30
Vigilancia tecnológica Biogás Unidad de Vigilancia Tecnológica NOA Boletín 1 – Diciembre de 2013

Vigilancia Tecnológica

Embed Size (px)

DESCRIPTION

Boletín N°1 - Biogás

Citation preview

Vigilancia tecnológicaBiogás

Unidad de Vigilancia Tecnológica NOABoletín 1 – Diciembre de 2013

Autoridades

Gobernador de la Provincia de Tucumán

CPN José Alperovich

Secretario de Estado de Innovación y Desarrollo Tecnológico

Dr. Javier Noguera

Director de Vinculación y Transferencia Tecnológica

Ing. José Russo

2

Equipo de trabajo

Coordinador de la Unidad de Vigilancia Tecnológica del NOA

Ph. D. Roque Caro

Equipo de búsqueda

Lic. Federico Carrera

3

Resumen

En el presente trabajo se analiza la producción científica y tecnológicarelacionada a la producción de biogás y se presentan al lector un listado de las patentespresentadas, accesibles a través del buscador que ofrece la Oficina Europea de Patentes ypublicaciones científicas relevantes publicadas durante el año 2013, a las que se accedió através de la base de datos de publicaciones científicas Scopus.com, sitio al que se pudotener acceso mediante el uso de la Biblioteca Electrónica de Ciencia y Tecnologíaperteneciente al Ministerio de Ciencia, Tecnología e Innovación Productiva de laNación.

4

Biogás

El biogás es un gas combustible que se genera en medios naturales o endispositivos específicos, por las reacciones de biodegradación de la materia orgánica,mediante la acción de microorganismo y otros factores, en ausencia de oxígeno (esto es,en un ambiente anaeróbico).

En general, el biogás se produce dentro de biodigestores, recintos cerradosconstruidos para favorecer las reacciones químicas anaeróbicas. Estos biodigestoresposeen un ducto de entreada de afluentes constituidos por material orgánica como hesesde animales o humanos y agua y un ducto de salida de efluentes por donde salen esosmateriales luego del proceso de biodigestión. Como resultado se obtiene gas combustible(biogás) y residuos orgánicos tratados que pueden ser utilizados como fertilizantes enactividades agrícolas.

Patentes

Como resultado de la búsqueda de patentes se obtuvieron 88 patentessolicitadas entre el 01/01/2008 y el 31/05/2013. Las cuales se analizan a continuación:

FUENTE: elaboración propia con datos de la Oficina Europea de Patentes.

En el gráfico anterior se observa una tendencia general de crecimiento de laspatentes relacionadas con el biogás. A excepción de del 2010 donde se patentó apenaspor debajo del año anterior, el resto de los años de ve un aumento considerable en el

5

2008 2009 2010 2011 20120

5

10

15

20

25

30

11

15 14

17

24

Cantidad de patentes solicitadas mundialmente por año

Núm

ero

de p

aten

tes

solic

itad a

s

patentamiento. Este crecimiento con respecto al año anterior fue de 36,46% para el año2009, -6,67%, para 2010; 21,43% en 2011 y 41,18% para el año 2012. Para este análisisno se tuvieron en cuenta los datos del año 2013 por no encontrarse completos. Sí se losutilizó para la confección de otros gráficos que se presentan más adelante.

NOTA: los valores para 2013 se encuentran incompletos, representan las patentes solicitadas hasta el31 de mayo de 2013.

FUENTE: elaboración propia con datos de la Oficina Europea de Patentes

Se puede apreciar que hay un claro liderazgo de China (42 solicitudes) yEstados Unidos (19 solicitudes) en la solicitud de patentes de tecnologías relacionadas albiogás.

Principales códigos de clasificación internacional

“La Clasificación Internacional de Patentes (CIP), establecida por el Arreglo deEstrasburgo de 1971, prevé un sistema jerárquico de símbolos independientes delidioma para clasificar las patentes y los modelos de utilidad con arreglo a los distintossectores de la tecnología a los que pertenecen.

La CIP divide la tecnología en ocho secciones, con unas 70.000 subdivisiones, cadauna de las cuales cuenta con un símbolo que consiste en números arábigos y letras delalfabeto latino (...)

La Clasificación es indispensable para la recuperación de los documentos de patentedurante la búsqueda en el "estado de la técnica". Se valen de esa recuperación las

6

Australia

Suiza

México

Rusia

Reino Unido

Canadá

República de Corea

Estados Unidos

China

0 5 10 15 20 25 30 35 40 45

Patentes solicitadas por país

entre 2008 y 2013

autoridades que conceden patentes, los eventuales inventores, las unidades deinvestigación y desarrollo y demás partes interesadas en la aplicación o el desarrollo dela tecnología.”1

Se presenta a continuación las principales familias de códigos de clasificaciónhallados en las patentes resultantes de la búsqueda. Para facilitar el entendimiento, setruncó los códigos hasta el cuarto componente. Debajo del gráfico el lector encontraráuna referencia sobre los códigos utilizados.

NOTA: los valores para 2013 se encuentran incompletos, representan las patentes solicitadas hasta el31 de mayo de 2013.

FUENTE: elaboración propia con datos de la Oficina Europea de Patentes

Referencias adicionales:

• C12M1: equipos para enzimología o microbiología.

• C02F11: tratamiento del agua, agua residual, de alcantarilla o de fangos.Tratamiento de fangos; dispositivos a este efecto.

