35
1 Molecular Catenation via Metal-Directed Sel f-Assembly andπ-Donor/π-Acceptor Interactio ns: Efficient One-Pot Synthesis, Characterization, and Cr ystal Structures of [3]Catenanes Based on P d or Pt Dinuclear Metallocycles Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela* J. Am. Chem. Soc. 2007, 129, 13978-13986 Speaker: 黃黃黃

Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

  • Upload
    barney

  • View
    23

  • Download
    0

Embed Size (px)

DESCRIPTION

Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal Structures of [3]Catenanes Based on Pd or Pt Dinuclear Metallocycles. Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and - PowerPoint PPT Presentation

Citation preview

Page 1: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

1

Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient

One-Pot Synthesis, Characterization, and Crystal Structures of [3]Catenanes Based on Pd or Pt Dinuclear Metallocycles

Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* andJosé M. Quintela*

J. Am. Chem. Soc. 2007, 129, 13978-13986

Speaker: 黃仁鴻

Page 2: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

2

Synthesis of [n]Catenanes

1. π-Donor/π-Acceptor complexes

2. Hydrogen bond interactions

3. Anion templation

4. Metal complexation

Page 3: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

3

A Chemically-Switchable [2]Catenane

Figure 1. The [2]catenane 14+ and the translational isomers (2A4+ and 2B4+) of the [2]catenane 24+.

Balzani, V.; Credi, A.; Langford, S. J.; Raymo, F. M.; Stoddart, J. F.;Venturi, M. J. Am. Chem. Soc. 2000, 122, 3542.

a b c

Page 4: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

4

Amide-Based Interlocked Compounds

Leigh, D. A.; Venturini, A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem.-Eur. J. 2004, 10, 4960.

Page 5: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

5

Anion-Templated Assembly of a [2]Catenane

Sambrook, M.; Wisner, J. A.; Paul, R. L.; Cowley, A. R.; Szemes, F.; Beer,P. D. J. Am. Chem. Soc. 2004, 126, 15364.

Figure 2. Strategy for assembly of [2]-catenanes via anion templation.

Page 6: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

6

Figure 3. Synthesis of a catenane using an octahedral metal atom and three bidentate chelates: construction principle.

Chambron, J.-C.; Collin, J.-P.; Heitz, V.;Jouvenot, D.; Kern, J.-M.; Mobian, P.; Pomeranc, D.; Sauvage, J.-P. Eur. J. Org. Chem. 2004, 1627.

Catenanes Built Around Octahedral Transition Metals

Page 7: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

7

Synthesis of [n]Catenanes

1. π-Donor/π-Acceptor complexes

2. Hydrogen bond interactions

3. Anion templation

4. Metal complexation

Page 8: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

8

Structures of Molecular ComponentsUsed in This Work

Page 9: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

9

• Dinuclear molecular squares 3a,b• Pseudorotaxanes

• [3]-Catenanes (BPP34C10)2-(3a,b)

• [3]-Catenanes (DB24C8)2-(3a,b)

• [3]-Catenanes (DN38C10)2-(3a,b)

Page 10: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

10

Synthesis of Dinuclear Molecular Squares 3a,b

Page 11: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

11

1H NMR Spectrum of 3a·4OTf·4PF6

a

a

8.99 ppm

△8.91 ppm

8H 8H

8H4H

8H

8H

8H

Page 12: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

12

13C NMR Spectrum of 3a·4OTf·4PF6

DEPT-135

CH2

CH2

C C

a

bcd

i

g

e

f

h

CHCHCH CH

Page 13: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

13

HSQC Spectrum of 3a·4OTf·4PF6

a

bcd

i

g

e

f

h

i

Heteronuclear Single Quantum Coherence1H-13C 1J

1H NMR

13C NMR

a

a

h

Page 14: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

14

COSY Spectrum of 3a·4OTf·4PF6

a

bcd

i

g

e

f

h

1H NMR

1H NMR

COrrelation SpectroscopY1H-1H 3J

h

i

i

h

b

a

a

b

g

g

e f

Page 15: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

15

HMBC Spectrum of 3a·4OTf·4PF6

a

bcd

i

g

e

f

h

13C NMR

1H NMR

Heteronuclear Multiple Bond Coherence 1H-13C 1J, 2J, 3J

g

fb

a

a

c

Page 16: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

16

a b154.0 ppm

126.2 ppm

a

bc

c144.9 ppm

Δδ=1.6 ppmΔδ=3.1 ppm

Δδ=3.5 ppm

fa b e

g

h

i

d

fe

g

h

a

bcd

i

g

e

f

h

1H & 13C NMR Spectra of 3a·4OTf·4PF6

Page 17: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

17

1H NMR Spectra of 1·2PF6 and 2aat Different Concentrations

10 mM

5 mM

2.5 mM

0.5 mM

1·2PF6

Page 18: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

18

• Dinuclear molecular squares 3a,b• Pseudorotaxanes

• [3]-Catenanes (BPP34C10)2-(3a,b)

