8
Verificación rápida de una sección para viga de polipasto (Secciones W PROYECTO: La Esmeralda. ELEMENTO: Viga carrilera polipasto en estación de bombeo INGENIERO: AMA FECHA: Oct-22 OBSERVACIONES: Usar perfil W 12x22 Acero A-36. Verificación de la sección Perfil W12x14 Acero A36 Datos Área 26.84 d 30.25 cm bf 10.08 cm (dato no utilizado) tf 0.57 cm tw 0.51 cm Ixx 3,687.81 Iyy 98.23 fy 2,533 Sxx 243.81 PP viga 21.07 kgf/m Carga izable 1,000 kgf PP polipasto 40 kgf Impacto 25% FS 1.15 Factor de seguridad adicional. Carga diseño 1,495 kgf Carga/canal (P) 747.5 kgf Verificación de la viga, caso de voladizo L voladizo 2.00 m M máx. 3,032.14 kgfxm Tensión flexión 1,243.64 0.49 fy Tensión admisible 0.60 fy Ok Tensión corte 100.02 0.04 fy Tensión admisible 0.40 fy Ok Entrar datos en color azul. http://sites.google.com/site/antolintinez cm 2 cm 4 cm 4 (dato no utilizado) kgf/cm 2 cm 3 kgf/cm 2 = kgf/cm 2 =

Verificacion Viga Polipasto

Embed Size (px)

Citation preview

Page 1: Verificacion Viga Polipasto

Verificación rápida de una sección para viga de polipasto (Secciones W, HEA, HEB, I y similares), y polipasto de 4 ruedas.

PROYECTO: La Esmeralda.ELEMENTO: Viga carrilera polipasto en estación de bombeo.INGENIERO: AMAFECHA: Apr-23OBSERVACIONES: Usar perfil W 12x22 Acero A-36.

Verificación de la sección

Perfil W12x14 Acero A36

Datos

Área 26.84 d 30.25 cmbf 10.08 cm (dato no utilizado)tf 0.57 cmtw 0.51 cmIxx 3,687.81

Iyy 98.23

fy 2,533

Sxx 243.81 PP viga 21.07 kgf/mCarga izable 1,000 kgfPP polipasto 40 kgfImpacto 25%FS 1.15 Factor de seguridad adicional.Carga diseño 1,495 kgfCarga/canal (P) 747.5 kgf

Verificación de la viga, caso de voladizo

L voladizo 2.00 mM máx. 3,032.14 kgfxmTensión flexión 1,243.64 0.49 fyTensión admisible 0.60 fy OkTensión corte 100.02 0.04 fyTensión admisible 0.40 fy Ok

Entrar datos en color azul.http://sites.google.com/site/antolintinez

cm2

cm4

cm4 (dato no utilizado)

kgf/cm2

cm3

Recomendación de Covenin 1618-82 sobre las flechas (condición de servicio).

kgf/cm2 =

kgf/cm2 =

B20
Antolin: Área de la sección transversal del perfil.
B21
Antolin: d, bf, tf, tw de acuerdo al dibujo de la derecha.
Page 2: Verificacion Viga Polipasto

Deformación voladizoDeformación máx. 0.52 cm = L / 384 Flecha alta

Verificación de la viga, caso de viga de 1 tramo simplemente apoyada

L tramo 3.50 mM máx. 1,340.39 kgfxmTensión flexión 549.76 0.22 fyTensión admisible 0.60 fy OkTensión corte 51.04 0.02 fyTensión admisible 0.40 fy OkDeformación tramo isostáticoDeformación máx. 0.18 cm = L / 1,969 Ok

Verificación de la tensión en el alma

P/2 373.75 kgfk 15.13 cmTensión 27.79 0.01 fyft = P/2A = P/(2tw)(3.5k) = P/(7k)tw Ok

Verificación de la tensión en el ala

Tensión 3,432.97 1.36 fyfb = M/S = 3eP/(4e)(tf)2 = 0.75P/(tf)2 No verifica

Ref.:

kgf/cm2 =

kgf/cm2 =

kgf/cm2 =

kgf/cm2 =

http://www.modernsteel.com/steelinterchange_details.php?id=499

Steel Interchange Bottom Flange Bending Capacity

How do you calculate the lower flange loading capacity of a steel beam to be used to

support an underhung crane? Are there any published ASD or LRFD design procedures?

