129
Volumen 28 (2) Diciembre de 2009

Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

  • Upload
    lynga

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Volumen 28 (2)Diciembre de 2009

Page 2: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats
Page 3: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats
Page 4: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Volumen 28. Numero 2. 2009

LIMNETICARevista de la

Asociacion Iberica de Limnolog�a

Page 5: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

c© Asociacion Iberica de Limnolog�a

Deposito legal: V-2404-1986

ISSN: 0213-8409

Impresion: Gra�cas Rey, S.L.

Impreso en Espana/Printed in Spain

Page 6: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Con mis mejores deseos... Carta del editor

Queridos socios de la AIL, Colegas de estudio de las aguas continentales, Investigadores que habeiscon�ado en Limnetica para dar a conocer los resultados de vuestras investigaciones, Amigos:

Con esta carta quiero despedirme de todos vosotros desde mi condicion de editor de Limnetica yaque este va a ser mi ultimo volumen como tal. En el ultimo Congreso de la AIL en Huelva, ya manifestemi interes por dejar el cargo de editor y �nalmente esto ha sido posible. Con este volumen se cumplirancasi 12 anos desde que, en el congreso de Evora, asum� este cargo. Han sido anos duros para ir situandoa esta revista en un lugar destacado en la literatura especializada. Pero tambien anos en los que eltrabajo ha venido acompanado de muchas satisfacciones en la medida en la que se iban alcanzando losobjetivos previstos, modestos al principio y con mas pretensiones en estos momentos. En estos anoscomo editor he visto como nuestra Asociacion tambien iba cambiando, desde el nombre de AEL a AIL,de cargos en la Junta Directiva, como iba aumentando el numero de socios y otros muchos que ser�aprolijo describir, pero que se pueden resumir diciendo que ha sido el re�ejo de una asociacion joven,dinamica, que va evolucionando a mas, para irse situando en un lugar en el que pueda seguir incidiendoen nuestra sociedad.

Es evidente que Limnetica tambien ha seguido esta tendencia, y personalmente me ha producido unagran satisfaccion el ver como se iba consolidando como una revista de referencia, no solo en Espana yPortugal, sino para la mayor�a de los pa�ses de Iberoamerica. Desde este ano Limnetica esta entre lasrevistas SCI y se encuentra en fase de evaluacion para ser considerada como una revista de referenciaindexada y cuanti�cada por su impacto cient��co.

Con el paso de los anos he seguido con placer la evolucion de la revista, y no me re�ero a las mejorasde diseno, a la regularidad o a todo aquello que se ha podido hacer desde el Consejo Editorial o desde ladireccion de la AIL. Los cambios a los que me re�ero son mucho mas importantes y tienen que ver conel incremento del numero de manuscritos recibidos, los pa�ses de origen, el numero de citas recibidas,que han ido convirtiendo a Limnetica en una revista de referencia. En estos momentos, y despues delbache de Huelva, estamos pasando por un momento muy dulce por las posibilidades de futuro quenuevamente se abren ante nosotros.

Pues bien, esta situacion creo que es muy propicia para hacer el cambio en la direccion de la revista.No me anima otro motivo que el de dejar paso a nuevas generaciones, que puedan llevar con energ�asrenovadas hacia nuevos objetivos, como puede ser por ejemplo una revista con factor de impacto o haciaun formato electronico entre otros. Mi intencion es dejar el cargo, pero no desvincularme de Limnetica.He disfrutado haciendo este trabajo y me gustar�a continuar, pero desde un segundo plano, cosa a la queha accedido la Junta Directiva de la AIL y que agradezco muy sinceramente.

Page 7: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

El tema de mi sustitucion se planteo en la ultima reunion anual de la Junta Directiva de la AILdel pasado mes de octubre y con el se trato tambien el de la eleccion del nuevo editor. Agradezcosinceramente a mis companeros de la Junta Directiva la amabilidad de dejarme que os anunciara que laDra. Isabel Munoz va a ser la nueva editora. Bajo mi cargo Isabel ha sido sucesivamente Secretaria deRedaccion y Editora Adjunta, pero yo resumir�a mejor su papel diciendo que ha sido mi mano derechadesde los anos en los que solo ten�a esta mano. Por este motivo no solo es un acto de cortes�a, sino dejusticia, decir que ha tenido un papel muy destacado en la realizacion de la revista y en su evolucion.Por todo cuanto acabo de deciros queda claro cuanto valoro la eleccion de Isabel como nueva editorade Limnetica por parte de la Junta Directiva, as� como su aceptacion del cargo. En este sentido solo mequeda anadir que estoy a su entera disposicion.

Y para acabar esta despedida, permitidme un pequeno “sermon” que recoge algunas de mis obse-siones que ya os he ido recordando a lo largo de estos anos. Soy consciente de que en un mundo enel que todo se mide por parametros cuanti�cables, numero de proyectos, de publicaciones, de citasrecibidas, �ndices de impacto, factores H y otras medidas supuestamente objetivas que se han ido con-virtiendo en una forma de supervivencia cient��ca, ha podido parecer que publicar en Limnetica ha sidoun acto que estaba a medio camino entre un “acto de fe” en el futuro y una inversion a “fondo perdido”.Pues bien, ni lo uno, ni lo otro, publicar en Limnetica ha sido poner ladrillos para construir un edi�cioque ha ido creciendo y del que ahora estamos a punto de poner el tejado. Esta donde esta gracias a todoslos que han cre�do en ella. Es precisamente aqu� y ahora que quiero aprovechar para agradecer a todoslos que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que hanhecho posible su edicion con las cuotas de socio de la AIL, cuan importante ha sido su contribucion.Queda camino por recorrer, pero igual que hasta ahora, el futuro de Limnetica esta en nuestras manos,con la ventaja adicional de que ahora parece que el camino es mas llano y sin tantos baches. Y unaultima advertencia, que no me entere yo. . . que algun socio de la AIL obvia las citas de nuestra revista.Los ex-editores acostumbran a ser gente terrible.

Con mis mejores deseos para Limnetica y su nueva editora,

Joan Armengol

Page 8: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 185-188 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

New records of Eunapius fragilis (Leidy, 1851) and Ephydatia �uviatilis(Linnaeus, 1759) (Porifera, Spongillidae) in Ebro River Basin (N Spain)

Javier Oscoz1,∗, Pedro Tomas2 and Concha Duran3

1 Departamento de Zoolog�a y Ecolog�a, Facultad de Ciencias, Universidad de Navarra, Apdo. 177 E-31080,Pamplona, Navarra, Espana.2 Laboratorio de Ensayos Tecnicos S.A., Polig. Ind. Valdeconsejo, C/ Aneto, Parcela 8-A, E-50410 Cuarte deHuerva, Zaragoza.3 Area Calidad de Aguas, Confederacion Hidrogra�ca del Ebro, Paseo Sagasta 24-28, E-50071, Zaragoza.2

∗ Corresponding author: [email protected]

Received: 17/3/09 Accepted: 21/4/09

ABSTRACT

New records of Eunapius fragilis (Leidy, 1851) and Ephydatia �uviatilis (Linnaeus, 1759) (Porifera, Spongillidae) in theEbro River Basin (N Spain)

This note represents a contribution to the knowledge of the presence of some species of freshwater sponges (Porifera, Spon-gillidae) in the Ebro River Basin. Two species (Eunapius fragilis and Ephydatia �uviatilis) collected in four rivers wereidenti�ed. The presence of Eunapius fragilis in the Iberian Peninsula was con�rmed comparing spicules measurements withexisting literature data.

Key words: Freshwater sponges, Eunapius fragilis, Ephydatia �uviatilis, Ebro River Basin

RESUMEN

Nuevas citas de Eunapius fragilis (Leidy, 1851) y Ephydatia �uviatilis (Linnaeus, 1759) (Porifera, Spongillidae) en lacuenca del r�o Ebro (N Espana)

Esta nota representa una contribucion al conocimiento sobre la presencia de algunas especies de esponjas dulceacu�colas(Porifera, Spongillidae) en la cuenca del r�o Ebro. Se identi�caron dos especies (Eunapius fragilis y Ephydatia �uviatilis),las cuales fueron halladas en cuatro r�os. Mediante la comparacion de los tamanos medidos de las esp�culas con los datosexistentes en la literatura, se con�rmo la presencia de Eunapius fragilis en la Peninsula Iberica.

Palabras clave: Esponjas dulceacu�colas, Eunapius fragilis, Ephydatia �uviatilis, Cuenca del r�o Ebro.

Sponges (Porifera) are ancient multicellular ani-mals that have colonized most aquatic habitats,from polar seas to tropical waters. The majo-rity of sponges are restricted to marine environ-ments, but a few taxa live in freshwater habi-tats. All freshwater sponges were combined intoa new haplosclerid suborder Spongillina, compri-sing seven families: Spongillidae, Lubomirskii-dae, Malawispongiidae, Metaniidae, Metschni-

kowiidae, Palaeospongillidae and Potamolepidae(Manconi & Pronzato, 2002). The Palaeospon-gillidae is exclusively fossil. Spongillidae showa worldwide distribution, whereas the other �-ve families are endemic or are geographica-lly restricted. According to Pronzato & Manco-ni (2001) three families are present in Europe:Malawispongiidae (endemic to the lake Ochridin Macedonia), Metschnikowiidae (endemic to

Page 9: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

186 Oscoz et al.

the Caspian Sea) and Spongillidae (cosmopolitanand widely distributed). In the Iberian Peninsulafour living sponges have been recorded (Trave-set, 1986; Pronzato & Manconi, 2001): Ephyda-tia �uviatilis (Linnaeus, 1759), Ephydatia mue-lleri (Lieberkuhn, 1855), Heteromeyenia baileyi(Bowerbank, 1863) and Spongilla lacustris (Lin-naeus, 1759). Moreover, Trochospongilla horri-da (Weltner, 1893) has been recorded as a fossilsponge in Portugal, and on the other hand the pre-sence of Eunapius fragilis (Leidy, 1851) is doubt-ful (Traveset, 1986). Due to relative scarcity ofdata about the presence of freshwater sponges,their discovery and identi�cation could be con-

sidered interesting in order to increase the know-ledge of their distribution.

During the 2007 and 2008 water quality sur-veys carried out in the Ebro River Basin, seve-ral specimens of freshwater sponges were foundin eight sample stations belonging to four rivers.However, due to the absence of gemmules in so-me of these specimens, only specimens from fourlocalities in four rivers could be identi�ed.

– Ephydatia �uviatilis (Fig. 1): This cosmopo-litan sponge, widely distributed throughoutthe northern Hemisphere, is notably commonin Europe and the Iberian Peninsula, both in

Figure 1. Ephydatia �uviatilis from Ebro River Basin. A: Specimen with gemmules; B and C: Gemmuloscleres. Ephydatia �uvia-tilis de la Cuenca del r�o Ebro. A: Individuo con gemulas; B y C: Gemoscleras.

Page 10: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Eunapius fragilis and Ephydatia �uviatilis in Ebro River Basin 187

running and still waters (Traveset, 1986). Itwas found in two sample stations: Epila, lo-wer Jalon River (2008-07-08) [UTM: 30T XM422076] and Alfaro, in the lower Alhama Ri-ver (2008-08-11) [UTM: 30T XM 024705].

All the specimens were found on bouldersfrom lotic areas (rif�es).

– Eunapius fragilis (Fig. 2): This sponge is cos-mopolitan in a wide range of lentic and lo-

Figure 2. Eunapius fragilis from Ebro River Basin. A: Specimen with gemmules; B: Carpet of gemmules; C: Gemmule withforamen; D and E: Gemmuloscleres. Eunapius fragilis de la Cuenca del r�o Ebro. A: Individuo con gemulas; B: Grupo de gemulas;C: Gemula con foramen; D y E: Gemoscleras.

Page 11: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

188 Oscoz et al.

tic habitats in Europe. It was cited in Portugalby Mathes (1952), but Traveset (1986) poin-ted out that its presence in the Iberian Pe-ninsula was doubtful, and according to Pron-zato & Manconi (2001) this species was notpresent in the Iberian Peninsula. Specimensof this species were found in two close sam-ple stations: Miranda de Ebro, in the lowerZadorra River (2008-08-20) [UTM: 30T WN085251] and Miranda de Ebro, in the midd-le Ebro River (2008-08-20) [UTM: 30T WN073245]. In the Zadorra River the specimenwas found on a small boulder from a rif�e,whereas in the Ebro River the sponge wasfound on an empty Trichoptera case in a riverstretch dominated by runs and rif�es. At least30 megascleres and 40 gemmoscleres weremeasured in each specimen. Most of the mea-sured spicules agreed with the ranges repor-ted in the literature for this species (Pronzato& Manconi, 2001). In the specimen from theZadorra River, megascleres measured 174 to224 μm in length and averaged 204 μm, whe-reas gemmoscleres measured 62 to 150 μmand averaged 87 μm in length. In the speci-men from the Ebro River, megascleres mea-sured 195 to 232 μm in length and avera-ged 218 μm, whereas gemmoscleres measured70 to 132 μm and averaged 83 μm in length.

ACKNOWLEDGMENTS

We are grateful to Dr. Iosune Uriz (Centred’Estudis Avancats de Blanes-CSIC), Dr. RenataManconi (Universita degli Studi di Sassari) andDr. Roberto Pronzato (Universita degli Studi diGenova) for the comments and help given, andfor their kindness. We also thank Dr. Enrique Ba-quero (Universidad de Navarra) for his assistancein preparing the microscope photographs.

REFERENCES

MANCONI, R. & R. PRONZATO. 2002. SuborderSpongillina subord. nov.; Freshwater sponges. In:Systema Porifera: A Guide to the Classi�cationof Sponges, Vol. 1. J.N.A. Hooper & R.W.M. VanSoest (eds.): 921-1019. Kluwer Academic/PlenumPublishers, New York.

MATHES, E. 1952. Guia de trabalhos practicos deZoologia. Acta Universitatis Coimbrigensis, 1952.425 pp.

PRONZATO, R. & R. MANCONI. 2001. Atlas ofEuropean freshwater sponges. Ann. Mus. civ. St.Nat. Ferrara, 4: 3-64.

TRAVESET, A. 1986. Clave de identificacion de lasesponjas de agua dulce de la Pen�nsula Iberica. Aso-ciacion Espanola de Limnolog�a. Claves de identifi-cacion de la flora y fauna de las aguas continentalesde la Pen�nsula Iberica. Publicacion No 2, 25pp.

Page 12: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 189-202 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

International Standardization of Common Names for Iberian EndemicFreshwater Fishes

Pedro M. Leunda1,∗, Benigno Elvira2, Filipe Ribeiro3,6, Rafael Miranda4, Javier Oscoz4, MariaJudite Alves5,6 and Maria Joao Collares-Pereira5

1 GAVRN-Gestion Ambiental Viveros y Repoblaciones de Navarra S.A., C/ Padre Adoain 219 Bajo, 31015 Pam-plona/Iruna, Navarra, Espana.2 Universidad Complutense de Madrid, Facultad de Biolog�a, Departamento de Zoolog�a y Antropolog�a F�sica,28040 Madrid, Espana.3 Virginia Institute of Marine Science, School of Marine Science, Department of Fisheries Science, GloucesterPoint, 23062 Virginia, USA.4 Universidad de Navarra, Departamento de Zoolog�a y Ecolog�a, Apdo. Correos 177, 31008 Pamplona/Iruna,Navarra, Espana.5 Universidade de Lisboa, Faculdade de Ciencias, Centro de Biologia Ambiental, Campo Grande, 1749-016 Lis-boa, Portugal.6 Museu Nacional de Historia Natural, Universidade de Lisboa, Rua da Escola Politecnica 58, 1269-102 Lisboa,Portugal.2

∗ Corresponding author: [email protected]

Received: 8/10/08 Accepted: 22/5/09

ABSTRACT

International Standardization of Common Names for Iberian Endemic Freshwater Fishes

Iberian endemic freshwater �shes do not have standardized common names in English, which is usually a cause of incon-veniences for authors when publishing for an international audience. With the aim to tackle this problem, an updated list ofIberian endemic freshwater �sh species is presented with a reasoned proposition of a standard international designation alongwith Spanish and/or Portuguese common names adopted in the National Red Data Books.

Key words: Standard designation, ichthyofauna, Spain, Portugal.

RESUMEN

Estandarizacion Internacional de los Nombres Comunes para los Peces Dulceacu�colas Endemicos de la Pen�nsula Iberica

Las especies de peces dulceacu�colas endemicas de la pen�nsula Iberica carecen de nombres comunes en ingles, lo cualfrecuentemente causa inconvenientes a los autores en el momento de publicar para una audiencia internacional. Con elobjetivo de llenar este vac�o, se presenta una lista actualizada de las especies de peces dulceacu�colas endemicas de lapen�nsula Iberica con una propuesta razonada de designacion internacional estandarizada junto con los nombres comunesen espanol y/o portugues adoptados en los Libros Rojos Nacionales.

Palabras clave: Designacion estandar, ictiofauna, Espana, Portugal.

RESUMO

Padronizacao Internacional dos Nomes Comuns dos Peixes Dulciaqu�colas Endemicos da Pen�nsula Iberica

Os peixes dulciaqu�colas endemicos da Pen�nsula Iberica nao possuem um nome comum devidamente padronizado em Ingles,o que causa problemas aos investigadores quando publicam em revistas com uma audiencia internacional. O presente traba-lho procurou resolver esta questao, incluindo uma lista actualizada das especies pisc�colas endemicas da Pen�nsula Ibericae uma proposta fundamentada de nomes comuns em Ingles, juntamente com as designacoes comuns em Espanhol e/ou Portu-gues adoptadas nos respectivos Livros Vermelhos Nacionais.

Palavras-chave: designacao padrao, ictiofauna, Espanha, Portugal.

Page 13: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

190 Leunda et al.

INTRODUCTION

Endemic species of non-English speaking coun-tries do not have standardized common names inEnglish and Iberian �sh species may be consi-dered a good example (Froese & Pauly, 2008;IUCN, 2008). The absence of common namesin English for an international use is usually thecause of inconveniences for authors when pu-blishing scienti�c, technical, legal or academiccontributions. Speci�cally, during the manuscriptpreparation and review processes, editors and/orreviewers of some international journals requirefull names —i.e. common and scienti�c nameswith authority— whilst others prefer to use ver-nacular names in the title, introducing the �shspecies’ scienti�c names in the abstract. In suchcases, it is for the author consideration to attri-bute/create an international common designation,leading to a growing variety of vernacular namesin English for Iberian �shes and other endemicichthyofaunas in non-English speaking regions.

Some of the English common names for Ibe-rian fishes have been used consistently enough thatbecame almost standard. However, it is frequentto find in literature the same common namereferring to different species, for example, “Iberianbarbel” which could correspond to any of thenine endemic species presently recognized withinthe genus Barbus. Additionally, it is commonto find the same species with different commonnames in English, due to direct translation oflocal languages vernacular names. This is utmostproblematic in the Iberian Peninsula, whereseveral languages (Portuguese, Spanish, Basque,Catalonian, and Galician) are officially recognizedand many more local dialects are spoken. Suchlinguistic diversity inevitably resulted in severalvernacular names for a single species but also toseveral species sharing the same name in differentregions. To overcome such problems, sometimeseditors and/or reviewers of international journalsrecommend using only the species scientific namealong the manuscripts, resulting in tedious papers,regardless of the content, especially when severalfish species names are mentioned repeatedly. Asa rule, scientific names should be included and

prioritized in the title —without author(s) andyear— and given complete in their first appea-rance in the abstract and introduction sections.

Here, we present an updated list of Iberianendemic freshwater �sh species with Spanishand/or Portuguese vernacular names adopted inthe National Red Data Books (Doadrio, 2001,2002; Rogado et al., 2005; but see also Collares-Pereira et al., 2007; Ribeiro et al., 2007) alongwith a reasoned proposition of a standard interna-tional designation. Genera within a given familyare presented in alphabetical order, as are specieswithin a given genus.

Our standardization effort obeyed, wheneverpossible, to former common names, adopted byearlier authors and used in the literature, but so-me new names are now proposed if we conside-red earlier ones inaccurate, geographically biasedor scienti�cally unsatisfactory. For example, na-mes that include geographical areas or drainagesare preferred against current administrative pro-vinces, autonomous regions or countries, in orderto link common name with accurate species dis-tribution, avoiding inappropriate regional or lo-cal names. We also avoided common names withdesignations of genera that do not occur in Iberia(e.g., roach = Rutilus). Moreover, in some Iberianendemic genera we recommend, with some ex-ceptions (already traditionally well-established),the local language name as the most appropriatestandard common name.