• C12P5: procesos de fermentación o procesos que utilizan enzimas para la síntesisde un compuesto químico dado o de una composición dada, o para la separaciónde isómeros ópticos a partir de una mezcla racemica. Preparación dehidrocarburos.

• C02F3: tratamiento del agua, agua residual, de alcantarilla o de fangos.

1 Organización Mundial de la Propiedad Intelectual. www.wipo.int/classifications/ipc/es/general/preface.html

7

35%

11%11%

6%

21%

Principales familias de códigos de clasificación internacional

de patentes solicitadas entre 2008 y 2013 en el mundoC12M1

C02F11

C12P5

C02F3

B09B3

B01D53

C10L3

C12P1

C12R1

OTRO

Tratamiento biológico del agua, agua residual, o de alcantarilla.

• B09B3: Destrucción de desechos sólidos o su transformación en algo útil o nonocivo.

• B01D53:Separación de gases o de vapores; recuperación de vapores dedisolventes volátiles en los gases; depuración química o biólogica de gasesresiduales, p. ej. gases de escape de los motores de combustión, humos, vapores,gases de combustión o aerosoles.

• C10L3: combustibles gaseosos; gas natural; gas natural de síntesis obtenido porprocedimientos no previstos en las subclases C10G, C10K; gas de petróleolicuado.

• C12P1: procesos de fermentación o procesos que utilizan enzimas para la síntesisde un compuesto químico dado o de una composición dada, o para la separaciónde isómeros ópticos a partir de una mezcla racemica. Preparación de compuestoso de composiciones, no prevista en los grupos C12P3/00-C12P 39/00, utilizandomicroorganismos o enzimas; procedimientos generales de preparación decompuestos o composiciones que utilizan microorganismos o enzimas.

• C12R1: sistema de indexación asociado a las subclases C12C-C12Q, relativo alos microorganismos. Microorganismos.

Patentes destacadas

Se presentan a continuación algunas de las patentes más destacadas desde enerode 2012 a la fecha. Se presentan sus títulos, abstracts y algunos datos de interés.

Conversion of aquatic plants to liquid methane, and associated systems and methods

Systems and methods for converting aquaticplants to liquid methane are disclosed. Arepresentative system includes an aquatic plantcultivator, an anaerobic digester operatively coupledto the aquatic plant cultivator to receive aquaticplants and produce biogas, and a biogas convertercoupled to the anaerobic digester to receive the

8

biogas and produce liquefied methane and thermal energy, at least a portion of thethermal energy resulting from a methane liquefaction process. The system can furtherinclude a thermal path between the biogas converter and at least one of the aquatic plantcultivator and the anaerobic digester. A controller can be coupled to the biogas converterand the aquatic plant cultivator and/or the anaerobic digester. The controller can beprogrammed with instructions that, when executed (e.g., based on measured variables ofthe system), direct the portion of thermal energy between the biogas converter and theaquatic plant cultivator and/or anaerobic digester.

Número de publicación US 20120308989 A1

Fecha de solicitud: 05/01/2012

Inventores: Barclay John A., Haberman David.

Solicitante: Prometheus Technologies LLC .

An apparatus for production of biogas by digestion of organic material

An apparatus for production of a biogas by anaerobic digestion of organicmaterial, the apparatus comprising: a digester chamber defining: a gas generating zoneand a gas collecting zone. A biogas outlet is defined in the gas collecting zone, and oneor more nozzles is/are arranged to spray a gas cooling liquid into the gas accommodatedin the gas collecting zone so as to cool the gas. A collecting member is arranged in thegas collecting zone to collect the gas cooling liquid when sprayed from the one or morenozzles towards the collecting member so as to prevent the gas cooling liquid fromentering the organic material. The collecting member is arranged to cause the collectedgas cooling liquid to flow into a liquid based safety valve.

Número de publicación CA 2827022 A1

Fecha de solicitud: 08/02/2012

Inventores: Soren Johannes Hojsgaard, Bente Elise Nielsen, PerKoefoed-Hansen

Solicitante: Kruger A/S, Soren Johannes Hojsgaard, Bente Elise Nielsen, PerKoefoed-Hansen

9

Sustainable waste management

This invention relates to the conversion of waste material to energy andbio-fertiliser. 1. The choice of waste material is defined as waste biomass. Thecomposition of this mix is important for achieving the desired characteristics of thebiofertiliser product in terms of nutrient value and texture. 2. The waste biomass ismechanically pre-treated prior to anaerobic digestion. 3. Heated water is used for mixingwith the waste material for anaerobic digestion. 4. The anaerobic digestion processproduces a sludge which can be used as a "Bio-Fertiliser". 5. The anaerobic digestionprocess also produces methane gas, which is collected, compressed, and stored for energy.6. The combustion of methane gas produces energy to run the invention and generateelectricity. 7. The heat exchanger can use the energy from the combustion of themethane gas to pre-heat the feed water. The heated water is then utilised by theanaerobic digester and/or other processes within the invention. The heat exchanger alsoemits water vapour and carbon dioxide into the environment. 8. The electricity generatedis used to power the invention and can be sold.

Número de publicación AU 2012100174 A1

Fecha de solicitud: 19/02/2012

Inventores: McKinnon, Sally Luci Catherine; Sharma, Ram Prasad.

