped, producen mastitis subclínica y

ocasionalmente causan episodios agudos de mastitis clínica (Hallberg et al., 1994;

Barkema et al., 1998).

Se ha encontrado que S. aureus fue el patógeno más frecuentemente aislado en casos

de mastitis clínica, y se reportó una asociación significativa entre la frecuencia de

Page 30: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

30

casos positivos de S. aureus y S. agalactiae y altos RCS en muestras de leche de

tanque (Peeler et al., 2000).

Entre los patógenos ambientales causantes de la mastitis están las bacterias

coliformes como Escherichia coli y Klebsiella spp. y Streptococcus ambientales

como S. uberis y S. dysgalactiae. Los patógenos ambientales se adquieren

principalmente mediante el contacto con el estiércol, agua, suelo y camada

contaminados. Este tipo de mastitis es normalmente de corta duración y menos del 15

% de los animales afectados desarrollan infecciones crónicas o subclínicas (Ruegg,

2004). Sin embargo, las infecciones causadas por Streptococcus ambientales pueden

resultar en infecciones subclínicas con episodios clínicos periódicos.

Las especies de Staphylococcus coagulasa negativa (SCN) históricamente se han

conocido como patógenos de la ubre menores o secundarios. Estos microorganismos

generalmente causan inflamaciones ligeras con moderados incrementos en los RCS,

pero si la vaca alcanza a tener mastitis clínica, los RCS pueden aumentar hasta

millones (Sears y McCarthy, 2003).

La alta frecuencia de estas bacterias en muestras de leche podría deberse al hecho de

que son patógenos oportunistas y forman parte de la flora bacteriana que reside en la

piel del pezón. Cuando se les provee un ambiente favorable para que colonicen la

parte inferior del pezón o el canal del pezón, estos microorganismos se multiplican,

entran a la glándula y producen mastitis (Sears y McCarthy, 2003).

2.3.2. Detección de mastitis

2.3.2.1. Examen físico de la ubre

Los signos de mastitis aguda incluyen cuartos inflamados, con temperatura elevada y

dolor al tacto. Los cambios en el tamaño y la presencia de tejido cicatrizal pueden ser

Page 31: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

31

detectados más fácilmente luego del ordeño, cuando la ubre se encuentra vacía

(Quintana, 2006).

2.3.2.2. Aspecto de la leche

La observación de los primeros chorros de leche permite la detección de leche

anormal que debe de ser retirada del consumo. La leche anormal puede mostrar

decoloración (aguado), descamaciones, o coágulos. Se debe tener la precaución, al

remover esta leche de la ubre, de no salpicar esta leche contaminada en las patas,

cola o ubre del animal. Además, el operador no debe de colectar estos primeros

chorros de leche en la palma de su mano debido al riesgo de transferir bacterias de

un cuarto a otro y de una vaca a otra. En los establos donde la leche se ordeña en el

mismo lugar donde se alojan las vacas, la primera leche es volcada en una taza

especial o plato. En los echaderos de ordeño, puede ser volcada directamente al piso

para ser lavada inmediatamente luego de ser evaluada (Quintana, 2006).

2.3.2.3. Cultivo bacteriano

Generalmente, esta prueba se desarrolla en vacas seleccionadas para las que los

conteos de células somáticas de muestras compuestas revelan un problema

persistente serio. Los cultivos de leche de una vaca individual identifican la especie

bacteriana, por lo tanto es la forma más confiable para decidir un tratamiento

óptimo con antibióticos para una vaca en particular (Quintana, 2006).

2.4. Técnicas para la detección de Células Somáticas

2.4.1. Prueba de mastitis de California (CMT)

En esta prueba se utiliza el reactivo púrpura de bromocresol para estimar los RCS. La

magnitud de la reacción entre el detergente y el ADN del núcleo de las células es un

Page 32: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

32

estimador del número de células somáticas presentes en la muestra de leche. A

concentraciones de 150,000 a 200,000 células/ml, un precipitado comienza a

formarse. Un gel más viscoso se presenta en muestras con concentraciones mayores

de células somáticas. La cantidad de gel formado se evalúa visualmente sobre el

fondo blanco de una paleta o recipiente que viene al efecto y se clasifica en una

escala que abarca trazas y resultados positivos del 1 al 3. La calificación es subjetiva,

ya que depende del criterio de quien la realiza (Houghtby et al., 1992).

Fuente: Ávila et al, 2005

2.4.2. Prueba de Wisconsin

Utiliza el mismo principio y reactivo químico que la CMT, pero diluido al 50 % con

agua destilada. En esta prueba, la viscosidad del gel formado se mide y expresa en

términos del volumen del gel que se forma y que permanece en un tubo de ensayo

luego de 15 segundos de escurrido a través de un orificio de 1.15 mm. de diámetro.

Esta prueba semicuantitativa se considera más objetiva que la de CMT (Houghtby et

al., 1992).

Page 33: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

33

Fuente: Ávila et al, 2005

2.4.3. Coulter Counter

En el caso del “Coulter Counter” un volumen de leche conocido se hace pasar por un

orificio pequeño (100 micras) y cada célula que pasa genera un impulso eléctrico, que

es contabilizado y anotado automáticamente por el instrumento (Kitchen, 1981).

Fuente: Ávila et al, 2005

2.4.4. Fossomatic

Es un instrumento que cuenta las células somáticas por el método fluoro-óptico

electrónico, utilizando como compuesto fluoro-óptico al bromuro de etilo (Mochrine

y Monroe, 1978). Con este instrumento completamente automático, se pueden

procesar hasta 180 muestras de leche por hora y la correlación simple con el método

directo al microscopio es de .99 (Mochrine y Monroe, 1978).

Page 34: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

34

Fuente: Ávila et al, 2005

2.4.5. Recuento bajo microscopio

La observación y recuento directo bajo el microscopio ha sido el método tradicional

para estimar los RCS. Este método permite realizar el RCS y, a la misma vez, una

evaluación morfológica de las células y de las especies de bacterias presentes,

permitiendo que el analista pueda ofrecer información más precisa sobre la calidad

del producto. Esta prueba constituye también el estándar por el cual el resto de las

pruebas diagnósticos son calibradas. Aunque el método directo al microscopio es

considerado el procedimiento estándar, el mismo resulta tedioso y lento, lo cual limita

el número de muestras que se pueden realizar por unidad de tiempo. La precisión de

este método depende del tamaño de la muestra, espesor de la película de leche sobre

el portaobjetos utilizado y el número de campos sometidos a conteo (Houghtby et al.,

1992).

Fuente: Ávila et al, 2005

Page 35: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

35

El método de microscopio directo consiste en examinar con un microscopio

compuesto, frotis coloreados de una cantidad determinada de leche o crema desecada

en portaobjetos. La coloración permite el reconocimiento de bacterias (y células) en

los frotis. El uso de este método permite:

1. Examen rápido de frotis para clasificar las muestras por grados o categorías

apropiados.

2. La notificación de los recuentos de bacterias individuales o de grupos de bacterias

(considerando cada bacteria aislada y cada grupo de bacterias no separada, como un

grumo), el reconocimiento de la forma y la distribución de células y bacterias

características que están generalmente asociadas con ciertas condiciones indeseables.

En casos que la leche es de inferior calidad, estos resultados deberían indicar la causa

o causas más probables de la diferencia (Asociación Americana de la Salud Pública,

1963)

2.4.5.1. Aplicaciones del Método de Microscopio Directo

2.4.5.1.1. Aplicaciones a la leche cruda por pasteurizar

El método microscópico ofrece una técnica rápida para determinar el grado de

contaminación bacteriana de la leche o la crema. Las muestras individuales se pueden

Page 36: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

36

examinar en 10 – 15 minutos. La distribución de las células bacterianas en los frotis

sugiere con frecuencia cual puede ser la causa probable de un recuento elevado,

mientras que el número excesivo de leucocitos señala condiciones anormales en la

ubre, frecuentemente mastitis (Robert, 1992).

La exactitud de los recuentos hechos por el método microscópico es mayor en la

leches con gran cantidad de bacterias, disminuyendo a medida que baja el nivel de

contaminación (Asociación Americana de la Salud Pública, 1963).

2.4.5.1.2. Aplicación a la leche pasteurizada

El método microscópico se puede usar también para determinar el grado de

contaminación bacteriana en la leche y crema pasteurizadas. Pese a que algunas

células bacterianas no se colorean, a la dispersión habitual de las bacterias y a los

efectos del tiempo y de la temperatura de almacenamiento después de la

pasteurización, los laboratoristas experimentados pueden reconocer con frecuencia

indicios sugestivos de:

1. Leche cruda con alto contenido bacteriano,

2. Número excesivo de leucocitos,

3. Prácticas deficientes en la planta lechera, tales como el uso indebidamente

prolongado de filtros o pasteurizadotes,

4. Crecimiento bacteriano después de la pasteurización (Asociación Americana

de la Salud Pública, 1963).

Otros factores no tan evidentes en el cuadro microscópico son los siguientes:

1. Temperatura inadecuada o mantenimiento deficiente de la misma durante la

pasteurización,

Page 37: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

37

2. Supervivencia y crecimiento de las especies termodúricas después de la

elaboración, recontaminación después de la pasteurización, desarrollo de

especies psicrofílicas.

En los productos pasteurizados pueden predominar las bacterias mesofílicas o

psicrofílicas, según la temperatura y el tiempo de almacenamiento (Robert, 1992).

2.4.5.1.3. Aplicaciones a la leche en polvo

La leche en polvo, contiene por lo general, pocas bacterias vivas. El examen

microscópico de frotis preparados con muestras reconstituidas puede proporcionar

valiosa información sobre la historia del producto. Se han adoptado normas para el

recuento microscópico directo de grumos como una ayuda para controlar la calidad

(Robert, 1992).

2.4.5.2. Fuentes de error en el método de microscopía directa

Tal como sucede con otros métodos para la determinación del contenido bacteriano

de la leche, los resultados obtenidos por el método microscópico no son más que

aproximaciones. El recuento microscópico directo debe ser efectuado siempre por

laboratoristas adiestrados y experimentados, de lo contrario se puede obtener

resultados falsos. Aún con la técnica más rigurosa la repetición de un ensayo puede

dar resultados considerablemente diferentes. Entre los factores que causan las

variaciones se encuentran los siguientes:

1. La inexactitud al medir cantidades de 0,01 ml.

2. La preparación y coloración deficientes de los portaobjetos.

3. La imposibilidad de colorear ciertas bacterias.

4. La cantidad diminuta de leche que se examina al hacer el recuento.

Page 38: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

38

5. La distribución irregular de bacterias en los frotis.

6. El no contar un número suficiente de campos microscópicos.

7. Los errores en la observación y en el cálculo.

8. La iluminación inadecuada o excesiva del microscopio.

9. La fatiga o cansancio del laboratorista que efectuó el recuento.

Aún cuando se ponga sumo cuidados, la clasificación por el método microscópico

directo es a veces mucho más tolerante que el Recuento Estándar en Placa. El error

experimental puede reducirse aumentando el número de campos contados, pero en

muestras con pocas bacterias este procedimiento aumenta mucho el trabajo (Robert,

1992).

2.4.5.3. Recuentos de grumos bacterianos

El término “recuento bacteriano” se aplica a menudo tanto a la clasificación o

adjudicación de grados como a los recuentos numéricos de grumos (o de bacterias

individuales) obtenidos por este método. Aún cuando los recuentos numéricos se

hagan con cuidado, los resultados no son más que “recuentos bacterianos

aproximados”, a diferencia de “la adjudicación de grados o la clasificación”

(Asociación Americana de la Salud Pública, 1963).

El hacer los recuentos numéricos de grumos de bacterias (o de bacterias individuales)

requiere más esmero que el “clasificar” las muestras. En vista que el porcentaje de

error en los recuentos notificados es inversamente proporcional a la raíz cuadrada del

número de bacterias observadas, la precisión relativa de los recuentos depende del

número de grumos (o de organismos individuales) por campo visual y del número de

campos contados. Debido a la distribución desigual de los grumos de bacterias y de

bacterias individuales, sobre todo en muestras con pocas bacterias, las estimaciones

aproximadas deben ser notificadas sólo después de un cuidadoso examen de no

Page 39: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

39

menos del número mínimo de campos especificados. Si se desea mayor exactitud se

pueden examinar campos adicionales. A menos que se especifique lo contrario, los

recuentos microscópicos se refieren solamente a recuentos de grumos (Robert, 1992).

2.4.5.4. Clasificación de las muestras

Los laboratoristas hábiles pueden usar este método de manera rutinaria para el cálculo

rápido de la densidad de grumos bacterianos, de modo que se puedan adjudicar sin

demora determinados grados a las muestras, evitándose así la necesidad de calcular,

por métodos más cuidadosos, el número de grumos bacterianos (o de células

individuales). A fin de reducir el número de decisiones en casos dudosos, es

conveniente reconocer no más de dos o tres grupos mayores, de acuerdo con las

diferencias perceptibles de calidad. Puesto que se puede reconocer fácilmente tanto la

ausencia como la presencia de bacterias, la técnica de clasificación por grados puede

aplicarse por igual a las muestras de alta calidad (contenido bacteriano bajo) y a las

de baja calidad (Breed, 1991). Cuando hay un gran número de bacterias y ellas están

distribuidas uniformemente en los frotis, el examen de un campo visual microscópico

indica a menudo el carácter general de la muestra (Breed, 1991).

Cuando se encuentran pocas bacterias o cuando están distribuidas irregularmente, se

deben realizar exámenes de muchos campos microscópicos para asegurar la

clasificación correcta. Los frotis preparados con leche de lata calidad sanitaria

contienen con frecuencia tan pocas bacterias que no puede encontrarse ninguna

después de buscar en 100 campos o más, mientras que en los frotis de leche de baja

calidad se hallan numerosas bacterias en cada campo examinado (Robert, 1992).

Page 40: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

40

Aunque el control de la calidad sanitaria por medio de la clasificación se basa

fundamentalmente en el contenido bacteriano de las muestras de leche y de crema, el

uso solamente de términos de clasificación para indicar lo grados relativos de calidad

impide, al parecer, que los organismos de control cuenten con la información que a

través de los años se ha considerado como específica y esencial para corregir

condiciones antihigiénicas Al no poder hacer las comparaciones de costumbre con los

cálculos sobre los productos de otros vendedores o productores, algunos oficiales

encargados del control se sienten privados de información aparentemente útil cuando

no encuentran cálculos tan específicos como el “Recuento Estándar en Placa por ml”,

“Recuento Microscópico Directo (de grumos) por ml” o el “Recuento Microscópico

Individual por ml” (Robert, 1992).

