VanVuure AW

Embed Size (px)

Citation preview

  • 8/12/2019 VanVuure AW

    1/32

    1

    i-SUP2008, Natural Fibre Composites

    Natural Fibre Composites;Recent Developments

    Aart van Vuure

    Technological Advisor Composite Materials Sirris

    and

    Composite Materials Group (CMG)

    Department MTM,

    Katholieke Universiteit Leuven

    Flax Hemp Kenaf Sisal

  • 8/12/2019 VanVuure AW

    2/32

    2

    i-SUP2008, Natural Fibre Composites

    Introduction

    What? Focus on natural FIBRES

    * with Thermoplastic and Thermoset polymer matrices

    * with Biodegradable and non-Biodegradable matrices

    * with natural, bio-based (renewable) and petroleum based(synthetic) matrices

    What is a Green Composite?

    Term Bio-composites usually reserved for bio-compatible, medicalcomposites

  • 8/12/2019 VanVuure AW

    3/32

    3

    i-SUP2008, Natural Fibre Composites

    Introduction

    Why?

    1) Environmental reasons:

    Renewable resources

    Thermally recyclable, biodegradable, CO2 neutral

    Low energy consumption (low CO2)

    So: low Carbon footprint

    2) Cost: often (potentially) low cost (not silk)

    3) Health & safety: less abrasive, more pleasant to handle

    4) Good specific mechanical properties5) Natural image, design aspects

    6) Others, like good acoustic damping, low CTE

  • 8/12/2019 VanVuure AW

    4/32

    4

    i-SUP2008, Natural Fibre Composites

    Introduction; Carbon footprint

  • 8/12/2019 VanVuure AW

    5/32

    5

    i-SUP2008, Natural Fibre Composites

    Introduction

    Some data on energy utilisation for fibre production:

    Lignocellulosic fibres: 4-15 MJ/kgNatural Fibre Mat: 9.7 MJ/kg

    Glass Fibre: 30-50 MJ/kg

    Glass Fibre Mat: 55 MJ/kg

    Carbon Fibre: 130 MJ/kg

    Hemp can store about 0.75 kg of CO2 per kg of fibres during growth

    Hemp releases 10 MJ/kg upon incineration (with energy recovery)

  • 8/12/2019 VanVuure AW

    6/32

    6

    i-SUP2008, Natural Fibre Composites

    IntroductionHow?

    * First focus on fibres (starting with traditional matrices)

    * Replacement of synthetic fibres, particularly glass; opening opportunities forcomposites in developmental countries

    When?

    Last 10 15 years!

    Who?

    Europe: automotive: flax and hemp and exotic fibres (jute, sisal,

    ananas, coir)

    USA: Wood Polymer Composites (WPC): recycled wood dust andplastic waste: deckings

    Developmental world: cheap local fibres instead of glass fibre

  • 8/12/2019 VanVuure AW

    7/32

    7

    i-SUP2008, Natural Fibre Composites

    Introduction, Applications

    Mixed natural fibres with PP andUP matrices

    Jute-coir hybrid compositepanels

    Renault Ellypse concept car:natural fibres for acoustic

    damping

    Where?

    Flaxcat (NPSP)Flax fibrecatamaran

  • 8/12/2019 VanVuure AW

    8/32

    8

    i-SUP2008, Natural Fibre Composites

    Applications

    Flax-Carbon hybrid bike (JEC 2007)

    (prepreg technology)Jute-PP suitcase (latex impregnation)

    Mixed NF - PP (Injection Moulding) Mixed NF PP? inner door panel(s)

  • 8/12/2019 VanVuure AW

    9/32

    9

    i-SUP2008, Natural Fibre Composites

    Issues (of Research!)1) Fibre properties:

    * Understanding mechanical properties: e.g. why is silk so tough?

    * Natural variability: H2 control cultivation and minimise weather impact?* Moisture sensitivity: Make fibres more hydrophobic?

    * Temperature resistance

    2) Environmentally friendly matrices:* Biodegradable?