Solicitante: McKinnon, Sally Luci Catherine; Sharma, Ram Prasad.

An anaerobic digester for digesting organic matter and producing biogas

A digester (12) for anaerobically digesting organic matter and producing biogasis disclosed. The digester (12) includes a support (14), and a drum (16) rotatablymounted on the support about a longitudinal axis thereof. The drum has an internaldrum surface (19) and defines a closed interior space (20). The drum (16) has two fixedmixing blades (32, 34) on the internal surface (19) which project into the interior space(20), and which mix organic matter within the interior space (20) when the drum (16)rotates. The digester (16) also includes a feed/discharge arrangement (40) on an end (23)of the drum (16) through which organic matter can be fed into and discharged from thedrum (16). The digester (12) also includes a biogas off-take arrangement including a gas

10

collection head (89) and an off-take conduit (90) for drawing off biogas generatedwithin the drum (16). An apparatus including an outer container within which thedigester (12) is contained is also disclosed. The outer container can be heated by meansof a heat exchanger to increase the temperature within the digester to promotedigestion. The outer container can be a rectangular intermodal shipping container whichenables the apparatus to be transported from one location to another.

Número de publicación WO 2012116394 A1

Fecha de solicitud: 28/02/2012

Inventores: Dewen LIU, Giok Lak Sim, Huachang Yang

Solicitante: Cesco Australia Limited.

Portable biogas digester anaerobic fermentation device

Portable biogas anaerobic fermentation device relates to a livestock wastewatertreatment. A secondary pool and biogas digesters, biogas has a water diversion canal,digesters over the water holes and bottom slag hole, biogas digesters over the water holeand vice pools connected by a hole over the water discharged digesters wastewater intobiogas tanks by Deputy Vice-pool outlet exhaust gas, methane gas collected from thedischarge pipe; biogas digesters with arched upper surface, the surface has a vaulteddigesters and biogas collection opening examination of the mouth, in the digester archedsurface side of the digester is provided over the water hole and the outlet; deputy inbiogas digesters with a fixed pipeline between pools, movable pipes, tees and straight;biogas secondary pool over the water through the hole and connect digesters biogasthrough biogas Deputy Vice-pool water tank outlet, gas secondary pool water throughthe water outlet from the digester outlet orifice discharge, biogas digesters and biogasbottom slag hole Deputy pool bottom slag hole and slagging pipeline valve connection.

NOTA: traducción automática del chino inglés por Google Patents.

Número de publicación CN 102618437 B

Fecha de solicitud: 13/04/2012

Inventores: Wenzhong Wang; Liming Zhang; Yuqin Zhang; MushuiWang; Zhixin Han; Wenxing Lu.

11

Solicitante: Xiamen Huajing Environmental Prot Technology Co Ltd.

Anaerobic digester for the production of methane gas from organic waste

An anaerobic digester to produce methane gas from animal manure. Theanaerobic digester preferably includes a reactor vessel with a solar concentrator and anRF emitter. The reactor vessel may be loaded from the top with animal manure, sealedand evacuated during which the waste may be subject to focused light energy and/orsubject to RF Energy from the RF emitter inorder to facilitate anaerobic digestion, andthen cleaned out with an auger turning outthe resultant waste solids. An enzyme catalystmay also be employed to further facilitateanaerobic digestion. Methane gas producedas a result of anaerobic digestion is pumpedfrom the reactor vessel and collected forfurther processing and/or burned for energyand/or heat.

Número de publicación US 20130149765 A1

Fecha de solicitud: 11/05/2012

Inventores: Gary N. Austin.

Solicitante: Gary N. Austin.

Process for controlling and monitoring the production of biogas

The present invention relates to aprocess for online and direct control ofproduction of biogas in an anaerobicdigester comprising the steps of: a) feedingthe anaerobic digester with organicsubstrate, b) extracting a sample of biogasfrom the headspace of the anaerobic

12

digester, c) analyzing the composition of the sample of biogas and detecting the quantityof one or more volatile fatty acids in said sample of biogas, d) controlling feeding of theanaerobic digester in view of the quantity of the one or more volatile fatty acids detectedin said sample of biogas.

Número de publicación CA2783425 A1

Fecha de solicitud: 18/07/2012

Inventores: Pierre Orlewski, Philippe Delfosse, Malick Camara.

Solicitante: Centre De Recherche Public Gabriel Lippmann, PierreOrlewski, Philippe Delfosse, Malick Camara.

Heat insulation device of biogas digester

The utility model discloses a heat insulation device of a biogas digester. Ananaerobic tank is arranged underground; an infrastructure layer is arranged outside theanaerobic tank; a surrounding air heat insulation layer is arranged between the outertank wall of the anaerobic tank and the infrastructure layer; a cover plate is arranged atthe upper end of the air heat insulation layer; the cover plate covers the tank wall andthe upper end of the infrastructure layer; and a solar heating heat insulation chamber isarranged above a gas storage cabinet and the cover plate. The device disclosed by theutility model guarantees constant-temperature operation of the biogas digester in allseasons, realizes low operation cost, thorough fermentation and high material utilizationrate, and increases the gas output.

Número de publicación CN 202945236 U

Fecha de solicitud: 29/11/2012

Inventores: Wang Ziyi, Xu Zaitong, Mei Zili.

Solicitante: Taian Dongfang Methane Science & Technology Co Ltd.