As far as we know, the only similar standar-dization effort in Europe was carried out for theBritish Isles �sh fauna (Wheeler, 1992; Wheeleret al., 2004). However, the American FisheriesSociety (AFS) publishes updated lists (e.g., Nel-son et al., 2004) of common and scienti�c na-mes for North American species. Based on this,the AFS also has developed a �sh name spell-checker software as an aid to authors and editorsof �sheries science papers. We encourage scien-ti�c associations or research groups from otherregions to coordinate the agreement and comple-tion of similar lists for their ichthyofauna.

The list we present here (see Table 1) should beconsidered a live document where additions, co-rrections, comments and suggestions are welcome.

Page 14: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

International Names of Iberian Fishes 191

STANDARD NAMES AND JUSTIFICATION

1. Family Cyprinidae

1.1 Achondrostoma arcasii (Steindachner, 1866).Spanish: Bermejuela. Portuguese: Panjorca.Standard name: Bermejuela. The species wasdescribed as Leuciscus, and after transferredto the genera Rutilus first, and Chondrostomalater, thus receiving in the literature commonnames such as “(Iberian) red roach” or“bermejuela nase”. Recently, based on theputative congruence between molecular andmorphological characters, Robalo et al. (2007)proposed five new genera within Chondrosto-ma s.l., and the species was assigned to thenew Iberian endemic genus Achondrostoma.However, the proposed generic changes stillraise some concerns (see comments on Ibe-rochondrostoma olisiponensis). Endemicity ofthe genus no longer supports name combina-tions previously used, which incorrectly evokeother genera. It presents a wider distributionrange in Spain and therefore we recommendthe standard designation of “Bermejuela” asalso adopted by Kottelat & Freyhof (2007).

1.2 Achondrostoma occidentale (Robalo, Alma-da, Sousa-Santos, Moreira & Doadrio, 2005).Portuguese: Ruivaco do Oeste. Standard na-me: Western ruivaco. The natural distri-bution of the species is restricted to somecoastal and central drainages in western Ibe-ria. The Portuguese endemicity of this newlydescribed species (Robalo et al., 2005a) re-commends the use of the translation of its na-tional vernacular name (Robalo et al., 2008).

1.3 Achondrostoma oligolepis (Robalo, Doa-drio, Almada & Kottelat, 2005). Portuguese:Ruivaco. Standard name: Ruivaco. The re-placement name for Leuciscus macrolepido-tus Steindachner, 1866 given by Robalo et al.(2005b) was Chondrostoma oligolepis. ThePortuguese endemicity of this species and itswider natural distribution range (from Limato Tornada drainages) when compared to A.occidentale suggests the adoption of its sin-gle vernacular name as appropriate.

1.4 Achondrostoma salmantinum Doadrio &Elvira, 2007. Spanish: Sarda. Standard na-me: Sarda. This recently described specieshas a narrow distribution range encompassingthe Huebra, Turones and Uces catchmentswithin the Duero River basin in southwesternSpain. Such a regional range justifies theappropriateness of its local name as standarddesignation (Doadrio&Elvira, 2007).

1.5 Anaecypris hispanica (Steindachner, 1866).Spanish: Jarabugo. Portuguese: Saramugo.Standard name: Jarabugo. The Iberian en-demicity of the genus with this single speciescould recommend both Spanish and Portu-guese vernacular names (Kottelat & Freyhof,2007), since it occurs in both countries alongthe Guadiana River basin (Collares-Pereira& Cowx, 2001). However, Steindachner des-cribed the species in 1866 (as Phoxinellushispanicus) based on specimens collected ina small Guadiana tributary in Spain. Becauseit was �rstly recorded by the Spanish verna-cular name, we recommend the standardiza-tion of this older designation —the �rst ci-tation to the Portuguese Guadiana was in-deed posterior (Collares-Pereira & Almaca,1979). Moreover, the Portuguese name maywell be confused with the vernacular na-me of another quite distinct endemic species—the “Samaruc” (see Valencia hispanica).

1.6 Barbus bocagei Steindachner, 1865. Spanish:Barbo comun. Portuguese: Barbo-comum.Standard name: Iberian barbel. Due tothe still ongoing doubts about the genericstatus (Barbus, Luciobarbus), we maintainall Iberian barbels in the previous singlegenus Barbus until further studies are carriedon, to avoid nomenclatural instability. Eventhough several endemic barbel species inhabitIberia and thus have shared this name in theliterature, this species has the broadest naturaldistribution range within Iberia, occurring inthe Atlantic slope drainages from the Limato the Sado River basins, including the twolargest IberiandrainagesTagus andDouro.

1.7 Barbus comizo Steindachner, 1865. Spa-nish: Barbo comizo. Portuguese: Cumba.

Page 15: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

192 Leunda et al.T

ab

le1.

Lis

tof

Iber

ian

fres

hw

ater

fish

spec

ies

with

Portugues

ean

d/o

rSpan

ish

ver

nac

ula

rnam

esal

ong

with

the

pro

pose

din

tern

atio

nal

stan

dar

ddes

ignat

ions

(ord

ered

acco

rdin

gto

text).

Lis

tade

los

pec

esde

agua

dulc

eib

eric

os

con

sus

nom

bre

sco

munes

enport

ugu

esy

espanol

junto

con

lades

ignaci

on

inte

rnaci

onal

esta

ndar

pro

pues

ta(o

rden

aco

rde

al

text

o).

Lis

tade

pei

xes

dulc

iaquíc

ola

sen

dém

icos

da

Pen

insu

laIb

éric

aco

mos

nom

esco

muns

emP

ort

uguês

eE

spanhol

com

pro

post

apara

padro

niz

açã

ode

des

ignaçã

oin

tern

aci

onal

(ord

emde

aco

rdo

com

ote

xto).

Fa

mil

y/S

pec

ies

Sy

no

ny

my

Port

ugu

ese

Com

mon

Na

me

Sp

an

ish

Com

mon

Nam

eS

tan

dard

Inte

rnati

on

al

Nam

e

1.

Cy

pri

nid

ae

1.1

Ach

on

dro

stom

aa

rca

sii

Leu

cisc

us

arc

asi

iPan

jorc

aB

erm

ejuel

aB

erm

eju

ela

Ru

tilu

sa

rca

sii

Ch

on

dro

sto

ma

arc

asi

i

1.2

Ach

on

dro

sto

ma

occ

iden

tale

Ch

on

dro

sto

ma

occ

iden

tale

Ru

ivac

o-d

o-O

este

—W

este

rnru

ivaco

1.3

Ach

on

dro

sto

ma

oli

go

lep

isR

uti

lus

ma

cro

lepid

otu

sR

uiv

aco

—R

uiv

aco

Ch

on

dro

sto

ma

macr

ole

pid

otu

s

Ch

on

dro

sto

ma

oli

gole

pis

1.4

Ach

on

dro

sto

ma

salm

an

tin

um

——

Sar

da

Sard

a

1.5

An

aec

ypri

sh

isp

an

ica

Pse

ud

op

ho

xin

us

his

panic

us

Sar

amugo

Jara

bugo

Jara

bu

go

Ph

oxi

nu

sh

ispanic

us

Ph

oxi

nel

lus

his

panic

us

1.6

Ba

rbu

sb

oca

gei

Ba

rbu

sb

oca

gei

Bar

bo-c

om

um

Bar

bo

com

un

Iber

ian

barb

el

Lu

cio

ba

rbu

sboca

gei

1.7

Ba

rbu

sco

miz

oB

arb

us

com

izo

Cu

mba

Bar

bo

com

izo

Iber

ian

lon

g-s

nou

tb

arb

el

Lu

cio

ba

rbu

sco

miz

o

1.8

Ba

rbu

sg

rael

lsii

Ba

rbu

sg

rael

lsii

—B

arbo

de

Gra

ells

Eb

rob

arb

el

Lu

cio

ba

rbu

sg

rael

lsii

1.9

Ba

rbu

sg

uir

ao

nis

Ba

rbu

sg

uir

ao

nis

—B

arbo

med

iter

ran

eoE

ast

ern

Iber

ian

barb

el

Lu

cio

ba

rbu

sguir

aonis

1.1

0B

arb

us

ha

asi

——

Bar

bo

coli

rrojo

Iber

ian

red

fin

barb

el

1.1

1B

arb

us

mer

idio

na

lis

——

Bar

bo

de

monta

na

Wes

tern

Med

iter

ran

ean

barb

el

1.1

2B

arb

us

mic

roce

ph

alu

sB

arb

us

mic

roce

phalu

sB

arbo-d

e-ca

bec

a-p

equ

ena

Bar

bo

cabec

icorto

Iber

ian

small

-hea

db

arb

el

Lu

cio

ba

rbu

sm

icro

cephalu

s

1.1

3B

arb

us

scla

teri

Ba

rbu

ssc

late

riB

arbo

do

Sul

Bar

bo

gitan

oS

ou

ther

nIb

eria

nb

arb

el

Lu

cio

ba

rbu

ssc

late

ri

1.1

4B

arb

us

stei

nd

ach

ner

iB

arb

us

stei

nd

ach

ner

iB

arbo

de

Ste

indac

hn

er—

Ste

ind

ach

ner

barb

el

Lu

cio

ba

rbu

sst

eindach

ner

i

1.1

5G

ob

iolo

zan

oi

—G

obio

Go

bio

Pyre

nea

ngu

dgeo

n

1.1

6Ib

ero

cho

ndro

sto

ma

alm

aca

iC

ho

nd

rost

om

aalm

aca

iB

oga

do

Sudoes

te—

Sou

thw

este

rnarc

hed

-mou

thn

ase

1.1

7Ib

ero

cho

ndro

sto

ma

lem

min

gii

Leu

cisc

us

lem

min

gii

Boga

de

boca

arquea

da

Par

dilla

Iber

ian

arc

hed

-mou

thn

ase

Ru

tilu

sle

mm

ingii

Ch

on

dro

sto

ma

lem

min

gii

1.1

8Ib

ero

cho

nd

rost

om

alu

sita

nic

um

Ch

on

dro

sto

ma

lusi

tanic

um

Boga

Portugues

a—

Port

ugu

ese

arc

hed

-mou

thn

ase

1.1

9Ib

ero

cho

nd

rost

om

ao

lisi

po

nen

sis

Ch

on

dro

sto

ma

oli

siponen

sis

Boga

de

boca

arquea

da

de

Lis

boa

—L

isb

on

arc

hed

-mou

thn

ase

Page 16: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

International Names of Iberian Fishes 193F

am

ily

Sp

ecie

sS

yn

on

ym

yP

ort

ugu

ese

Com

mon

Na

me

Sp

an

ish

Com

mon

Nam

eS

tan

dard

Inte

rnati

on

al

Nam

e

1.

Cy

pri

nid

ae

1.2

0Ib

ero

cho

nd

rost

om

ao

reta

nu

m—

—Par

dilla

ore

tana

Ore

tan

ian

arc

hed

-mou

thn

ase

1.2

1P

ara

cho

nd

rost

om

aa

rrig

on

isC

ho

nd

rost

om

aarr

igonis

—Lo

ina

Ju

car

nase

1.2

2P

ara

cho

nd

rost

om

am

ieg

iiC

ho

nd

rost

om

am

iegii

—M

adrilla

Eb

ron

ase

1.2

3P

ara

cho

nd

rost

om

atu

rien

seC

ho

nd

rost

om

atu

rien

se—

Mad

rija

Tu

ria

nase

1.2

4P

hox

inu

sb

iger

ri—

—P

isca

rdo

Pyre

nea

nm

inn

ow

1.2

5P

seu

do

cho

nd

rost

om

ad

uri

ense

Ch

on

dro

stom

aduri

ense

Boga

do

No

rte

Boga

del

Du

ero

Nort

her

nst

raig

ht-

mou

thn

ase

1.2

6P

seu

do

cho

nd

rost

om

ap

oly

lep

isC

ho

nd

rost

om

apoly

lepis

Boga

com

um

Boga

del

Taj

oIb

eria

nst

raig

ht-

mou

thn

ase

1.2

7P

seu

do

cho

nd

rost

om

aw

illk

om

mii

Ch

on

dro

stom

aw

illk

om

mii

Boga

do

Guad

iana

Boga

del

Guad

iana

Sou

ther

nst

raig

ht-

mou

thn

ase

1.2

8S

qu

ali

us

alb

urn

oid

esco

mp

lex

Leu

cisc

us

alb

urn

oid

esB

ord

alo

Cal

andin

oC

ala

nd

ino

Ru

tilu

sa

lburn

oid

esT

rop

ido

ph

oxi

nel

lus

alb

urn

oid

es

Iber

ocy

pri

salb

urn

oid

es

1.2

9S

qu

ali

us

ara

den

sis

Leu

cisc

us

ara

den

sis

Esc

alo

do

Ara

de

—A

rad

ech

ub

1.3

0S

qu

ali

us

caro

lite

rtii

Leu

cisc

us

caro

lite

rtii

Esc

alo

do

Nort

eB

ord

allo

Nort

her

nIb

eria

nch

ub

1.3

1S

qu

ali

us

cast

ella

nu

s—

—B

ord

allo

del

Gal

loG

all

och

ub

1.3

2S

qu

ali

us

laie

tan

us

——

Bag

reE

bro

chu

b

1.3

3S

qu

ali

us

ma

laci

tan

us

——

Cac

ho

mal

agu

eno

Mala

ga

chu

b

1.3

4S

qu

ali

us

pa

laci

osi

com

ple

xIb

ero

cyp

ris

pala

ciosi

—B

ogar

dilla

Bogard

illa

1.3

5S

qu

ali

us

pyr

ena

icu

sL

euci

scu

spyr

enaic

us

Esc

alo

do

Sul

Cac

ho

Sou

ther

nIb

eria

nch

ub

1.3

6S

qu

ali

us

torg

ale

nsi

sL

euci

scu

sto

rgale

nsi

sEsc

alo

do

Mira

—M

ira

chu

b

1.3

7S

qu

ali

us

vale

nti

nu

s—

—C

acho

val

enci

ano

East

ern

Iber

ian

chu

b

2.

Co

bit

ida

e

2.1

Co

bit

isca

lder

on

i—

Ver

dem

ado

Nort

eLam

pre

hu

ela

Nort

her

nIb

eria

nsp

ined

-lo

ach

2.2

Co

bit

isp

alu

dic

a—

Ver

dem

aco

mum

Colm

ille

jaS

ou

ther

nIb

eria

nsp

ined

-lo

ach

2.3

Co

bit

isve

tto

nic

a—

—C

olm

ille

jadel

Ala

gon

Vet

ton

ian

spin

ed-l

oach

3.

Nem

ach

eili

da

e(B

ali

tori

da

e)

3.1

Ba

rba

tula

qu

ign

ard

i—

—Lo

bo

de

rıo

Pyre

nea

nst

on

elo

ach

4.

Va

len

ciid

ae

4.1

Va

len

cia

his

pa

nic

a—

—Sam

aruc

Sam

aru

c

5.

Cy

pri

no

do

nti

da

e

5.1

Ap

ha

niu

sb

aet

icu

s—

—Sal

inet

eB

aet

ica

nto

oth

carp

5.2

Ap

ha

niu

sib

eru

s—

—Far

tet

Iber

ian

tooth

carp

6.

Co

tiid

ae

6.1

Co

ttu

sa

turi

——

Bu

rtai

na

Ad

ou

rsc

ulp

in

6.2

Co

ttu

sh

isp

an

iole

nsi

s—

—C

avilat

Pyre

nea

nsc

ulp

in

Page 17: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

194 Leunda et al.

Standard name: Iberian long-snout bar-bel. This species is native to both Iberiancountries inhabiting currently the Tagus andGuadiana drainages. Therefore, we recom-mend the use of this English common na-me, which was occasionally used in thescienti�c literature, and derives from thecharacteristic head shape result of the pro-nounced snout elongation in adult speci-mens (Doadrio & Perdices, 1998), insteadof a derived latin name “comizo barbel”(Kottelat & Freyhof, 2007). See also ear-lier comments on the genus in B. bocagei.

1.8 Barbus graellsii Steindachner, 1866. Spa-nish: Barbo de Graells. Standard name:Ebro barbel. The species natural and cu-rrent distribution range includes most of theEbro River basin and some neighbouringsmall basins draining to the MediterraneanSea and the Bay of Biscay. We found mo-re accurate and appropriate the name “Ebrobarbel” than others that have been used in theliterature such as “common barbel”, “Ibe-rian barbel” (see earlier comments on B. bo-cagei), or “Graells barbel” (see comments onB. steindachneri). See also earlier commentson the genus in B. bocagei.

1.9 Barbus guiraonis Steindachner, 1866. Spa-nish: Barbo mediterraneo. Standard name:Eastern Iberian barbel. The species inha-bits streams draining to Mediterranean Seabetween Ebro (north) and Vinalopo (south)(but not included), in the eastern coast ofSpain. This name is preferred over “Valenciabarbel” (Kottelat & Freyhof, 2007) becauseValencia in only one of the provinces withinthe distribution area of the species. See alsoearlier comments on the genus in B. bocagei.

1.10 Barbus haasi Mertens, 1924. Spanish: Bar-bo colirrojo. Standard name: Iberian red�nbarbel. The native and current distributionrange includes most of the Ebro River basinand neighbouring small basins of the Medi-terranean slope (Miranda et al., 2005). Wepropose “Iberian red�n barbel” as standardcommon name in English because the Spa-nish vernacular name also makes reference

to the red pigmentation of the anal, caudaland pelvic �ns during the spawning season.We discourage from using “Catalonian bar-bel” (Kottelat & Freyhof, 2007) since Cata-lonia is only one of the nine autonomous re-gions sharing the Ebro River basin.

1.11 Barbus meridionalis Risso, 1827. Spanish:Barbo de montana. Standard name: WesternMediterranean barbel. Its natural and pre-sent distribution range is limited to the ri-vers draining to Mediterranean Sea in north-eastern Spain and southern France. Therehas been some consensus in the literatu-re for the use of “Mediterranean barbel”(e.g., Kottelat & Freyhof, 2007) but manyother barbel species occur in the Mediterra-nean area, therefore we recommend a moreprecise geographic con�nement.

1.12 Barbus microcephalus Almaca, 1967. Spa-nish: Barbo cabecicorto. Portuguese: Barbo-de-cabeca-pequena. Standard name: Iberiansmall-head barbel. The species is nativeof the Guadiana River basin. This nameis preferred because the scienti�c designa-tion as well as the Spanish and Portuguesecommon names make reference to the re-duced size of its head when compared toother Iberian barbel species. See also earliercomments on the genus in B. bocagei.

1.13 Barbus sclateri Gunther, 1868. Spanish:Barbo gitano. Portuguese: Barbo do Sul.Standard name: Southern Iberian bar-bel. The southern Iberian distribution rangeof the species, beyond the limits of theautonomous region of Andalusia, discouragesthe name “Andalusian barbel” used byKottelat& Freyhof (2007). We also advise against theEnglish translation of its Spanish name, i.e.“Gipsy barbel”, which has already been usedin the literature, in order to avoid terms thatcould sound disparaging for ethnic groups.Thus, we recommend highlighting the speciessouthern distribution confinement. See alsoearlier comments on the genus inB. bocagei.

1.14 Barbus steindachneri Almaca, 1967. Por-tuguese: Barbo de Steindachner. Standardname: Steindachner barbel. The species

Page 18: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

International Names of Iberian Fishes 195

native range (mainly the Guadiana but alsomore locally the Tagus River basin) couldwell support the common name “Guadianabarbel” (Kottelat & Freyhof, 2007). Howe-ver, another Barbus (B. microcephalus) is al-so endemic to this basin leading to poten-tial confusions. Therefore, we recommendthe designation of “Steindachner barbel” al-ready adopted in Portuguese literature in spi-te of being conscious that names intendedto honour persons are without descriptivevalue. This is justi�ed by the fact that thespecies has been considered in general bySpanish authors as a synonym of B. comi-zo (e.g., Doadrio, 2002) conversely to Portu-guese (Almaca, 1967; Almaca & Banarescu,2003; Collares-Pereira et al., 2007) and otherauthors (Kottelat, 1997; Kottelat & Freyhof,2007) that do consider it as a distinct speciesfrom the Iberian long-snout barbel. See alsoearlier comments on the genus in B. bocagei.