Debido a que todos los intentos de enumerar bacterias dan esencialmente

estimaciones aproximadas, el uso de términos de clasificación para indicar si los

productos son o no “aceptables” evitará con frecuencia discusiones innecesarias sobre

diferencias insignificantes. (Robert, 1992).

2.5. Equipo DCC DeLaval

El DCC DeLaval es un contador de células óptico portátil, que funciona con baterías

y proporciona una medición en menos de un minuto. El conteo de células somáticas

en la leche es una medida utilizada para la determinación del estado de salud de la

ubre, además se utiliza comúnmente como un indicador del Standard sanitario en la

producción de leche (Manual de instrucciones, Contador de células DeLaval DCC,

2003).

Este equipo cuenta con un cassette el cual se utiliza para la recogida de la muestra de

leche previa al proceso de contaje de las células con el DCC. Este cassette contiene

pequeñas cantidades de reactivos que cuando se mezclan con la leche, reaccionan con

el núcleo de las células somáticas. La muestra de leche en el cassette se expone a la

acción de la luz en el DCC, dando lugar a la producción de señales fluorescentes.

Page 41: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

41

Estas señales se registran en forma de imagen y dicha imagen se utiliza para

determinar el número de células somáticas en la leche (Manual de instrucciones,

Contador de células DeLaval DCC, 2003).

2.6. Parámetros estadísticos

2.6.1. Validación

Es demostrar con un alto grado de confianza, por medio de evidencia documentada

que un proceso específico producirá de forma consistente y permanente productos

que poseerán las características de calidad predefinidas (WHO Technical Report

Series, No. 823, 1992). Es el proceso por el cual se establecen mediante estudios de

laboratorio que las características de desempeño del método analítico cumplen los

requerimientos para la aplicación analítica propuesta, es decir, para detectar o

cuantificar grupos microbianos específicos como es el caso, siendo su principal

objetivo confirmar y documentar la confiabilidad de los resultados obtenidos (USP

XXVI, 2003).

Para validar un proceso se deben realizar sistemáticamente los procedimientos de

puesta a punto del mismo, mediante el seguimiento de las siguientes fases:

2.6.1.1. Planificación

Se busca establecer programas temporales y listas de verificación, protocolos de la

validación con criterios de aceptación/rechazo, necesidades de recursos, análisis de

riesgos, etc. (Padilla, 2007).

Page 42: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

42

2.6.1.2. Calificación del diseño

El primer elemento de la validación es la validación de nuevas instalaciones, sistemas

o equipos. Se deberá demostrar y documentar la adecuación del diseño a las normas

de correcta fabricación (Padilla, 2007).

2.6.1.3. Calificación de la instalación

Busca establecer por evidencia objetiva que todos los aspectos claves del equipo de

proceso y la instalación de sistemas auxiliares cumplan con las especificaciones

aprobadas del fabricante y las recomendaciones del abastecedor del equipo para el

correcto funcionamiento, y las exigencias de mantenimiento de este. Además de esto

también se incluyen requisitos de calibración y verificación de los materiales de

construcción (Padilla, 2007).

2.6.1.4. Calificación del funcionamiento

Esta calificación deberá realizarse tras la calificación de la instalación, y busca

establecer por medio de evidencia objetiva los límites de control de proceso y los

niveles de acción que resultan en un producto que cumpla con todos los

requerimientos predeterminados.

Debe incluir:

a. Ensayos que hayan desarrollado especialistas con conocimiento sobre procesos,

sistemas y equipos.

b. Ensayos que incluyan una situación o un conjunto de ellas que abarquen los límites

máximos y mínimos de trabajo, condiciones denominadas como frecuencia “caso más

desfavorable”.

Page 43: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

43

La finalización de forma satisfactoria de la calificación del funcionamiento permitirá

terminar los procedimientos de calibración, fabricación y limpieza, la formación del

operario y las exigencias de mantenimiento preventivo. Así, permitirá la aprobación

formal de las instalaciones, sistemas y equipos (Padilla, 2007).

2.6.1.5. Calificación de desempeño

La calificación de desempeño deberá efectuarse una vez realizadas satisfactoriamente

la calificación de la instalación y de funcionamiento. Esta proveerá evidencia

documentada, bajo condiciones anticipadas, que se produce de manera consistente un

producto que cumpla con las especificaciones y el criterio de diseño (Padilla, 2007).

La calificación de la ejecución del proceso incluirá, entre otras cosas, lo siguiente:

a. Ensayos, empleando materiales de producción (o componentes sustitutivos

calificados y/o simulaciones de productos), que se hayan desarrollado a partir del

conocimiento especializado sobre los procesos y las instalaciones, sistemas o equipos.

b. Ensayos que incluyan una situación o un conjunto de ellas que abarquen los límites

máximos y mínimos de funcionamiento (Padilla, 2007).

2.6.2. Validación primaria

La validación primaria es un proceso exploratorio que tiene como metas establecer

los límites operacionales y las características de desempeño de un método nuevo,

modificado o caracterizado en forma inadecuada. Debe dar origen a especificaciones

numéricas y descriptivas para el desempeño e incluir una descripción detallada y

precisa del objeto de interés.

Page 44: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

44

Característicamente, la validación procede mediante el uso de esquemas de ensayo

especialmente diseñados.

Los laboratorios que desarrollan un método “en casa” o una variante de una norma

existente deben realizar los pasos de la validación primaria (Padilla, 2007).

2.6.3. Validación secundaria

La validación secundaria tiene lugar cuando un laboratorio procede a implementar un

método desarrollado en otra parte. Esta validación se centra en la reunión de

evidencia acerca de que el laboratorio está en capacidad de cumplir las

especificaciones establecidas en la validación primaria. Suele llamarse verificación; y

es la confirmación, mediante el aporte de pruebas objetivas, de que se han cumplido

los requisitos establecidos (ISO 9000, 2000).

Normalmente, la validación secundaria emplea formas seleccionadas y simplificadas

de los mismos procedimientos empleados en la validación primaria, aunque

posiblemente extendidas por un tiempo mayor. Las muestras naturales constituyen el

material de ensayo óptimo y el trabajo sólo requiere tratar el procedimiento dentro de

los límites operacionales establecidos por la validación primaria (Padilla, 2007).

Para un laboratorio de análisis es importante validar sus técnicas para así optimizar

sus procesos, al mejorar el uso de equipos y de personal de laboratorio y eliminar los

tiempos muertos, lo cual genera confiabilidad en los resultados, lo que a su vez

implica reducción en los gastos (PDA Suggested Revision, 2000). Así mismo sirve

para dar cumplimiento a las normas legales pertinentes o a normas internacionales de

calidad, contribuyendo a la credibilidad del laboratorio y a obtener altos niveles de

calidad que generen confianza dentro de sus clientes.

Page 45: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

45

2.6.4 Tipos de validación

2.6.4 1. Validación prospectiva

Este tipo de validación se basa en información obtenida antes de implantar el proceso

de validación. Se debe realizar un análisis de riesgos para determinar si podrían

conducir a situaciones críticas; se investigan posibles causas y se determina la

probabilidad de que suceda. Luego de efectúan los ensayos y se hace una valoración

general; si los resultados son aceptables al final, el proceso es satisfactorio. Los

procesos no satisfactorios se tienen que modificar y mejorar hasta que una nueva

validación demuestre su carácter satisfactorio (Padilla, 2007).

2.6.4.2. Validación retrospectiva

Este tipo de validación involucra la revisión y análisis de la información histórica del

proceso para proveer de la evidencia documentada necesaria que el proceso está

haciendo lo que debe hacer. Los pasos involucrados en este tipo de validación

requieren la preparación de un protocolo específico, el reporte de los resultados de los

datos analizados que conlleven a unas conclusiones y recomendaciones (PDA

Suggested Revision, 2000), (WHO, 1997).

Este tipo de validación sólo es aceptable para procesos bien establecidos y sería

inapropiado si recientemente se hubieran realizado cambios en la composición del

producto, en los procedimientos de operación o en los equipos (PDA Suggested

Revision, 2000), por lo tanto, nunca se debe aplicar a nuevos procesos o productos.

Esta validación puede ser útil en el establecimiento de las prioridades en un programa

de validación (WHO, 1997).

Dentro de la validación retrospectiva es necesario tener en cuenta el control de la

materia prima, controles ambientales, controles microbiológicos, equipos,

procedimientos, especificaciones y métodos analíticos (Padilla, 2007).

Page 46: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

46

2.6.4.3 Validación concurrente

Este tipo de validación sirve para demostrar y establecer evidencia documentada que

un proceso hace lo que debe hacer basado en información generada durante una

implementación real del proceso. La validación concurrente es muy utilizada cuando

se ha variado alguna etapa del proceso. Ésta da una información muy valiosa para

modificar y corregir el proceso. Podría considerarse como una evaluación continua

del proceso, mientras se controla al máximo para procurar que el producto o resultado

final sea correcto (Padilla, 2007).

Se debe tener en cuenta el monitoreo en proceso de las variables críticas que

demuestre que el proceso está bajo control y el registro de datos sobre la marcha del

proceso en estado productivo. Sin embargo, cada aproximación tiene sus

características y limitaciones y por lo tanto, antes de desarrollar una validación deberá

evaluarse que tipo de validación puede dar la mayor información sobre la seguridad y

la estabilidad del proceso (Padilla, 2007).

2.6.4 .4 Revalidación

Se aplica cuando se presenta el cambio de uno de los componentes críticos de la

formulación, cambio o reemplazo de una pieza crítica en un sistema o equipo o

cambio en instalaciones. La revalidación periódica se presenta cuando los procesos

experimentan cambios graduales (Padilla, 2007).

Es la repetición de un procedimiento de validación o un procedimiento del mismo.

Esto no significa que el programa original deba ser repetido, pues la revalidación se

efectúa para asegurar que los cambios intencionales o no intencionales en los

procesos no afecten las características del proceso ni la calidad del producto (WHO,

1997).

Page 47: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

47

2.6.5 Parámetros analíticos para la validación de una técnica o método

Son las propiedades, características o capacidades del método que indican su grado de

calidad en cuanto a exactitud, exactitud relativa, desviación, desviación positiva,

desviación negativa, efecto matricial, repetibilidad, precisión intermedia,

reproducibilidad, especificidad, límite de detección, límite de cuantificación,

linealidad, rango, sensibilidad, fortaleza y solidez y robustez, entre otras

características (Padilla, 2007).

2.6.5.1 Precisión

Se relaciona con la dispersión de la medida alrededor de un valor medio o central,

que puede ser expresada en términos de varianza, desviación estándar o coeficiente de

variación. La precisión puede ser considerada a tres niveles: repetibilidad,

reproducibilidad y solidez y robustez (Padilla, 2007).

2.6.5.1.1. Repetibilidad

Medida de la precisión del método cuando se realizan mediciones sucesivas por el

mismo analista el mismo día, mismos reactivos, mismo instrumento y condiciones de

medición (precisión dentro del ensayo). Po mediciones sucesivas se entiende aquellas

mediciones repetidas dentro de un corto periodo de tiempo (WHO Technical Report

Series, No. 823, 1992).

2.6.5.1.2. Reproducibilidad

Grado de concordancia entre los resultados de mediciones del mismo analito

realizadas en diferentes condiciones de medición. Una declaración válida de

reproducibilidad requiere que se especifiquen los cambios en las condiciones del

análisis o calibración. Estos cambios pueden incluir: el principio en que se basa la

medición, el método, analista/observador e instrumento, material y patrones de

Page 48: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

48

referencia, ubicación, condiciones de uso y tiempo. La reproducibilidad puede ser

expresada cuantitativamente en términos de los parámetros de dispersión de los

resultados (desviación estándar, varianza, coeficiente de variación) (Padilla, 2007).

La reproducibilidad intra-laboratorio es uno de los principales objetivos de los

programas internos de aseguramiento de la calidad. Garantiza que un laboratorio es

capaz de producir resultados constantes a lo largo del tiempo (Padilla, 2007).

2.6.5.1.3. Solidez y Robustez

Busca demostrar la veracidad de un análisis con respecto a variaciones deliberadas en

parámetros del método. Examina el efecto que las condiciones operacionales y del

medio ambiente tienen sobre los resultados del análisis (diferentes temperaturas y

porcentaje de humedad, analistas con diferente experiencia, instrumentos y reactivos

de diferentes marcas). Se determina analizando muestras provenientes de un lote

homogéneo por diferentes analistas y que el procedimiento analítico no se vea

afectado por estas variaciones deliberadas (Padilla, 2007).

2.6.5.2. Selectividad

Se define un método selectivo como aquel que produce resultados exactos para todos

los analitos de interés (WHO Technical Report Series, No. 823, 1992).

2.6.5.3. Especificidad

Es la capacidad del método para diferenciar precisa y específicamente el compuesto

de interés, en presencia de los demás componentes, que se espera estén presentes en

la matriz de la muestra (WHO Technical Report Series, No. 823, 1992). La

especificidad se puede estudiar agregando a la muestra algunas sustancias que se

sospecha que reaccionan de la misma manera que el componente estudiado y

comparar estadísticamente los resultados analíticos con y sin agregado (Padilla,

2007).

Page 49: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

49

2.6.5.4. Linealidad

Tiene que ver con la proporcionalidad entre la concentración del analito y su

respuesta, es decir, si la técnica o método produce resultados directa o indirectamente

proporcionales a la concentración o cantidad del analito, dentro de un intervalo

determinado (WHO Technical Report Series, No. 823, 1992).

2.6.5.5. Exactitud

Es el grado de concordancia entre el valor aceptado como un valor verdadero

convencional, o un valor de referencia, y el valor encontrado (Padilla, 2007). Se

conoce también como error sistemático o sesgo.

2.6.5.6. Estabilidad

La estabilidad se considera adecuada si la desviación estándar relativa calculada en

los resultados obtenidos en diferentes intervalos de tiempo, no excede el 20% del

valor correspondiente de la precisión del sistema (WHO Technical Report Series, No.

823, 1992).

2.6.5.7. Límite de detección

Concentración mínima del analito que puede detectarse en una muestra, pero no es

necesariamente cuantificada, bajo condiciones analíticas específicas (Padilla, 2007).