13

System for anaerobic digestion of solid and soluble organic wastes, by-products andresidues

The subject invention providesadvantageous systems and processes foranaerobic digestion of organic wastestreams, particularly agricultural wastestreams. According to this invention, anew process is provided in which a liquidfraction from an organic waste streamcomprising soluble compounds issegregated and incubated in a reactorseparate from the solids fraction of the organic waste stream. Digestion of waste in bothreactors occurs substantially simultaneously and both reactors produce biogas (thus bothreactors function essentially like single stage reactors but allow for continuous orintermittent loading). According to one aspect of the invention, at least one cross-flowbaffle is provided for use in an anaerobic digester to collect biogas and break up clumpedsolids in the reactor. In another aspect of the invention, packing media for use in ananaerobic digester is provided.

Número de publicación US 20130288326 A1

Fecha de solicitud: 14/03/2013

Inventores: Pratap Pullammanappallil, Kerry Johanson, Ioannis MartinosPolematidis, John M. Owens, David P. Chynoweth.

Solicitante: University Of Florida Research Foundation, Inc.

14

Syngas biomethanation process and anaerobic digestion system

An anaerobic digester is fed afeedstock, for example sludge from a municipalwastewater treatment plant, and produces adigestate. The digestate is dewatered into a cake.The cake may be dried further, for example in athermal drier. The cake is treated in a pyrolysissystem to produce a synthesis gas and biochar.The gas is sent to the same or another digesterto increase its methane production. The charmay be used as a soil enhancer.

Número de publicación US 20130203144 A1

Fecha de solicitud: 14/03/2013

Inventores: Juan Carlos Josse, Andrew Benedek.

Solicitante: Anaergia Inc.

Publicaciones científicas

Como resultado de la búsqueda de publicaciones científicas se obtuvieron 1060publicaciones para el período 2008-2013. Las cuales se analizan a continuación.

FUENTE: elaboración propia a partir de datos de Scopus.com

15

2008 2009 2010 2011 2012 20130

50

100

150

200

250

133 132

175193

205222

Cantidad de publicacaciones por año

a nivel mundial sobre biogás

Publ

icac

ione

s

En el gráfico anterior se puede observar el crecimiento sostenido que hantenido las publicaciones científicas en materia de biogás a partir del año 2010. Ese añolas publicaciones sobre biogás crecieron un 32,58% con respecto al año anterior. Losaños subsiguientes los crecimientos con respecto al año anterior fueron de 10,29%,6,22% y 8,29% para 2011, 2012 y 2013 respectivamente.

FUENTE: elaboración propia a partir de datos de Scopus.com

El gráfico anterior desglosa las publicaciones científica de los quince países conmayor producción de material sobre biogás para el período estudiado.

Se encontrar tres publicaciones cuyos autores son de nacionalidad argentina.Dos de ellas, producto de investigaciones realizadas en la Facultad de Bioquímica,Química y Farmacia de la Universidad Nacional de Tucumán y relacionadas con laproducción de biogás a partir de desechos de la industrialización del limón. Estaspublicaciones se presentan en una sección independiente más adelante.

Publicaciones científicas destacadas

Se presentan a continuación algunas de las publicaciones más citadas de 2013.

16

AustriaRepública de Corea

Japón

Australia

Turquía

Suecia

Francia

Italia

Reino UnidoIndia

Alemania

Canadá

España

China

Estados Unidos

0 50 100 150 200 250

Publicaciones científicas

por nacionalidad del autor entre 2008 y 2013

Cantidad de publicaciones

Se listan sus títulos, abstracts y algunos datos de interés.

Anaerobic treatment of apple waste with swine manure for biogas production:Batch and continuous operation

This study evaluated the performance of anaerobic digesters using a mixture ofapple waste (AW) and swine manure (SM). Tests were performed using both batch andcontinuous digesters. The batch test evaluated the gas potential, gas production rate ofthe AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,%volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilictemperatures. The first-order kinetic model and modified Gompertz model were alsoevaluated for methane yield. The continuous test evaluated the performance of a singlestage completely stirred tank reactor (CSTR) with different mixture ratios of AW andSM at mesophilic temperature. The ultimate biogas and methane productivity of AW interms of total chemical oxygen demand (TCOD) was determined to be 510 and 252.mL/g TCOD added, respectively. The mixture of AW and SM improved the biogasyield by approximately 16% and 48% at mesophilic and thermophilic temperatures,respectively, compared to the use of SM only, but no significant difference was found inthe methane yield. The difference between the predicted and measured methane yieldwas higher with a first order kinetic model (4.6-18.1%) than with a modified Gompertzmodel (1.2-3.4%). When testing continuous digestion, the methane yield increasedfrom 146 to 190. mL/g TCOD added when the AW content in the feed was increasedfrom 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6. g VS/L/dand a hydraulic retention time (HRT) of 30. days. However, the total volatile fatty acids(TVFA) accumulation increased rapidly and the pH, methane content, and biogasproduction decreased continuously when the AW content in the feed was increased to50%. © 2012 Elsevier Ltd.

Autores: Kafle G.K., Kim S.H.

ISSN: 3062619.