1.15 Gobio lozanoi Doadrio & Madeira, 2004.Spanish: Gobio. Portuguese: Gobio. Standardname: Pyrenean gudgeon. Recently, Iberianand southern-French gudgeon populationswere described as a different species (Doadrio& Madeira, 2004) based on genetic (Madeiraet al., 2005) and morphometric evidences,no longer belonging to the morphologicallyvariable G. gobio (Linnaeus, 1758), whichhas an almost pan-European distribution.Despite some controversy exists on the speciesnatural distribution range (it is known to haveinvaded many Iberian catchments since the19th century both in Spain and in Portugal),recent consensus suggests that Adour (France)and Bidasoa (Spain) drainages —on each sideof the Pyrenees— constitute its native area(Doadrio, 2001, 2002; Doadrio & Madeira,2004; Kottelat & Persat, 2005), justifyingthe now proposed standard name instead of“Iberiangudgeon” (Kottelat&Freyhof, 2007).

1.16 Iberochondrostoma almacai (Coelho, Mes-quita & Collares-Pereira, 2005). Portuguese:Boga do Sudoeste. Standard name: South-western arched-mouth nase. This recentlydescribed species is restricted to Mira, Arade

and Bensafrim drainages in southwesternPortugal (Coelho et al., 2005). All Ibe-rochondrostoma species have typically anarched-mouth and were earlier placed inChondrostoma (but see comments on A.arcasii and I. olisiponensis), thus receivingnames in combination with “nase”. Althoughthe Iberian endemicity of the genus (Robaloet al., 2007) could encourage proposing namecombinations with the common name in Por-tuguese, “boga” is also a vernacular name fora marine fish species, the bogue Boops boops.Thus we recommend keeping the former andmost well-known designation (Coelho et al.,2005) instead of the restricted one adopted byKottelat & Freyhof (2007) —“Mira pardelha”.Moreover, the Portuguese word “pardelha”is also used as a vernacular name forCobitis paludica in some regions of Portugal.

1.17 Iberochondrostoma lemmingii (Steindach-ner, 1866). Spanish: Pardilla. Portuguese:Boga-de-boca-arqueada. Standard name: Ibe-rian arched-mouth nase. This endemic fishoccurs in Spain and in Portugal (Tagus,Guadiana, Quarteira, Odiel, Douro andGuadalquivir drainages) being the specieswithin this genus with the widest distributionrange. Therefore, we recommend the use of astandard name that refers to its pan-central andsouthern Iberian geographic distribution and tothe previously used common and informative“arched-mouth nase” designation. See alsoearlier comments on the genus in I. almacai.

1.18 Iberochondrostoma lusitanicum (Collares-Pereira, 1980). Portuguese: Boga-Portuguesa.Standard name: Portuguese arched-mouthnase. The use of this common name seemsadequate once the species is endemic toPortugal and has the widest geographicdistribution when compared to the congenericspecies restricted to Portuguese freshwaters (I.almacai and I. olisiponensis). See also earliercomments on the genus in I. almacai.

1.19 Iberochondrostoma olisiponensis (Gante,Santos & Alves, 2007). Portuguese: Boga-de-boca-arqueada de Lisboa. Standard name:Lisbon arched-mouth nase. This species,

Page 19: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

196 Leunda et al.

highly confined, was recently described fromthe lower Tagus basin, in the vicinity ofLisbon (Gante et al., 2007). The species’description raised concerns on the proposedsplitting of Chondrostoma by Robalo et al.(2007), since the new species did not fitexclusively into any of the proposed generausing morphological characters, and brokedown combinations of traits diagnosing thenewly erected genera. See also earlier com-ments in I. almacai for the reasoning of whythe common name “Lisbon arched-mouthnase” suggested in the species’ descriptionarticle (Gante et al., 2007) is recommended.

1.20 Iberochondrostoma oretanum (Doadrio &Carmona, 2003). Spanish: Pardilla oretana.Standard name: Oretanian arched-mouthnase. This recently described species is res-tricted to Robledillo and Fresneda rivers (tri-butaries of the Jandula River, Guadalquivirbasin) (Doadrio & Carmona, 2003), an areaknown as Oretania, justifying the combina-tion with the informative “arched-mouth na-se” designation as standard name. See alsoearlier comments on the genus in I. almacai.

1.21 Parachondrostoma arrigonis (Steindach-ner, 1866). Spanish: Loina. Standard na-me: Jucar nase. The species is endemic tothe Jucar drainage in Spain (Elvira & Al-modovar, 2008), and is currently included inthe new genus Parachondrostoma (Robalo etal., 2007) (but see comments on A. arcasiiand I. olisiponensis). The former taxonomicstatus (Chondrostoma) often led in the lite-rature to English name combinations contai-ning the name of their endemic drainage oforigin followed by “nase” (e.g., Elvira & Al-modovar, 2008), as we recommend here.

1.22 Parachondrostoma miegii (Steindachner,1866). Spanish: Madrilla. Standard name:Ebro nase. The species is endemic to the EbroRiver basin and adjacent smaller basins drai-ning to the Bay of Biscay and MediterraneanSea. Therefore, we recommend this geogra-phic nomenclature instead of the Spanishname “Madrilla” (Kottelat & Freyhof, 2007)which may well be confused with the verna-

cular name of P. turiense —“Madrija”. Seeearlier comments on the genus inP. arrigonis.

1.23 Parachondrostoma turiense (Elvira, 1987).Spanish: Madrija. Standard name: Turia nase.The species is endemic of the Turia andMijares River basins (Elvira, 1987, 1997a).Therefore, we recommend this geographicnomenclature instead of the Spanish name“Madrija” (Kottelat & Freyhof, 2007) whichmay well be confused with the vernacularname of P. miegii —“Madrilla”. See earliercomments on the genus inP. arrigonis.

1.24 Phoxinus bigerri Kottelat, 2007. Spanish:Piscardo. Standard name: Pyrenean minnow.Until the recent systematic revision conductedby Kottelat (2007), all European Phoxinuswere classified as P. phoxinus. Seven speciesare now recognized in European waters,including P. bigerri that is native to the Adour(France) and Ebro (Spain) River basins andsome streams draining to the Bay of Biscay(Spain). Since Kottelat (2007) cautioned thatthe identification of the Iberian populationswas tentative, we understand the suggestedname “Adour minnow” could be acceptable.But, if future studies confirm Iberian minnowpopulations to belong to this species asdescribed by Kottelat (2007), the name“Pyreneanminnow” is preferred.

1.25 Pseudochondrostoma duriense (Coelho,1985). Spanish: Boga del Duero. Portu-guese: Boga do Norte. Standard name:Northern straight-mouth nase. Species cu-rrently placed in the new Pseudochondrosto-ma genus (Robalo et al., 2007) (but see com-ments on A. arcasii and I. olisiponensis) ha-ve been named “straight-mouth nases” (e.g.,Coelho, 1985) as we recommend here to dif-ferentiate from those placed in the genus Pa-rachondrostoma. The species was formerlydescribed from the Douro River basin, butits geographic distribution does range fromthe Vouga drainage in Portugal to the north-ern adjacent smaller basins of the Atlanticslope (Coelho, 1985; Elvira, 1997a; Aboimet al., 2009); therefore, the designation re-commended here seems more adequate than

Page 20: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

International Names of Iberian Fishes 197

the more con�ned “Douro nase” adopted byKottelat & Freyhof (2007).

1.26 Pseudochondrostoma polylepis (Steinda-chner, 1865). Spanish: Boga del Tajo. Portu-guese: Boga comum. Standard name: Iberianstraight-mouth nase. This straight-mouthnase has the widest distribution in Iberianfreshwaters, ranging in Portugal from thecentral Mondego drainage to the southernSado drainage including the Tagus draina-ge in both countries; therefore, the designa-tion recommended here seems more adequa-te than the more restricted “Tagus nase” usedby Kottelat & Freyhof (2007). See also ear-lier comments on the genus in P. duriense.

1.27 Pseudochondrostoma willkommii (Steinda-chner, 1866). Spanish: Boga del Guadiana.Portuguese: Boga do Guadiana. Standardname: Southern straight-mouth nase. Thisspecies has been traditionally named as“Guadiana nase” (e.g., Kottelat & Freyhof,2007) once it occurs there but it is natural ofa wider area including the Guadalquivir Riverbasin along with other adjacent smaller riversdraining southern Iberian Peninsula. Seeearlier comments on the genus in P. duriense.

1.28 Squalius alburnoides (Steindachner, 1866)complex. Spanish: Calandino. Portuguese:Bordalo. Standard name: Calandino. Thisdiploid-polyploid complex with a hybrid ori-gin, was already assigned to several gene-ra (Leuciscus, Rutilus and Tropidophoxine-llus) (reviewed in Collares-Pereira et al.,1999), thus receiving common names incombination with “chub”, “roach” and “min-now”. Recently, Kottelat & Freyhof (2007)transferred it from the commonly accep-ted last generic position in the genus Squa-lius to the Iberian genus Iberocypris, butthis nomenclatural change has been challen-ged (Collares-Pereira & Coelho, in press).The distribution range of the complex inclu-des several Iberian drainages (namely Dou-ro, Mondego, Tagus, Sado, Guadiana, Odiel,Guadalquivir and Quarteira) being wider inSpain. Therefore we recommend the stan-dard adoption of the Spanish designation.

1.29 Squalius aradensis (Coelho, Bogutskaya,Rodrigues & Collares-Pereira, 1998). Por-tuguese: Escalo do Arade. Standard name:Arade chub. Iberian Squalius species wereuntil recently (Sanjur et al., 2003) placed inthe genus Leuciscus, and therefore traditiona-lly named as “chubs” in the literature. MostSqualius are endemic at drainage level, jus-tifying name combinations of their drainage(area) of origin followed by “chub”. Thisspecies is confined to Portugal and inhabitsthe Arade and some other small drainagesin the south (Coelho et al., 1998; Mesquita& Coelho, 2002; Mesquita et al., 2005).

1.30 Squalius carolitertii (Doadrio, 1988). Spa-nish: Bordallo. Portuguese: Escalo do Norte.Standard name: Northern Iberian chub.Species distribution ranges from the mostnorthern smaller drainages of the Atlanticslope to the Mondego drainage in Portugal(Doadrio, 1987; Coelho et al., 1998;Carmona & Doadrio, 2000). Thus, werecommend this designation instead of theSpanish vernacular name “Bordallo” adoptedby Kottelat & Freyhof (2007). See earliercomments on the genus in S. aradensis.

1.31 Squalius castellanus Doadrio, Perea &Alonso, 2007. Spanish: Bordallo del Gallo.Standard name: Gallo chub. This specieswas recently described from the Gallo Riverand its tributaries in the upper Tagus draina-ge in Spain (Doadrio et al., 2007b). See ear-lier comment on the genus in S. aradensis.

1.32 Squalius laietanus Doadrio, Kottelat &Sostoa, 2007. Spanish: Bagre. Standard na-me: Ebro chub. This recently described spe-cies is endemic of the Ebro River basin andother neighbouring smaller basins of the Me-diterranean slope (Doadrio et al., 2007a).We discourage from using “Catalan chub”(Kottelat & Freyhof, 2007) since Cataloniais only one of the nine autonomous regionssharing the Ebro River basin. See earliercomments on the genus in S. aradensis.

1.33 Squalius malacitanus Doadrio & Carmo-na, 2006. Spanish: Cacho malagueno. Stan-dardname:Malagachub.The species known

Page 21: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

198 Leunda et al.

distribution range is restricted to three smallrivers in the province of Malaga (Doadrio& Carmona, 2006), justifying the trans-lation of the scienti�c name (Kottelat &Freyhof, 2007). See earlier comments onthe genus in S. aradensis.

1.34 Squalius palaciosi (Doadrio, 1980) com-plex. Spanish: Bogardilla. Standard name:Bogardilla. After the species description inthe new genus Iberocypris Doadrio, 1980,diploid, triploid and tetraploid specimenswere found to exist and a direct link ofpalaciosi complex with Squalius pyrenaicuswas later confirmed (Zardoya & Doadrio,1998; Zardoya & Doadrio, 1999; Sanjur et al.,2003; Doadrio & Carmona, 2006). Recently,Kottelat & Freyhof (2007) returned palaciosito the first generic position in the genusIberocypris but this change has not yet beenaccurately supported (Collares-Pereira &Coelho, in press). This highly confined ende-mism occurs in the middle Guadalquivir basin—right side tributaries Rumblar, Jandula andRobledo (Elvira, 1997b)— thus it shouldbe recognised by its local Spanish name.

1.35 Squalius pyrenaicus (Gunther, 1868). Spa-nish: Cacho. Portuguese: Escalo do Sul.Standard name: Southern Iberian chub.This species has the widest distribution ran-ge in Iberia compared to other membersof the genus, practically all the southernhalf of the Peninsula, justifying the pro-posed designation, instead of the commonname in Spanish “cacho” used by Kotte-lat & Freyhof (2007). See earlier commentson the genus in S. aradensis.

1.36 Squalius torgalensis (Coelho, Bogutskaya,Rodrigues & Collares-Pereira, 1998). Portu-guese: Escalo do Mira. Standard name: Mi-ra chub. The species is endemic of the Mi-ra River basin, southwestern Portugal (Coe-lho et al., 1998). See earlier comments onthe genus in S. aradensis.

1.37 Squalius valentinus Doadrio & Carmona,2006. Spanish: Cacho valenciano. Standardname: Eastern Iberian chub. The species isendemic to the rivers draining to the Medite-

rranean Sea between the Mijares and Vina-lopo basins (Doadrio & Carmona, 2006) inthe eastern coast of Spain. This designationis recommended over “Valencia chub” (Kot-telat & Freyhof, 2007) because Valencia isonly one of the provinces within the distri-bution area of the species. See earlier com-ments on the genus in S. aradensis.

2. Family Cobitidae

2.1 Cobitis calderoni B�acescu, 1962. Spanish:Lamprehuela. Portuguese: Verdema do Norte.Standard name: Northern Iberian spined-loach. Species of Cobitis known from most ofEurope, temperate Asia and Northern Africaare commonly named in the literature as“spined loaches” and therefore we recom-mend the adoption of this commnon nameinstead of the Spanish designation as doneby Kottelat & Freyhof (2007). This speciesinhabits the northern half of the Peninsula,mainly in Ebro and Douro River basins butalso in a few headwaters of rivers draining tothe Tagus River (Perdices & Doadrio, 1997a).

2.2 Cobitis paludica (de Buen, 1930). Spanish:Colmilleja. Portuguese: Verdema comum.Standard name: Southern Iberian spined-loach. This species inhabits most rivers incentral and southern Iberia (Perdices & Doa-drio, 1997b), justifying our recommendationfor this common name. See earlier com-ments on the genus in C. calderoni.

2.3 Cobitis vettonica Doadrio & Perdices, 1997.Spanish: Colmilleja del Alagon. Standardname: Vettonian spined-loach. The speciesis restricted to the Alagon River system (Ta-gus basin) and its latin name was derivedfrom the name of the local inhabitants inold times (Vettonians) (Doadrio & Perdi-ces, 1997), justifying our recommendationfor this designation. See earlier comments onthe genus in C. calderoni.

3. Family Nemacheilidae (Balitoridae)

3.1 Barbatula quignardi (B�acescu-Mester, 1967).Spanish: Lobo de R�o. Standard name: Pyre-nean stone loach. Stone loach populations

Page 22: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

International Names of Iberian Fishes 199

from both sides of the Pyrenees, namelyfrom the Ebro River basin, some rivers drai-ning to the Bay of Biscay and south-western(Aquitaine) and south-eastern (Languedoc)France, are now considered as a distinct spe-cies (Kottelat & Freyhof, 2007). The pro-posed designation making reference to thecircum-Pyrenean distribution of this speciesshould be standardized instead of others mo-re inaccurate (e.g., “Languedoc stone loach”,Kottelat & Freyhof, 2007).

4. Family Valenciidae

4.1 Valencia hispanica (Valenciennes, 1846).Spanish: Samaruc. Standard name: Sama-ruc. This family with a single genus andonly two species was formerly included inCyprinodontidae and thus it has been tra-ditionally named with the combined de-signation “toothcarp” (Oliva-Paterna et al.,2009). Based on the species distribution ran-ge (Spain, along the Mediterranean coast),we recommend the use of the well-knownSpanish designation (e.g., Kottelat & Frey-hof, 2007) to avoid misinterpretations.

5. Family Cyprinodontidae

5.1 Aphanius baeticus Doadrio, Carmona &Fernandez-Delgado, 2002. Spanish: Saline-te. Standard name: Baetican toothcarp.This recently described species occurs in thelower reaches of the River Guadalquivir andstreams located on the southern Atlantic slo-pe, an area known as “Baetica” by romans(Doadrio et al., 2002; Oliva-Paterna et al.,2006a). Thus we recommend the standardi-zation of the designation of this well-knownarea instead of other more restricted com-mon names (e.g., “Guadalquivir toothcarp”,Kottelat & Freyhof, 2007).

5.2 Aphanius iberus (Valenciennes, 1846). Spa-nish: Fartet. Standard name: Iberian tooth-carp. The species occurs only along the Me-diterranean coast of Spain, and even the na-me might suggest a wider distribution, wefound appropriate to keep this well-knownstandard designation traditionally adopted in

literature (Oliva-Paterna et al., 2006b) thatderives from the scienti�c name.

6. Family Cottidae

6.1 Cottus aturi Freyhof, Kottelat & Nolte,2005. Spanish: Burtaina. Standard name:Adour sculpin. After the recent taxonomicrevision of European species of Cottus, asmuch as 15 species are recognized (Frey-hof et al., 2005). We found this standard de-signation as adopted by Kottelat & Freyhof(2007) well appropriate for the sculpin po-pulations from the Adour River basin (Fran-ce, Spain) and the smaller Nivelle (France,Spain) and Bidasoa (Spain) drainages, nowrecognized as a distinct species.

6.2 Cottus hispaniolensis B�acescu & B�acescu-Mester, 1964. Spanish: Cavilat. Standard na-me: Pyrenean sculpin. We found this desig-nation well appropriate for the sculpin po-pulations from Pyrenean Garonne drainage(France, Spain) (Kottelat & Freyhof, 2007),now recognized as a distinct species. Seeearlier comments on the genus in C. aturi.

REFERENCES

ABOIM,M.A.,C.CUNHA& M.M.COELHO. 2009.Redistribution of the geographical ranges ofthe Iberian cyprinid genus Pseudochondrostomabased on a phylogenetic analysis: implications forthe historical rearrangements of the north-westernIberian drainages. J. Fish Biol., 74: 1337-1346.

ALMACA, C. 1967. Estudo das populacoes portu-guesas do gen. Barbus Cuvier, 1817 (Pisces, Cy-prinidae). Rev. Fac. Cienc., Univ. Lisboa, Ser. C:Cienc. Nat., 14: 151-400.

ALMACA, C. & P. M. B �AN �ARESCU. 2003. Bar-bus comizo Steindachner, 1865. In: The Fresh-water Fishes of Europe. B�an�arescu, P. M. & N.G. Bogutskaya (eds.): 173-180. Aula-Verlag,Wiesbaden, Germany.

CARMONA, J.A.& I.DOADRIO. 2000. Threatened�shes of the World: Leuciscus carolitertii Doadrio,1988 (Cyprinidae). Environ. Biol. Fish., 57: 96.

COELHO, M. M. 1985. The straight mouth Portu-guese Chondrostoma Agassiz, 1835. II-Taxonomic

Page 23: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

200 Leunda et al.

position and geographic distribution of Ch. polyle-pis Steindachner, 1865 and Ch. willkommii Stein-dachner, 1866 with the description of a new subs-pecies —Ch. polylepis duriensis. Arquivos do Mu-seu Bocage Serie A, 3: 13-38.

COELHO, M. M., N. G. BOGUTSKAYA, J. A. RO-DRIGUES & M. J. COLLARES-PEREIRA. 1998.Leuciscus torgalensis, and L. aradensis, two newcyprinids for Portuguese fresh waters. J. Fish Biol.,52: 937-950.

COELHO, M. M., N. MESQUITA & M. J. COLLA-RES-PEREIRA. 2005. Chondrostoma almacai, anew cyprinid species from the southwest of Portu-gal, Iberian Peninsula. Folia Zool., 54: 201-212.

COLLARES-PEREIRA, M. J. &C. ALMACA. 1979.Pseudophoxinus hispanicus (Steind., 1866), Cypri-nidae nouveau pour le Portugal. Bull. Mus. Natn.Hist. Nat. Paris, 4e Ser. 1, Sect. A(1): 285-287.