    * from renewable resources

    3) Interface:* New materials, so research needed to compatibilise (wetting andadhesion)

    * Optimising physical-chemical characteristics (surface tensions)

    * complex fibre surfaces

  • 8/12/2019 VanVuure AW

    10/32

    10

    i-SUP2008, Natural Fibre Composites

    Issues (of Research!)

    4) Processing

    Extraction and separation: How not to damage the technical fibres?

    Control of fibre length and orientation

    Managing moisture: prevent steam & foam formation!

    Composite processing: usually same processes as for Glass and Carbon

  • 8/12/2019 VanVuure AW

    11/32

    11

    i-SUP2008, Natural Fibre Composites

    Natural Fibres

    PLANT / Lignocellulos ic FIBRES

    Wood Stem/Bast

    FlaxJute

    HempKenafRamie

    Leaf

    SisalAbaca

    PineappleBananaFique

    HenequenPalm

    Seed/Fruit

    Cotton

    Coconut

    Grass

    Bamboo

    Rice

    ANIMAL FIBRES (protein)

    Softwood

    Hardwood

    SilkWool

  • 8/12/2019 VanVuure AW

    12/32

    12

    i-SUP2008, Natural Fibre Composites

    Natural Fibres, Quantities

    Estimated annual production, in millions of tons:

    Wood 1750

    Steel 800Cement (800) (before China boom)

    Plastics/polymers 120

    Composites (polymer) 1.5 mainly glass fibre composites

    Glass fibre (composites) 0.6 at 42 wt% in composites

    Carbon fibre 0.035 (= 35,000 tons)

    Synthetic fibres 30

    Natural fibres 27

    WPC (0.5) extrapolated from 0.1 in Europe

    Plant fibre in composites 0.040 in automotive applications Europe

  • 8/12/2019 VanVuure AW

    13/32

    13

    i-SUP2008, Natural Fibre Composites

    Natural fibres; Quantities

    2000 all Europe automotive: 28,000 tons of NF

  • 8/12/2019 VanVuure AW

    14/32

    14

    i-SUP2008, Natural Fibre Composites

    Natural Fibres; properties

    1.7-2.125-50400-7001.3kenaf

    ~2.81303600-41001.44Kevlar 49

    ~2235~40001.4Carbon

    ~2.5721200-18002.5E-glass

    20-404-6150-1801.2coconut/coir

    2-510-30300-5001.5sisal

    ~230-50500-7401.4bamboo

    1.2-3.020-50300-7001.3jute

    1.6-4.030-60350-8001.48hemp

    1.5-4.050-70500-9001.45flax

    28-30~301300-20001.3Spider silk

    18-20~16650-7501.3-1.38B. morisilk

    elongation atfailure (%)

    Youngsmodulus(GPa)

    tensilestrength(MPa)

    density(g/ cm2)

    material

  • 8/12/2019 VanVuure AW

    15/32

    15

    i-SUP2008, Natural Fibre Composites

    Matrices

    Classification of matrices:

    * Thermoplastic (TP) and thermoset resins (TS)

    Most well-knownpolymers:

    PP, PE, nylons, etc.

    Epoxy, UP

    PBS

    PCL

    PVA

    Syntheticpetroleum basedpolymers

    Furan resin

    Vegetable oil -PUR (polyol)

    Wood based epoxy resin

    Epoxidised soy oil?

    Ethanol based PE

    Cashew nut shell resin?Non-biodegradable

    Corn based TP polyester

    PLA, PLA-L

    PHA, PHBStarch based polymers

    Soy protein resin

    Gluten resin?

    Starch based emulsion?