17

Dry anaerobic digestion of food waste under mesophilic conditions: Performanceand methanogenic community analysis

The performance of dry anaerobic digestion (AD) of food waste wasinvestigated under mesophilic conditions and the methanogenic community wasinvestigated using 454 pyrosequencing. Stable dry AD was achieved by hydraulicretention time (HRT) control without the addition of alkali agents. The average CH4production rate, CH4 content, and volatile solid reduction rate were 2.51±0.17m3/m3/d,66±2.1%, and 65.8±1.22%, respectively, at an HRT of 40d. The methanogeniccommunity of the seed sludge experienced a significant reduction in genus diversityfrom 18 to 4 and a dominant methanogenic shift from hydrogenotrophic to acetoclasticgroups after the acclimation under dry condition. Almost all sequences of the dryanaerobic digester were closely related with those of Methanosarcina thermophila withsimilarity of 96.4-99.1%. The experimental results would serve as useful information tounderstand the dry AD system. © 2012 Elsevier Ltd.

Autores: Cho S.-K., Im W.-T., Kim D.-H., Kim M.-H., Shin H.-S., Oh S.-E.

ISSN: 9608524.

Microalgae cultivation for bioenergy production using wastewaters from amunicipal WWTP as nutritional sources

In order to reduce input cost for microalgal cultivation, we investigated thefeasibility of wastewater taken from a municipal WWTP in Busan, Korea as wastewaternutrients. The wastewaters used in this study were the effluent from a primary settlingtank (PS), the effluent from an anaerobic digestion tank (AD), the conflux ofwastewaters rejected from sludge-concentrate tanks and dewatering facilities (CR), andtwo combined wastewaters of AD:PS (10:90, v/v) and AD:CR (10:90, v/v). Chlorella sp.ADE5, which was isolated from the AD, was selected for the feasibility test. The highestbiomass production (3.01. g-dry cell weight per liter) of the isolate was obtained withthe combined wastewater ADCR, and it was 1.72 times higher than that with BG 11medium. Interestingly, the cells cultivated with wastewater containing PS wastewaterwere easily separated from the culture and improved lipid content, especially oleic acidcontent, in their cells. © 2013 Elsevier Ltd.

18

Autores: Cho S., Lee N., Park S., Yu J., Luong T.T., Oh Y.-K., Lee T.

ISSN: 9608524.

Comparison of different liquid anaerobic digestion effluents as inocula and nitrogensources for solid-state batch anaerobic digestion of corn stover

Effluents from three liquid anaerobic digesters, fed with municipal sewagesludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources forsolid-state batch anaerobic digestion of corn stover in mesophilic reactors. Threefeedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At anF/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highestmethane yield of 238.5L/kgVSfeed, while at an F/E ratio of 4, the reactor inoculated byfood waste effluent achieved the highest methane yield of 199.6L/kgVSfeed. Themicrobial population and chemical composition of the three effluents were substantiallydifferent. Food waste effluent had the largest population of acetoclastic methanogens,while dairy waste effluent had the largest populations of cellulolytic and xylanolyticbacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of19.3g CaCO3/kg. The performance of solid-state batch anaerobic digestion reactors wasclosely related to the microbial status in the liquid anaerobic digestion effluents. © 2012Elsevier Ltd.

Autores: Xu F., Shi J., Lv W., Yu Z., Li Y.

ISSN: 0956053X.

Solid state anaerobic co-digestion of yard waste and food waste for biogasproduction

Food and yard wastes are available year round at low cost and have thepotential to complement each other for SS-AD. The goal of this study was to determineoptimal feedstock/effluent (F/. E) and food waste/yard waste mixing ratios for optimalbiogas production. Co-digestion of yard and food waste was carried out at F/. E ratios of1, 2, and 3. For each F/. E ratio, food waste percentages of 0%, 10%, and 20%, based ondry volatile solids, were evaluated. Results showed increased methane yields andvolumetric productivities as the percentage of food waste was increased to 10% and 20%

19

of the substrate at F/. E ratios of 2 and 1, respectively. This study showed thatco-digestion of food waste with yard waste at specific ratios can improve digesteroperating characteristics and end performance metrics over SS-AD of yard waste alone.© 2012 Elsevier Ltd.

Autores: Brown D., Li Y.

ISSN: 9608524.

Monitoring methanogenic population dynamics in a full-scale anaerobic digester tofacilitate operational management

Microbial populations in a full-scale anaerobic digester fed on food waste weremonitored over an 18-month period using qPCR. The digester exhibited a highlydynamic environment in which methanogenic populations changed constantly inresponse to availability of substrates and inhibitors. The methanogenic population in thedigester was dominated by Methanosaetaceae, suggesting that aceticlasticmethanogenesis was the main route for the production of methane. Sudden losses (69%)in Methanosaetaceae were followed by a build-up of VFAs which were subsequentlyconsumed when populations recovered. A build up of ammonium inhibitedMethanosaetaceae and resulted in shifts from acetate to hydrogen utilization. Additionof trace elements and alkalinity when propionate levels were high stimulated microbialgrowth. Routine monitoring of microbial populations and VFAs provided valuableinsights into the complex processes occurring within the digester and could be used topredict digester stability and facilitate digester optimization. © 2013 Elsevier Ltd.

Autores: Williams J., Williams H., Dinsdale R., Guwy A., Esteves S.

ISSN: 9608524.