COLLARES-PEREIRA, M. J., M. J. ALVES & M.M. COELHO. 1999. Reassessment of the genericposition of the Iberian cyprinid alburnoides com-plex: its return to the genus Leuciscus. J. Fish Biol.,54: 465-468.

COLLARES-PEREIRA, M. J. & M. M. COELHO.(in press). Recon�rming the hybrid origin andthe generic status of the Iberian cyprinid complexSqualius alburnoides. J. Fish Biol.

COLLARES-PEREIRA, M. J. & I. G. COWX. 2001.Threatened �shes of the World: Anaecypris hispa-nica (Steindachner, 1866) (Cyprinidae). Environ.Biol. Fish., 60: 410.

COLLARES-PEREIRA, M. J., A. F. FILIPE & L.MOREIRA DA COSTA. 2007. Os Peixes do RioGuadiana: Que futuro? Guia dos Peixes do Gua-diana Portugues. Alpiarca, Portugal: Edicoes Cos-mos. 294 pp.

DOADRIO, I. 1987. Leuciscus carolitertii n. sp. fromthe Iberian Peninsula (Ostariophysi, Cyprinidae).Senckenbergiana Biologica, 68: 301-309.

DOADRIO, I. (ed.). 2001. Atlas y libro rojo de lospeces continentales de Espana. Madrid: DireccionGeneral de Conservacion de la Naturaleza, MuseoNacional de Ciencias Naturales. 364 pp.

DOADRIO, I. (ed.). 2002. Atlas y libro rojo de lospeces continentales de Espana. Madrid: DireccionGeneral de Conservacion de la Naturaleza, MuseoNacional de Ciencias Naturales. 374 pp.

DOADRIO, I. & J. A. CARMONA. 2003. A newspecies of the genus Chondrostoma Agassiz, 1832(Actinopterygii, Cyprinidae) from the Iberian Pe-ninsula. Graellsia, 59: 29-36.

DOADRIO, I. & J. A. CARMONA. 2006. Phyloge-netic overview of the genus Squalius (Actinoptery-gii, Cyprinidae) in the Iberian Peninsula, with des-cription of two new species. Cybium, 30: 199-214.

DOADRIO, I., J. A. CARMONA & C. FERNAN-DEZ-DELGADO. 2002. Morphometric study ofthe Iberian Aphanius (Actinopterygii, Cyprinodon-tiformes), with description of a new species. FoliaZool., 51: 67-79.

DOADRIO, I. & B. ELVIRA. 2007. A new spe-cies of the genus Achondrostoma Robalo, Alma-da, Levy & Doadrio, 2007 (Actinopterygii, Cypri-nidae) from western Spain. Graellsia, 63: 295-304.

DOADRIO, I., M. KOTTELAT & A. DE SOSTOA.2007a. Squalius laietanus, a new species of cy-prinid �sh from north-eastern Spain and southernFrance (Teleostei: Cyprinidae). Ichthyol. Explor.Freshwaters, 18: 247-256.

DOADRIO, I. & M. J. MADEIRA. 2004. A new spe-cies of the genus Gobio Cuvier, 1816 (Actynopte-rigii, Cyprinidae) from the Iberian Peninsula andSouthwestern France. Graellsia, 60: 107-116.

DOADRIO, I. & A. PERDICES. 1997. Taxonomicstudy of the Iberian Cobitis (Osteichthyes, Cobi-tidae), with description of a new species. Zool. J.Linn. Soc., 119: 51-67.

DOADRIO, I. & A. PERDICES. 1998. Threatened�shes of the World: Barbus comiza Steindachner,1865 (Cyprinidae). Environ. Biol. Fish., 51: 52-52.

DOADRIO, I., S. PEREA & F. ALONSO. 2007b. Anew species of the genus Squalius Bonaparte, 1837(Actinopterygii, Cyprinidae) from the Tagus RiverBasin (Central Spain). Graellsia, 63: 89-100.

ELVIRA, B. 1987. Taxonomic revision of he genusChondrostoma Agassiz, 1835 (Pisces, Cyprini-dae). Cybium, 11: 111-140.

ELVIRA, B. 1997a. Taxonomy of the genus Chon-drostoma (Osteichthyes, Cyprinidae): An updatedreview. Folia Zool., 46: 1-14.

ELVIRA, B. 1997b. Threatened �shes of the World:Iberocypris palaciosi Doadrio, 1980 (Cyprinidae).Environ. Biol. Fish., 50: 104.

ELVIRA, B. & A. ALMODOVAR. 2008. Threate-ned �shes of the World: Chondrostoma arrigonis(Steindachner, 1866) (Cyprinidae). Environ. Biol.Fish., 81: 27-28.

FREYHOF, J., M. KOTTELAT & A. NOLTE. 2005.Taxonomic diversity of European Cottus with des-cription of eight new species (Teleostei: Cottidae).Ichthyol. Explor. Freshwaters, 16: 107-172.

Page 24: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

International Names of Iberian Fishes 201

FROESE, R. & D. PAULY. 2008. FishBase. WorldWide Web electronic publication. www.�shbase.org. Accessed on 05 July 2008.

GANTE, H. F., C. D. SANTOS & M. J. ALVES.2007. A new species of Chondrostoma Agassiz,1832 (Cypriniformes: Cyprinidae) with sexual di-morphism from the lower Rio Tejo Basin, Portu-gal. Zootaxa, 1616: 25-35.

IUCN. 2008. The IUCNRedList of Threatened Species.www.iucnredlist.org. Downloaded on 05 July 2008.

KOTTELAT, M. 1997. European freshwater �shes.An heuristic checklist of the freshwater �shes ofEurope (exclusive of former USSR), with an intro-duction for non-systematists and comments on no-menclature and conservation. Biologia, Bratislava,Section Zoology, 52: 1-271.

KOTTELAT, M. 2007. Three new species of Pho-xinus from Greece and southern France (Tele-ostei: Cyprinidae). Ichthyol. Explor. Freshwaters,18: 145-162.

KOTTELAT, M. & J. FREYHOF. 2007. Handbookof European Freshwater Fishes. Kottelat, Cor-nol, Switzerland and Freyhof, Berlin, Germany.646 pp.

KOTTELAT, M. & H. PERSAT. 2005. The genusGobio in France, with redescription of G. gobioand description of two new species (Teleostei: Cy-prinidae). Cybium, 29: 211-234.

MADEIRA, M. J., B. J. GOMEZ-MOLINER & I.DOADRIO. 2005. Genetic characterization of Go-bio gobio populations of the Iberian Peninsula ba-sed on cytochrome b sequences. Folia Zool., 54(Suppl. 1): 5-12.

MESQUITA, N. & M. M. COELHO. 2002. Theichthyofauna of the small Mediterranean-type drai-nages of Portugal: its importance for conservation.In: Conservation of Freshwater Fishes: Optionsfor the Future. Collares-Pereira, M.J., I.G. Cowx &M. M. Coelho (eds.): 65-71. Fishing News Books,Blackwell Science, Oxford.

MESQUITA, N., B. HANFLING, G. R. CARVAL-HO & M. M. COELHO. 2005. Phylogeographyof the cyprinid Squalius aradensis and implica-tions for conservation of the endemic freshwaterfauna of southern Portugal. Molecular Ecology,14: 1939-1954.

MIRANDA, R., P. M. LEUNDA, C. ESCALA & J.OSCOZ. 2005. Threatened �shes of the World:Barbus haasi (Mertens 1925) (Cyprinidae). Envi-ron. Biol. Fish., 72: 282.

NELSON, J. S., E. J. CROSSMAN, H. ESPINOSA-PEREZ, L. T. FINDLEY, C. R. GILBERT, R. N.LEA & J. D. WILLIAMS. 2004. Common andScienti�c Names of Fishes from the United Sta-tes, Canada and Mexico Sixth Edition. Beteshda,Maryland: American Fisheries Society. 386 pp.

OLIVA-PATERNA, F., I. DOADRIO & C. FER-NANDEZ-DELGADO. 2006a. Threatened �shesof the World: Aphanius baeticus (Doadrio, Car-mona & Fernandez Delgado, 2002) (Cyprinodon-tidae). Environ. Biol. Fish., 75: 415-417.

OLIVA-PATERNA, F. J., M. TORRALVA & C. FER-NANDEZ-DELGADO. 2006b. Threatened �shesof the World: Aphanius iberus (Cuvier & Valen-ciennes, 1846) (Cyprinodontidae). Environ. Biol.Fish., 75: 307-309.

OLIVA-PATERNA, F. J., N. CAIOLA & M. TOR-RALVA. 2009. Threatened �shes of the worl: Va-lencia hispanica (Valenciennes, 1846) (Valencii-dae). Environ. Biol. Fish., 85:275-276.

PERDICES, A. & I. DOADRIO. 1997a. Threatened�shes of the World: Cobitis calderoni B�acescu,1961 (Cobitidae). Environ. Biol. Fish., 50: 148.

PERDICES, A. & I. DOADRIO. 1997b. Threatened�shes of the World: Cobitis paludica (De Buen,1930) (Cobitidae). Environ. Biol. Fish., 49: 360.

RIBEIRO, F., R. BELDADE, M. DIX & J. BOCHE-CHAS. 2007. Carta Pisc�cola Nacional. www.cartapiscicola.org. Accessed on 05 July 2008.Direccao Geral dos Recursos Florestais & Fluvia-tilis, Lda.

ROBALO, J., C. SOUSA-SANTOS, I. DOADRIO& V. ALMADA. 2008. Threatened �shes of theworld: Achondrostoma occidentale Robalo, Alma-da, Sousa-Santos, Moreira & Doadrio 2005 (Cy-prinidae). Environ. Biol. Fish., 83: 347.

ROBALO, J. I., V. C. ALMADA, A. LEVY & I.DOADRIO. 2007. Re-examination and phylogenyof the genus Chondrostoma based on mitochon-drial and nuclear data and the de�nition of 5 newgenera. Mol. Phylogenet. Evol., 42: 362-372.

ROBALO, J. I., V. C. ALMADA, C. SOUSA-SAN-TOS, M. I. MOREIRA & I. DOADRIO. 2005a.New species of the genus Chondrostoma Agas-siz, 1832 (Actynopterigii, Cyprinidae) from wes-tern Portugal. Graellsia, 61: 19-29.

ROBALO, J. I., I. DOADRIO, V. C. ALMADA &M. KOTTELAT. 2005b. Chondrostoma oligolepis,new replacement name for Leuciscus macrolepi-dotus Steindachner, 1866 (Teleostei: Cyprinidae).Ichthyol. Explor. Freshwaters, 16: 47-48.

Page 25: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

202 Leunda et al.

ROGADO, L., P. ALEXADRINO, P. R. ALMEIDA,M. J. ALVES, J. BOCHECHAS, R. CORTES, I.DOMINGOS, A. F. FILIPE, J. MADEIRA & M.F. MAGALHAES. 2005. Peixes. In:LivroVermelhodos Vertebrados de Portugal. Cabral, M. J., J. Almei-da, P. R. Almeida, T. Dellinger, N. Ferrand-Almeida,M. E. Oliveira, J. M. Palmeirim, A. I. Queiros,L.Rogado&M.Santos-Reis (eds.): 63-114. Institutoda Conservacao da Natureza, Lisboa, Portugal.

SANJUR, O. I., J. A. CARMONA & I. DOADRIO.2003. Evolutionary and biogeographical patternswithin Iberian populations of the genus Squaliusinferred from molecular data. Mol. Phylogenet.Evol., 29: 20-30.

WHEELER, A. C. 1992. A List of the Common and

Scienti�c Names of Fishes of the British Isles. J.Fish Biol., 41: 1-26.

WHEELER, A. C., N. R. MERRETT & D. T. G.QUIGLEY. 2004. Additional records and notes forWheeler’s (1992) List of the Common and Scien-ti�c Names of Fishes of the British Isles. J. FishBiol., 65: 1-40.

ZARDOYA, R. & I. DOADRIO. 1998. Phylogeneticrelationships of Iberian cyprinids: Systematic andbiogeographical implications. Proc. R. Soc. Lond.B, 265: 1365-1372.

ZARDOYA, R. & I. DOADRIO. 1999. Molecularevidence on the evolutionary and biogeographi-cal patterns of European cyprinids. J. Mol. Evol.,49: 227-237.

Page 26: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 203-214 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

The in�uence of land use on water quality and macroinvertebratebiotic indices in rivers within Castilla-La Mancha (Spain)

Stefanie A. Kroll∗, Caliz Navarro Llacer, Mar�a de la Cruz Cano and Jorge de las Heras

Centro Regional de Estudios del Agua (CREA), Universidad de Castilla-La Mancha.UCLM, CREA, Ctra. de Las Penas, km 3,2, 02049, Albacete, Spain2

∗ Corresponding author: [email protected]

Received: 14/11/08 Accepted: 24/3/09

ABSTRACT

The in�uence of land use on water quality and macroinvertebrate biotic indices in rivers within Castilla-La Mancha(Spain)

With the objective to determine the in�uence of land use on the quality of the �uvial ecosistms within Castilla-La Mancha,Spain, physicochemical variables (conductivity, concentrations of ammonium, nitrite, nitrate, phosphate) and various benthicinvertebrates indices (IBMWP, BMWQ and MCLM) were measured. In total, 82 stretches of rivers belonging to the Tajo,Guadiana, Jucar and Segura watersheds were sampled during the summer of 2001. The percentage of every land use type ona regional scale (drainage area) was calculated, obtained from the CORINE Land Cover and tools from ArcGIS 9.0 software.The correlation analysis results showed a signi�cantly strong relationship between nutrients and biotic indices and the urban,forested and dry agriculture uses. For irrigated agriculture, low correlations were found for nutrients (nitrate and phosphate)and biotic indices. Given the importance of agriculture in the Castilla-La Mancha Region (53% of the area) and the effectson the �uvial ecosystems, this study highlights the need for,improved wastewater treatment, as well as good agriculturalmanagement practices and the maintenance of the riparian corridor.

Key words: Non-point source pollution, biological index, benthic invertebrates, dry and irrigated agriculture, urban, forest,nutrients, eutrophication.

RESUMEN

La in�uencia del uso del suelo en la calidad del agua y los �ndices bioticos basados en macroinvertebrados en los r�os deCastilla-La Mancha (Espana)

Con el objetivo de determinar la in�uencia de los usos del suelo en la calidad de los ecosistemas �uviales de Castilla-La Mancha, se han analizado variables f�sico-qu�micas (conductividad electrica, nitrato, nitrito, amonio, fosfato) y varios�ndices de invertebrados bentonicos (IBMWP, BMWQ y MCLM). En total, se muestrearon 82 tramos �uviales pertenecientesa las cuencas del Tajo, Guadiana, Jucar, y Segura, durante el verano de 2001. Se calculo el porcentaje de cada uso del sueloa escala regional (area de drenaje), obtenidos a partir del CORINE Land Cover y herramientas del software ArcGIS 9.0. Losresultados del analisis de correlacion mostraron relaciones altamente signi�cativas entre los nutrientes e �ndices bioticos ylos usos urbano, forestal y agr�cola de secano. En el caso del uso agr�cola de regad�o se detectaron correlaciones mas debilescon nutrientes (nitrato y fosfato) y los �ndices bioticos. Dada la importancia de la agricultura en la region de Castilla-LaMancha (53 % de ocupacion del suelo) y los efectos en el ecosistema �uvial se apunta la necesidad de mejorar el tratamientode residuos urbanos, as� como unas buenas practicas aplicadas en la agricultura y mantenimiento del bosque de ribera.

Palabras clave: Contaminacion difusa, �ndice biologico, invertebrados bentonicos, agricultura de secano y regad�o, urbano,forestal, nutrientes, eutro�zacion.

Page 27: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

204 Kroll et al.

INTRODUCTION

Certain nutrients are known to travel from agri-cultural and urban lands into rivers by means ofrunoff (e.g. Hynes, 1970; Smart et al., 1981; Os-borne & Wiley, 1988; Zamora-Munoz & Alba-Tercedor, 1999) and in�uence the distributionand abundance of macroinvertebrates dependingon their tolerance or habitat requirements (Town-send et al., 1997). Therefore, it is clear thatland management constitutes a pressure to streamphysicochemical and biological quality. Beforethe Water Framework Directive (WFD, EuropeanCommission, 2000) was passed, most regulatorycriteria for water quality referred solely to chemi-cal quality for human safety (water for irrigation,drinking, and recreation). The Directive has seta goal of achieving “good” chemical and ecolo-gical status for all European water bodies by theyear 2015. The document speci�es that water sta-tus should be determined using biological indica-tors as well as hydromorphological and physico-chemical data. Determining the impacts causedby different pressures to ecological health andsustainable management and land development isnecessary in order to meet WFD objectives.

There has been much research on relating landuse to the aquatic biota of streams (e.g. Quinn& Hickey, 1990; Richards & Host, 1994; Har-ding et al., 1998; Nerbonne & Vondracek, 2001).The effect of land use on a stream ecosystem canvary depending on many factors, including ripa-rian forest buffer quality, watershed size, reachlocation within its watershed, the presence ofother pressures, and the scale on which land useis measured (e.g. Lammert & Allan, 1999; Co-llier & Quinn, 2003; Roy et al., 2003). The cur-rent analysis examines land use on a regionalscale, which has been shown to be appropriatefor detecting large-scale disturbances (Richards& Host, 1994; Roth et al., 1996).

The chemical variables analyzed here (NH+4 ,NO−3 , NO−2 and PO3−

4 ) have been chosen becau-se they are major components of urban wasteand the fertilizers applied throughout the region,which are nitrogen, or phosphorus-based. Nitro-gen and phosphorus-containing compounds areknown causes of eutrophication (Allan, 1995).

During the year 2001, farmers in Castilla-LaMancha used 139 300 tons of nitrogen-basedand 65 700 tons of phosphorus-based fertilizers.The average application autonomous communitySpain for 2001 was 66 500 tons of nitrogen-basedand 35 900 tons of phosphorus-based fertilizer,making the region one of the largest consumersof fertilizer nationwide (IAEST, 2007). Althoughthe region has a relatively low population density,at 1.18 inhabitants/ha, urban waste inputs contri-bute to stream nutrient enrichment due to insuf�-cient wastewater treatment in many towns, espe-cially those with a low number of inhabitants.

Land use for human activity represents a ma-jor industry and therefore a key impact to thebiotic integrity of streams in Castilla-La Mancha.With 53% of the regional land dedicated to agri-culture, it is important to determine to what ex-tent this land use affects stream chemistry and thebiotic community in order to take steps towardmore sustainable development.

To study these anthropogenic effects on regionalecosystems, our research group has used bioticindices based on macroinvertebrate assemblagesbecause the community responds to a variety ofimpacts (Hering et al., 2004), their use offers awiderange of analytical techniques and the taxonomickeys are well-developed (Hellawell et al., 1986;Bonada et al., 2006). We are applying three diffe-rent indices because previous research has foundthat in some cases the BMWQ index (Camargo,1993) and the MCLM index better distinguishbetween WFD-defined ecological quality classesfor surface water in Castilla-La Mancha (NavarroLlacer, 2006a). The IBMWP index was selectedbecause it has been recognized by the IberianLimnological Association (AIL) as an effectivebiological indicator for assessing water quality.

There has been little research on the relation-ships between land use and the chemical andbiotic integrity of running waters in Spain (e.g.Ortiz et al., 2007; Damasio et al., 2008) or inthe region of Castilla-La Mancha (Moreno et al.,2006). There are several studies focused on waterquality (e.g. Camargo et al., 2005; Oscoz et al.,2006), biological quality (e.g. Palau et al., 1986;Braga, 1987; Figueroa et al., 2005) or other as-pects, for example the diversity of the fauna pre-

Page 28: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Water quality and biotic indices of Castilla-La Mancha 205

sent in running waters of Spain (e.g. Munoz &Prat, 1994; Bonada et al., 2000). In addition toa national need for analyzing the impact of landuse on ecological quality, this research contribu-tes to the understanding of Mediterranean water-sheds, which have been shown to have ecologicalcharacteristics different from cold temperate wa-tersheds and have not been fully explored to date(Alvarez Cobelas et al., 2005).

Previous research on the physicochemicalquality of water bodies and its relationship toland use within Castilla, La Mancha, Spain con-cluded that agricultural fertilizer runoff and ur-ban wastewater discharge are major contributorsto river contamination (Moreno et al., 2006). Thepresent study aims to explore the possible effectson the chemistry in addition to the biota of re-gional rivers due to farming and urban activities.The hypothesis is that the chemical and biologi-cal quality will be negatively affected by urbanand agricultural land uses, and that forested landwill be related to good chemical and biologicalquality. In addition, we will study possible diffe-rences between dry and irrigated farming practi-ces by considering these two variables separately.These effects are explored by applying differentbiotic indices, with an additional goal of studyingindex sensitivity to different land uses.