J ames F. J endusa, P.E.

MSI General Corporation

Oconomowoc, WI

Answer

The bottom part of the crane beam must be checked for:

1. Tension in the web.

2. Bending of the bottom flange.

Most underslung cranes will have each end supported by 2 pairs of wheels. Each

individual wheel load will include a portion of the lifted load (in its most critical position),

the dead loads, and impact. Impact is usually about 25% of the lifted load but will

depend on the speed and braking ability of the hoist. Allowable stresses must be reduced

due to the cyclical nature of the applied load.

The wheels must be purchased to suit the profile of the supporting crane beam, either an

S-shape or a W-shape. The web tension at each pair of wheels is checked at the

intersection of the web and fillet (at the "k" distance).

Referring to Figure 1 below, the length of resistance is seen to be 3.5k. The 30° years.

Assuming 4 wheels (2 pair) at each end of the crane, each wheel will

support P/4delivered to the supporting crane beam. In Figure 1, two wheels cause the

web tension, so the load is P/2.

The tensile stress in the web becomes:

ft = P/2A = P/(2tw)(3.5k) = P/(7k)tw

Flange bending depends on the location of the wheels with respect to the beam web.

B64
Antolin: Véase fundamento teórico más abajo.
Page 3: Verificacion Viga Polipasto

Steel Interchange Bottom Flange Bending Capacity

How do you calculate the lower flange loading capacity of a steel beam to be used to

support an underhung crane? Are there any published ASD or LRFD design procedures?

J ames F. J endusa, P.E.

MSI General Corporation

Oconomowoc, WI

Answer

The bottom part of the crane beam must be checked for:

1. Tension in the web.

2. Bending of the bottom flange.

Most underslung cranes will have each end supported by 2 pairs of wheels. Each

individual wheel load will include a portion of the lifted load (in its most critical position),

the dead loads, and impact. Impact is usually about 25% of the lifted load but will

depend on the speed and braking ability of the hoist. Allowable stresses must be reduced

due to the cyclical nature of the applied load.

The wheels must be purchased to suit the profile of the supporting crane beam, either an

S-shape or a W-shape. The web tension at each pair of wheels is checked at the

intersection of the web and fillet (at the "k" distance).

Referring to Figure 1 below, the length of resistance is seen to be 3.5k. The 30° years.

Assuming 4 wheels (2 pair) at each end of the crane, each wheel will

support P/4delivered to the supporting crane beam. In Figure 1, two wheels cause the

web tension, so the load is P/2.

The tensile stress in the web becomes:

ft = P/2A = P/(2tw)(3.5k) = P/(7k)tw

Flange bending depends on the location of the wheels with respect to the beam web.

Flange bending depends on the location of the wheels with respect to the beam web. Referring to Figure 2, this is

dimension e. As stated previously, each wheel load is P/4.

The longitudinal length of flange participating in the bending resistance can be taken as 2e per yield-line analysis.

See Figure 3.

The section modulus at the plane of bending is (bd2)/6 which translates to e(tf)2/3. From Figure 2 the bending

moment is eP/4. The bending stress is:

fb = M/S = 3eP/(4e)(tf)2 = 0.75P/(tf)

2

Local loadings such as this often result in biaxial and triaxial stresses. These stress combinations are quite common,

and designers must design accordingly. For more information on crane loading, refer to my paper in the Engineering

J ournal, 4th quarter 1982, called "Tips for Avoiding Crane Runway Problems."

David T. Ricker, P.E.