2.6.5.8. Límite de detección

Concentración mínima del analito que puede detectarse en una muestra aceptable en

una muestra bajo condiciones analíticas específicas (Padilla, 2007).

Page 50: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

50

3. JUSTIFICACIÓN Y FORMULACIÓN DEL PROBLEMA

La leche es un producto alimenticio secretado por la ubre de las hembras, que en su

estado natural es líquido, de color blanco cremoso, olor y sabor característicos

normales. Es un producto rico en nutrientes y por lo tanto muy delicado y fácil de que

se contamine si no se maneja adecuadamente.

La leche debe ser de excelente calidad, ya sea para el consumo directo de la leche

líquida como para la fabricación de derivados lácteos; esto significa que, además de

un buen contenido de nutrientes, debe tener unas características especiales que

aseguren al consumidor un producto fresco, alimenticio y saludable. Para obtener una

leche de buena calidad se deben cumplir una serie de normas y procedimientos. Se

debe empezar por producirla en buenas condiciones, conservarla adecuadamente en la

finca mientras es recogida y transportada a la planta recibidora o transformadora. De

allí en adelante, se debe transportar y conservar refrigerada, para que llegue a los

distribuidores y consumidores finales en muy buenas condiciones.

Para producir una leche de buena calidad, se deben tener en cuenta los cuatro

principios básicos de toda explotación pecuaria eficiente, o sea: animales de buena

calidad, alimentación adecuada, buen manejo y estricta sanidad. Los dos primeros

influyen directamente en la calidad nutricional o composición; los otros dos en la

calidad higiénica.

La sanidad en el hato es determinante para obtener una leche de buenas características

higiénicas. Esta debe ser más preventiva que curativa. Se debe comenzar por tener

una vaca saludable y bien nutrida, a la que se le haya aplicado todo el plan de

vacunación y vermifugación propio de la zona. Las vacas deben permanecer limpias y

es deseable que tengan cepillada la piel.

Page 51: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

51

Las enfermedades que más afectan la calidad de la leche son la mastitis, las fiebres de

varios orígenes, la brucelosis, las inflamaciones, abscesos Y heridas de los pezones.

La mastitis es una enfermedad que es relativamente fácil de prevenir, pues si se hace

un buen manejo e higiene de la ubre y se realiza el chequeo rutinario con la "paleta':

se puede detectar las mastitis subclínicas y realizar un tratamiento oportuno. El

conteo de células somáticas (CCS) es un indicador a nivel de la ubre de cada vaca del

status de salud. Las células somáticas están compuestas principalmente por

leucocitos, cuando existe algún proceso inflamatorio en la ubre, aproximadamente el

99 % de todas las células presentes en la leche del cuarto infectado son leucocitos,

mientras que el 1 % restante son células secretadas en la leche, provenientes del tejido

mamario. El conteo directo o indirecto de las células somáticas es la herramienta más

común que se utiliza para el diagnóstico temprano de la mastitis subclínica.

Como bien es sabido, la Alquería se caracteriza por ofrecer al consumidor productos

lácteos y alimentos de excelente calidad en condiciones óptimas, contribuyendo así a

la nutrición y salud de la población. Para esto desarrollan, dentro de las más altas

normas de calidad y eficiencia, actividades tales como recolección, procesamiento y

transformación de la leche, así como una distribución adecuada de productos finales,

complementada con la educación al minorista y al consumidor sobre el manejo y uso

de los mismos.

Básicamente en términos de Calidad, para producción primaria esta técnica de

recuento de células somáticas, es un excelente indicador de estado de sanidad Animal

(Mastitis). La resolución 0012 del ICA en pago por calidad y el fuerte de la

organización Alquería que es la producción UHT (Ultra alta temperatura), requiere

buena relación de estabilidad de proteína previo al tratamiento térmico y casualmente

una de los factores que garantiza parte de la estabilidad proteica, es la repulsión de

cargas en la molécula de caseína, que está relacionada con la cantidad de aniones en

la misma. Indirectamente hay afección de la estabilidad proteica, por la presencia de

Page 52: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

52

células somáticas o presentación de mastitis, en donde un recuento de células

somáticas, con exceso de cationes de Sodio, puede estar cargando positivamente la

molécula de caseína y afectando la repulsión de cargas, de modo que se vuelve más

susceptible al tratamiento térmico.

Por esta razón se hace necesario validar la técnica de recuento de células somáticas

con el equipo DCC DeLaval pues aunque en la empresa Alquería se cuenta con la

técnica de microscopia directa, es recomendable tener un método alterno para poder

realizar el recuento y así emitir resultados confiables donde se garantice la buena

calidad de la leche y todos lo productos lácteos que allí se fabriquen.

Page 53: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

53

4. OBJETIVOS

4.1. Objetivo General

Estandarizar y validar la técnica de recuento de células somáticas por medio del

equipo DCC DeLaval frente a la técnica de microscopia directa para ser usada e

implementada en la empresa Alquería S.A.

4.2. Objetivos Específicos

• Analizar los resultados obtenidos mediante el equipo DCC DeLaval frente a

los resultados obtenidos con la técnica de microscopía directa.

• Realizar un estudio estadístico comparativo de los métodos de recuento de

células somáticas utilizados en la empresa Alquería S.A. (método alterno y

método de referencia) y de esta manera establecer la concordancia que existe

entre ellos.

• Determinar si los resultados obtenidos con el método alterno (Equipo DCC

DeLaval) son equivalentes a los suministrados por el método de referencia

(Microscopía Directa)

Page 54: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

54

5. MATERIALES Y MÉTODOS

Como el método a validar era un método nuevo, según el protocolo de validación de

la norma ISO 17025 fue conveniente elaborar los procedimientos de cada uno de los

ensayos (el alterno y el de referencia).

5.1. Recuento de células somáticas por microscopía directa (método de

referencia)

5.1.1. Alistamiento de la muestra

• Tomar de 20 a 30 mililitros de la muestra, la temperatura de esta debe estar

entre 0 y 5 ºC.

• Depositarlos en un recipiente que se encuentre limpio y libre de impurezas.

• Mezclar la muestra girando e invirtiendo el recipiente 25 veces.

5.1.2. Ejecución de la prueba

• Tomar la lámina plantilla la cual tiene cinco pozos dibujados con medidas

específicas para el microscopio utilizado en el laboratorio de microbiología de

la Alquería. Estas medidas específicas se obtienen a partir de un factor

microscópico, el cual se determina para cada microscopio.

• Apoyar sobre la plantilla el portaobjetos.

Page 55: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

55

• Tomar 10uL de cada muestra y depositarlos en cada uno de los pozos.

• Esparcir la muestra suavemente en forma circular hasta llenar todo el pozo.

Tener en cuenta el orden de las muestras para marcarlas en la lámina de

vidrio.

• Retirar cuidadosamente la lámina plantilla y dejar secar la lámina de vidrio a

temperatura ambiente. No moverla.

• Cuando las muestras se encuentren totalmente secas agregar Xilol a cada pozo

(para fijar la muestra) dejar secar a temperatura ambiente.

• Sin lavar previamente, agregar azul de metileno al 1% sobre toda la lamina,

durante 3 minutos exactamente (usar cronometro).

• Lavar cuidadosamente con agua evitando que esta toque directamente la

muestra, pues esta se puede perder en la lavada.

• Dejar secar a temperatura ambiente para posteriormente realizar la lectura.

5.1.3. Lectura de las células somáticas

En esta lectura se busca contabilizar el total de leucocitos presentes en la leche,

indicadores de una posible infección del animal.

Page 56: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

56

• Colocar la lámina en el microscopio y ubicar el lente 40x, de esta forma se

ubica la zona ideal para leer (es aquella donde la coloración se observa más

clara o donde el paso de luz se dificulta menos)

• Luego pasar al lente de 100x y leer la lámina hasta completar un total de 20

campos. No ignorar ningún campo y leerlos todos así no contengan células

somáticas.

• Mover la platina del microscopio haciendo el siguiente recorrido para evitar

leer el mismo campo varias veces:

5.1.4. Interpretación de resultados

320000*20

. RECUENTOSOMÁTICASC =

El factor de 320000 fue calculado exclusivamente para el microscopio que se usa en

la Organización Alquería S.A.

Page 57: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

57

5.2. Recuento de células somáticas del DCC DeLaval (método alterno)

5.2.1. Alistamiento de la muestra

• Tomar de 20 a 30 mililitros de la muestra, la temperatura de esta debe estar

entre 0 y 5 ºC.

• Depositarlos en un recipiente que se encuentre limpio y libre de impurezas.

• Mezclar la muestra girando e invirtiendo el recipiente 25 veces.

5.2.2. Alistamiento del cassette

• Sacar de refrigerador el cassette que se va a usar.

• Ubicar la entrada del cassette en la muestra de leche a analizar.

• Presionar el pistón del cassette.

• Verificar que la muestra se cargue hasta la mitad del recorrido 3. (A partir de

este punto la leche entrará en contacto con los reactivos).

• Colocar el cassette en el DCC y comenzar la medición en los dos minutos

siguientes.

• Ubicar el cassette en el contador con la entrada de este a la izquierda.

Page 58: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

58

• Cerrar la tapa del DCC.

5.2.3. Operación del equipo

• Realizar la medición pulsando la tecla “RUN”

• Anotar el valor del contaje que aparece en la pantalla.

• Presionar al botón “ESC” para borrar los resultados obtenidos de las

anteriores mediciones.

• Sacar el cassette del equipo, el cual deberá ser desechado

• Cerrar la tapa de inserción de la muestra una vez finalizada la medición.

5.2.4. Validación de la técnica

Se tomaron muestras de leche que llegaban diariamente a la empresa la Alquería,

provenientes de los hatos que la suministran para la realización de sus productos.

Según la Norma Técnica Colombiana 5014 (norma utilizada en la empresa Alquería

para la validación de métodos alternos), el número de muestras que se debían analizar

para la validación de un método alterno era de 60, pero en este caso se analizaron 87

muestras. Este número de muestras fue propuesto por la empresa, debido a la

complejidad e importancia de la técnica para producción de alimentos estables y con

alta calidad.

Page 59: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

59

5.3. Análisis estadístico

El diseño experimental de este proyecto se basó en dos pasos. El primer paso fue una

presentación y descripción de los datos, esto se hizo por medio de tablas y gráficos.

El segundo paso fue el análisis y discusión de los resultados, este análisis se hizo por

medio de pruebas estadísticas de tipo cuantitativo. Estas pruebas fueron: precisión y

exactitud.

• En Precisión, se evaluaron dos aspectos:

1. Repetibilidad: La medida de repetibilidad se determinó analizando la proximidad

de concordancia entre los resultados obtenidos con el mismo método, con idéntico

material de ensayo y bajo las mismas condiciones (aparatos, operarios, laboratorio).

La lectura de cada muestra se hizo tres veces por cada método, de esta manera se

determinó un análisis de varianza, desviación estándar y coeficiente de variación.

También se hizo una prueba de hipótesis con un nivel de confianza del 99%, usando

una prueba pareada:

Estas hipótesis ayudaron a determinar la equivalencia de repetibilidad para los dos

métodos.

Page 60: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

60

Además siguiendo la Norma Técnica Colombiana 5014 se evaluó y comparó la

repetibilidad de los dos métodos (alterno y referencia) por medio de una distribución

F, analizando sus varianzas.

Adicionalmente se hizo uso del coeficiente de variación, esto para ver que tan

alejados estaban los datos de la tendencia central. Este análisis se realizó para los dos

métodos, mediante la siguiente fórmula:

Esto examinó la concordancia de los datos, si la dispersión era significativa, es decir

si el índice de coeficiente de variación (CV) era elevado, significaba que los datos

estaban muy alejados de su tendencia central, por lo cual la concordancia entre ellos

sería baja.

2. Reproducibilidad: La medida de reproducibilidad se determinó analizando la

proximidad de concordancia entre los resultados de las pruebas con idéntico material

de ensayo, uso de los mismos métodos y además obtenidos por diferentes operadores.

La lectura de cada muestra por cada uno de los métodos se hizo por dos analistas

diferentes, al mismo tiempo y con los mismos equipos. La lectura de resultados por

cada uno de los métodos no pudo ser determinada por equipos distintos, ya que sólo

se cuenta con un equipo para cada método.

También se hizo una prueba de hipótesis con un nivel de confianza del 99%, usando

una prueba pareada:

Page 61: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

61

Estas hipótesis ayudaron a determinar la reproducibilidad entre analistas para los dos

métodos.

Además siguiendo la Norma Técnica Colombiana 5014 se evaluó y comparó la

reproducibilidad en los dos métodos (alterno y referencia) por medio de una

distribución F. De esta manera se pudo probar si había equivalencia entre analistas

para los dos métodos, además de comparar las varianzas de reproducibilidad de

ambos métodos con el fin de comprobar la concordancia entre el método alterno y el

método de referencia.

Adicionalmente se hizo uso del coeficiente de variación, esto para ver que tan

alejados estaban los datos de la tendencia central. Este análisis se realizó para los dos

métodos, mediante la siguiente fórmula:

Esto examinó la concordancia de los datos, si la dispersión era significativa, es decir

si el índice de coeficiente de variación (CV) era elevado, significaba que los datos

estaban muy alejados de su tendencia central, por lo cual la concordancia entre ellos

sería baja.

3. Exactitud: La exactitud para esta validación se puntualizó como los valores

aceptados de referencia dentro de una definición de veracidad, la cual se obtuvo

solamente con los resultados logrados con el método de referencia y muestras

idénticas. Así las desviaciones que se obtuvieron con el método alterno correspondían

a la exactitud para la validación de este método. Para esto se plantearon dos hipótesis,

una alterna (Ha) y una nula (Ho):

Page 62: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

62

Estas hipótesis se analizaron mediante una tabla de t Student, luego de este análisis se

pudo determinar si el método alterno carecía de exactitud o no, en relación con el

método de referencia.

Page 63: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

63

6. RESULTADOS Y DISCUSIÓN

6.1. Estandarización de las técnicas

Se analizaron 87 muestras de leche provenientes de los diferentes hatos que surten a

la empresa Alquería S.A. Como primera medida se hizo necesario estandarizar cada

una de las técnicas usadas para el recuento de células somáticas, tanto la del recuento

por microscopía directa, como la lectura por medio del equipo DCC DeLaval.