METHODS

Study area

The sample points are located in parts of fourwatersheds: the Tajo, Jucar, Segura and Guadiana,in Castilla-La Mancha (Fig. 1). Located in south-easternSpain at an average elevationof 600-700mabove sea level, it is a region with a wide varietyof environmental and geographical conditions.

The lithology varies in different locations: inthe west, siliceous rocks such as quartzite, slateand granite dominate, with calcareous rocks in theeastern areas (limestone, dolomite, sandstone, andconglomerates). In the central area, there is amix-ture of the two in the form of detrital sediments,

sample points

Rivers in CLM

Watersheds

Duero

Ebro

Guadalquivir

Guadiana

Jucar

Segura

Tajo

Kilometers0 15 30 60 90 120

N

Madrid

Figure 1. Map of the sampled locations within Castilla-LaMancha, Spain. Mapa de los tramos muestreados en Castilla-La Mancha, Espana.

marl, and gypsum (Gonzalez Mart�n & VazquezGonzalez, 2000). The main climatic type is Tem-perate Mediterranean Climate (Koppen, 1900),with dry summers and small rain events distri-buted throughout the spring and fall and someprecipitation in winter (in most of the study area,the average annual precipitation is approximately600 mm/yr). This climate type is characterizedby hot summers, with average temperature above22 ◦C and cold winters with average temperaturesbelow 6 ◦C (Fernandez Garcia, 2000).

Agriculture, livestock and industry are themain productive sectors within the region. Pre-vious studies highlight a range of human im-pacts to regional waterways, including inter-basin transfers, a high degree of regulation by re-servoirs and dams, aquifer overexploitation, theentrance and proliferation of invasive species,and ineffective wastewater treatment (Greenpea-ce, 2005; Navarro Llacer, 2006b). The majo-rity of the land is used for agricultural pur-poses, encompassing 53% of the total area.There are 3 732 800 ha dedicated to dry far-ming, 494 700 ha of irrigated farmland, and1 583 200 ha of forested land (JCCM, 2002). Thepopulation density is lower than the national ave-rage, at 4.2% of the national total, in an areacomprising 15% of that of Spain (INE, 2004).

Page 29: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

206 Kroll et al.

Table 1. Basic information on the study area. Informacion basica sobre el area de estudio.

Jucar Segura Tajo Guadiana Total

Number of points sampled 16 4 51 11 82

Number of rivers sampled 9 4 20 10 43

Range of stream orders 1-4 1-5 1-6 1-5

Total area of the watershed (km2) 21 580 16 040 55 769 54 985

Area within Castilla-La Mancha (km2) 15 652 4 945 26 762 26 328 58 035

% of watershed in Castilla-La Mancha 73 30 48 48

Methods

In total, we measured physico-chemical variablesat 82 river reaches (Fig. 1, Table 1) by collecting50 ml water samples in the �eld during the sum-mer of 2001. We recorded electrical conductivity(μS cm−1) on-site with a portable sensor (Multi-line P4 WTW) and used Merck Spectroquant R©

spectrophotometric kits in the laboratory to ob-tain concentrations (shown with detection levels)of NH+4 (>0.01 mg l−1), NO−3 (>0.01 mg l−1),NO2 (>0.005 mg l−1), and PO3−

4 (>0.01 mg l−1).We sampled macroinvertebrates qualitatively fol-lowing the methodology described in the PRE-CE/GUADALMED project (Jaimez-Cuellar etal., 2002). This method speci�es the collectionof kick samples with a 500 μm mesh D-frame netuntil no new taxa appear and the preservation of afew individuals from each taxon in 70% alcoholfor identi�cation purposes. In the laboratory, weidenti�ed the specimens to family level, exceptoligochaetes and water mites, using a stereomi-croscope (OLYMPUS SZ61) in order to calculatethe following multimetric biotic indices: IBMWP(Alba-Tercedor et al., 1988), BMWQ (Camar-go, 1993), their respective value per taxon indi-ces (IASPT and aBMWQ), and MCLM (NavarroLlacer, 2006a), an index developed speci�callyfor rivers in Castilla-La Mancha.

To assess non-point pollution, we reclassifiedCORINE Land Cover (CLC, 2000) land use mapsinto dry agriculture, irrigated agriculture, urban andforested areas, and calculated land use percentageswithin the entire upstream drainage basin usingESRI R© ArcGISTM 9.0 software. This method isrecommended by the IMPRESS manual for WFDimplementation (European Commission, 2003).

Statistical analysis

In order to study the relationships between landuse, biotic indices and physico-chemical varia-bles, we performed a Spearman Rank correla-tion analysis. We used this non-parametric analy-sis because some of the variables did not ha-ve a normal distribution. The correlation analy-sis was employed to �nd the associations amongthe entire group of variables. Next, we plottedpoints from the correlation matrix using a Princi-pal Components Analysis (Fry, 1999) to determi-ne the in�uence of each of the variables on sam-ple point quality and �nd out if there is a qualitygradient. These analyses were carried out usingthe XLSTAT 3.4TM package (Fahmy, 1998).

RESULTS

Descriptive statistics for the variables analyzed canbe found in Table 2, showing an array of conditionsthroughout the study area. High conductivityvalues were found in the middle to low reaches.Overall, nutrient concentrationswere not very high,although they presented a range of values, whichindicated different levels of quality in regionalwaterways. Biotic indices also ranged from lowquality to very high, for example the IBMWP indexhad values from 11 to 310. Dry agricultural landand forested land reached the highest percenta-ges of land use (79.8% and 99.6%, respectively),while irrigated agriculture and urban land bothhad maximum values close to 15%.

Results from the correlation analysis showedland use and physicochemical variables to be stron-gly correlated for all land uses except irrigated

Page 30: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Water quality and biotic indices of Castilla-La Mancha 207

Table 2. Descriptive statistics for variables measured in the analyses. Estad�sticos descriptivos de las variables medidas en losanalisis.

N Mean Standard deviation Minimum Maximum

COND 82 914.67 710.46 28.50 4355.00

NH4 82 000.46 001.92 00.01 0014.91

NO3 82 003.36 004.99 00.06 0030.00

NO2 82 000.10 000.23 00.00 0001.49

PO4 82 000.52 001.60 00.00 0012.00

IBMWP 82 155.85 070.92 11.00 0310.00

BMWQ 82 243.93 108.10 21.00 0480.00

IASPT 82 003.95 000.81 01.57 0005.93

aBMWQ 82 006.20 001.19 03.00 0009.25

MCLM 82 026.34 008.87 08.82 0046.76

Urban 82 001.10 002.44 00.00 0016.10

Dry Agriculture 82 022.44 018.94 00.00 0079.80

Irrigated agriculture 82 002.49 002.20 00.00 0014.17

Forest 82 029.58 018.24 00.83 0099.61

agriculture (Table3). Urban land use showed positi-ve correlations (p < 0.001) for all physicochemicalvariables and had the highest coef�cients withnitrite and phosphate. Dry agriculture was posi-tively correlated to all physicochemical variablesand had the largest coef�cients with conductivity

and nitrate. Forested land was negatively corre-lated to all physicochemical variables, with espe-cially high coef�cients for nitrate. Irrigated agri-culture was signi�cantly correlated with nitrateand phosphate with lower coef�cients and wea-ker signi�cance, as shown in Table 3.

Table 3. Correlation coef�cients between physicochemical variables, biotic indices, and land use percentages. The level of signi-�cance is also presented: *p < 0.05, **p < 0.01 and ***p < 0.001. Coe�cientes de correlacion entre las variables f�sico-qu�micas,�ndices bioticos y porcentajes de los usos del suelo. El nivel de signi�cancia esta senalado: *p < 0.05, **p < 0.01 y ***p < 0.001.

COND NH4 NO3 NO2 PO4 IBMWP BMWQ IASPT aBMWQ MCLM UrbanDry

Agriculture

Irrigated

Agriculture

COND

NH4 0.42***

NO3 0.62*** 0.43***

NO2 0.60*** 0.73*** 0.63***

PO4 0.32** 0.52*** 0.30** 0.48***

IBMWP −0.55*** −0.48*** −0.50*** −0.54*** −0.62***

BMWQ −0.53*** −0.47*** −0.48*** −0.51*** −0.63*** 0.99***

IASPT −0.41*** −0.51*** −0.40*** −0.41*** −0.61*** 0.76*** 0.74***

aBMWQ −0.34** −0.48*** −0.33** −0.35** −0.63*** 0.72*** 0.72*** 0.96***

MCLM −0.42*** −0.34** −0.37*** −0.47*** −0.51*** 0.88*** 0.89*** 0.45*** 0.44***

Urban 0.45*** 0.32** 0.46*** 0.51*** 0.61*** −0.66*** −0.65*** −0.55*** −0.50*** −0.57***

Dry

Agriculture0.62*** 0.20 0.69*** 0.40*** 0.35** −0.67*** −0.65*** −0.49*** −0.43*** −0.57*** 0.60***

Irrigated

Agriculture0.18 0.10 0.22* 0.14 0.22* −0.32** −0.34** −0.22* −0.27* −0.29** 0.30** 0.33**

Forest −0.38*** −0.25* −0.53*** −0.27* −0.47*** 0.60*** 0.58*** 0.58*** 0.52*** 0.48*** −0.56*** −0.77*** −0.27**

Page 31: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

208 Kroll et al.

Principal Components Analysis (64% )

COND

NH4

NO3 NO2

PO4

IBMWPBMWQ

IASPT

aBMWQ

MCLM

URBAN

DRY_AGR

IRR_AGR

FOR

-3

-2

-1

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6 8

Figure 2. Graph of the results of the Principal ComponentsAnalysis showing the sampling points and variables. Axis 1 ex-plains 54 % of the data variability and axis 2 explains 10 % ofit. The land use types are abbreviated: DRY AGR is dry agri-culture, IRR AGR is irrigated agriculture, and FOR is forested.Gra�co de los resultados del Analisis de Componentes Princi-pales que muestra las estaciones de muestreo y los variables.El eje 1 explica el 54 % de la variabilidad de los datos y el eje2 explica 10 %. Los usos de suelo estan abreviados: DRY AGRes agricultura en secano, IRR AGR es agricultura de regad�o yFOR es forestal.

All physico-chemical variables showed negative,significant correlations with all biotic indices(Table 3). Phosphate was the nutrient with thestrongest correlation (r > 0.5) to all biotic indices.

High correlations were observed between thebiotic indices and the urban and dry farming land

uses, both of which were negative. There werepositive, highly signi�cant correlations betweenforested land and all the indices. Irrigated agri-culture was signi�cantly correlated with bioticindices, but yielded lower correlation coef�cientsand signi�cance in general, as was seen in thecorrelation with nutrients as well.

These results were also reflected in the PrincipalComponents Analysis (PCA) plot (Fig. 2). Alongaxis 1 (54% of data variability), the PCA graphpresented a clear gradient of ecological quality asexplained by the variables studied. On the positiveside of axis 1, forested land was grouped togetherwith all biotic indices, indicating higher qualityin sample points on that side of the axis. Allnutrients and land uses for human purposes werelocated on the negative side of the x-axis. As seenin the correlation analysis, the PCA showed dryagriculture as having a closer relationship withnutrients than irrigated agriculture.Contrary towhatwas expected, irrigated agriculture posed a lesserimpact on ecological quality than dry agriculture.Axis 2 only represented 10% of data variability anddidnothavean interpretablepattern.

In �gure 3, the bar graphs show the mean va-lues for nutrient concentrations at certain percen-tages of land use, with standard error bars. Nu-trients increased with an increase in urban land

Urban land use vs. nutrients

0

5

10

15

20

25

30

0-0.19% 0,2-1% 1-5% >5%

Percent land use

NH4

NO3

NO2

PO4

Dry agriculture vs. nutrients

0

1

2

3

4

5

6

7

8

9

0-9% 10-25% 26-39% = 40%

Percent land use

NH4

NO3

NO2

PO4

c.

Irrigated agriculture vs. nutrients

0

1

2

3

4

5

6

7

0-1.9% 2-4.9% = 5%

Percent land use

NH4

NO3

NO2

PO4

b.

Forested land vs. nutrients

0

1

2

3

4

5

6

7

8

9

0-19% 20-39% = 40%

Percent land use

NH4

NO3

NO2

PO4

d.

Co

nce

ntr

atio

n(m

g/l)

Co

nce

ntr

atio

n(m

g/l)

Co

nce

ntr

atio

n(m

g/l)

Co

nce

ntr

atio

n(m

g/l)

Figure 3. Mean nutrient concentrations as a function of different percentages of land use, with standard error bars. Concentracionesmedias de nutrientes a distintos porcentajes del uso del suelo, con barras del error estandar.

Page 32: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Water quality and biotic indices of Castilla-La Mancha 209

Urban land vs. biotic indices

0

50

100

150

200

250

300

350

400

0-0.19% 0,2-1% 1-5% >5%

Percent land use

IBMWP

BMWQ

MCLM

a.

Dry agriculture vs. biotic indices

0

50

100

150

200

250

300

350

400

0-9% 10-25% 26-39% = 40%

Percent land use

IBMWP

BMWQ

MCLM

c.

Irrigated agriculture vs. biotic indices

0

50

100

150

200

250

300

350

0-1.9% 2-4.9% = 5%

Percent land use

IBMWP

BMWQ

MCLM

b.

Forested land vs. biotic indices

0

50

100

150

200

250

300

350

400

0-19% 20-39% = 40%

Percent land use

IBMWP

BMWQ

MCLM

d.

Ind

ex

va

lue

s

Ind

ex

va

lue

sIn

de

xva

lue

s

Ind

ex

va

lue

s

Figure 4. Mean biotic index values as a function of different percentages of land use, with standard error bars. Valores medios de�ndices bioticos a distintos porcentajes del uso del suelo, con barras del error estandar.

percentage (Fig. 3a), demonstrating an obviouschange in nitrate and phosphate concentrations.There were no clear patterns for mean nutrientconcentrations when compared to irrigated landuse percentages (Fig. 3b). However, in �gure 3c,nitrate concentration clearly increased with thepercent of dry agriculture, and especially high va-lues could be seen at 25% cover, while phosphateexperienced a smaller but drastic increase and themean values for ammonium experienced a jumpat around 40%. Figure 3d shows an increase inforested land and a decrease in all nutrient con-centrations, especially nitrate.

Figure 4 shows the response of the biotic indicesto increasing percentages of each land use type.Mean values of biotic indices experienced a cleardecrease with an increase in urban and irrigatedfarmland and an increasewith higher percentages offorested land.Once again, therewas no clear patternfor irrigated agriculture, as index values decreasedand then increasedwith increasingoccupation.

DISCUSSION

These variables (nutrients, biotic indices) are im-portant for understanding some of the ways in

which human activities strain river ecosystems,in this case due to land use. Chemical analysesalone may miss important point source contribu-tions if they occur well before or after the sam-pling date (sensu Metcalfe, 1989; Rueda et al.,2002). However, biotic indices offer informationon how long-term point and non-point source po-llution affect the biotic community. We chose thephysicochemical variables included in this studybecause of their known origin in fertilizer com-pounds and urban waste as well as for their rolein eutrophication of surface waters and the resul-ting impacts to the biota (Allan, 1995).

In the present study, the nutrients associa-ted with fertilizer (nitrogen and phosphorus-containing compounds) and urban waste (nitro-genous compounds and phosphate) showed rela-tionships with land use and biotic indices. Thecorrelations between land use, biotic indices,and physicochemistry support the hypothesis thatland use affects stream ecological quality.

As expected, urban and agricultural uses hadnegative correlations to biotic and chemical qua-lity, while forested land was positively correlated.Dry agriculture was strongly correlated to all nu-trients, especially nitrate, and had negative corre-lations with all biotic indices. Results similar to

Page 33: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

210 Kroll et al.

those seen in the present study have been repor-ted throughout the world in studies that analyzethe effects of land use on nutrients as well as bio-tic communities (Richards & Host, 1993; Cuff-ney et al., 2000; Fitzpatrick et al. 2001). Cuffneyet al. (2000) found relationships between bioticindices and ammonia, nitrate, nitrite, and phos-phorus, while Fitzpatrick et al. (2001) found de-creases in macroinvertebrate metrics and streamchemical quality with the increase in the per-cent of agricultural land. In the present study(Figure 3c), there is a clear increase in NH+4 at40% dry agricultural land. Ometo et al. (2000)also found higher NH+4 concentrations in a wa-tershed with 62% farmland, than in a watershedwith a higher percentage of forested land.

Irrigated agriculture showed weaker signi�-cant correlations (r < 0.3) with nitrate, phospha-te and the biotic indices with respect to other landuses. We had expected a stronger impact by irri-gated farmland due to nutrient runoff from thecombination of fertilizer application and irriga-tion. However, it appears that dry agriculture hadmore of an effect on ecological quality.

Urban land showed strong correlations withnutrients and biotic indices. Results (Fig. 3a)show an abrupt increase in nutrients at 1% ur-ban land, especially for nitrate and phospha-te. Phosphorus-containing compounds may ori-ginate in household and industrial detergents,while nitrogenous compounds can be a productfrom wastewater (Allan, 1995; Rueda et al.,2002). Roy et al. (2003) also found nitrogenand phosphorus-containing compounds to be po-sitively correlated with the percentage of urbanareas, similar to the trends in our analysis.

In contrast to the effects caused by agricul-tural and urban land uses, forested land showednegative correlations with all the nutrients. Thestrongest, negative correlations were for nitrateand phosphate (Table 3). We observed a progres-sive decrease in nutrients with an increase in thepercent of forested land (Fig. 3d), and thereforea lower capacity to retain nutrients below 20%forested land. As forested land increased, therewas an increase in biotic index values (Fig. 4d).This is logical because natural vegetation has acapacity to absorb and reduce runoff to rivers, ac-

ting as a buffer for the stream (Allan & Johnson,1997; Corbacho et al., 2003). Roy et al. (2003)also found nitrogen and phosphorus-containingcompounds to be negatively correlated with thepercentage of forested lands. The effect of fores-ted land on the watershed level has been shownby the experimental removal of forest in the Hub-bard Brook watershed, which caused a 41-foldincrease in nitrate concentrations, disruption ofthe nitrogen cycle, and altered concentrations ofother ions (Likens et al., 1970).

The positioning of variables and land useson the PCA graph also show this quality gra-dient (Fig. 2). Dry agriculture and urban land we-re grouped with nutrients, and had a clearly ne-gative effect on the biological and physicochemi-cal quality of regional rivers. However, forestedland affected river quality in a positive mannerand was plotted very close to the biotic indices.The pressure exerted by irrigated farmlandwas not as clear, although this practice wasexpected to contribute more nutrients due toincreased runoff (Hynes, 1970). The samplepoints clearly covered a wide range of quality inregional streams, from sample points with goodquality and a high percentage of forested area toreaches with high nutrient concentrations andmodified land use characteristics.

In comparing index sensitivity to land usepressures, the biotic indices showed signi�cantcorrelations to all types of land use and nutrients,with high coef�cients and levels of signi�cance(Table 3). Therefore, there was no difference insensitivity to speci�c land use pressures. None-theless, these correlations are important, as theyshow that the biota is a better indicator of long-term impacts than chemical analyses alone (Met-calfe, 1989; Rueda et al., 2002). Solimini et al.(2000) compared the responses of different indi-ces to stream quality and found the Spanish in-dices (IASPT and aBMWQ) to be more precisethan the EBI (Woodiwiss, 1978) and IBE (Ghet-ti, 1986) in detecting the impacts due to organicpollution by nitrogen compounds and phosphate.We applied various indices, including the MCLMindex, which was developed speci�cally for thestudy area. The results showed that the MCLMhad correlations with land use and physicoche-

Page 34: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Water quality and biotic indices of Castilla-La Mancha 211

mistry, but did not detect the impact of increasingpercentages of land use on the biota as well as theIBMWP and BMWQ indices (Fig. 4).