Thermophilic co-digestion of pig manure and crude glycerol: Process performanceand digestate stability

Anaerobic co-digestion has been widely used to enhance biogas production ofdigesters and, therefore, to improve the anaerobic plants economic feasibility. In thepresent study, glycerol, a by-product of the biodiesel industry, was used as a co-substrate

20

for pig manure. The results showed that the thermophilic anaerobic co-digestion of pigmanure supplemented with 3% of glycerol, on weight basis, was satisfactory. The specificbiogas production of the co-digester was 180% higher than the one obtained by thereference digester, which was only fed with pig manure. The improvement was related tothe double of the organic loading rate, the high biodegradability of the crude glycerol,the slight reduction of the free ammonia concentration and the optimisation of thecarbon-to-nitrogen ratio. Moreover, the analysis of the organic matter (protein, lipids,carbohydrates and fibers) of the influent and the effluent of both digesters together withtheir biogas flow rates indicated that the microorganisms in the co-digester obtainedlarge amounts of nutrients from the glycerol, whereas the microorganisms of thereference digester mainly produced biogas from the particulate matter. However, thedigestate obtained from the co-digester cannot be directly applied as soil fertiliser orconditioner due to the presence of high levels of biodegradable matter, which may exertnegative impacts on the plant-soil system. Thus, a longer hydraulic retention time, areduction of the glycerol concentration and/or a post-treatment is required if thedigestate is to be used as soil fertiliser or conditioner. In contrast, pig manure digestatecan be directly applied on land. © 2013 Elsevier B.V.

Autores: Astals S., Nolla-Ardevol V., Mata-Alvarez J.

ISSN: 1681656.

Metagenomic analysis of methanogen populations in three full-scale mesophilicanaerobic manure digesters operated on dairy farms in Vermont, USA

The microbial communities that produce biogas as a result of anaerobicdigestion of manure remain poorly understood. Using next-generation sequencing,methanogen populations were investigated in three full scale mesophilic anaerobicdigesters operated on dairy farms. A combined 50 246 non-chimeric sequence readscovering the V1-V3 hypervariable regions of the methanogen 16S rRNA gene wereassigned to 307 species-level operational taxonomic units (OTUs). The Blue SpruceFarms (BSF) and Green Mountain Dairy (GMD) anaerobic digesters were found tohave nearly identical methanogen profiles, with the overwhelming predominance ofOTU 1 (98.5% and 99.7%, respectively), which showed 99.2% sequence identity to

21

Methanosarcina thermophila. In contrast, methanogens from the Chaput Family Farms(CFF) anaerobic digester were more diverse, with five major OTUs belonging to fourdistinct phylogenetic groups (Methanomicrobiales, Methanosarcinales,Methanoplasmatales, and Methanobacteriales). Differences in management practicesand years of operation were hypothesized as potential factors responsible for differencesin the methanogen profiles. © 2013 Elsevier Ltd.

Autores: St-Pierre B., Wright A.D.G.

ISSN: 9608524.

Long-term investigation of microbial fuel cells treating primary sludge or digestedsludge

The long-term performance of sludge treatment in microbial fuel cells (MFCs)was examined by operating two MFCs for almost 500. days. In Phase I, one MFC fedwith primary sludge removed 69.8. ±. 24.1% of total chemical oxygen demand (TCOD)and 68.4. ±. 17.9% of volatile suspended solids (VSS); the other MFC with digestedsludge reduced 36.2. ±. 24.4% of TCOD and 46.1. ±. 19.2% of VSS. In Phase II, bothMFCs were operated as a two-stage system that removed 60% of TCOD and 70% ofVSS from the primary sludge. An energy analysis revealed that, although the totalenergy in the MFC system was comparable with that of anaerobic digesters, the electricenergy had a minor contribution and methane gas still dominated the total energyproduction. The results suggest that MFCs may not be suitable for treating primarysludge for energy recovery, but could potentially be used to polish the effluent fromanaerobic digesters. © 2013 Elsevier Ltd.

Autores: Ge Z., Zhang F., Grimaud J., Hurst J., He Z.

ISSN: 9608524.

Effect of maize silage addition on biomethane recovery from mesophilic co-digestionof chicken and cattle manure to suppress ammonia inhibition

The aim of this study is to evaluate the biogas recovery potential if mesophilic(35 ± 2 C) anaerobic co-digestion of two different types of manure sources (from

22

chicken and cattle) is applied at a biogas plant. In order to evaluate the improvement inbiogas production in the presence of the co-substrate, maize silage is digested togetherwith the animal manure. Results indicated that daily biomethane and total energy(power + heat) productions improved about 1.2 fold when maize silage is co-digestedwith cattle and chicken wastes. The heat and power energy potentials from the producedbiogas were determined using the conversion rates of a CHP unit. Significant energyrecovery could be achieved for both cases; i.e. total methane productions were calculatedas 5800 and 6580 m3/day corresponding to total energy productions of some 45.05 ×103 and 51.06 × 10 3 kW h without and with maize silage addition, respectively. A heatanalysis was also performed where the resulting biomethane productions were the basisof the heat requirements. Results indicated that the major part of the heatingrequirements consisted of slurry heating to the operating temperature (in this study 35C). When the overall heat requirements are compared to the heat potential from a CHPunit, it is clear that the heat produced is sufficient for successful mesophilic co-digestiongiving energy savings as well as the excess heat can be utilized elsewhere in the premisesof the biogas plant. Hence, treatment plants including co-digestion of chicken and cattlemanure with a suitable co-substrate are becoming net producers of renewable energy ifappropriate energy recovery technology is provided. Although the improvement inbiogas and energy savings demonstrated that co-digestion of these two different organicwastes is viable with maize silage as the co-substrate, the co-digester needs control dueto possible inhibition by high free ammonia levels especially from the chicken livestock.© 2013 Elsevier Ltd.All rights reserved.