Esta estandarización permitió establecer los parámetros de operación para cada una

de las técnicas, además de dejar un procedimiento en la empresa para que los

operarios encargados de analizar las muestras siguiera los pasos señalados en cada

uno de los protocolos (recuento por microscopía directa y por el equipo DCC

DeLaval) y así poder obtener resultados verídicos y confiables.

Luego de esta estandarización, las 87 muestras analizadas para esta validación fueron

tratadas según el procedimiento creado para cada una de las técnicas, y así, tener la

seguridad que todas las muestras hayan sido montadas de la misma forma y bajo las

mismas condiciones.

6.2. Presentación y descripción de datos

A continuación se encuentra una tabla donde se muestran los resultados obtenidos de

las lecturas de células somáticas de las 87 muestras analizadas mediante las dos

técnicas: recuento por microscopia directa (método de referencia), y recuento por

medio del equipo DCC DeLaval (Método alterno). Estos resultados fueron obtenidos

por un solo analista y las muestras se trataron bajo las mismas condiciones de

operación, en un mismo laboratorio, con los mismos equipos y en diferentes días.

Cabe resaltar que cada una de las muestras fue montada al mismo tiempo para las dos

Page 64: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

64

técnicas (Microscopio y Equipo), ya que la acidez de la leche cambia con gran

rapidez, lo cual afecta directamente el resultado en el conteo de células somáticas,

debido a que el contenido de estas células aumenta cuando aumenta la acidez de la

leche (Salvador et al 2006).

Tabla 1. Resultados de lecturas de células somáticas por microscopio (M) y equipo (E)

DÍA 1

Muestra MICROSCOPIO (células/mL) EQUIPO (células/mL)

REPLICA 1 M

REPLICA 2 M

REPLICA 3 M

REPLICA 1 E

REPLICA 2 E

REPLICA 3 E

1 304000 308000 305000 363000 363000 361000

2 416000 412000 414000 487000 488000 487000

3 880000 883000 886000 909000 908000 910000

4 208000 206000 205000 247000 247000 248000

5 432000 429000 433000 451000 452000 451000

6 960000 962000 958000 920000 920000 920000

7 480000 481000 478000 522000 520000 521000

8 816000 813000 817000 839000 838000 838000

DÍA 2

9 448000 450000 447000 397000 395000 393000

10 528000 529000 526000 523000 526000 525000

11 80000 79000 80000 105000 106000 105000

12 288000 289000 286000 228000 229000 227000

13 368000 366000 371000 405000 404000 406000

14 48000 49000 46000 73000 73000 72000

15 1184000 1186000 1182000 1002000 1002000 1005000

16 352000 351000 349000 299000 298000 296000

17 816000 814000 818000 863000 865000 866000

18 384000 385000 382000 334000 335000 336000

19 1280000 1290000 1260000 1159000 1161000 1158000

20 320000 322000 381000 278000 277000 278000

21 336000 338000 335000 376000 378000 377000

DÍA 3

22 912000 915000 913000 886000 889000 888000

23 112000 111000 114000 89000 88000 89000

24 304000 303000 301000 241000 245000 243000

Page 65: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

65

25 176000 176000 179000 164000 166000 163000

26 624000 622000 625000 586000 588000 585000

27 368000 365000 366000 322000 321000 320000

28 384000 385000 387000 366000 365000 368000

29 1104000 1105000 1102000 1070000 1069000 1071000

30 224000 222000 220000 295000 296000 298000

31 912000 915000 910000 940000 941000 938000

DÍA 4

32 896000 900000 895000 863000 863000 865000

33 464000 465000 462000 448000 447000 449000

34 1072000 1075000 1071000 901000 902000 900000

35 176000 178000 174000 234000 235000 234000

36 320000 321000 324000 383000 382000 385000

37 432000 431000 430000 354000 355000 351000

DÍA 5

38 512000 500000 514000 439000 436000 436000

39 880000 879000 886000 823000 825000 821000

40 640000 642000 638000 598000 600000 599000

41 720000 718000 725000 760000 761000 758000

42 736000 735000 741000 780000 780000 779000

43 224000 223000 219000 304000 306000 305000

44 880000 882000 878000 900000 901000 899000

45 1872000 1845000 1862000 2024000 2019000 2025000

46 240000 239000 245000 333000 336000 335000

47 368000 365000 371000 440000 441000 439000

48 3744000 3746000 3716000 3982000 3978000 3981000

49 640000 645000 639000 617000 619000 618000

DÍA 6

50 224000 221000 230000 286000 289000 285000

51 592000 596000 591000 590000 591000 589000

52 608000 603000 609000 531000 529000 534000

53 1056000 1049000 1053000 996000 998000 995000

54 464000 463000 462000 517000 518000 520000

DÍA 7

55 288000 286000 291000 352000 351000 355000

56 400000 405000 398000 387000 388000 385000

57 384000 386000 381000 360000 361000 361000

58 416000 414000 422000 445000 446000 448000

Page 66: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

66

59 304000 302000 306000 386000 385000 388000

60 384000 385000 388000 432000 430000 435000

61 512000 513000 509000 543000 541000 545000

62 400000 398000 402000 391000 395000 390000

63 528000 526000 519000 495000 496000 492000

64 240000 245000 243000 287000 286000 288000

65 496000 493000 492000 462000 465000 469000

66 368000 365000 372000 353000 356000 355000

67 464000 469000 462000 443000 445000 441000

68 992000 995000 998000 802000 800000 801000

69 384000 382000 388000 409000 405000 406000

70 336000 335000 341000 380000 382000 378000

71 320000 318000 325000 350000 352000 355000

72 368000 365000 364000 341000 342000 341000

73 336000 330000 342000 324000 326000 325000

74 1376000 1381000 1375000 1333000 1336000 1332000

75 400000 402000 398000 353000 356000 350000

76 416000 421000 411000 388000 385000 382000

77 352000 356000 348000 398000 396000 396000

78 330000 332000 329000 384000 384000 386000

79 441000 446000 445000 480000 485000 479000

80 320000 321000 318000 341000 342000 345000

DÍA 8

81 384000 381000 386000 367000 368000 365000

82 368000 362000 371000 341000 344000 340000

83 592000 593000 589000 563000 562000 566000

84 640000 645000 649000 603000 602000 605000

85 576000 578000 573000 549000 549000 546000

86 528000 526000 532000 528000 526000 529000

87 360000 365000 359000 364000 362000 365000 Fuente: Autor

Page 67: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

67

Para poder evidenciar la concordancia que hubo entre las mediciones conseguidas

tanto en Microscopio como en Equipo en el recuento de células somáticas, se

determinó el promedio de cada una de las réplicas obtenidas con los métodos

evaluados y se obtuvieron los siguientes datos:

Tabla 2. Promedio de lecturas de células somáticas por microscopio y equipo

MuestraPROMEDIO

MICROSCOPIO Células/mL

PROMEDIO EQUIPO

Células/mL 1 305667 362333 2 414000 487333 3 883000 909000 4 206333 247333 5 431333 451333 6 960000 920000 7 479667 521000 8 815333 838333 9 448333 395000

10 527667 524667 11 79667 105333 12 287667 228000 13 368333 405000 14 47667 72667 15 1184000 1003000 16 350667 297667 17 816000 864667 18 383667 335000 19 1276667 1159333 20 341000 277667 21 336333 377000 22 913333 887667 23 112333 88667 24 302667 243000 25 177000 164333 26 623667 586333 27 366333 321000 28 385333 366333 29 1103667 1070000 30 222000 296333 31 912333 939667

Page 68: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

68

32 897000 863667 33 463667 448000 34 1072667 901000 35 176000 234333 36 321667 383333 37 431000 353333 38 508667 437000 39 881667 823000 40 640000 599000 41 721000 759667 42 737333 779667 43 222000 305000 44 880000 900000 45 1859667 2022667 46 241333 334667 47 368000 440000 48 3735333 3980333 49 641333 618000 50 225000 286667 51 593000 590000 52 606667 531333 53 1052667 996333 54 463000 518333 55 288333 352667 56 401000 386667 57 383667 360667 58 417333 446333 59 304000 386333 60 385667 432333 61 511333 543000 62 400000 392000 63 524333 494333 64 242667 287000 65 493667 465333 66 368333 354667 67 465000 443000 68 995000 801000 69 384667 406667 70 337333 380000 71 321000 352333 72 365667 341333 73 336000 325000

Page 69: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

69

74 1377333 1333667 75 400000 353000 76 416000 385000 77 352000 396667 78 330333 384667 79 444000 481333 80 319667 342667 81 383667 366667 82 367000 341667 83 591333 563667 84 644667 603333 85 575667 548000 86 528667 527667 87 361333 363667

Fuente: Autor

Según los datos presentados en la tabla 2, los promedios de las réplicas obtenidas por

cada método son muy similares, lo que indica que hay proximidad entre los

resultados obtenidos de recuento de células somáticas por medio del Microscopio y

por medio del Equipo DCC DeLaval, tal y como se muestra en la Figura 1.

Page 70: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

70

Figura 1. Representación gráfica del promedio de lecturas obtenidas de células somáticas con

Microscopio y Equipo DCC DeLaval

6.3. Ensayos para la validación de la técnica

6.3.1. Ensayo de precisión

Mediante este ensayo fue posible relacionar la dispersión de cada una de las

mediciones alrededor de un valor medio o central, los cuales fueron expresados en

términos de varianza, desviación estándar y coeficientes de variación.

Para este ensayo se determinaron los parámetros estadísticos de repetibilidad y

reproducibilidad con cada uno de dos métodos (Alterno y Referencia), y de esta

manera fue posible evaluar los parámetros estadísticos nombrados anteriormente.

6.3.1.1. Ensayo de repetibilidad

Se determinó la medida de la precisión de cada una de los métodos, realizando

mediciones sucesivas por el mismo analista, estas mediciones fueron obtenidas en un

intervalo de 8 días usando los mismos reactivos, los mismos instrumentos e iguales

condiciones de medición y de esta forma pudo ser establecida la precisión dentro del

ensayo.

6.3.1.1.1. Ensayo de repetibilidad dentro del método de microscopía directa

(análisis de parámetros estadísticos)

En el ensayo de repetibilidad con el método de microscopia directa se determinaron

los parámetros estadísticos de valor medio o central, desviación estándar, varianza,

coeficiente de variación, valor mínimo y valor máximo. Se hicieron tres

Page 71: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

71

determinaciones (réplicas) por cada una de las muestras analizadas. Los resultados

fueron los siguientes:

- Determinaciones del día 1

Tabla 3. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo de microscopía directa

Muestra Número

de Replicas

Media Desviación Estándar Varianza

Coeficiente de

Variación (%)

Valor Mínimo

Valor Máximo

1 3 305667 2082 4333333 0,68 304000 308000 2 3 414000 2000 4000000 0,48 412000 416000 3 3 883000 3000 9000000 0,34 880000 886000 4 3 206333 1528 2333333 0,74 205000 208000 5 3 431333 2082 4333333 0,48 429000 433000 6 3 960000 2000 4000000 0,21 958000 962000 7 3 479667 1528 2333333 0,32 478000 481000

8 3 815333 2082 4333333 0,26 813000 817000 Fuente: Autor

- Determinaciones del día 2

Tabla 4. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo de microscopía directa

Muestra Número

de Replicas

Media Desviación Estándar Varianza

Coeficiente de

Variación (%)

Valor Mínimo

Valor Máximo

9 3 448333 1528 2333333 0,34 447000 450000 10 3 527667 1528 2333333 0,29 526000 529000 11 3 79667 577 333333 0,72 79000 80000 12 3 287667 1528 2333333 0,53 286000 289000 13 3 368333 2517 6333333 0,68 366000 371000 14 3 47667 1528 2333333 3,2 46000 49000 15 3 1184000 2000 4000000 0,17 1182000 1186000

Page 72: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

72

16 3 350667 1528 2333333 0,44 349000 352000

17 3 816000 2000 4000000 0,25 814000 818000

18 3 383667 1528 2333333 0,4 382000 385000

19 3 1276666 15275 233333333 1,96 1260000 1290000

20 3 321000 1000 1000000 0,31 320000 321000

21 3 336333 1528 2333333 0,45 335000 338000 Fuente: Autor

- Determinaciones del día 3

Tabla 5. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo de microscopía directa

Muestra Número

de Replicas

Media Desviación Estándar Varianza

Coeficiente de

Variación (%)

Valor Mínimo

Valor Máximo

22 3 913333 1528 2333333 0,17 912000 915000 23 3 112333 1528 2333333 1,36 111000 114000 24 3 302667 1528 2333333 0,5 301000 304000 25 3 177000 1732 3000000 0,98 176000 179000 26 3 623667 1528 2333333 0,24 622000 625000 27 3 366333 1528 2333333 0,42 365000 368000 28 3 385333 1528 2333333 0,4 384000 387000 29 3 1103667 1528 2333333 0,14 1102000 1105000 30 3 222000 2000 4000000 0,9 220000 224000

31 3 912333 2517 6333333 0,28 910000 915000 Fuente: Autor

- Determinaciones del día 4

Tabla 6. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo de microscopía directa

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficiente de

Variación

Valor Mínimo

Valor Máximo

32 3 897000 2646 7000000 0,29 895000 900000 33 3 463667 1528 2333333 0,33 462000 465000

Page 73: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

73

34 3 1072667 2082 4333333 0,19 1072000 1071000 35 3 176000 2000 4000000 1,14 174000 178000 36 3 321667 2082 4333333 0,65 320000 324000 37 3 431000 1000 1000000 0,23 430000 432000

Fuente: Autor

- Determinaciones del día 5

Tabla 7. Análisis de desviación estándar, varianza, coeficiente de variación y valores

mínimos y máximos de la prueba de repetibilidad con el ensayo de microscopía directa

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación

Valor Mínimo

Valor Máximo

38 3 508667 7572 57333333 1,49 500000 514000 39 3 881667 3786 14333333 0,43 879000 886000 40 3 640000 2000 4000000 0,31 638000 642000 41 3 721000 3606 13000000 0,5 718000 725000 42 3 737333 3215 10333333 0,44 735000 741000 43 3 222000 2646 7000000 1,19 219000 224000 44 3 880000 2000 4000000 0,23 878000 882000 45 3 1859667 13650 186333333 0,73 1845000 1872000 46 3 241333 3215 10333333 1,33 239000 245000 47 3 368000 3000 9000000 0,82 365000 371000 48 3 3735333 16773 281333333 0,45 3716000 3746000 49 3 641333 3215 10333333 0,5 639000 645000