Recently, steps have been taken to improvewater quality in Castilla-La Mancha based onthe knowledge that nutrient input can be redu-ced from urban sources with secondary and spe-cialized wastewater treatment (Castro, 2007) andfrom agricultural sources by reducing fertilizerapplications and maintaining a riparian bufferstrip (Corbacho et al., 2003). A project funded bythe European Union’s FEDER grant program wascarried out to inform local farmers on techniquesto reduce water and fertilizer needs, with infor-mation available online (FEDER, 1999; CREASIAR, 2001). In addition, public policy is promo-ting the construction and improvement of waste-water treatment systems in all towns with 2000or more inhabitants and tertiary treatment in en-vironmentally sensitive areas in order to reducenutrient input to streams within the region (Direc-tive 91/271/EC, European Commission, 1991).Since 1983, approximately 200 wastewater treat-ment plants have been built. There are also ri-parian corridor restoration projects in place forthe watersheds studied here (CHJ, 2002; Macei-ra Rozados, 2007; CHG, 2007; Maceira Roza-dos, 2008). These initiatives are steps in the rightdirection for conserving regional waterways, butthe current analysis highlights the need for conti-nued work in the future to better manage farmingpractices and urban planning as well as maintainriparian corridor quality in order to comply withthe WFD goal of meeting ‘good’ ecological qua-lity standards by the year 2015.

CONCLUSIONS

This study uses relatively simple methods toanalyze some of the pressures that human activitiesimpose on the quality of streams. The use ofphysico-chemical variables related to agriculturaland urban runoff and qualitative sampling methodsto derive biotic indices is sufficient to analyzethe biological and chemical quality of regionalwaterways.Dry agriculturewas shown tohavemoreof an effect onwater quality than irrigated agricultu-

re, and further research is needed to examine thelocal effects of agricultural runoff on rivers.

Research on the relationships between land useand the biotic community are not common withinSpain, making this approach even more importantin a national context. The assessment of bothphysicochemical and biotic index responses to landuse types is important because not all land usetypes are related to nutrient concentrations, but allbiotic indices have strong correlations with landuses. Currently in Castilla-La Mancha fertilizermanagement practices, riparian restoration andwastewater treatment plants are an improvementin order to reduce stream input, although theirefficiency has not been tested. Nonetheless, theresults highlight the importance and pressure offarming, at 53% of land use, within the regionand the need for improvements to stream systemsin order to sustainably manage riverine ecosystemsandcomplywithWFDobjectives.

ACKNOWLEDGEMENTS

The authors would like to thank the Region of Cas-tilla-La Mancha (JCCM) for funding this researchthrough the project PREG06-027, our fellow resear-chers at CREA, University of Castilla-La Mancha,and the two anonymous reviewers that madeuseful suggestions for improvements to this paper.

REFERENCES

ALBA-TERCEDOR, J. & A. SANCHEZ-ORTEGA.1988. Un metodo rapido y simple para evaluar lacalidad biologica de las aguas corrientes basado enel de Hellawell (1978). Limnetica, 4: 51-56.

ALLAN, J. D. 1995. Stream ecology: Structure andfunction of running waters. Dordrecht: KluwerAcademic Publishers, 388 pp.

ALLAN, J. D. 2004. Landscapes and riverscapes:The in�uence of land use on stream ecosystems.Annual Review of Ecology and Evolution Systems,35: 257-284.

ALLAN, J. D. & L. B. JOHNSON. 1997. Catch-ment-scale analysis of aquatic ecosystems. Fresh-wat. Biol., 37: 107-111.

Page 35: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

212 Kroll et al.

ALVAREZ COBELAS, M., C. ROJO & D. G. AN-GELER. 2005. Mediterranean limnology: currentstatus, gaps and the future. Journal of Limnology,64: 13-29.

BONADA, N., N. PRAT, V. H. RESH & B. STATZ-NER. 2006.Developments in aquatic insect biomo-nitoring: A comparative analysis of recent approa-ches. Annual Review of Entomology, 51: 495-523.

BONADA, N., M. RIERADEVALL & N. PRAT.2000. Temporalidad y contaminacion como clavespara interpretar la biodiversidad de macroinverte-brados en un arroyo Mediterraneo (Riera de SantCugat, Barcelona). Limnetica, 18: 81-90.

BRAGA, A. M. 1987. Utilizacion de macroinverte-brados benticos como indicadores biologicos de lacalidad de agua en el R�o Viao-Pilona (Asturias).Limnetica, 3: 141-150.

CAMARGO, J. A. 1993. Macrobenthic surveys as avaluable tool for assessing freshwater quality in theIberian Peninsula. Environmental Monitoring andAssessment, 24: 71-90.

CAMARGO, J. A., A. ALONSO & M. DE LAPUENTE. 2005. Eutrophication downstream fromsmall reservoirs in mountain rivers of CentralSpain. Wat. Res., 39: 3376-3384.

CASTRO, E. 2007. Aptitud para uso agr�cola deagua residual depurada y lodos generados en unaestacion depuradora de aguas residuales de fan-gos activos. Doctoral thesis, University of Castilla-La Mancha, 380 pp.

CHG. 2007. Actuaciones de restauracion de r�os yhumedales en la cuenca del Guadiana. Confede-racion Hidrogra�ca del Guadiana. http://www.res-tauracionderios.org/24/Presentaciones/Guadiana.pdf.

CHJ. 2002. Plan de recuperacion del Jucar. Confe-deracion Hidrogra�co del Jucar, http://www.chj.es/PRJ.

CLC. 2000. Corine Land Cover, European Environ-ment Agency, http://www.eaa.europa.eu.

COLLIER, K. J. & J. M. QUINN. 2003. Land-usein�uences macroinvertebrate community respon-se following a pulse disturbance. Freshwat. Biol.,48: 1462-1481.

CORBACHO, C., J. M. SANCHEZ & E. COSTI-LLO. 2003. Patterns of structural complexity andhuman disturbance of riparian vegetation in agri-cultural landscapes of a Mediterranean area. Agri-culture, Ecosystems and Environment, 95: 495-507.

CREA SIAR. 2001.Recomendaciones de Riego.Cen-tro Regional de los Estudios de Agua, Servi-

cio Integral de Asesoramiento al Regante. http://crea.uclm.es/siar/.

CUFFNEY, T. F., M. R.MEADOR, S. D. PORTER &M. E. GURTZ. 2000. Responses of physical, che-mical and biological indicators of water quality toa gradient of agricultural land use in the YakimaRiver Basin, Washington. Environmental Monito-ring and Assessment, 64: 259-270.

DAMASIO, J., R. TAULER, E. TEIXIDO, M. RIE-RADEVALL, N. PRAT, M. C. RIVA, A. M. V. M.SOARES & C. BARATA. 2008. Combined use ofDaphnia magna in situ bioassays, biomarkers andbiological indices to diagnose and identify environ-mental pressures on invertebrate communities in twoMediterranean urbanized and industrialized rivers(NESpain).AquaticToxicology, 87: 310-320.

EUROPEAN COMMISSION. 2003. Guidance do-cument 3: Analysis of Pressures and Impacts (IM-PRESS). Common implementation strategy for theWater Framework Directive (2000/60/EC), 157 pp.

EUROPEAN COMMISSION. 2000. Directive 2000/60/EC of the European Parliament and of theCouncil of 23 October 2000 establishing a frame-work for Community action in the �eld of waterpolicy. Of�cial Journal of the European Communi-ties L327.

EUROPEAN COMMISSION. 1991. Directive 1991/271/EC of the European Parliament and of theCouncil of 21 of May 1991 concerning urban was-tewater treatment. Of�cial Journal of the Euro-pean Communities L135.

FAHMY, T. 1998. XLSTAT. Version 3.5.FEDER. 1999. El uso e�ciente del agua y la fertili-

zacion nitrogenada en los regad�os de Castilla-LaMancha. http://www.ruena.csic.es/proyectos fer-tilizacion.html.

FERNANDEZ GARCIA, F. 2000. Los condicionan-tes climaticos del paisaje. In: Gu�a de los espaciosnaturales de Castilla-La Mancha, 5a edicion. Ser-vicio de Publicaciones (ed.): 41-54. Consejer�a deCultura, Toledo.

FIGUEROA, R., X. NIELL, A. AVILES, L. PALO-MO, M. CARRASCO & S. MORENO. 2005. Ca-lidad biologica del agua: cuenca del R�o Palmo-nes. Almoraima: revista de estudios campogibral-tarenos, 31: 71-80.

FITZPATRICK, F. A., B. C.SCUDDER, B. N. LENZ,& D. J. SULLIVAN. 2001. Effects of multi-scaleenvironmental characteristics on agricultural streambiota in Eastern Wisconsin. Journal of the AmericanWaterResourcesAssociation, 37: 1489-1507.

Page 36: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Water quality and biotic indices of Castilla-La Mancha 213

FRY, J. C. 1999. Biological data analysis: A practi-cal approach. New York: Oxford University Press,418 pp.

GHETTI, P. F. 1997. Indice Biotico Esteso (IBE). Imacroinvertebrate nel controllo della qualita degliambienti di acque correnti. Provincia Autonoma diTrento. 222 pp.

GONZALEZMARTIN, J. A. & A.VAZQUEZ-GON-ZALEZ. 2000. Las formas de relieve: Llanuras, pa-ramos y montanas. In: Gu�a de los espacios natu-rales de Castilla-La Mancha, 5a edicion. Serviciode Publicaciones (ed.): 17-40. Consejer�a de Cul-tura, Toledo.

GREENPEACE. 2005. Agua: la calidad de las aguasen Espana. Un estudio por cuencas. Greenpeace,Madrid. 136 pp.

HARDING, J. S., E. F. BENFIELD, P. V. BOLS-TAD, G. S. HELFMAN & E. B. D. JONES. 1998.Stream biodiversity: the ghost of land use past.Proceedings of the National Academy of Science,95: 14843-14847.

HELLAWELL, J. 1986. Biological indicators offreshwater pollution and environmental manage-ment. London: Elsevier Applied Science, 546 pp.

HERING, D., O. MOOG, L. SANDIN & P. F. M.VERDONSCHOT. 2004. Assessment of Europeanstreams with diatoms, macrophytes, macroinverte-brates and �sh: a comparative, metric-based analy-sis of organism response to stress. Hydrobiologia,516: 1-21.

HYNES, H. B. N. 1970. The ecology of running Wa-ters. Liverpool: Liverpool University Press, 555pp.

INE. 2004. Anuario Estad�stico. www.ine.esIAEST. 2007. Consumo agr�cola de fertilizantes por

meses: Espana y Comunidades Autonomas. InstitutoAragones de Estad�stica. http://portal.aragon.es.

JAIMEZ-CUELLAR, P., S. VIVAS, N. BONADA,S. ROBLES, A. MELLADO, M. ALVAREZ, J.AVILES, J. CASAS, M. ORTEGA, I. PARDO, N.PRAT, M. RIERADEVALL, C. E. SAINZ-CANTE-RO, A. SANCHEZ-ORTEGA, M. L. SUAREZ, M.TORO, M. R. VIDAL-ABARCA, C. ZAMORA-MUNOZ & J. ALBA-TERCEDOR. 2002. ProtocoloGUADALMED(PRECE).Limnetica, 21: 187-204.

JCCM. 2002. Cifras del Sector Agrario, Consejer�ade Agricultura. Junta de Comunidades de Castilla-La Mancha. http://www.jccm.es/agricul/cifras sec-tor agrario.htm

KOPPEN, W. 1900. Versuch einer Klassi�kation derKlimate, vorzugsweise nach ihren Beziehungen

zur P�anzenwelt. Geogra�sche Zeitschrift, 6: 593-611, 657-679.

LAMMERT, M. & J. D. ALLAN. 1999. Assessingthe biological integrity of streams: the effects ofscale in measuring the in�uence of land use/coverand habitat structure on �sh and macroinvertebra-tes. Environmental Management, 23: 257-270.

LIKENS, G. E., H. BORMANN, F. JOHNSON, M.NOYE, D. W. FISHER & R. S. PIERCE. 1970. Ef-fects of forest cutting and herbicide treatment onnutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monogr., 40: 23-47.

MACEIRA ROZADOS, A. 2007. La ConfederacionHidrogra�ca del Tajo pone en marcha tres proyec-tos para restaurar r�os en Madrid y Guadalajara,12 April. www.iagua.es.

MACEIRA ROZADOS, A. 2008. La CHS �rma unconvenio de cooperacion con Ecologistas en Ac-cion de la Region de Murcia, 05 November.www.iagua.es.

METCALFE, J. 1989. Biological water quality as-sessment of running waters based on macroinver-tebrates communities: History and present status inEurope. Environmental Pollution, 60: 101-139.

MORENO, J. L., C. NAVARRO & J. DE LAS HE-RAS. 2006. Abiotic ecotypes in south-central Spa-nish rivers: Reference conditions and pollution.Environmental Pollution, 143: 388-396.

MUNOZ, I. & N. PRAT. 1994. Macroinvertebratecommunity in the lower Ebro river (NE Spain). Hy-drobiologia, 286: 65-78.

NAVARRO LLACER, C. 2006a. Aplicacion de un�ndice multimetrico basado en la comunidad demacroinvertebrados para la evaluacion del estadoecologico de los r�os castellano-manchegos. ActasXIII Congreso de la Asociacion Espanola de Lim-nolog�a y el V Congreso Iberico de Limnolog�a,2-7 de Julio de 2006. Barcelona, Espana: 64.

NAVARRO LLACER, C. 2006b. El estado ecologicode los r�os de Castilla-La Mancha. Doctoral thesis,University of Castilla-La Mancha, 247 pp.

NERBONNE, B. A. & B. VONDRACEK. 2001. Ef-fects of local land use on physical habitat, bent-hic macroinvertebrates, and �sh in the WhitewaterRiver, Minnesota, USA. Environmental Manage-ment, 28: 87-99.

OMETO, J. P. H. B., L.A. MARTINELLI, M. V. BA-LLESTER, A. GESSNER, A. V. KRUSCHE, R.L. VICTORIA & M. WILLIAMS. 2000. Effects

Page 37: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

214 Kroll et al.

of land use on water chemistry and macroinverte-brates in two streams of the Piracicaba river basin,south-east Brazil. Freshwat. Biol., 44: 327-337.

ORTIZ, J. D. & M. A. PUIG. 2007. Point source ef-fects on density, biomass and diversity of benthicmacroinvertebrates in a Mediterranean stream. Ri-ver Research and Applications, 23: 155-170.

OSCOZ J., F. CAMPOS & M. C. ESCALA. 2006.Variacion de la comunidad de macroinvertebradosbentonicos en relacion con la calidad de las aguas.Limnetica, 25: 683-692.

OSBORNE, L. L. & M. J. WILEY. 1988. Empiricalrelationships between land use/cover patterns andstream water quality in an agricultural watershed.Journal of Environmental Management, 26: 9-27.

PALAU, A. & A. PALOMES. 1986. Los macroinver-tebrados bentonicos como elementos de juicio parala evaluacion de la calidad biologica del R�o Segre(Lerida, NE Espana). Limnetica, 2: 205-215.

QUINN, J. M. & C. W. HICKEY. 1990. Characte-risation and classi�cation of benthic invertebratecommunities in 88 New Zealand rivers in relationto environmental factors. New Zealand Journal ofMarine and Freshwater Research, 24: 387-409.

RICHARDS, C. & G. E. HOST. 1993. Identificationof predominant environmental factors structuringstreammacroinvertebrate communitieswithin a largeagricultural catchment.Freshwat.Biol., 29: 285-294.

RICHARDS, C. & G. E. HOST. 1994. Examiningland use in�uences on stream habitats and ma-croinvertebrates: a GIS approach. Water ResourcesBulletin, 30: 729-738.

ROTH, N. E., J. D. ALLAN & D. L. ERICKSON.1996. Landscape in�uences on stream biotic inte-

grity assessed at multiple spatial scales. LandscapeEcology, 11: 141-156.

ROY, A. H., A. D ROSEMOND, M. J. PAUL, D. S.LEIGH & J. B. WALLACE. 2003. Stream ma-croinvertebrate response to catchment urbanization(Georgia, USA). Freshwat. Biol., 48: 329-346.

RUEDA, J., A. CAMACHO, F. MEZQUITA, R.HERNANDEZ & J. P. ROCA. 2002. The effectof episodic and regular sewage discharges on thewater chemistry and macroinvertebrate fauna of aMediterranean stream. Water, Air and Soil Pollu-tion 140: 425-444.

SMART, M. M., T. W. BARNEY & J. R. JONES.1981. Watershed impact on stream water quality: Atechnique for regional assessment. Journal of Soiland Water Conservation, 63: 297-300.

SOLIMINI, A. G., P. GULIA, M. MONFRINOTTI& G. CARCHINI. 2000. Performance of differentbiotic indices and sampling methods in assessingwater quality in the lowland stretch of the TiberRiver. Hydrobiologia, 422/423: 197-208.

TOWNSEND, C. R., C. J. ARBUCKLE, T. J.CROWL & M. R. SCARSBROOK. 1997. Therelationship between land use and physicoche-mistry, food resources and macroinvertebratecommunities in tributaries of the Taieri River,New Zealand: a hierarchically scaled approach.Freshwat. Biol., 37: 177-191.

WOODIWISS, F. S. 1978. Biological Water Assess-ment Methods. Severn-Trent River Authorities, U.K.

ZAMORA-MUNOZ, C. & A. ALBA-TERCEDOR.1996. Bioassessment of organically polluted Spa-nish rivers, using a biotic index and multivariatemethods. J.North Am. Benthol. Soc., 15: 332-352.

Page 38: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 27 (2): xxx-xxx (2008)Limnetica, 28 (2): 215-224 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

Incorporacion de nitrogeno y fosforo por Sarcocornia perennis (Miller)A. J. Scott en concentraciones reales en el estuario del r�o Palmones

Roc�o Munoz1,∗ and F. Xavier Niell1

1 Departamento de Ecolog�a, Facultad de Ciencias, Universidad de Malaga, Campus de teatinos s/n, 29071 Mala-ga, Espana.2

∗ Autor responsable de la correspondencia: [email protected]

Recibido: 26/11/08 Aceptado: 4/5/09

ABSTRACT

Nitrogen and phosphorus uptake by Sarcocornia perennis (Miller) A. J. Scott, at natural concentrations in the Palmonesriver estuary

Sarcocornia perennis (Miller) A. J. Scott is a Chenopodiaceae dominant in salt marshes of Palmones river estuary (Spain). Itforms dense and extended meadows which act as an active nutrient sink between land and sea. The capacity of nutrient uptakehas been studied at natural concentrations found in �eld surveys. Vmax, Km, and compensation point (Cmin) for nutrients havebeen obtained for NO−3 , PO−34 , and NH+4 .Nitrate is limitant for the plant, but the nitrogen de�ciency is replaced by NH+4 as a nitrogen source. The advantage of Sarco-cornia over other macrophytes such as Spartina (Spartina alterni�ora and Spartina patens) has been discussed.

Key words: Sarcocornia perennis, nutrient, assimilation kinetics.

RESUMEN

Incorporacion de nitrogeno y fosforo por Sarcocornia perennis (Miller) A. J. Scott, en concentraciones reales en el estua-rio del r�o Palmones

Sarcocornia perennis (Miller) A. J. Scott es una Quenopodiacea dominante en las marismas saladas de Estuario del R�oPalmones (Espana). Esta especie forma extensas y densas praderas las cuales actuan como sumidero de nutrientes entre latierra y el mar. Se ha estudiado la capacidad de incorporar nutrientes en concentraciones reales encontradas en el medio poresta planta. Se ha obtenido la Vmax, Km, y Cmin para cada nutriente (NO−3 , PO−34 y NH+4 ).El NO−3 se encuentra en concentraciones limitantes para la planta, pero esta de�ciencia de nitrogeno es solventada por elNH+4 como fuente de nitrogeno. Las ventajas de Sarcocornia sobre otros macro�tos como Spartina (Spartina alterni�ora andSpartina patens) son discutidas.

Palabras clave: Sarcocornia perennis, nutriente, cinetica de asimilacion.

INTRODUCCION

El estuario del r�o Palmones se ubica en la Bah�a deAlgeciras (Fig. 1). Desde hace anos, este estuarioha estado sometido a una progresiva eutrofizacion(Niell et al., 1996, Clavero et al., 1999, Aviles,

2002; Palomo, 2004) debido al incremento enla entrada de nutrientes, principalmente nitratoy fosfatos producidos por la actividad humana.