    Biodegradable

    Bio-based polymers(renewable feedstock,synthesized!):

    Natural polymers:

    (renewable)

    Examples ofpolymers

    Research on renewable matrices is relatively recent

    Existing systems often have relatively poor mechanical properties

  • 8/12/2019 VanVuure AW

    16/32

    16

    i-SUP2008, Natural Fibre Composites

    Matrices; commercial bio-based

    polymers

  • 8/12/2019 VanVuure AW

    17/32

    17

    i-SUP2008, Natural Fibre Composites

    Case studies; Research at KU Leuven

    1) Silk composites: tough

    2) Flax&hemp composites: high performance3) Bamboo composites: Glass replacement

    4) Coir composites: cheap and abundant

    5) Wood PVC compounds and extruded profiles

    6) Paper honeycomb panels

    1) (Renewable gluten based resin)

    2) (Tree bark fibre composites (Art Nature Design))3) (Jute composites (VLIR project Bangladesh))

    4) (Natural Fibre panels for landmine protection)

  • 8/12/2019 VanVuure AW

    18/32

    18

    i-SUP2008, Natural Fibre Composites

    failure strain and stiffness for different high performance and natural fibres

    1

    10

    100

    1000

    0 20 40 60 80 100 120 140

    specif ic st iffness (GPa.m/kg)

    failurestrain(%)

    Silk (Bombyx Mori)

    Silk (Spider)

    Flax

    (E)-Glass fibre

    Carbon-Fibre

    Aramide Fibre

    Polyethylene fibrePolyester fibre

    LDPE

    1) Silk composites

    What makes silk fibres special?

    LDPE

    Bombyx mori silk

    Spider silk

    PE fibreAramid fibre

  • 8/12/2019 VanVuure AW

    19/32

    19

    i-SUP2008, Natural Fibre Composites

    1) Silk composites

    Excellent falling weight impact performance!

  • 8/12/2019 VanVuure AW

    20/32

    20

    i-SUP2008, Natural Fibre Composites

    1) Silk Composites

    * No clear indication of effect interface strengthfor tough matrices

    Effect weak

    interface

  • 8/12/2019 VanVuure AW

    21/32

    21

    i-SUP2008, Natural Fibre Composites

    1) Silk Composites

    Effect of polymer matrix, aramid fabric composites

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Aramid

    fabric PP PB

    STP

    U

    Copolya

    mide

    PA11

    PA46

    Absorbed

    impactenergy(J/mm

    )

    Hypothesis is that interface properties (impregnation andadhesion) play a crucial role here (weakest is best..)

    (all matrices have relatively high strain to failure here)

  • 8/12/2019 VanVuure AW

    22/32

    22

    i-SUP2008, Natural Fibre Composites

    2) Flax fibre composites

    Flax-epoxy

    Transverse flexural strength [MPa]

    0

    5

    10

    15

    20

    25

    30

    UNTREATED NaOH 1% NaOH 2% NaOH 3%

    Alkali treatment leads to stronger interface

    Vf: 40 vol%

    Time: 20 min

  • 8/12/2019 VanVuure AW

    23/32

    23

    i-SUP2008, Natural Fibre Composites

    2) Flax fibre composites

    Flax-epoxy

    Longitudinal flexural strength [MPa]

    0

    50

    100

    150

    200

    250

    300

    350

    UNTREATED NaOH 1% NaOH 2% NaOH 3%

    + 30%

    Fibre treatment with alkali leads to better interfacestrength

    Vf: 40 vol%

    Time: 20 min

  • 8/12/2019 VanVuure AW

    24/32

    24

    i-SUP2008, Natural Fibre Composites

    3) Bamboo fibre composites

    Projects with Columbia and Vietnam (BelSPO)

    Extraction of technical bamboo fibres (length ~ 30 cm !):

    Existing processes such as steam explosion and mechanical crushinglead to extensive fibre damage

    New process developed in Columbia and at KU Leuven:

    * Strongly reduced fibre damage

  • 8/12/2019 VanVuure AW

    25/32

    25

    i-SUP2008, Natural Fibre Composites

    3) Bamboo fibre composites

    GuaduaAngustifolia

    Growth up to 20 cm/day

    Grows to 20 m in 6 months

    Matures in 4 years; can be used after 1 year

    Fixes 54 tons of C/ha

    Culm withvascularbundles Technical

    fibre(s)

    Elementaryfibres

  • 8/12/2019 VanVuure AW

    26/32

    26

    i-SUP2008, Natural Fibre Composites

    3) Bamboo fibre composites

    150

    250350

    450

    550

    650

    750

    850

    0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

    Extraction m ethod

    Strength(MPa)