Fuente: Autor

- Determinaciones del día 6

Tabla 8. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo de microscopía directa

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza Coeficiente

de VariaciónValor

Mínimo Valor

Máximo

50 3 225000 4583 21000000 2,04 221000 230000 51 3 593000 2646 7000000 0,45 591000 596000 52 3 610000 8185 67000000 1,34 603000 619000 53 3 1052667 3512 12333333 0,33 1049000 1056000

Page 74: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

74

54 3 459667 5859 34333333 1,27 453000 464000 Fuente: Autor

- Determinaciones del día 7

Tabla 9. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo de microscopía directa

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación

Valor Mínimo

Valor Máximo

55 3 288333 2517 6333333 0,87 286000 291000 56 3 401000 3606 13000000 0,9 398000 405000 57 3 383667 2517 6333333 0,66 381000 386000 58 3 417333 4163 17333333 1 414000 422000 59 3 304000 2000 4000000 0,66 302000 306000 60 3 385667 2082 4333333 0,54 384000 388000 61 3 511333 2082 4333333 0,41 509000 513000 62 3 400000 2000 4000000 0,5 398000 402000 63 3 524333 4726 22333333 0,9 519000 528000 64 3 242667 2517 6333333 1,04 240000 245000 65 3 493667 2082 4333333 0,42 492000 496000 66 3 368333 3512 12333333 0,95 365000 372000 67 3 465000 3606 13000000 0,78 462000 469000 68 3 995000 3000 9000000 0,3 992000 998000 69 3 384667 3055 9333333 0,79 382000 388000 70 3 337333 3215 10333333 0,95 335000 341000 71 3 321000 3606 13000000 1,12 318000 325000 72 3 365667 2082 4333333 0,57 364000 368000 73 3 336000 6000 36000000 1,79 330000 342000 74 3 1377333 3215 10333333 0,23 1375000 1381000 75 3 400000 2000 4000000 0,5 398000 402000 76 3 416000 5000 25000000 1,2 411000 421000 77 3 352000 4000 16000000 1,14 348000 356000 78 3 330333 1528 2333333 0,46 329000 332000 79 3 444000 2646 7000000 0,6 441000 446000 80 3 319667 1528 2333333 0,48 318000 321000

Page 75: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

75

Fuente: Autor

- Determinaciones del día 8

Tabla 10. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo de microscopía directa

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación

Valor Mínimo

Valor Máximo

81 3 383667 2517 6333333 0,66 381000 386000 82 3 367000 4583 21000000 1,25 362000 371000 83 3 591333 2082 4333333 0,35 589000 593000 84 3 644667 4509 20333333 0,7 640000 649000 85 3 575667 2517 6333333 0,44 573000 578000 86 3 528667 3055 9333333 0,58 526000 532000 87 3 361333 3215 10333333 0,89 359000 365000

Fuente: Autor

La dispersión de un conjunto de observaciones se refiere a la variedad que muestran

estas. Una medida de dispersión conlleva información respecto a la cantidad total de

variabilidad presente en el conjunto de datos. Si todos los valores son iguales, no hay

dispersión en los datos, la magnitud de la dispersión es pequeña cuando los valores,

aunque diferentes, son cercanos entre sí (Padilla, 2007).

Según los datos observados desde la tabla 3 a la 10, se evidencia una dispersión

mínima entre ellos, ya que las réplicas para cada una de las muestras en el ensayo de

repetibilidad para el método de microscopia directa, se encuentran dentro de un rango

similar, lo que permite ver la homogeneidad de los datos obtenidos entre repeticiones

de una misma prueba con una misma muestra. Cabe resaltar que en este caso, las

mediciones de repetibilidad se hacen y evalúan por cada muestra, ya que no se espera

que las muestras analizadas tengan entre ellas recuentos de células somáticas

Page 76: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

76

similares, pues cada una proviene de hatos diferentes y esto no es relevante para la

validación.

6.3.1.1.2. Ensayo de repetibilidad dentro del método de microscopía directa

(prueba de hipótesis)

Para hacer la prueba de hipótesis en el ensayo de repetibilidad dentro del método de

microscopía directa, se realizó un estudio de pruebas pareadas entre las tres réplicas

de las 87 muestras analizadas, Se estableció una comparación de diferencia de medias

entre los grupos de las réplicas de cada una de las muestras, las cuales son

independientes entre sí. El nivel de confianza establecido para estas pruebas fue del

99%. Por medio de las siguientes tablas y figuras se podrán observar los resultados

obtenidos.

Tabla 11. Resultados de pruebas pareadas para las réplicas 1 y 2 del método de microscopía directa

NÚMERO

DE

MUESTRAS

MEDIA

Células/mL

DESVIACIÓN

ESTÁNDAR

RÉPLICA 1 87 561046 466041

RÉPLICA 2 87 560839 465857

DIFERENCIA 87 207 4573

Fuente: Autor

Tabla 12. Resultados de pruebas pareadas para las réplicas 2 y 3 del método de microscopía directa

NÚMERO

DE

MUESTRAS

MEDIA

Células/mL

DESVIACIÓN

ESTÁNDAR

RÉPLICA 2 87 560839 465857

RÉPLICA 3 87 555667 471960

DIFERENCIA 87 5172 142711

Page 77: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

77

Tabla 13. Resultados de intervalos de confianza y pruebas T para las réplicas 1 y 2 del método de

microscopía directa

INTERVALOS DE

CONFIANZA

(-1085. 1498)

T-VALUE 0,42

P-VALUE 0,674

Fuente: Autor

Tabla 14. Resultados de intervalos de confianza y pruebas T para las réplicas 2 y 3 del método de

microscopía directa

INTERVALOS DE

CONFIANZA

(-35132. 45476)

T-VALUE 0,34

P-VALUE 0,736

Fuente: Autor

A continuación se observarán las figuras que ilustran el rechazo o no de las hipótesis

planteadas para evaluar la repetibilidad dentro del método de microscopia directa:

2500020000150001000050000-5000-10000

25

20

15

10

5

0X_

Ho

Differences

Freq

uenc

y

Histogram of Differences(with Ho and 99% t-confidence interval for the mean)

Figura 2. Prueba de hipótesis para evaluación de repetibilidad entre réplicas 1 y 2 del método de

microscopia directa

Page 78: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

78

12000008000004000000-400000

80

60

40

20

0X_

Ho

Differences

Freq

uenc

y

Histogram of Differences(w ith Ho and 99% t-confidence interva l for the m ean)

Figura 3. Prueba de hipótesis para evaluación de repetibilidad entre réplicas 2 y 3 del método de

microscopia directa

Las hipótesis planteadas para evaluar la repetibilidad dentro del método de

microscopía directa fueron:

Para poder probar estas hipótesis se deben observar las tablas 13 y 14, y las figuras 2

y 3, donde los intervalos de confianza obtenidos para las réplicas 1 y 2 fueron (--1085

a 1498), y para las réplicas 2 y 3 fueron (-35132. 45476), es posible notar que el cero

cae dentro de estos intervalos, por lo tanto se puede afirmar que la hipótesis nula

(Ho), no se rechaza. Además, no se evidencia una diferencia estadística significativa

entre los promedios (Media) por réplicas, dado que la probabilidad de equivocarse

rechazando la hipótesis nula, es del 67.4% (P-Value) para las réplicas 1 y 2, y del

73.6% (P-Value) para las réplicas 2 y 3. Debido a este alto porcentaje de equivocarse,

no se rechaza la hipótesis nula (Ho), lo que indica que no hay diferencia estadística

entre las Medias de cada una de las réplicas, en el método de microscopia directa,

afirmando de esta manera que el proceso si es repetible.

Esta repetibilidad también se prueba gracias al nivel de confianza establecido (99%;

α=0,01), pues tampoco se encuentra suficiente evidencia estadística para rechazar la

Page 79: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

79

hipótesis nula (Ho), debido a que el T-value, tanto en las réplicas 1 y 2 (0,42), como

en las réplicas 2 y 3 (0,34) es menor al cuantil de alfa (α), el cual tiene un valor de 2,8

(Risk, 2003).

6.3.1.1.3. Ensayo de repetibilidad dentro del método de equipo DCC DeLaval

(análisis de parámetros estadísticos)

En el ensayo de repetibilidad con el método de equipo DCC DeLaval se determinaron

los parámetros estadísticos de valor medio o central, desviación estándar, varianza,

coeficiente de variación, valor mínimo y valor máximo. Se hicieron tres

determinaciones (réplicas) por cada una de las muestras analizadas. Los resultados

fueron los siguientes:

- Determinaciones del día 1

Tabla 15. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo del Equipo DCC DeLaval

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación (%)

Valor Mínimo

Valor Máximo

1 3 362333 1155 1333333 0,32 361000 363000 2 3 487333 577 333333 0,12 487000 488000 3 3 909000 1000 1000000 0,11 908000 910000 4 3 247333 577 333333 0,23 247000 248000 5 3 451333 577 333333 0,13 451000 452000 6 3 920000 0 0 0 920000 920000 7 3 521000 1000 1000000 0,19 520000 522000 8 3 838333 577 333333 0,07 838000 839000

Fuente: Autor

Page 80: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

80

Determinaciones del día 2

Tabla 16. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo del Equipo DCC DeLaval

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación (%)

Valor Mínimo

Valor Máximo

9 3 395000 2000 4000000 0,51 393000 397000 10 3 524667 1528 2333333 0,29 523000 526000 11 3 105333 577 333333 0,55 105000 106000 12 3 228000 1000 1000000 0,44 227000 229000 13 3 405000 1000 1000000 0,25 404000 406000 14 3 72667 577 333333 0,79 72000 73000 15 3 1003000 1732 3000000 0,17 1002000 1005000 16 3 297667 1528 2333333 0,51 296000 299000 17 3 864667 1528 2333333 0,18 863000 866000 18 3 335000 1000 1000000 0,3 334000 336000 19 3 1159333 1528 2333333 0,13 1158000 1161000 20 3 277667 577 333333 0,21 277000 278000 21 3 377000 1000 1000000 0,27 376000 378000

Fuente: Autor

Determinaciones del día 3

Tabla 17. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo del Equipo DCC DeLaval

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación (%)

Valor Mínimo

Valor Máximo

22 3 887667 1528 2333333 0,17 886000 889000 23 3 88667 577 333333 0,65 88000 89000 24 3 243000 2000 4000000 0,82 241000 245000 25 3 164333 1528 2333333 0,93 163000 166000 26 3 586333 1528 2333333 0,26 585000 588000 27 3 321000 1000 1000000 0,31 320000 322000 28 3 366333 1528 2333333 0,42 365000 368000 29 3 1070000 1000 1000000 0,09 1069000 1071000

Page 81: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

81

30 3 296333 1528 2333333 0,52 295000 298000 31 3 939667 1528 2333333 0,16 938000 941000

Fuente: Autor

Determinaciones del día 4

Tabla 18. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo del Equipo DCC DeLaval

Fuente: Autor

Muestra Número

de Replicas

Media Desviación Estándar Varianza

Coeficiente de

Variación (%)

Valor Mínimo

Valor Máximo

32 3 863667 1155 1333333 0,13 863000 865000 33 3 448000 1000 1000000 0,22 447000 449000 34 3 901000 1000 1000000 0,11 900000 902000 35 3 234333 577 333333 0,25 234000 235000 36 3 383333 1528 2333333 0,4 382000 385000 37 3 353333 2082 4333333 0,59 351000 355000

Determinaciones del día 5

Tabla 19. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y máximos de la

prueba de repetibilidad con el ensayo del Equipo DCC DeLaval

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación (%)

Valor Mínimo

Valor Máximo

38 3 437000 1732 3000000 0,4 436000 439000 39 3 823000 2000 4000000 0,24 821000 825000 40 3 599000 1000 1000000 0,17 598000 600000 41 3 759667 1528 2333333 0,2 758000 761000 42 3 779667 577 333333 0,07 779000 780000 43 3 305000 1000 1000000 0,33 304000 306000 44 3 900000 1000 1000000 0,11 899000 901000 45 3 2022667 3215 10333333 0,16 2019000 2025000 46 3 334667 1528 2333333 0,46 333000 336000 47 3 440000 1000 1000000 0,22 439000 441000

Page 82: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

82

48 3 3980333 2082 4333333 0,05 3978000 3982000 49 3 618000 1000 1000000 0,16 617000 619000

Fuente: Autor

Determinaciones del día 6

Tabla 20. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo del Equipo DCC DeLaval

Muestra Número

de Replicas

Media Desviación Estándar Varianza

Coeficiente de

Variación (%)

Valor Mínimo

Valor Máximo

50 3 286667 2082 4333333 0,73 285000 289000 51 3 590000 1000 1000000 0,17 589000 591000 52 3 531333 2517 6333333 0,47 529000 534000 53 3 996333 1528 2333333 0,15 995000 998000 54 3 518333 1528 2333333 0,29 517000 520000

Fuente: Autor

Determinaciones del día 7

Tabla 21. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo del Equipo DCC DeLaval

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación (%)

Valor Mínimo

Valor Máximo

55 3 352667 2082 4333333 0,59 351000 355000 56 3 386667 1528 2333333 0,4 385000 388000 57 3 360667 577 333333 0,16 360000 361000 58 3 446333 1528 2333333 0,34 445000 448000 59 3 386333 1528 2333333 0,4 385000 388000 60 3 432333 2517 6333333 0,58 430000 435000 61 3 543000 2000 4000000 0,37 541000 545000 62 3 392000 2646 7000000 0,67 390000 395000 63 3 494333 2082 4333333 0,42 492000 496000 64 3 287000 1000 1000000 0,35 286000 288000

Page 83: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

83

65 3 465333 3512 12333333 0,75 462000 469000 66 3 354667 1528 2333333 0,43 353000 356000 67 3 443000 2000 4000000 0,45 441000 445000 68 3 801000 1000 1000000 0,12 800000 802000 69 3 406667 2082 4333333 0,51 405000 409000 70 3 380000 2000 4000000 0,53 378000 382000 71 3 352333 2517 6333333 0,71 350000 355000 72 3 341333 577 333333 0,17 341000 342000

73 3 325000 1000 1000000 0,31 324000 326000

74 3 1333667 2082 4333333 0,16 1332000 1336000

75 3 353000 3000 9000000 0,85 350000 356000

76 3 385000 3000 9000000 0,78 382000 388000

77 3 396667 1155 1333333 0,29 396000 398000

78 3 384667 1155 1333333 0,3 384000 386000

79 3 481333 3215 10333333 0,67 479000 485000

80 3 342667 2082 4333333 0,61 341000 345000 Fuente: Autor

Determinaciones del día 8

Tabla 22. Análisis de desviación estándar, varianza, coeficiente de variación y valores mínimos y

máximos de la prueba de repetibilidad con el ensayo del Equipo DCC DeLaval

Muestra Número

de Replicas

Media DesviaciónEstándar Varianza

Coeficientede

Variación (%)

Valor Mínimo

Valor Máximo

81 3 366667 1528 2333333 0,42 365000 368000 82 3 341667 2082 4333333 0,61 340000 344000 83 3 563667 2082 4333333 0,37 562000 566000 84 3 603333 1528 2333333 0,25 602000 605000 85 3 548000 1732 3000000 0,32 546000 549000 86 3 527667 1528 2333333 0,29 526000 529000 87 3 363667 1528 2333333 0,42 362000 365000

Fuente: Autor

Page 84: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

84

Al igual que con el método de microscopio, los resultados arrojados con el equipo

DCC DeLaval, se demuestra en las tablas 15 a 22, que la dispersión de los datos

obtenidos en estas lecturas de cada una de las réplicas, también es mínima, ya que se

encuentran dentro de un rango similar y por ende se asume que los datos arrojados

por cada una de las muestras son homogéneos. También en este caso, las mediciones

de repetibilidad se hacen y evalúan por cada muestra, pues tampoco por este método

se espera que las muestras analizadas tengan entre ellas recuentos de células

somáticas similares, pues cada una proviene de hatos diferentes y esto no es relevante

para la validación.