El nitrogeno es el nutriente mineral que lasplantas necesitan en mayores cantidades y uno delos factores frecuentemente limitantes para el cre-

Page 39: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

216 Munoz & Niell

Spain

AlgecirasBay

Palmones

Site ofSampling

Figura 1. Estuario del r�o Palmones y zona de muestreo. Pal-mones River Estuary and sampling zone.

cimiento (Mendelson, 1979; Debusk y Reddy,1987; Caetano et al., 2007). La mayor�a de lasplantas toman el nitrogeno a traves de las ra�cesdesde el suelo como NO−3 o NH+4 , mostrando unaalta a�nidad por el NH+4 como forma de nitrogenopara ser asimilado (Morris, 1980; Morris, 1984;Jampeetong y Brix., 2009 (en prensa); Simas yFerreira, 2007) mientras que el NO−3 juega un pa-pel menor en la nutricion de la planta, aunquecuando esta disponible, las plantas muestran lacapacidad de asimilarlo (Mendelsson, 1979). Lapreferencia por el amonio podr�a ser debida a quela energ�a requerida para la reduccion de nitratose ahorra mediante la incorporacion de amonio(Rosenberg yRamus, 1984), aunque segun diversosestudios, la capacidad de almacenamiento delamonio en la planta es limitado debido a su efectotoxico (Waite y Mitchell, 1972; Haines y Wheeler,1978;Lotze ySchramm,2000;Cohem et al., 2004).

Por otro lado, la incorporacion de PO3−4 por las

plantas, depende en gran parte del contenido in-terno en fosfato que presente la planta (Imaoka yTeranishi, 1988), y ademas, algunos estudios hanmostrado como por ejemplo en plantas de soja,la presencia de amonio en altas concentraciones(>500 μM) puede interferir en la incorporaciondel fosfato inhibiendolo (Rayar y Hai, 1977), o

como en el caso del ma�z, incrementando su in-corporacion (Smith y Jackson, 1998).

En los estuarios los aportes de nutrientes llegandesde el r�o hacia el sedimento, donde son reteni-dos, e incorporados por la vegetacion. Los procesosde intercambio que tienen lugar entre el sedimentoy el agua que inunda lamarisma influyen demaneradeterminante sobre los nutrientes que se encuentranen el agua intersticial. As� el fosfato en el aguaintersticial de la marisma var�a en un rango deconcentraciones de1.2±0.2μMy112.7±45.7μMsegun Clavero et al. (2000); Izquierdo (2001);Aviles et al. (2002) y Palomo (2004).

Respecto de las formas de nitrogenodisponibles,en la marisma del r�o Palmones el agua intersticialdel sedimento se encuentra bastante enriquecida enlas formas solubles deN inorganico, principalmenteen amonio. Las concentraciones de nitrato encon-tradas en el agua intersticial del estuario oscilanentre los 0.04 ± 0.01 μM y 17.45 ± 3.87 μM. Sinembargo, el amonio que es siempre la formainorganica dominante en marismas (De Launeet al., 1983), llega a encontrarse en concentra-ciones que van desde los 134 ± 82 μM hasta los1505 ± 483 μM (Palomo, 2004).

Otros factores que deben ser consideradosen el estudio de la incorporacion de nutrientesademas de la concentracion de nutrientes en elsuelo son las condiciones eda�cas, ya que estaspueden modi�car las cineticas de incorporacionde nutrientes. Estas condiciones eda�cas com-prenden principalmente el estado de aireacion delsuelo (aerobia/anoxia) y la salinidad.

Esta bien establecido que las tasas de incorpo-racion de nutrientes son dependientes de un buensuministro de ox�geno a las ra�ces (Vlamis y Davis,1944; Hammond et al., 1955; Hopkins, 1956). As�,en los suelos inundados o con poca aireacion, se hademostrado como las plantas tienen la capacidadde suministrar ox�geno internamente al sistemaradicular (Rao y Mikkelsen, 1977). En Palmones,debido a los largos periodos de encharcamientoa los que esta sometido el sedimento durante elinvierno, el ox�geno se agota a 1 cm deprofundidad,mientras que en verano el ox�geno que se encuentraen el sedimento es mucho mayor (100μmoles/l)aunque se reduce a la mitad a partir de los 2 cm deprofundidad (Palomo, 2004).

Page 40: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Incorporacion de nutrientes por Sarcocornia perennis 217

La salinidad es otra variable que puede modi�-car las tasas de incorporacion de los nutrientesya que el incremento de la salinidad hace decre-cer las tasas de incorporacion de los nutrientes(Fied et al., 1965; Helal et al., 1975) posiblemen-te por la competicion entre iones de cargas simi-lares. La salinidad en los suelos de la marismadel Palmones oscila intensamente durante todo elano como consecuencia de la frecuencia de inun-dacion por la marea y de las tasas de evapora-cion (Palomo, 2004). As� se encuentran rangos desalinidad que van desde 30 hasta los 90.

El principal objetivo de este trabajo es estudiarla incorporacion de nutrientes en concentracionesreales que se dan en la marisma del estuario delr�o Palmones por la quenopodiacea S. perennis;para as� discutir el papel real de esta especie en ladinamica de los nutrientes en este sistema estuarico.

MATERIAL Y METODOS

Sarcocornia perennis se recolecto en las maris-mas del estuario del r�o Palmones. Las plantasfueron mantenidas en cultivos hidroponicos consolucion Hoagland modi�cada (Epstein, 1972),a temperatura constante de 25 ◦C, con un �ujofotonico de 180 μmol m−2s−1 (PAR) y pH ajusta-do a 6.1 (Fig. 1). En los experimentos se trabajounicamente con las ra�ces nuevas que las plantasrecolectadas generaron.

La incorporacion de nutrientes en las ra�cesde S. perennis fue estimada mediante incubacionescon medios base con diferentes concentraciones desustrato conocidas (NH+4 , NO−3 , PO3−

4 ) observandosela variacion del sustrato en el medio de experimenta-cion (metododedesaparicion del sustrato delmedio).

Las tasas de incorporacion de nutrientes secuanti�caron en ra�ces de S. perennis (n = 3)preincubadas en 100 ml del medio base sin el nu-triente a medir, durante un periodo de 3-7 d�asdependiendo del nutriente (3-4 d�as en el caso delNO−3 y NH+4 , 6-7 d�as en el caso del PO3−

4 ).El medio base tuvo la siguiente composi-

cion: 500 mM NaCl, 10 mM KCl, 12 mM CaCl2,55 mM MgCl2, 2 mM NaHCO3 fue tamponadoa pH 6.1 con una solucion de NaOH 200 μM, yagitado e aireado continuamente.

A este medio se le anad�an diferentes concentracio-nes del nutriente a medir (NO−3 , PO3−

4 , NH+4 ); y seobten�an registros de la evolucion temporal de la con-centracion de nutrientes en el medio de incubacion.

Las incubaciones se realizaron sobre periodosde tiempo de 24 horas, utilizandose matraces de250ml en agitacion continua a 25 ◦C que conten�an100ml de medio de ensayo con una biomasaradicular de aproximadamente 0.3 g de peso fresco,tomandose muestras de medio a los 0, 10, 30minutos y a1, 2, 4, 5 y24horas de incubacion.

Las muestras fueron analizadas posteriormen-te para obtener la concentracion de fosfato, ni-trato o amonio, mediante los metodos del verdemalaquita de Fernandez et al., 1985, metodo in-dustrial 818-871 (basado en los de Shinn, 1941y Wood et al., 1967), y metodo 786-861 (basadoen el de Slawyk y MacIsaac, 1972) respectiva-mente, todos en su version automatizada para unautoanalizador Technicon AAII.

Los ajustes de las cineticas de incorporacionde nutrientes se llevaron a cabo mediante el pro-grama informatico Kaleidagraph 4. Se realizaronANOVAS de una v�a para comprobar si las di-ferencias entre las velocidades de incorporacionde los nutrientes, las constantes de semisatura-cion y los puntos de compensacion del sustratorespectivamente obtenidas eran estad�sticamentesigni�cativas dependiendo del nutriente suminis-trado. Toda la estad�stica se realizo mediante elprograma informatico Statgraphics 3.1.

RESULTADOS

Los experimentos en cultivos hidroponicos, re-�ejaron la incorporacion de fosfato, amonioy nitrato, a partir de concentraciones inicialesde los sustratos diferentes.

La variacion de la concentracion de los nu-trientes en los distintos cultivos durante el periodode experimentacion (24 horas) no sigue un patronlineal, de manera que las tasas de incorporacionresultaron maximas al inicio de las incubaciones ydisminuyeron amedida que transcurr�a el tiempo.

Tanto para el PO3−4 , NO−3 , NH+4 , del ajuste lineal

de la concentracion de sustrato en el tiempo medidadurante las 5 primeras horas de incubacion, se

Page 41: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

218 Munoz & Niell

Figura 2. Desaparicion del sustrato del medio de cultivo y ajuste lineal para la estimacion de tasas de incorporacion maximas decada nutriente: (i) NO−3 (ii) NH+4 (iii) PO3−

4 . Substrate disappearance in the culture medium and linear adjustment for the estimationof maximum uptake rates of every nutrient: (i) NO−3 (ii) NH+4 (iii) PO3−

4 .

obtienen pendientes que estiman la velocidad deincorporacion del nutriente a una concentraciondeterminada, antes de que entren en juego meca-nismos de inhibicion. Estas tasas de incorporacionfueron calculadas y relativizadas al peso de ra�zutilizada y proporcionan las tasas de incorporacionde cadanutriente (μmoles g −1p.s.ra�z h−1).

Los valores de las tasas de incorporacionmaxima (Vmax), las constantes de semisaturaciono a�nidad (Km) y los puntos de compensacion pa-ra cada sustrato (Cmin) fueron estimadas por ajus-te de los datos mediante el modelo de Edwards-Walkers a una cinetica de Michaelis-Menten,

V = Vmax(C − Cmin)/Km + C

donde V es la tasa de incorporacion para unaconcentracion de sustrato C, Vmax es la tasa deincorporacion maxima a concentraciones satu-rantes del sustrato, Cmin es el punto de com-pensacion para el sustrato o concentracion desustrato a la cual no hay todav�a incorporacion(V = 0) y Km es la constante de semisatura-cion, se de�ne como la concentracion de sustratodonde la V = (1/2)Vmax.

Los resultados de incorporacion estimadospor medida de la disminucion de las concentra-ciones de fosfato, amonio y nitrato en el medio sepresentan en la �gura 2, indicando la incorpora-cion de estos a traves de las ra�ces de S. perennis.

Tabla 1. Efecto de la fuente de nutriente: NO−3 , NH+4 , PO3−4 ; sobre los parametros (media ± sd; n = 3) de las cineticas de incorpora-

cion de Sarcocornia perennis. Effect of the nutrient source: NO−3 , NH+4 , PO3−4 ; on the parameters (means ± sd; n = 3) of Sarcocornia

perennis uptake kinetics.

Fuente del Nutriente

NO−3 NH+4 PO3−4

Vmax (μmol g P.S.−1 ra�z min−1) 0.62 (± 0.03) 1.57 (± 0.08) 0.055 (± 0.005)

Km (μM) 63.94 (± 9.95) 205.31(± 50.27) 28.4 (± 9.36)

Cmin (μM) 4.02 (± 1.17) 65.221 (± 13.92) 1.8 (± 0.68)

Page 42: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Incorporacion de nutrientes por Sarcocornia perennis 219

Figura 3. Cineticas de incorporacion de nutrientes por Sar-cocornia perennis ajustadas mediante el modelo de ajustede Edwars-Walker a cinetica de Michaelis-Menten: (i) NO−3(ii) NH+4 (iii) PO3−

4 . Tasas de incorporacion expresadas enμmol min−1 g−2p.s.; media ± sd; n = 3. En el recuadro, rangode variabilidad natural registrado para cada nutriente en el es-tuario del r�o Palmones. Nutrient uptake kinetics for Sarcocor-nia perennis �tted by means of the model of Edwars’s-Walkeradjustment to Michaelis-Menten kinetic: (i) NO−3 (ii) NH+4 (iii)PO3−

4 . Rates of uptakes expressed as μmol min−1 g−2p.s.; means± sd; n = 3. In the repicture, range of natural variability regis-tered for every nutrient in the Palmones River Estuary.

Las cineticas de incorporacion para cada nutrien-te se muestran en la �gura 3. Este tipo de cineti-cas indica la existencia de un transporte activo dePO3−

4 , NO−3 , NH+4 . Los parametros de incorpora-cion se muestran en la tabla 1.

Los resultados de los ANOVAS mostraron di-ferencias estad�sticamente signi�cativas entre lasVmax y Km (P = 0.004 y P =< 0.001 respecti-vamente), dependiendo de la fuente de nutrientesuministrada, pero no se encontraron diferenciasestad�sticamente signi�cativas entre las concen-traciones de sustrato m�nima para que se comien-ce la incorporacion (P = 0.050).

DISCUSION

En este estudio se determinan las cineticas de in-corporacion de tres fuentes de nutrientes para S.perennis, y se presentan resultados de incorpo-racion de nutrientes tanto de nitrogeno (NH+4 yNO−3 ) como de fosforo (PO3

4).La importancia de este estudio radica en que

por primera vez se determinan las tasas de incor-poracion de nutrientes para S. perennis, ya que enla bibliograf�a no se encuentran datos de incor-poracion de nutrientes por este tipo de plantas,y constituye una interesante fuente de datos paralos estudios de dinamica de los nutrientes en elestuario del r�o Palmones.

Ademas, la novedad que presentamos, no soloes estimar la incorporacion de nutrientes por estaplanta de marisma, sino estimar la incorporacionde los nutrientes en concentraciones reales queencontramos en la marisma, a diferencia de otrosexperimentos realizados sobre incorporacion denutrientes que sobreestimaban las concentracio-nes en el medio, y por tanto pueden sobreestimarlas tasas de incorporacion que se dan en realidad.

Las cineticas de incorporacion de nitrogeno(NH+4 y NO−3 ) en plantas acuaticas estan bienestudiadas (Spartina alterniflora y Spartina patens(Morris, 1980, 1984); Salvinia natans (Jampeetongy Brix, 2009); Eichhornia crassipes (Imaoka yTeramishi, 1988); Vallisneria spiralis L. (Gentner,1977); Vallisneria americana (Wigand y Steven-son, 1987)). En vegetacion de marisma, se hanrealizado estudios de incorporacion en dos especies

Page 43: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

220 Munoz & Niell

del genero Spartina (Spartina patens y Spartinaalterniflora) (Morris 1980;Morris 1984).

Respecto del fosforo, se encuentran datos deestudios realizados sobre incorporacion de nu-trientes de fosforo en macro�tos (Elodea cana-densis (Pelton et al., 1998), fanerogamas mari-nas (Zostera marina (Mc Roy y Barsdate, 1970;McRoy et al., 1972; Murray et al., 1992; Brix yLyngby, 1985 ); Zostera noltii (Perez-Llorens yNiell, 1995); Thalassia testidinum (Gras et al.,2003)), plantas acuaticas (Myriophuyllum spi-catum y Hydrilla verticillata (Bole & Allan,1978); Azolla caroliniana willd y Salvinia rotun-difolia willd (Debusk & Redy, 1987)), macroal-gas (Enteromorpha intestinales (Cohen & Fong,2004)), aunque nada se encuentra en la biblio-graf�a sobre incorporacion de nutrientes de fosfo-ro en vegetacion de marisma.

En los experimentos de incubacion con el sus-trato, S. perennis respondio de diferente formacuando se le suministraron diferentes formas deN y P inorganico (NO−3 , NH+4 , PO3−

4 ).Los datos sugieren que S. perennis presenta

una mayor afinidad por el fosfato que por losnutrientes de nitrogeno. El fosfato se encuentra enconcentraciones en la marisma muy por encima dela concentracion m�nima necesaria para que co-mience la incorporacion (Cmin) (Tabla 1), por lo queeste nutriente no constituir�a un factor limitante.

En condiciones de saturacion, S. perennis asi-mila fosfato con un �ujo maximo de 3.3 μmoles Pg −1p.s. ra�z h−1, si comparamos este �ujo con losencontrados en otros estudios, obviando las di-ferencias entre tipos de vegetacion, observamosque S. perennis se presenta como una especiecon gran a�nidad por la incorporacion de fosfo-ro (PO3−

4 ) en la marisma, en comparacion conotros datos de incorporacion de fosforo obteni-dos cuyos valores son mucho menores por ejem-plo, Brix y Lyngby (1985) hallaron valores de in-corporacion de fosfato por la fanerogama mari-na Zostera marina, de 0.012 ± 0.007μg fosfatog−1P.S.; Debusk & Reddy (1987) encontraron enAzolla caroliana willd y Salvinia rotundifolia,tasas de incorporacion de 21.4 mg m−2 d�a−1

y 26.5 mg m−2 d�a−1 respectivamente (2.56 gm−2 d�a−1 para Sarcocornia); Imaoka y Tera-nishi (1988) estimaron tasas de 0.78 mg P g−1

p.s.d�a−1 en la planta acuatica Eichhornia crassi-pes,; Perez-Llorens (1991) encontraron tasas deincorporacion para Zostera noltii de 2.60 μmolesg −1p.s.ra�z h−1; etc. Respecto a la constante desemisaturacion, Perez-Llorens (1991) encuentravalores de Km de 2.67 μM para Zostera noltii, locual indica una a�nidad de Zostera por el fosfa-to mayor que Sarcocornia (Tabla 1), aunque hoyen d�a ya no se encuentran praderas de esta fa-nerogama en el estuario (Clavero et al., 1999).

Por otro lado, los resultados muestran queS. perennis, muestra la capacidad de asimilarnitrogeno por la ra�ces en forma de NO−3 y NH+4 ,aunque la forma de nitrogeno que mayor a�nidadpresenta para ser asimilada es el amonio. El ni-trato en el agua intersticial del sedimento de lamarisma se encuentra en concentraciones bajas(0.04-17.45 μM), llegando a ser en ocasionesmenor que la concentracion m�nima necesariapara que comience su incorporacion, ademas laconcentracion idonea (Km) para la incorporacioneste nutriente, se encuentra muy por encima de lasconcentraciones que se encuentran en el agua inters-ticial, por lo que el nitrato puede presentarse comofactor limitante para S. perennis en la marisma.

El nitrato como fuente de nitrogeno puede sersustituido por el amonio, este se encuentra enel sedimento en concentraciones muy superiores(134-1505 μM) a Cmin, y a Km (Tabla 1), lo quelo convierte en la forma de nitrogeno mas ase-quible, supliendo as� la limitacion de nitrogenopor el nitrato. Las velocidades de incorpora-cion del nitrato y el amonio en la marisma tam-bien han sido estimadas, encontrandose tasas deincorporacion de 0.62 μmoles g −1p.s.ra�z min−1

y 1.57 μmoles g −1p.s.ra�z min −1 respectivamen-te (o lo que es equivalente: 37.2 μmoles g−1

p.s.ra�z h−1 para el nitrato y 94.2 μmoles g−1

p.s.ra�z h−1 para el amonio). Si se compara la ta-sa de incorporacion del amonio encontrada pa-ra S. perennis con la tasas obtenidas por Mo-rris (1984) para otras plantas de marisma comoson Spartina alterni�ora o Spartina patens (24 ±3.8 μmoles g−1p.s.ra�z h−1 y 27.67 ± 1.3 μmolesg−1p.s.ra�z h−1 respectivamente), la tasa de incor-poracion de amonio que presenta Sarcocornia esmucho mayor que la que presentan ambas espe-cies de Spartina lo que re�eja la gran capacidad

Page 44: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Incorporacion de nutrientes por Sarcocornia perennis 221

de la quenopodiacea para asimilar el nitrogenoen forma de amonio que se encuentran en los ba-rros reducidos de la marisma. Tambien hay quetener en cuenta la concentracion suministrada alas especies; mientras que Morris (1982, 1984)utilizaban concentraciones de sustrato en sus ex-perimentos entorno a los 500 μM de NO−3 o NH+4respectivamente, para obtener las tasas de incor-poracion maximas; aqu� se utilizan concentracio-nes muy superiores (de hasta 1500 μM en el ca-so del amonio y 100 μM en el caso del nitrato),quiza sea esta la causa de las marcadas diferen-cias en las tasas maximas de incorporacion entreambos tipos de plantas, sin tener en cuenta lascaracter�sticas �siologicas de cada una de ellas,lo que si se puede extraer de este estudio es lamayor e�ciencia de Sarcocornia respecto a Spar-tina para subsistir en un medio eutro�co comoes el del estuario del r�o Palmones, y quiza seaeste el motivo por el cual siendo Spartina unaplanta t�pica de marisma, no se encuentra en elestuario del r�o Palmones.

Por otro lado, diversos autores demuestrans�ntomas de toxicidad por amonio en plantas queaparecen en concentraciones de amonio exterio-res por encima de 0.1-0.5 mM (Britto y Kronzuc-ker, 2002; Tylova et al., 2008). En el presenteestudio, sin embargo, el suministro de concen-traciones de amonio externas de hasta 1.5 mM,no afecto a los mecanismos de incorporacion deNH+4 por S. perennis, indicando la posibilidad dela adaptacion de esta especie a las altas concen-traciones de amonio que se registran en el aguaintersticial de las marismas del Palmones.