    Mechanical

    (rolling mill machine)

    Chemical extraction(in some cases

    mechanical process

    is required)

    Steam

    explosion

    Mechanical process

    (in some cases chemical

    process is required)

    KULeuvenprocess

    Loop test

  • 8/12/2019 VanVuure AW

    27/32

    27

    i-SUP2008, Natural Fibre Composites

    3) Bamboo fibre composites

    1. Bagasse2. Coir3. Sisal4. Cotton5. Kenaf6. Henequen7. Jute8. Hemp9. Pineapple10. Ramie11. Flax12. Bamboo13. Curau14. E-Glass

    1. Coir2. Sisal

    3. Cotton4. Kenaf5. Henequen6. Jute7. Hemp8. Pineapple9. Ramie10. Flax11. Bamboo12. Curau

    13. E-Glass

  • 8/12/2019 VanVuure AW

    28/32

    28

    i-SUP2008, Natural Fibre Composites

    3) Bamboo fibre composites

    Good performance for untreated bamboo in epoxy

    Only limited effect of alkali treatment

    Natural Fiber composites

    Thermoset matrix

    Flexural strength

    0

    50

    100

    150

    200

    250

    300

    350

    11 2 3 4 5 6 7 8 9 10 11

    1. Bamboo (G. ang.) + Epoxy

    2. Flax + Epoxy

    3. Jute + Epoxy

    4. Jute + Vinylester

    5. Hemp + Epoxy

    6. Sisal + Epoxy

    7. Kenaf + Cashew nut Shell

    8. Bamboo + Polyester

    9. Kenaf + Polyester

    10. Hemp + Polyester

    11. Hemp + Cashew nut Shell

    Figure 67. Flexural strength comparison between UD bamboo+epoxy (Vf 48%) and UD naturalfibres+thermoset matrix composites; Vf 35% - 60%

    Good adhesion for untreated bamboo in epoxy:

    Stiffness and strength in longitudinal direction as expected (Vf)

    Transverse flexural strength quite good at around 35 MPa

  • 8/12/2019 VanVuure AW

    29/32

    29

    i-SUP2008, Natural Fibre Composites

    4) Coir composites

    Project with Vietnam (BelSPO)

    1) Measuring basic mechanical properties + microscopic examination

    2) Understanding the interfacial adhesion: measurement of contact

    angles (direct measurements and with Wilhelmy set-up)

    100 m 20 m

    Light microscope pictures of technical coconut fibre

    i SUP2008 N t l Fib C it

  • 8/12/2019 VanVuure AW

    30/32

    30

    i-SUP2008, Natural Fibre Composites

    5) Wood-PVC

    Market for WPCs is strongly growing,especially deckings in the USA

    Wordwide market around $ 2 billion

    Europe 2005 about 100,000 tons, growingat 10-20% / year

    Started with recycled wood dust andrecycled PE and PP (e.g. agricultural waste

    foil) e.g. Deceuninck in Belgium has launchedwood-PVC for deckings and other extrudedprofiles

    environmental benefits e.g.

    * replacement for (tropical)hardwood

    * replacement for treated softwood (hazardous chemicals)

    i SUP2008 N t l Fib C it

  • 8/12/2019 VanVuure AW

    31/32

    31

    i-SUP2008, Natural Fibre Composites

    6) Paper honeycomb panels

    Applicat ions of Torhex cardboard honeycombs;

    sandwich panels with NF composite skins

    www.econcore.com

    i SUP2008 Natural Fibre Composites

  • 8/12/2019 VanVuure AW

    32/32

    32

    i-SUP2008, Natural Fibre Composites

    BibliographyMain references for this text:

    1) Green Composites, Caroline Baillie, CRC Press, 2004

    2) Natural Fibers, Plastics and Composites, Frederick T.

    Wallenberger & Norman Weston, Kluwer, 2004

    3) Natural Fibers, Biopolymers and Biocomposites, Amar K. Mohantyet.al., CRC Press, 2005