6.3.1.1.4. Ensayo de repetibilidad dentro del método de equipo DCC DeLaval

(prueba de hipótesis)

Para hacer la prueba de hipótesis en el ensayo de repetibilidad dentro del método de

equipo DCC DeLaval, se realizó también un estudio de pruebas pareadas entre las

tres réplicas de las 87 muestras analizadas, Se estableció una comparación de

diferencia de medias entre los grupos de las réplicas de cada una de las muestras, las

cuales son independientes entre sí. El nivel de confianza establecido para estas

pruebas fue del 99%. Por medio de las siguientes tablas y figuras se podrán observar

los resultados obtenidos.

Tabla 23. Resultados de pruebas pareadas para las réplicas 1 y 2 del método de Equipo DCC DeLaval

NÚMERO

DE

MUESTRAS

MEDIA

Células/mL

DESVIACIÓN

ESTÁNDAR

RÉPLICA 1 87 560644 477265

RÉPLICA 2 87 561069 476738

DIFERENCIA 87 425 1951

Fuente: Autor

Page 85: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

85

Tabla 24. Resultados de pruebas pareadas para las réplicas 2 y 3 del método de Equipo DCC DeLaval

NÚMERO

DE

MUESTRAS

MEDIA

Células/mL

DESVIACIÓN

ESTÁNDAR

RÉPLICA 2 87 561069 476738

RÉPLICA 3 87 560333 477324

DIFERENCIA 87 736 5248

Fuente: Autor

Tabla 25. Resultados de intervalos de confianza y pruebas T para las réplicas 1 y 2 del método de

Equipo DCC DeLaval

INTERVALOS DE

CONFIANZA

(-976. 126)

T-VALUE 0,03

P-VALUE 0,045

Fuente: Autor

Tabla 26. Resultados de intervalos de confianza y pruebas T para las réplicas 2 y 3 del método de

Equipo DCC DeLaval

INTERVALOS DE

CONFIANZA

(-747. 2218)

T-VALUE 0,131

P-VALUE 0,295

Fuente: Autor

A continuación se observarán las figuras que ilustran el rechazo o no de las hipótesis

planteadas para evaluar la repetibilidad dentro del método de microscopia directa:

Page 86: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

86

400020000-2000-4000

25

20

15

10

5

0X_

Ho

Differences

Freq

uenc

y

Histogram of Differences(with Ho and 99% t-confidence interval for the mean)

Figura 4. Prueba de hipótesis para evaluación de repetibilidad entre réplicas 1 y 2 del método de

Equipo DCC DeLaval

400003000020000100000

50

40

30

20

10

0X_

Ho

Differences

Freq

uenc

y

Histogram of Differences(with Ho and 99% t-confidence interval for the mean)

Figura 5. Prueba de hipótesis para evaluación de repetibilidad entre réplicas 2 y 3 del método de

Equipo DCC DeLaval

Las hipótesis planteadas para evaluar la repetibilidad dentro del método de Equipo

DCC DeLaval fueron:

Page 87: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

87

Para poder probar estas hipótesis se deben observar las tablas 25 y 26 y las figuras 4 y

5, donde los intervalos de confianza obtenidos para las réplicas 1 y 2 fueron (-976 a

126), y para las réplicas 2 y 3 fueron (-747 a 2218), es posible notar que el cero cae

dentro de estos intervalos, por lo tanto se puede afirmar que la hipótesis nula (Ho),

no se rechaza. Además, no se evidencia una diferencia estadística significativa entre

los promedios (Media) por réplicas, dado que la probabilidad de equivocarse

rechazando la hipótesis nula, es del 4,5% (P-Value) para las réplicas 1 y 2, y del

29,5% (P-Value) para las réplicas 2 y 3. Debido a este porcentaje de equivocarse, no

se rechaza la hipótesis nula (Ho), lo que indica que no hay diferencia estadística entre

las Medias de cada una de las réplicas, en el método de Equipo DCC DeLaval,

afirmando de esta manera que el proceso si es repetible. Esta repetibilidad también se

prueba gracias al nivel de confianza establecido (99%; α=0,01), pues tampoco se

encuentra suficiente evidencia estadística para rechazar la hipótesis nula (Ho), debido

a que el T-value, tanto en las réplicas 1 y 2 (0,03), como en las réplicas 2 y 3 (0,131)

es menor al cuantil de alfa (α), el cual tiene un valor de 2,8 (Risk, 2003).

6.3.1.1.5. Ensayo de repetibilidad entre método de microscopia directa y equipo

DCC DeLaval

Para determinar la repetibilidad entre métodos se hicieron dos pruebas, una de ellas

fue un estudio de pruebas pareadas entre los promedios de las tres réplicas obtenidas

por cada uno de los métodos (Microscopia Directa y equipo DCC DeLaval), pues

como ya se había probado que entre cada método había repetibilidad, se buscaba

también probar que entre método y método también la había. El nivel de confianza

establecido para estas pruebas también fue del 99%. Por medio de las siguientes

tablas y figuras se podrán observar los resultados obtenidos:

Page 88: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

88

Tabla 27. Resultados de pruebas pareadas para los métodos de Microscopia Directa y Equipo DCC

DeLaval

NÚMERO

DE

MUESTRAS

MEDIA

Células/mL

DESVIACIÓN

ESTÁNDAR

PROMEDIO

EQUIPO

87 560682 477103

PROMEDIO

MICROSCOPIO

87 559184 463127

DIFERENCIA 87 1498 78425

Fuente: Autor

Tabla 28. Resultados de intervalos de confianza y pruebas T para los métodos de Microscopia Directa

y Equipo DCC DeLaval

INTERVALOS

DE

CONFIANZA

(-20651. 23647)

T-VALUE 0,18

P-VALUE 0,859

(85.9%)

Fuente: Autor

A continuación se observa la figura que ilustra el rechazo o no de las hipótesis

planteadas para evaluar la repetibilidad entre métodos:

2000001000000-100000-200000-300000-400000

30

25

20

15

10

5

0X_

Ho

Differences

Freq

uenc

y

Histogram of Differences(with Ho and 99% t-confidence interval for the mean)

Figura 6. Prueba de hipótesis para evaluación de repetibilidad entre Métodos

Page 89: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

89

Las hipótesis planteadas para evaluar la repetibilidad entre métodos fueron:

Para poder probar estas hipótesis se deben observar las tablas 27 y 28, y la figura 6,

donde los intervalos de confianza obtenidos para los promedios de los métodos

fueron (-20651 a 23647), es posible notar que el cero cae dentro de estos intervalos,

por lo tanto se puede afirmar que la hipótesis nula (Ho), no se rechaza. Además, no

se evidencia una diferencia estadística significativa entre los promedios (Media) del

método de microscopía directa y el método del Equipo DCC DeLaval, dado que la

probabilidad de equivocarse rechazando la hipótesis nula, es del 85.9% (P-Value).

Debido a este alto porcentaje de equivocarse, no se rechaza la hipótesis nula (Ho), lo

que indica que no hay diferencia estadística entre las Medias de cada uno de las

métodos, afirmando de esta manera que el recuento de células somáticas entre un

método y otro si es repetible. Esta repetibilidad también se prueba gracias al nivel de

confianza establecido (99%; α=0,01), pues tampoco se hay suficiente evidencia

estadística para rechazar la hipótesis nula (Ho), debido a que el T-value, (0,18) es

menor al cuantil de alfa (α), el cual tiene un valor de 2,8 (Risk, 2003).

La otra prueba realizada para determinar si había o no repetibilidad entre los dos

métodos fue la prueba de distribución F, la cual compara varianzas e indica si dos

poblaciones independientes tienen la misma variabilidad y además demuestra si se

distribuyen de forma normal.

Las hipótesis planteadas para esta prueba fueron las siguientes:

Page 90: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

90

Estas hipótesis fueron probadas mediante los resultados que se muestran en la

siguiente figura:

ME

Test for Equal Variances for MEDIA E. MEDIA

DIA M

MEDIA E

60000055000050000045000040000095% Bonferroni Confidence Intervals for StDevs

MEDIA M

MEDIA E

40000003000000200000010000000Data

MANÁLISIS DE VARIANZAS ENTRE EQUIPO (E) Y MICROSCOPIO (M)

Test Statistic 1,06P-Value 0,783

Test Statistic 0,02P-Value 0,885

F -Test

Lev ene's TestVAR-E

VAR-M

VAR-E

VAR-M

Figura 7. Análisis de varianzas entre los métodos de Equipo y Microscopio

Según la figura 7, no hay evidencia estadísticamente significativa para rechazar la

hipótesis nula (Ho), dado que la probabilidad de equivocarse rechazándola es de

78,3% (P-Value), lo cual indica que no hay variabilidad entre un método y otro, es

decir, se confirma nuevamente que existe repetibilidad entre los métodos (Risk,

2003).

6.3.1.2. Ensayo de reproducibilidad

Para determinar la medida de reproducibilidad entre los métodos, se realizaron

mediciones sucesivas durante tres días, por dos analistas diferentes, usando los

mismos reactivos, los mismos instrumentos e iguales condiciones de medición.

Page 91: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

91

6.3.1.2.1. Ensayo de reproducibilidad dentro del método de microscopía directa

(análisis de parámetros estadísticos)

En el ensayo de reproducibilidad con el método de microscopia directa se

determinaron los parámetros estadísticos de valor medio o central, desviación

estándar, varianza y coeficiente de variación. Se analizaron 31 muestras, en un

intervalo de tres días, cada muestra fue medida por dos analistas diferentes, al mismo

tiempo y con los mismos equipos.

Determinaciones del día 1

Tabla 29. Resultados de reproducibilidad entre analistas en el método de Microscopía Directa

Muestra Lectura (células/mL)

Media

DesviaciónEstándar

Varianza

Coeficientede

Variación %

ANALISTA 1

ANALISTA 2

1 304000 306000 305000 1414 2000000 0,46

2 416000 420000 418000 2828 8000000 0,68

3 880000 881000 880500 707 500000 0,08

4 208000 206000 207000 1414 2000000 0,68

5 432000 433000 432500 707 500000 0,16

6 960000 956000 958000 2828 8000000 0,30

7 480000 485000 482500 3536 12500000 0,73

8 816000 799000 807500 12021 144500000 1,49 Fuente: Autor

Determinaciones del día 2

Tabla 30. Resultados de reproducibilidad entre analistas en el método de Microscopía Directa

Muestra Lectura (células/mL)

Media

DesviaciónEstándar

Varianza

Coeficientede

Variación %

ANALISTA 1

ANALISTA 2

9 448000 445000 446500 2121 4500000 0,48

Page 92: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

92

10 528000 519000 523500 6364 40500000 1,22

11 80000 78000 79000 1414 2000000 1,79

12 288000 279000 283500 6364 40500000 2,24

13 368000 365000 366500 2121 4500000 0,58

14 48000 49000 48500 707 500000 1,46

15 1184000 1175000 1179500 6364 40500000 0,54

16 352000 350000 351000 1414 2000000 0,4

17 816000 820000 818000 2828 8000000 0,35

18 384000 389000 386500 3536 12500000 0,91

19 1280000 1296000 1288000 11314 128000000 0,88

20 320000 311000 315500 6364 40500000 2,02 Fuente: Autor

Determinaciones del día 3

Tabla 31. Resultados de reproducibilidad entre analistas en el método de Microscopía Directa

Muestra Lectura (células/mL)

Media

DesviaciónEstándar

Varianza

Coeficientede

Variación %

ANALISTA 1

ANALISTA 2

21 336000 342000 339000 4243 18000000 1,25

22 912000 901000 906500 7778 60500000 0,86

23 112000 119000 115500 4950 24500000 4,29

24 304000 309000 306500 3536 12500000 1,15

25 176000 180000 178000 2828 8000000 1,59

26 624000 631000 627500 4950 24500000 0,79

27 368000 359000 363500 6364 40500000 1,75

28 384000 388000 386000 2828 8000000 0,73

29 1104000 1119000 1111500 10607 112500000 0,95

30 224000 229000 226500 3536 12500000 1,56

31 912000 901000 906500 7778 60500000 0,86 Fuente: Autor

Page 93: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

93

Con estas tablas se puede observar que hay un buen grado de concordancia entre los

resultados de las mediciones de la misma muestra, hechas por dos analistas

diferentes, pues el coeficiente de variación es muy bajo entre las lecturas de un

analista y otro.(Padilla, 2007). En este caso el único cambio que hubo en la medición,

fue el de analistas, debido a que por las condiciones de la prueba, no era posible

cambiar los tiempos de análisis entre una misma muestra, pues como se explicó

anteriormente, la acidez de leche aumenta a medida que pasa el tiempo y esto afecta

la presencia de células somáticas. Tampoco se contaba con equipos diferentes para la

realización de las pruebas.