• [3]-Catenanes (DB24C8)2-(3a,b)

• [3]-Catenanes (DN38C10)2-(3a,b)

Page 19: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

19

Rotaxane

http://en.wikipedia.org/wiki/Rotaxane

http://www.catenane.net/home/rotcatintro.html

Page 20: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

20

Crystal Structure of Pseudorotaxane Complex between 1·2PF6 and DB24C8

a 2.52 Å 149° b 2.26 Å 167° c 2.21 Å 167° d 2.37 Å 168°

[H…O] distances [C-H…O] angle

Page 21: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

21

1H NMR Spectrum of DB24C8-1·2PF6 Pseudorotaxane

g

f

Δδ=0.40 ppm

Δδ=0.30 ppm

Page 22: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

22

• Dinuclear molecular squares 3a,b• Pseudorotaxanes

• [3]-Catenanes (BPP34C10)2-(3a,b)

• [3]-Catenanes (DB24C8)2-(3a,b)

• [3]-Catenanes (DN38C10)2-(3a,b)

Page 23: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

23

Crystal Structure of The [3]Catenane (BPP3410)2-(3a)

3.83 Å

Page 24: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

24

Partial 1H NMR Spectra of Metallocycle 3a and (BPP34C10)2-(3a)

Figure 2. Partial 1H NMR (CD3CN, 500 MHz) spectra of metallocycle 3a(top) and (BPP34C10)2-(3a) at 237 K (bottom).

Δδ= -0.7ppm

Δδ= -0.7ppm

Δδ= -0.1ppm

Δδ= -0.3ppm

ab

e

f

Page 25: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

25

Electrospray Ionization MassSpectrometry

Figure 4. Observed (top) and theoretical (bottom) isotopic distribution forthe fragment [(BPP34C10)2-(3b) - 3PF6]+3.

Isotope %

H 1(100.0%)C 12(98.9%) 13(1.1%)N 14(99.6%) 15(0.4%)O 16(99.8%) 18(0.2%)F 19(100.0%)P 31(100.0%)Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%)

C102H132F30N12O20P5Pt2

987.0

987.0

[(BPP34C10)2-(3b) - 3PF6]+3

Page 26: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

26

• Dinuclear molecular squares 3a,b• Pseudorotaxanes

• [3]-Catenanes (BPP34C10)2-(3a,b)

• [3]-Catenanes (DB24C8)2-(3a,b)

• [3]-Catenanes (DN38C10)2-(3a,b)

Page 27: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

27

1H NMR Spectra of (DB24C8)2-(3a)

Figure 5. Partial 1H NMR (CD3CN, 298 K) spectra of (a) metallocycle 3a (5 mM), (b) 3a (5 mM) + DB24C8 (10 mM), and (c) 3a (5 mM) + DB24C8(20 mM).

Page 28: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

28

Crystal Structure of [3]Catenane (DB24C8)2-(3a)

Page 29: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

29

Reversible Catenation of (DB24C8)2-(3a)

Figure 6. 1H NMR (CD3CN, 300 MHz, 298 K) spectra of (a) metallocycle 3a (5 mM), (b) solution (a) + DB24C8 (20 mM), (c) solution (b) + KPF6 (20 mM), (d) solution (c) + 18C6 (20 mM).

Page 30: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

30

• Dinuclear molecular squares 3a,b• Pseudorotaxanes

• [3]-Catenanes (BPP34C10)2-(3a,b)

• [3]-Catenanes (DB24C8)2-(3a,b)

• [3]-Catenanes (DN38C10)2-(3a,b)

Page 31: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

31

Crystal Structure of (DN38C10)2-(3a)

Page 32: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

32

Crystal Structure of (DN38C10)2-(3b)

Page 33: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

33

Conclusions1. Ligand 1 2PF6 threads through the cavity of ‧ DB24C8

to generate a [2]pseudorotaxane that is stabilized principally by hydrogen-bonding interactions.

2. The solid-state structure of catenane (DB24C8)2-(3a) revealed that the Pd(en) corners of metallocycle are capped with two additional polyether cyclophanes to form a supramolecular complex composed of eight components.

3. The catenation process of (DB24C8)2-(3a) can be switched off and on in a controllable manner by successive addition of KPF6 and 18-crown-6.

Page 34: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

34

Conclusions(continued)

4. The reported catenanes are composed of a dinuclear m

olecular square bridged by ligand 1 2PF‧ 6 interpenetrated by two polyether macrorings.

5. X-ray crystallography in combination with NMR studies showed that π-πstacking and [C-H…π] interactions in addition to [C-H…O]hydrogen bonds are the noncovalent forces that stabilize the [3]catenanes.

Page 35: Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

35

Thanks for Your Attention!!