Autores: Yangin-Gomec C., Ozturk I.

ISSN: 1968904.

Organic silicon compounds in biogases produced from grass silage, grass and maizein laboratory batch assays

In the present study the occurrence of volatile organic silicon compounds inbiogas produced from grass silage, grass and maize in laboratory batch assays wasanalyzed and methane potentials were determined. Inoculum from a mesophilic farmdigester was used, and its effects were subtracted. Methane yields from grass silage, grass

23

and maize were 0.38, 0.42 and 0.34 m3CH4/kg - volatile solids added (VSadd),respectively. Trimethyl silanol, hexamethylcyclotrisiloxane (D3),octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) weredetected from all the biogases. Higher yields of volatile organic silicon compounds inthe grass (from 21.8 to 37.6 μg/kgVSadd) were detected than in grass silage or maizeassays (from 14.7 to 20.4 and from 7.4 to 12.1 μg/kgVSadd, respectively). Overall, it isimportant to consider silicon-containing compounds also in biogases in energy cropdigestion as the number of biogas plants using energy crops as feeding material increasesand some biogas applications are sensitive to organic silicon compounds. © 2013Elsevier Ltd.

Autores: Rasi S., Seppala M., Rintala J.

ISSN: 3605442.

Impact of different particle size distributions on anaerobic digestion of the organicfraction of municipal solid waste

Particle size may significantly affect the speed and stability of anaerobicdigestion, and matching the choice of particle size reduction equipment to digester typecan thus determine the success or failure of the process. In the current research theorganic fraction of municipal solid waste was processed using a combination of a shearshredder, rotary cutter and wet macerator to produce streams with different particle sizedistributions. The pre-processed waste was used in trials in semi-continuous 'wet' and'dry' digesters at organic loading rate (OLR) up to 6kg volatile solids (VS) m-3day-1.The results indicated that while difference in the particle size distribution did notchange the specific biogas yield, the digester performance was affected. In the 'dry'digesters the finer particle size led to acidification and ultimately to process failure at thehighest OLR. In 'wet' digestion a fine particle size led to severe foaming and the processcould not be operated above 5kgVSm-3day-1. Although the trial was not designed as adirect comparison between 'wet' and 'dry' digestion, the specific biogas yield of the 'dry'digesters was 90% of that produced by 'wet' digesters fed on the same waste at the sameOLR. © 2012 Elsevier Ltd.

Autores: Zhang Y., Banks C.J.

24

ISSN: 0956053X.

454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scalebiogas digesters

The microbial community of 21 full-scale biogas reactors was examined using454 pyrosequencing of 16S rRNA gene sequences. These reactors included seven (sixmesophilic and one thermophilic) digesting sewage sludge (SS) and 14 (ten mesophilicand four thermophilic) codigesting (CD) various combinations of wastes fromslaughterhouses, restaurants, households, etc. The pyrosequencing generated more than160 000 sequences representing 11 phyla, 23 classes, and 95 genera of Bacteria andArchaea. The bacterial community was always both more abundant and more diversethan the archaeal community. At the phylum level, the foremost populations in the SSreactors included Actinobacteria, Proteobacteria, Chloroflexi, Spirochetes, andEuryarchaeota, while Firmicutes was the most prevalent in the CD reactors. The mainbacterial class in all reactors was Clostridia. Acetoclastic methanogens were detected inthe SS, but not in the CD reactors. Their absence suggests that methane formation fromacetate takes place mainly via syntrophic acetate oxidation in the CD reactors. Aprincipal component analysis of the communities at genus level revealed three clusters:SS reactors, mesophilic CD reactors (including one thermophilic CD and one SS), andthermophilic CD reactors. Thus, the microbial composition was mainly governed by thesubstrate differences and the process temperature. © 2013 Federation of EuropeanMicrobiological Societies.

Autores: Sundberg C., Al-Soud W.A., Larsson M., Alm E., Yekta S.S.,Svensson B.H., Sorensen S.J., Karlsson A.

ISSN: 1686496.

Screening microalgae strains for their productivity in methane following anaerobicdigestion

Interest in the use of microalgae for the production of biofuels has grown inrecent years. Biomethane is a biofuel that can be obtained with high efficiency fromanaerobic digestion of various organic feedstocks. In this study, a selection of freshwater

25

(n=15) and marine (n=5) microalgae were tested in order to identify a microalgal strainthat could be used as a model for large scale production of methane. Analysis of pH,volatile suspended solids and ammonium at the end of the assay ranged between6.98-7.66, 16.0-25.9g/L and 495-1622mg/L respectively. No significant differences inthese values were detected between freshwater and marine strains. There was nosignificant difference in the methane yield from freshwater microalgae (329±43mLCH4/g TVS) and marine microalgae (298±83mL CH4/g TVS) although it variedgreatly within the tested strains. A statistical analysis of the microalgae grown under twodifferent culture media showed that the type of medium was more determinant than thetype of microalgae (freshwater or marine) for the methane yield, with 310±35, 365±25and 303±77mL CH4/g TVS for the freshwater microalgae grown in Bold's-3NV, f/2and marine microalgae grown in f/2 media, respectively. The strains Scenedesmussp.-AMDD, Isochrysis sp. and Scenedesmus dimorphus displayed the best methaneyield with 410±6, 408±4 and 397±10mL CH4/g TVS, respectively. The strainScenedesmus sp.-AMDD was chosen as a model strain for future work developmentwith continuously fed digesters. © 2013 Elsevier Ltd.