6.3.1.2.2. Ensayo de reproducibilidad dentro del método de microscopía directa

(prueba de hipótesis)

Para hacer la prueba de hipótesis en el ensayo de reproducibilidad dentro del método

de microscopía directa, se realizó un estudio de pruebas pareadas entre los resultados

obtenidos por el analista 1 y el analista 2, de las 31 muestras analizadas. Se estableció

una comparación de diferencia de medias entre las lecturas hechas por cada analista

para cada una de las muestras, las cuales son independientes entre sí. El nivel de

confianza establecido para estas pruebas fue del 99%. A continuación se muestran los

resultados obtenidos:

Tabla 32. Resultados de pruebas pareadas entre analistas por el método de microscopía directa

NÚMERO

DE

MUESTRAS

MEDIA

Células/mL

DESVIACIÓN

ESTÁNDAR

ANALISTA 1 31 517677 337635

ANALISTA 2 31 517419 337599

DIFERENCIA 31 258 7672

Fuente: Autor

Page 94: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

94

Tabla 33. Resultados de intervalos de confianza y pruebas T para los analistas 1 y 2 en el método de

microscopía directa

INTERVALOS DE

CONFIANZA

(-3531. 4048)

T-VALUE 0,19

P-VALUE 0,835

Fuente: Autor

A continuación se muestra una figura que ilustra el rechazo o no de las hipótesis

planteadas para evaluar la reproducibilidad dentro del método de microscopia directa:

150001000050000-5000-10000-15000

12

10

8

6

4

2

0X_

Ho

Differences

Freq

uenc

y

Histogram of Differences(with Ho and 99% t-confidence interval for the mean)

Figura 8. Prueba de hipótesis para evaluación de reproducibilidad entre analistas en el Método de

Microscopia Directa

Las hipótesis planteadas para evaluar la reproducibilidad entre analistas para el

método de microscopia directa fueron:

Para poder probar estas hipótesis se debe observar la tabla 32 y la figura 8, donde los

intervalos de confianza obtenidos para los promedios de los analistas fueron (de -

Page 95: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

95

3531 a 4048), es posible notar que el cero cae dentro de estos intervalos, por lo tanto

se puede afirmar que la hipótesis nula (Ho), no se rechaza. Además, no se evidencia

una diferencia estadística significativa entre los analistas, dado que la probabilidad de

equivocarse rechazando la hipótesis nula, es del 83,5% (P-Value), debido a este alto

porcentaje no se rechaza la hipótesis nula, afirmando de esta manera, que no hay

diferencia estadística entre los resultados obtenidos por un analista y otro y esto

indica que el proceso si es reproducible (Risk, 2003). Esta reproducibilidad también

se prueba gracias al nivel de confianza establecido (99%; α=0,01), pues tampoco se

encuentra suficiente evidencia estadística para rechazar la hipótesis nula (Ho), debido

a que el T-value (0,19) es menor al cuantil de alfa (α), el cual tiene un valor de 2,8.

La otra prueba realizada para determinar si había o no reproducibilidad entre los

analistas en el método de microscopio fue la prueba de distribución F, la cual

compara varianzas e indica si dos poblaciones independientes tienen la misma

variabilidad y además demuestra si se distribuyen de forma normal.

Las hipótesis planteadas para esta prueba fueron las siguientes:

Estas hipótesis fueron probadas mediante los resultados que se muestran en la

siguiente figura:

Page 96: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

96

A NA LISTA 2 M

A NA LISTA 1 M

50000045000040000035000030000025000095% Bonferroni Confidence Intervals for StDevs

A NA LISTA 2 M

A NA LISTA 1 M

1400000120000010000008000006000004000002000000Data

Test Statistic 1,00P-Value 1,000

Test Statistic 0,00P-Value 0,996

F-Test

Lev ene's Test

Test for Equal Variances for ANALISTA 1 M. ANALISTA 2 M2 MANÁLISIS DE VARIANZAS ENTRE ANALISTAS

A.1

A.2

A.1

A.2

Figura 9. Análisis de varianzas entre analistas dentro del método de microscopio Figura 9. Análisis de varianzas entre analistas dentro del método de microscopio

Según la figura 9, no hay evidencia estadísticamente significativa para rechazar la

hipótesis nula (Ho), dado que la probabilidad de equivocarse rechazándola es del

100% (P-Value), lo cual indica que no hay variabilidad entre un analista y otro, es

decir, se confirma nuevamente que existe reproducibilidad entre analistas dentro del

método de microscopía directa (Risk, 2003).

Según la figura 9, no hay evidencia estadísticamente significativa para rechazar la

hipótesis nula (Ho), dado que la probabilidad de equivocarse rechazándola es del

100% (P-Value), lo cual indica que no hay variabilidad entre un analista y otro, es

decir, se confirma nuevamente que existe reproducibilidad entre analistas dentro del

método de microscopía directa (Risk, 2003).

6.3.1.2.3. Ensayo de reproducibilidad dentro del método de Equipo DCC

DeLaval (análisis de parámetros estadísticos)

6.3.1.2.3. Ensayo de reproducibilidad dentro del método de Equipo DCC

DeLaval (análisis de parámetros estadísticos)

En el ensayo de reproducibilidad con el método de equipo DCC DeLaval se

determinaron los parámetros estadísticos de valor medio o central, desviación

estándar, varianza y coeficiente de variación. Se analizaron 31 muestras, en un

intervalo de tres días, cada muestra fue medida por dos analistas diferentes, al mismo

tiempo y con los mismos instrumentos.

En el ensayo de reproducibilidad con el método de equipo DCC DeLaval se

determinaron los parámetros estadísticos de valor medio o central, desviación

estándar, varianza y coeficiente de variación. Se analizaron 31 muestras, en un

intervalo de tres días, cada muestra fue medida por dos analistas diferentes, al mismo

tiempo y con los mismos instrumentos.

Page 97: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

97

Determinaciones del día 1

Tabla 34. Resultados de reproducibilidad entre analistas en el método de Equipo DCC DeLaval

Muestra Lectura (células/mL)

Media

DesviaciónEstándar

Varianza

Coeficientede

Variación %

ANALISTA 1

ANALISTA 2

1 363000 361000 362000 1414 2000000 0,39

2 487000 485000 486000 1414 2000000 0,29

3 909000 906000 907500 2121 4500000 0,23

4 247000 245000 246000 1414 2000000 0,57

5 451000 455000 453000 2828 8000000 0,62

6 920000 925000 922500 3536 12500000 0,38

7 522000 526000 524000 2828 8000000 0,54

8 839000 842000 840500 2121 4500000 0,25 Fuente: Autor

Determinaciones del día 2

Tabla 35. Resultados de reproducibilidad entre analistas en el método de Equipo DCC DeLaval

Muestra Lectura (células/mL)

Media

DesviaciónEstándar

Varianza

Coeficientede

Variación %

ANALISTA 1

ANALISTA 2

9 397000 399000 398000 1414 2000000 0,36

10 523000 526000 524500 2121 4500000 0,40

11 105000 106000 105500 707 500000 0,67 12 228000 229000 228500 707 500000 0,31 13 405000 408000 406500 2121 4500000 0,52 14 73000 72000 72500 707 500000 0,98 15 1002000 1010000 1006000 5657 32000000 0,56 16 299000 295000 297000 2828 8000000 0,95 17 863000 859000 861000 2828 8000000 0,33 18 334000 336000 335000 1414 2000000 0,42 19 1159000 1163000 1161000 2828 8000000 0,24

20 278000 281000 279500 2121 4500000 0,76 Fuente: Autor

Page 98: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

98

Determinaciones del día 3

Tabla 36. Resultados de reproducibilidad entre analistas en el método de Equipo DCC DeLaval

Muestra Lectura (células/mL)

Media

DesviaciónEstándar

Varianza

Coeficientede

Variación %

ANALISTA 1

ANALISTA 2

21 376000 379000 377500 2121 4500000 0,56

22 886000 889000 887500 2121 4500000 0,24

23 89000 87000 88000 1414 2000000 1,61

24 241000 245000 243000 2828 8000000 1,16

25 164000 167000 165500 2121 4500000 1,28

26 586000 588000 587000 1414 2000000 0,24

27 322000 319000 320500 2121 4500000 0,66

28 366000 362000 364000 2828 8000000 0,78

29 1070000 1090000 1080000 14142 200000000 1,31

30 295000 298000 296500 2121 4500000 0,72

31 940000 945000 942500 3536 12500000 0,38 Fuente: Autor

Con estas tablas se puede observar, igual que con el método de microscopia directa,

que hay un buen grado de concordancia entre los resultados de las mediciones de una

misma muestra, hechas por dos analistas diferentes, pues el coeficiente de variación

es muy bajo entre las lecturas de un analista u otro (Padilla, 2007). También para este

caso el único cambio que hubo en la medición, fue el de analistas, debido a que por

las condiciones de la prueba, no era posible cambiar los tiempos de análisis entre una

misma muestra, pues como se explicó anteriormente, la acidez de leche aumenta a

medida que pasa el tiempo y esto afecta la presencia de células somáticas. Tampoco

se contaba con equipos diferentes para la realización de las pruebas.

Page 99: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

99

6.3.1.2.4. Ensayo de reproducibilidad dentro del método de Equipo DCC

DeLaval (prueba de hipótesis)

Para hacer la prueba de hipótesis en el ensayo de reproducibilidad dentro del método

de equipo DCC DeLaval, se realizó un estudio de pruebas pareadas entre los

resultados obtenidos por el analista 1 y el analista 2, de las 31 muestras analizadas. Se

estableció una comparación de diferencia de medias entre las lecturas hechas por cada

analista para cada una de las muestras, las cuales son independientes entre sí. El nivel

de confianza establecido para estas pruebas fue del 99%. A continuación se muestran

los resultados obtenidos:

Tabla 37. Resultados de pruebas pareadas entre analistas por el método de Equipo DCC DeLaval

NÚMERO

DE

MUESTRAS

MEDIA

Células/mL

DESVIACIÓN

ESTÁNDAR

ANALISTA 1 31 507710 318393

ANALISTA 2 31 507290 315754

DIFERENCIA 31 419 11381

Fuente: Autor

Tabla 38. Resultados de intervalos de confianza y pruebas T para los analistas 1 y 2 en el método de

Equipo DCC DeLaval

INTERVALOS DE

CONFIANZA

(-5202. 6040)

T-VALUE 0,21

P-VALUE 0,839

Fuente: Autor

Page 100: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

100

A continuación se muestra una figura que ilustra el rechazo o no de las hipótesis

planteadas para evaluar la reproducibilidad dentro del método de equipo DCC

DeLaval:

6000050000400003000020000100000-10000

30

25

20

15

10

5

0X_

Ho

Differences

Freq

uenc

yHistogram of Differences

(with Ho and 99% t-confidence interval for the mean)

Figura 10. Prueba de hipótesis para evaluación de reproducibilidad entre analistas en el Método de

Equipo DCC DeLaval

Las hipótesis planteadas para evaluar la reproducibilidad entre analistas para el

método de equipo DCC DeLaval fueron:

Para poder probar estas hipótesis se debe observar la tabla 37 y la figura 10, donde los

intervalos de confianza obtenidos para los promedios de los analistas fueron (de -

5202. 6040), es posible notar que el cero cae dentro de estos intervalos, por lo tanto se

puede afirmar que la hipótesis nula (Ho), no se rechaza. Además, no se evidencia una

diferencia estadística significativa entre los analistas, dado que la probabilidad de

equivocarse rechazando la hipótesis nula, es del 83,9% (P-Value), debido a este alto

Page 101: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

101

porcentaje no se rechaza la hipótesis nula, afirmando de esta manera, que no hay

diferencia estadística entre los resultados obtenidos por un analista y otro dentro del

método de Equipo DCC DeLaval y esto indica que el proceso si es reproducible

(Risk, 2003). Esta reproducibilidad también se prueba gracias al nivel de confianza

establecido (99%; α=0,01), pues tampoco se encuentra suficiente evidencia

estadística para rechazar la hipótesis nula (Ho), debido a que el T-value (0,21) es

menor al cuantil de alfa (α), el cual tiene un valor de 2,8.

La otra prueba realizada para determinar si había o no reproducibilidad entre analistas

en el método de equipo fue la prueba de distribución F, la cual compara varianzas e

indica si dos poblaciones independientes tienen la misma variabilidad y además

demuestra si se distribuyen de forma normal.

Las hipótesis planteadas para esta prueba fueron las siguientes:

Estas hipótesis fueron probadas mediante los resultados que se muestran en la

siguiente figura:

Page 102: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

102

A NA LISTA 2 E

A NA LISTA 1 E

45000040000035000030000025000095 % Bonferroni Confidence Intervals for StDevs

A NA LISTA 2 E

A NA LISTA 1 E

120000010000008000006000004000002000000Data

Test Statistic 1,02P-Value 0,964

Test Statistic 0,00P-Value 0,985

F -Test

Lev ene's Test

Test for Equal Variances for ANALISTA 1 E. ANALISTA 2 EANÁLISIS DE VARIANZAS ENTRE ANALISTAS

A.1

A.2

A.1

A.2

Figura 11. Análisis de varianzas entre analistas dentro del método de equipo Figura 11. Análisis de varianzas entre analistas dentro del método de equipo

Según la figura 11, no hay evidencia estadísticamente significativa para rechazar la

hipótesis nula (Ho), dado que la probabilidad de equivocarse rechazándola es del

96,4% (P-Value), lo cual indica que no hay variabilidad entre un analista y otro, es

decir, se confirma nuevamente que existe reproducibilidad entre analistas dentro del

método de Equipo DCC DeLaval (Risk, 2003).

Según la figura 11, no hay evidencia estadísticamente significativa para rechazar la

hipótesis nula (Ho), dado que la probabilidad de equivocarse rechazándola es del

96,4% (P-Value), lo cual indica que no hay variabilidad entre un analista y otro, es

decir, se confirma nuevamente que existe reproducibilidad entre analistas dentro del

método de Equipo DCC DeLaval (Risk, 2003).