J avelina Explorations

Payson, AZ

Posted on December 1, 1999

Page 4: Verificacion Viga Polipasto

Esta hoja de cálculo está intencionada para verificaciones rápidas, útiles para el predimensionamiento de una viga carrilera que soportará un polipasto típico, como el mostrado en la figura de arriba, y no constituye un análisis sofisticado que, según el caso, se podría requerir. Queda a juicio del ingeniero el utilizar métodos más precisos, o no. El autor no se responsabiliza por daños derivados del empleo de esta hoja de cálculo. Puerto Ordaz, mayo 12.

Flange bending depends on the location of the wheels with respect to the beam web. Referring to Figure 2, this is

dimension e. As stated previously, each wheel load is P/4.

The longitudinal length of flange participating in the bending resistance can be taken as 2e per yield-line analysis.

See Figure 3.

The section modulus at the plane of bending is (bd2)/6 which translates to e(tf)2/3. From Figure 2 the bending

moment is eP/4. The bending stress is:

fb = M/S = 3eP/(4e)(tf)2 = 0.75P/(tf)

2

Local loadings such as this often result in biaxial and triaxial stresses. These stress combinations are quite common,

and designers must design accordingly. For more information on crane loading, refer to my paper in the Engineering

J ournal, 4th quarter 1982, called "Tips for Avoiding Crane Runway Problems."

David T. Ricker, P.E.

J avelina Explorations

Payson, AZ

Posted on December 1, 1999

Page 5: Verificacion Viga Polipasto

Verificación rápida de una sección para viga de polipasto (Secciones W, HEA, HEB, I y similares), y polipasto de 4 ruedas.

Recomendación de Covenin 1618-82 sobre las flechas (condición de servicio).

Page 6: Verificacion Viga Polipasto
Page 7: Verificacion Viga Polipasto

Flange bending depends on the location of the wheels with respect to the beam web. Referring to Figure 2, this is

dimension e. As stated previously, each wheel load is P/4.

The longitudinal length of flange participating in the bending resistance can be taken as 2e per yield-line analysis.

See Figure 3.

The section modulus at the plane of bending is (bd2)/6 which translates to e(tf)2/3. From Figure 2 the bending

moment is eP/4. The bending stress is:

fb = M/S = 3eP/(4e)(tf)2 = 0.75P/(tf)

2

Local loadings such as this often result in biaxial and triaxial stresses. These stress combinations are quite common,

and designers must design accordingly. For more information on crane loading, refer to my paper in the Engineering

J ournal, 4th quarter 1982, called "Tips for Avoiding Crane Runway Problems."

David T. Ricker, P.E.

J avelina Explorations

Payson, AZ

Posted on December 1, 1999

Page 8: Verificacion Viga Polipasto

Esta hoja de cálculo está intencionada para verificaciones rápidas, útiles para el predimensionamiento de una viga carrilera que soportará un polipasto típico, como el mostrado en la figura de arriba, y no constituye un análisis sofisticado que, según el caso, se podría requerir. Queda a juicio del ingeniero el utilizar métodos más precisos, o no. El autor no se responsabiliza por daños derivados del empleo de esta hoja de cálculo.

Flange bending depends on the location of the wheels with respect to the beam web. Referring to Figure 2, this is

dimension e. As stated previously, each wheel load is P/4.

The longitudinal length of flange participating in the bending resistance can be taken as 2e per yield-line analysis.

See Figure 3.

The section modulus at the plane of bending is (bd2)/6 which translates to e(tf)2/3. From Figure 2 the bending

moment is eP/4. The bending stress is:

fb = M/S = 3eP/(4e)(tf)2 = 0.75P/(tf)

2

Local loadings such as this often result in biaxial and triaxial stresses. These stress combinations are quite common,

and designers must design accordingly. For more information on crane loading, refer to my paper in the Engineering

J ournal, 4th quarter 1982, called "Tips for Avoiding Crane Runway Problems."

David T. Ricker, P.E.

J avelina Explorations

Payson, AZ

Posted on December 1, 1999