Autores: Frigon J.-C., Matteau-Lebrun F., Hamani Abdou R., McGinn P.J.,O'Leary S.J.B., Guiot S.R.

ISSN: 3062619.

Harvesting microalgae grown on wastewater

The costs and life cycle impacts of microalgae harvesting for biofuel productionwere investigated. Algae were grown in semi-continuous culture in pilot-scalephotobioreactors under natural light with anaerobic digester centrate as the feed source.Algae suspensions were collected and the optimal coagulant dosages for metal salts(alum, ferric chloride), cationic polymer (Zetag 8819), anionic polymer (E-38) andnatural coagulants (Moringa Oleifera and Opuntia ficus-indica cactus) were determinedusing jar tests. The relative dewaterability of the algae cake was estimated bycentrifugation. Alum, ferric chloride and cationic polymer could all achieve >91% algaerecovery at optimal dosages. Life cycle assessment (LCA) and cost analysis resultsrevealed that cationic polymer had the lowest cost but the highest environmental

26

impacts, while ferric chloride had the highest cost and lowest environmental impacts.Based on the LCA results, belt presses are the recommended algae dewateringtechnology prior to oil extraction. © 2013 Elsevier Ltd.

Autores: Udom I., Zaribaf B.H., Halfhide T., Gillie B., Dalrymple O., ZhangQ., Ergas S.J.

ISSN: 9608524.

Publicaciones de investigadores nacionales

A combined process to treat lemon industry wastewater and produce biogas

We studied a process employed for treating lemon industry effluents, using themacrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%,respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated theeffect of adding every 12 h an inoculum consisting of a consortium of microorganismsisolated from the macrophyte roots and recirculating 30% of the outflow. In this way, weachieved a volumetric removal rate (VRR) of BOD = 354 g/m day. Plants were dailyharvested from the tank to maintain growth rate and the density originally planted. Westudied their use for biogas production in an anaerobic digester working with 12 and 16days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrialscale would solve the effluent pollution problem and generate an energy source thatcould be used by the industry itself to lower its production costs. © 2011Springer-Verlag.

Autores: Navarro A.R., Rubio M.C., Maldonado M.C.

Año de publicación: 2012

ISSN: 1618954X.

Anaerobic treatment of residual lemon pulp in digesters with semi-continuous feed

Lemon growing areas in the north of Argentina have industries that produceconcentrated juice, peel and essential oil and generate a significant amount of liquid and

27

solid waste as lemon pulp. In Argentina, despite the potential applications that the pulphas as animal feed and human and industrial raw material, only 10% is used for thesepurposes and the rest is discarded into the environment causing many ecological andeconomic problems. There is little information in the literature on biotechnologies forthe treatment of this industrial waste. This paper shows that lemon pulp is a suitablesubstrate to be treated by anaerobic digestion. We obtained 86 and 92% reduction ofchemical oxygen demand in a digester with a semi-continuous feed and retention timeof 10 and 20 days respectively and a productivity of 0.406 g CH4/g VS h. Comparativetests showed that pre-digesting the pulp improved the process of digestion andincreased biogas generation by 20%. © IWA Publishing 2013.

Autores: Navarro A.R., Lopez Z., Salguero J., Maldonado M.C.

Año de publicación: 2013

ISSN: 2731223.

Characterizing food waste substrates for co-digestion through biochemical methanepotential (BMP) experiments

Co-digestion of food waste with dairy manure is increasingly utilized toincrease energy production and make anaerobic digestion more affordable; however,there is a lack of information on appropriate co-digestion substrates. In this study,biochemical methane potential (BMP) tests were conducted to determine the suitabilityof four food waste substrates (meatball, chicken, cranberry and ice cream processingwastes) for co-digestion with flushed dairy manure at a ratio of 3.2% food waste and96.8% manure (by volume), which equated to 14.7% (ice-cream) to 80.7% (chicken) ofthe VS being attributed to the food waste. All treatments led to increases in methaneproduction, ranging from a 67.0% increase (ice cream waste) to a 2940% increase(chicken processing waste) compared to digesting manure alone, demonstrating thelarge potential methane production of food waste additions compared to relatively lowmethane production potential of the flushed dairy manure, even if the overall quantity offood waste added was minimal. © 2013 Elsevier Ltd.

Autores: Lisboa M.S., Lansing S.

Año de publicación: 2013

28

ISSN: 0956053X.

29

Índice de contenido

Autoridades........................................................................................................................2Equipo de trabajo..............................................................................................................3Resumen............................................................................................................................4Biogás................................................................................................................................5Patentes..............................................................................................................................5

Principales códigos de clasificación internacional.........................................................6Patentes destacadas.......................................................................................................8

Publicaciones científicas..................................................................................................15Publicaciones científicas destacadas............................................................................16Publicaciones de investigadores nacionales.................................................................27

30