6.3.2. Ensayo de exactitud 6.3.2. Ensayo de exactitud

La exactitud para esta validación se puntualizó como los valores aceptados de

referencia dentro de una definición de veracidad, la cual se obtuvo solamente con los

resultados logrados con el método de referencia (Microscopía directa) y muestras

idénticas. Así las desviaciones que se obtuvieron con el método alterno (Equipo DCC

DeLaval) corresponden a la exactitud para la validación de este método. Para esto se

plantearon dos hipótesis, una alterna (Ha) y una nula (Ho):

La exactitud para esta validación se puntualizó como los valores aceptados de

referencia dentro de una definición de veracidad, la cual se obtuvo solamente con los

resultados logrados con el método de referencia (Microscopía directa) y muestras

idénticas. Así las desviaciones que se obtuvieron con el método alterno (Equipo DCC

DeLaval) corresponden a la exactitud para la validación de este método. Para esto se

plantearon dos hipótesis, una alterna (Ha) y una nula (Ho):

Page 103: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

103

Estas hipótesis se analizaron mediante una tabla de t Student, por medio de una

prueba pareada, con una confiabilidad del 99%. Los resultados fueron los siguientes:

Tabla 39. Resultados de pruebas pareadas para la medición de exactitud

NÚMERO

DE

MUESTRAS

MEDIA

Células/mL

DESVIACIÓN

ESTÁNDAR

PROMEDIO

MICROSCOPIO

87 559184 463127

PROMEDIO

EQUIPO

87 560682 477103

DIFERENCIA 87 1498 78425

Fuente: Autor

Tabla 40. Resultados de intervalos de confianza y pruebas T para la medición de exactitud

INTERVALOS DE

CONFIANZA

(-23647. 20651)

T-VALUE 0,18

P-VALUE 0,859

Fuente: Autor

A continuación se muestra una figura donde también se ilustra el rechazo o no de las

hipótesis planteadas para evaluar la exactitud del método alterno con respecto al

método de referencia:

Page 104: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

104

4000003000002000001000000-100000-200000

30

25

20

15

10

5

0X_

Ho

Differences

Freq

uenc

y

Histogram of Differences(with Ho and 99% t-confidence interval for the mean)

Figura 12. Prueba de hipótesis para evaluación de exactitud

Por medio de la tabla 38, donde los intervalos de confianza obtenidos para los

promedios de cada uno de los métodos (alterno y referencia) fueron (de -23647a

20651), es posible notar que el cero cae dentro de estos intervalos, por lo tanto se

puede afirmar que la hipótesis nula (Ho), no se rechaza. Además, no se evidencia una

diferencia estadística significativa entre la media del método de referencia y la del

método alterno, dado que la probabilidad de equivocarse rechazando la hipótesis nula,

es del 85,9% (P-Value). Debido a este alto porcentaje, no se rechaza la hipótesis nula,

afirmando de esta manera, que no hay diferencia estadística que indique que no hay

exactitud entre el método alterno y el método de referencia. Esta exactitud también se

prueba gracias al nivel de confianza establecido (99%; α=0,01), pues tampoco se

encuentra suficiente evidencia estadística para rechazar la hipótesis nula (Ho), debido

a que el T-value (0,18) es menor al cuantil de alfa (α), el cual tiene un valor de 2,8

(Risk, 2003).

Page 105: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

105

7. CONCLUSIONES

• La evaluación de repetibilidad tanto en la técnica de recuento por microscopia

directa, como la técnica del equipo DCC DeLaval para el conteo de células

somáticas, arrojó coeficientes de variación con altos grados de concordancia,

lo que significa que existe repetibilidad entre cada una de las técnicas.

• La evaluación de repetibilidad entre las dos técnicas (recuento por

microscopia directa y equipo DCC DeLaval) para el conteo de células

somáticas, también arrojó altos grados de concordancia, lo que significa que

entre estas dos técnicas existe una variación menor al 5%.

• La evaluación de reproducibilidad tanto en la técnica de recuento por

microscopia directa, como la técnica del equipo DCC DeLaval para el conteo

de células somáticas, arrojó coeficientes de variación con altos grados de

concordancia, lo que significa que existe reproducibilidad entre analistas para

cada una de las técnicas.

• Se comprobó que el método alterno (Equipo DCC DeLaval) no carece de

exactitud frente al método de referencia, ya que no se rechazó la hipótesis

nula (Ho), la cual indicaba que no había diferencia entre estos dos métodos.

• Fue posible estandarizar y validar la técnica de recuento de células somáticas

por medio del equipo DCC DeLaval (método alterno) frente a la técnica de

microscopía directa (método de referencia) en la empresa La Alquería S.A.,

ya que por medio del análisis estadístico se pudo evidenciar que hay un alto

grado de concordancia entre estas técnicas y los resultados que arrija cada una

son equivalentes.

Page 106: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

RECOMENDACIÓN

Se recomienda a la empresa Alquería el uso del método validado (RECUENTO DE

CÉLULAS SOMÁTICAS MEDIANTE EL EQUIPO DCC DeLaval), debido a la cantidad

de muestras de leche que llegan diariamente a la empresa para su análisis, pues con este

método la lectura será mucho más rápida y los resultados serán verídicos. De esta manera la

cantidad de muestras analizadas en un tiempo determinado será mayor a las analizadas

mediante el Método de Microscopía Directa.

Page 107: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

107

9. REFERENCIAS BIBLIOGRÁFICAS

ARIAS, J. 2006. Métodos en microbiología farmaceútica. Editorial Javegraf. Pontificia

Universidad Javeriana. Pp. 165.

AULDIST, M., HUBBLE, B. 1998. Effects of mastitis on raw milk and dairy products.

Aust. J. Dairy Tech. 53: 28-36.

ASOCIACIÓN AMERICANA DE LA SALUD PÚBLICA. 1963. Normas para el examen

de los productos lácteos. Métodos Microbiológicos y Químicos. Organización

Panamericana de la Salud.

AVILA, S., LAZCANO. P., OLGUÍN, Y., NAVARRO, H. 2005. Comparación entre cinco

pruebas utilizadas para el recuento de células somáticas en leche de vacas. Memorias del

XII Congreso Latinoamericano de Buiatría y VII Jornadas Chilenas de Buiatría. Noviembre

15-18; Valdivia Chile: Sociedad Chilena de Buiatría.

BARKEMA, H., SHCHUKKLEN, Y., LAM. T., BEIBOER, M., BRAND, A.1998.

Management practices associated with low, medium, and high somatic cell counts in bulk

milk. J. Dairy Sci. 81:1917-1927.

BRADLEY, A. 2002. Bovine mastitis: An evolving disease. Vet. J. 164:116-128.

Page 108: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

108

BREED R. 1911. The determination of the number of bacteria in milk by direct

microscopic examination. Centralbl Bakt Parte II 30:337.

BLOWEY, R., EDMONDSON P. Mastitis Control in Dairy Herds. Farming Press 1995.

BRAMLEY, A., DODD F. 1984. Reviews of the Progress of Dairy Science: Mastitis

control - Progress and Prospects. J. Dairy Res. 51:481-512.

DANKÓW, R., CAIS-SOKOLINSKA, D., PIKUL, J., WÓJTOWSKI, J. 2003. Cytological

quality of goat’s milk. Medicine Veterinary, 59 (1), 77-80.

DOHOO, I., MEEK, A. 1982. Somatic cell counts in bovine milk. Can. Vet. J. 23:119-125.

GARCÍA, A. 2004. Células somáticas y alto recuento bacteriano ¿Cómo controlarlos?

Dairy Science Department. College of agriculture & biological sciencies/ South Dakota

State University/USDA.

HALLBERG, J. HENKE, C., MILLER, C. 1994. Intramammary antibiotic therapy: To

treat or not to treat? Effects of antibiotic therapy on clinical mastitis. In: Proc. 33rd Annual.

Mtng. National Mastitis Council, Madison, WI. Pp. 28-39.

HARMON, R. 1994. Symposium: Physiology of mastitis and factors affecting somatic cell

counts. Mastitis and genetic evaluation for somatic cell count. J. Dairy Sci. 77: 2103-2112.

Page 109: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

109

HOGAN, J., SMITH, K., HOBLET K.1989. Bacterial counts in bedding materials used in

nine commercial dairies. J. Dairy Sci. 72:250-258.

HOUGHTBY, G., MATURIN, L., KOENING, K. 1992. Microbiological Count Methods.

In: Pathogens in Milk and Milk Products. In: R. T. Marshall (ed.), Standard Method for the

Examination of Dairy Products. 16th ed. Pp. 213- 246.

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN.2000.ISO

9000. Sistemas de Gestión de Calidad. Fundamentos y Vocavulario. Ginebra Suiza.

ICONTEC.

KEHRLI, M., SHUSTER, D. 1994. Factors affecting milk somatic cells and their role in

health of the bovine mammary gland. J. Dairy Sci. 77:619-627.

KITCHEN, B. 1981. Review of the Progress of Dairy Science: Bovine mastitis, milk

compositional changes and related diagnostic tests. J. Dairy Res. 48:167- 188.

MA, Y., RYAN, C., GALTON, M. RUDAN, M., BOOR, K. 2000. Effects of somatic cell

count on quality and shelf life of pasteurized fluid milk. J. Dairy Sci. 83:264-274.

MOCHIRINE, R, MONROE, J.1978. Fossomatic method of somatic cell counting in milk:

Collaborative study. J. Assoc. Off. Anal. Chem. 61:779-784.

Page 110: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

110

NORMA TÉCNICA COLOMBIANA 5014. 2001. Microbiología de Alimentos y

Alimentos para Animales. Protocolo para la Validación de Métodos Alternos. ICONTEC.

PAAPE, M., WERGIN, W., GUIDRY, A., PEARSON, R. 1979. Leucocytes second line of

defense against invading mastitis pathogens. J. Dairy Sci. 62:135-153.

PADILLA, J. 2007. Validación secundaria del método de recuento en placa en superficie de

Bacillus cereus y Staphylococcus aureus en muestas de alimentos en un laboratorio de

referencia. Tesis Pregrado. Facultad Ciencias. Pontificia Universidad Javeriana.

PEELER, E., GREEN, M., FITZPATRICK. J., MORGAN, K., GREEN. L. 2000.

Risk factors associated with clinical mastitis in low somatic cell count British dairy herds.

J. Dairy Sci. 83:2464-2472.

PETERS, R. 2002. Evaluating herd milk quality using DHI somatic cell counts. In: Proc.

Arizona Dairy Production Conference, Tucson, Az. Pp. 57-73.

PHILPOT, W., NICKERSON, C. 1991. Mastitis: Counter Attack. A strategy to combat

mastitis. Babson Bros. Co., Naperville, Illinois, USA.

QUINTANA, A. 2006. Las Células Somáticas en la calidad de la leche. Vol. 10. Virbac Al

Día, Bovinos.

RISK, M. 2003. Cartas sobre Estadística de la Revista Argentina de Bioingeniería. Versión

1.01, ISBN 987-43-6130-1. Facultad Regional Buenos Aires, Universidad Tecnológica

Nacional, Argentina

Page 111: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

111

ROBERT T. MARSHALL PHD Editor.1992. Standard methods for the examination of

dairy products. 16th edition. American Public Health Associations.

RUEGG, P. 2004. Managing Milk Quality. Conferencia internacional sobre ganado

lechero. CIGAL., Guadalajara, México, Julio 14-16, 2004. Pp.31-40.

SALVADOR, A., MARTINEZ, G., ALVARADO, C., HAHN, M. 2006. Composición de

leche de cabras mestizas Canarias en condiciones tropicales. Universidad Central de

Venezuela. Maracay, Aragua. Venezuela

SANTOS, F.1999. Prueba F para diferencia entre dos varianzas. Ingeniería Industrial

Universidad Industrial de Santander. Pp. 115

SEARS, P., MCCARTHY, C. 2003. Management and treatment of staphylococcal mastitis.

In: Update on Bovine Mastitis, Vet. Clin. N. Am. Food Anim. Pract. Vol.19. Pp. 171-185.

SHUSTER, D., HARMON, J. 1992. High cortisol concentrations and mediation of the

hypogalactia during endotoxin-induced mastitis. J. Dairy Sci. 75:739- 746.

SHUSTER, D., KEHRLI, M., STEVENS, M. 1993. Cytokine production during endotoxin-

induced mastitis in lactating dairy cows. Am. J. Vet. Res. 54:80-85.

Page 112: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

112

SMITH, K., HOGAN, J. 1998. Epidemiology of mastitis and physiopathology. In: Proc.

Panamerican Congress on Mastitis Control and Milk Quality. Pp. 100-113.

SORDILLO, L., NICKERSON, S.1989. Pathology of Staphylococcus aureus mastitis

during lactogenesis: relationship with bovine mammary structure and function. J. Dairy Sci.

72:228-240.

SURIYASATHAPORN, W., SCHUKKEN, Y., NIELEN, M., BRAND, A. 2000. Low

somatic cell count: a risk factor for subsequent clinical mastitis in a dairy herd. J. Dairy Sci.

83:1248-1255.

USP. 2003. The United States Pharmacopoeia XXVI. The National Formulary 21 (NF21).

United States Pharmacopoeial Convention, Rockville, MD.

Page 113: VALIDACIN Y ESTNDARIZACIN DE LA TCNICA DE RECUENTO DE

113

RECURSOS ELECTRÓNICOS

FEDEGAN. 2008. Federación Colombiana de Ganaderos. [En línea]

http://portal.fedegan.org.co/portal/page?_pageid=93,1&_dad=portal&_schema=PORTAL.

[Consulta 7 Octubre 2008. Hora 6 p.m.]

ORGANIZACIÓN ALQUERÍA. 2008. [En línea] http://www.alqueria.com.co/. [Consulta

27 Agosto 2008. Hora 3 p.m.]

PDA Suggested Revisión. 2000. February 25. Annex 15, Validation Principles. [En línea]

<http://www.pda.org/pdf/Anx%2015%20PDA%20comments%20Final.pdf> [Consulta 7

Octubre 2008. Hora 5 p.m.]

WHO Expert Committee on Specifications for Pharmaceutical Preparations. Reporte 32.

Ginebra. Suiza. World Health Organization, 1997 (WHO Technical Report Series. No.

823). [En línea] http://whqlibdoc.who.int/trs/WHOTRS823.pdf [Consulta 7 Octubre 2008.

Hora 7 p.m.]