Ademas, existen estudios que hablan de comofactores como la temperatura, la salinidad, la oxi-genacion del suelo, etc. pueden variar la veloci-dad maxima de incorporacion de los nutrientes;sin embargo, los valores de Km deben perma-necer constantes segun los resultados obtenidospor Lycklama (1963) y van den Honert y Hooy-mans (1955). Aunque desde este estudio no seapoya esta la teor�a sobre la constancia de Km,en nuestro caso, no se puede estimar el efectode estas variables sobre las tasas de incorpora-cion ya que todos los experimentos se realizaroncon condiciones de salinidad, temperatura, y oxi-genacion constante y controlada.

AGRADECIMIENTOS

Este trabajo ha sido subvencionado por la Conse-jer�a de InnovacionCiencia yEmpresade la Junta deAndaluc�a,mediante el proyectoP06-RNM-01892.

BIBLIOGRAFIA

AVILES, A. 2002. El papel del sector �uvial en labiogeoqu�mica del r�o Palmones (Los Barrios,Cadiz). Tesis doctoral. Universidad de Malaga.191 pp.

BOLE J. B. & J. R. ALLAN. 1978. Uptake of phos-phorus from sediment by aquatic plants, Myrio-phyllum spicatum and Hydrilla veticillata. WaterRes., 12: 353-358.

BRITTO, D. T. & H. J. KRONZUCKER. 2002. NH+4toxicity in higher plants: a critical review. J. PlantPhysiol., 159: 567-584.

BRIX, H. & J. E. LYNGBY. 1985. Uptake and trans-location of phosphorus in eelgrass (Zostera mari-na). Marine Biology, 90: 111-116.

CAETANO, M., C. VALE, R. CESARIO & N. FON-SECA. 2008. Evidence for preferential depths ofmetal retention in roots of salt marsh plants. Scien-ce of the Total Environment, 390: 466-474.

CEDERGREEN, N. & T. V. MADSEN. 2003a. Ni-trate reductase activity in roots and shoots of aqua-tic macrophytes. Aquat. Bot., 76: 203-212.

CLAVERO, V., J. J. IZQUIERDO, J. A. FERNAN-DEZ & F. X. NIELL. 2000. Seasonal �uxes ofphosphate and ammonium across the sediment-water interface in a shallow small estuary (Palmo-nes River, southern Spain). Marine Ecology Pro-gress Series, 198: 51-60.

CLAVERO, V., J. J. IZQUIERDO, L. PALOMO, J.A. FERNANDEZ & F. X. NIELL. 1999b. Wa-ter management and climate changes increase thephosphorus accumulation in the small shallow es-tuary of Palmones River (southern Spain). Scienceof the Total Environment, 228: 193-202.

COHEN, R. A. & P. FONG. 2004 Nitrogen uptakeand assimilation in Enteromorpha intestinalis (L.)Link (Chlorophyta): using 15N to determinate pre-ference during simultaneous pulses of nitrate andammonium. Journal of Experimental Marine Bio-logy and Ecology, 309: 67-77.

DEBUSK, W. F. & K. R. REDDY. 1987. Growth andnutrient uptake potential of Azolla caroliniana Wi-

Page 45: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

222 Munoz & Niell

lld. And Salvinia rotundifolia Willd. As a functionof temperature. Environmental and ExperimentalBotany, 27: 215-221.

DE LAUNE, R. D., C. J. SMITH & W. H. PATRICK.1983. Nitrogen losses from a Louisiana Gulf Coastsalt marsh. Estuarine, Coastal and Shelf Science,17: 133-141.

EPSTEIN, E. 1972. Mineral Nutrition of Plants:Principles and Perspectives. Wiley, New York:John Wiley. &. Sons. 412 pp.

FERNANDEZ, J. A., F. X. NIELL & J. LUCENA, J.1985. A rapid and sensitive automated determina-tion of phosphate in natural waters. Limnol. Ocea-nogr. 30: 227-230.

FRIED, M., F. ZSOLDOS, P. B. VOSE & I. L. SHA-TOKHIN. 1965. Characterizing the NO−3 and NH+4uptake process of rice roots by use of 15N labelledNH4 andNO3.PhysiologiaPlantarum, 18: 313-320.

GENTNER, S. R. 1977. Uptake and transport of ironand phosphate by Vallisneria spiralis L. AquaticBotany, 3: 267-272.

GRAS, A. G., M. S. KOCH & C. J. MADDEN. 2003.Phosphorus uptake kinetics of a dominant tropi-cal seagrass Thalassia testidinum. Aquatic Botany,76: 299-315.

HAINES, K. C. & P. A. WHEELER. 1978. Ammo-nium and nitrate uptake by the marine macrophytesHypnea musciformis (Rhodophyta) and Macrocys-tis pyrifera (Phaeophyta). J. Phycol., 14: 319-324.

HAMMOND, I. C., W. H. ALLAWAY & W. E.LOOMIS. 1955. Effects of oxygen and carbon dio-xide levels upon absorption of potassium by plants.Plant Physiol., 30: 155-161.

HELAL, M., K. KOCH & K. MENGEL. 1975. Ef-fect of salinity and potassium on the uptake ofnitrogen and on nitrogen metabolism in youngbarley roots. Physiolgia Plantarum, 35: 310-313.

HOPKINS, H. T. 1956. Absorption of ionic speciesof orthophosphate by barley roots: effects of 2,4-dinitrophenol and oxygen tension, Plant Physiol.,31: 155-161.

IMAOKA, T. & S. TERANISHI. 1988. Rates of nu-trient uptake and growth of the water Hyacinth(Eichhornia crassipes (Mart.) Solms). Wat. Res.,22: 943-951.

IZQUIERDO, J. J. 2001. Aspectos del ciclo de losnutrientes no conservativos en el estuario del r�oPalmones. Tesis doctoral. Universidad de Malaga.233 pp.

JAMPEETONG, A. & H. BRIX. 2009. Nitrogen nu-trition of Salvinia natans: Efffects of inorganic ni-trogen form on growth, morphology, nitrate reduc-tase activity and uptake kinetics of ammonium andnitrate. Aquatic Botany, 90: 67-73.

LOTZE, H. K. & W. SCHRAMM. 2000. Ecophysio-logical traits explain species dominance patterns inmacroalgal blooms. J. Phycol., 36: 287-295.

LYCKLAMA, J. C. 1963. The absorption of ammo-nium and nitrate by perennial rye-grass. Acta Bot.Neerl., 12: 361-423.

MCROY, C. P. & R. J. BARSDATE. 1970. Phospha-te absorption in eelgrass. Limnol. Oceanogr.,15: 6-13.

MCROY, C. P., R. J. BARSDATE & M. NEBERT.1972. Phosphorus cycling in an eelgrass (Z. ma-rina L.) ecosystem. Limnol. Oceanogr., 17: 58-67.

MENDELSON, I. A. 1979. Nitrogen metabolism inthe height forms of Spartina alterni�ora in NorthCarolina. Ecology, 60: 574-584.

MORRIS, J. T. 1980. The nitrogen uptake kinetics ofSpartina alterni�ora in culture. Ecology, 61: 1114-1121.

MORRIS, J. T. 1984. Efects of nitrogen and salinityon ammonium uptake by Spartina alterni�ora Loi-sel. and Spartina Patens (Aiton) Muhl. J. Exp. Mar.Biol. Ecol., 78: 87-98.

MURRAY, L., W. C. DENINSON & W. M. KEMP.1992. Nitrogen versus phosphorus limitation forgrowth of an estuarine population of eelgrass (Zos-tera marina L.). Aquatic Botany, 44: 83-100.

NIELL, F. X., C. FERNANDEZ, F. L. FIGUEROA,F. G. FIGUERIAS, J. M. FUENTES, J. L. PEREZ-LLORENS, M. J. GARCIA, I. HERNANDEZ,J. A. FERNANDEZ, M. ESPEJO, J. BUELA,M. C. GARCIA-JIMENEZ, V. CLAVERO & C.JIMENEZ. 1996. Spanish Atlantic coasts. In: Ma-rine benthic vegetation. W. Schramm & P. H. Nien-huis (eds.).: 265-281. Springer-Verlag, Berlin.

PALOMO, L. 2004. La in�uencia de Sarcocornia pe-rennis alpini (Lag.) Castroviejo en el �ujo de nu-trientes del estuario del r�o Palmones. Tesis docto-ral, Universidad de Malaga. 225 pp.

PELTON, D. K., S. N. LEVINE & M. BRANER.1998. Measurements of phosphorus uptake by ma-crophytes and epiphytes from the LaPlatte River(VT) using 32P in stream microcosms. Freshwat.Biol., 39: 285-299.

PEREZ-LLORENS, J. L. 1991. Estimaciones de bio-masa y contenido interno de nutrients, eco�sio-log�a de incorporacion de carbono y fosfato en

Page 46: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Incorporacion de nutrientes por Sarcocornia perennis 223

Zostera Noltii Hormem. Tesis doctoral, Universi-dad de Malaga. 168 pp.

PEREZ-LLORENS, J. L. & F. X. NIELL. 1995. Shortterm phosphate uptake kinetics in Zostera nol-tii Hornem: a comparision between excised lea-ves and sediment rooted plants. Hydrobiologia,297: 17-27.

RAO, D. N. & D. S. MIKKELSEN. 1977. Effects ofCO, CH, and N, on growth and nutrition of riceseedlings. Plant Soil, 47: 313-322.

RAYAR, A. J. & T. HAI. 1977. Effect of ammoniumon uptake of phosphorus, potassium, calcium andmagnesium by intact soybean plants. Plant Soil,48: 81-87.

ROSENBERG, G. & J. RAMUS. 1984. Uptake of in-organic nitrogen and seaweed surface area:volumeratios. Aquat. Bot., 19: 65-72.

SHINN, J. A. 1941. Ind. Eng. Chem. (Annual edi-tion), 13:33. In: A practical approach handbookof seawater analysis. J. D. H. Strickland & T. R.Parson (eds.). Ottawa. Fish Res. Bd. Can. 310 pp.

SIMAS, T. C. & J. G. FERREIRA. 2007. Nutrient en-richment and the role of salt marshes in the Tagusestuary (Portugal). Estuarine, Coastal and ShelfScience, 75: 393-407.

SLAWIK, G. & J. J. MACISAAC. 1972. Comparisonof two automated ammonium methods in a regionof coastal upwelling. Deep-Sea Research, 19: 521-524.

SMITH, W. F. & W. A. JACKSON. 1998. Nitrogenenhancement of phosphate transport in root of Zeamays L. Plant Physiol., 84: 1319-1324.

TOUCHETTE, B. W. & J. M. BURKHOLDER.2000 Review of nitrogen and phosphorus meta-bolism in seagrasses. Journal of ExperimentalMarine Biology and Ecology, 250: 133-167.

TYLOVA, E., L. STEINBACHOVA, O. VOTRUBO-VA, B. LORENZEN & H. BRIX. 2008. Diffe-rent sensitivity of Phragmites australis and Glyce-ria maxima to high availability of ammonium-N.Aquat. Bot., 88: 93-98.

VAN DEN HONERT, T. H. & J. J. H. HOOYMANS.1955. On the absorption of nitrate by maize inwater culture. Acta Bot. Neerl., 4: 376-384.

VLAMIS, J. & A. R. DAVIS. 1944. Effects of oxy-gen tension on certain physiological responses ofrice, barley and tomato. Plant Physiol., 19: 33-51.

WAITE, T. & R. MITCHELL. 1972. The effect ofnutrient fertilization on the benthic alga Ulva lac-tuca. Bot. Mar. 25: 151-156.

WIGAND, C. & J. C. STEVENSON. 1997 Facilita-tion of phosphate assimilation by aquatic mycorr-hizae of Vallisneria americana Michx. Hydrobio-logia, 342/343: 35-41.

WOOD, E. D., F. A. J. AMSTRONG & F. RI-CHARDS. 1967. Determination of nitrate in sea-water by cadmium-copper reduction to nitrite.Journal of Marine Biology, 47: 23-31.

Page 47: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats
Page 48: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 225-228 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

First record of Sander lucioperca (Perciformes, Percidae) in theAlqueva reservoir, Guadiana basin (SW Iberian Peninsula)

Jose Lu�s Perez-Bote∗ and Rafael Roso Romero

Area de Zoolog�a, Facultad de Ciencias, Universidad de Extremadura, Av. de Elvas s/n, 06071 Badajoz, SPAIN.2

∗ Corresponding author: [email protected]

Received: 19/11/08 Accepted: 5/4/09

ABSTRACT

First record of Sander lucioperca (Perciformes, Percidae) in the Alqueva reservoir, Guadiana basin (SW Iberian Pe-ninsula)

The pikeperch Sander lucioperca (Linnaeus, 1758) is recorded for the �rst time in the Alqueva Reservoir (Guadiana RiverBasin, SW Iberian Peninsula). Fish were captured with trammel nets from August to October 2008. The age of specimens wascomprised between two and three years old. Morphometric and meristic characteristics of specimens (n = 9) are reported.

Key words: Percidae, Sander lucioperca, Iberian Peninsula, Alqueva reservoir, Introduced species.

RESUMEN

Primera cita de Sander lucioperca (Perciformes, Percidae) en el embalse de Alqueva, cuenca del Guadiana (suroeste de laPen�nsula Iberica)

Se hace referencia a la primera captura de la lucioperca Sander lucioperca (Linnaeus, 1758) en el embalse de Alqueva (cuencadel Guadiana, suroeste de la Pen�nsula Iberica). Los ejemplares, de entre dos y tres anos, fueron capturados entre agosto yoctubre de 2008 con trasmallos. Se aportan datos morfometricos y mer�stcos de los mismos (n = 9).

Palabras clave: Percidae, Sander lucioperca, Pen�nsula Iberica, embalse de Alqueva, especies introducidas.

INTRODUCTION

Pikeperch Sander lucioperca (Linnaeus, 1758) isthe main open-water piscivorous �sh in eutrophicwaters in Europe (Kitchell et al., 1977). Favou-rable biotopes of pikeperch are relatively warm,productive, still or slow �owing waters that arerich in small �sh (Smith et al., 1998). Prefe-rred temperature of pikeperch is from 24 ◦C upto 29 ◦C. Pikeperch are favoured in highly eu-trophic and turbid systems, since they have visualadaptations enhancing their foraging capacity in

turbid environments (Karas & Sandstrom, 2002).S. lucioperca is found naturalised as an alienspecies in a large number of countries in Euro-pe (Lever, 1996), including the UK, Denmark,Italy, Turkey, France and Holland. It has beenintroduced for both commercial and recreational�shing; the �sh is very tasty and has high mar-ket and angling value. The �rst con�rmed recordof the pikeperch in the Iberian Peninsula datesto the end of 1970’s in Gerona, Spain (Gomez-Caruana & D�az Luna, 1991). In actuality pike-perch is present in the Duero, Ebro, Tajo, Gua-

Page 49: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

226 Perez-Bote & Roso

Spain

Po

rtu

ga

l

Portugal

Cheles

Spain

Mourao

5 km

38◦30′

7◦17′

Figure 1. Guadiana basin (shaded area) and study area (dar-kened area) in the Iberian Peninsula. Sampling sites (o) withinthe Alqueva reservoir; (⊗), positive detections. Cuenca del Gua-diana (gris) y zona de estudio (oscuro). Zonas de muestreo (o)en el embalse de Alqueva; (⊗), muestreos positivos.

diana, Jucar and Segura Iberian basins (Barroset al., 2000; Doadrio, 2002; Minano et al.,2002; Perez-Bote et al., 2004; Clavero & Gar-c�a-Berthou, 2006; Gante et al., 2008).

There was uncon�rmed rumours among �sh-ermen about the presence of pikeperch in the re-servoir from some months ago. Thus this studywas conducted to con�rm the presence of pike-perch in the Guadiana basin.

MATERIALS & METHODS

The Alqueva reservoir, located in the south-western Iberian Peninsula along 85 km of themain course of the Guadiana River, constitutesthe biggest arti�cial lake on the Iberian Penin-sula. The dam was closed on February 2002.It can store 45 000 hm3 of water, with a denti-form surface of 25 000 ha. The catchment areais 55 000 km2. Sampling was performed at 9 si-

tes over the Spanish and Portuguese �ooded areasnear the municipality of Cheles (Spain), from Ju-ne to October 2008 (Fig. 1). Pikeperch were sam-pled twice a month using gillnets of mesh size(stretched mesh) of 36, 40, 44, 50 and 64 mmand trammel nets of mesh size of 56, 80, 100,120 and 140 mm. Sampling was carried in pe-riods of 24 hours. All �shes were identi�ed andcounted. Specimens of pikeperch were measu-red (± 1 mm) and weighted (± 1 g). Some scalesnear the pelvic region were caught for age deter-mination (Lappalainen et al., 2006).

RESULTS AND DISCUSSION

According to previous studies a total of 13 exo-tic �sh species inhabits the Guadiana river basin(Hermoso et al., 2008) and references therein andGante et al.,2008). In recent surveys pikeperchwas not located in the Spanish (Hermoso et al.,2008) and Portuguese areas of the basin (Ribeiroet al., 2006). Other species captured in this studywere: Luciobarbus comizo, L. microcephalus,L. steindachneri, Pseudochondrostoma willkom-mii, Ameilurus melas, Micropterus salmoides,Cyprinus carpio and Carassius auratus.

The specimens collected in Alqueva reser-voir (August: 4 specimens, September: 2 speci-mens; October: 3 specimens) ranged from 352.1to 376 mm TL (mean: 33.26, S.D.: 1.21), andweighed from 395 g to 425 g (mean: 412 g, S.D.:15). Their ages were comprised between 2+ and3+ years. In other Iberian populations the sizeof pikeperch ranged between 3101-57.5 cm TL(age: 3+ – 5+ years; Segura basin; Minano etal., 2002) and between 29.35-45.16 cm TL(age: 2+ – 5+ years; Tajo basin, Perez-Bote et al.,2004).There is little difference in the mean va-lues for morphological characters between Gua-diana pikeperch (Table 1) and those of the MiddleDanube (Krpo-Cetkovic & Stamenkovic, 1996)and the River Lee in England (Copp et al., 2003).Meristically, the Guadiana pikeperch were indis-tinguishable and showed a range of values si-milar to those reported for populations in otherareas as central Europe (Oliva & Safranek, 1962)and England (Copp et al., 2003).

Page 50: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

First record of Sander lucioperca in Alqueva reservoir 227

Table 1. Morphometric and meristic characteristics of San-der lucioperca from the Alqueva reservoir. Caracter�sticas mor-fometricas y mer�sticas de Sander lucioperca en el embalse deAlqueva.

Morphometrics (n = 9) Range (cm) % TL (mean ± S.D.)

Total length (TL)

Fork length

Standard length

Body depth

Predorsal distance

Head length

Eye diameter

Preorbital distance

Postorbital distance

Prepectoral distance

Prepelvic distance

Preanal distance

Base of dorsal �n

Base of pectoral �n

Base of anal �n

Base of pelvic �n

Pectoral �n

Pelvic �n

Upper jaw

36.7-37.6

34.0-35.3

30.2-31.1

6.2-6.9

9.8-10.5

9.0-9.3

1.4-1.6

2.1-2.7

5.5-5.7

8.9-9.3

9.9-10.2

18.0-18.2

1.5-1.6

1.3-1.7

3.6-4.2

1.3-1.5

5.3-5.4

5.4-6.0

3.7-3.9

99.9 ± 1.0

82.6 ± 0.4

17.8 ± 0.9

27.5 ± 0.8

24.7 ± 0.01

4.1± 0.1

6.0 ± 0.2

15.0 ± 0.1

24.6 ± 0.3

27.1 ± 0.1

48.7 ± 0.3

42.4 ± 1.0

4.1 ± 0.9

10.5 ± 0.9

3.7 ± 0.3

14.4 ± 0.3

15.4 ± 1.3

10.3 ± 0.1

Meristic counts (n = 9)

First dorsal �n spines

Second dorsal �n spines

Second dorsal �n rays

Anal �n rays

Anal �n spines

13-14

1-3

21-23

2-3

10-12

The occurrence of pikeperch in this area isnot a surprise, and may be related with itscommercial and recreational value. In the Ibe-rian Peninsula, �shermen are known to be res-ponsible for the most recent invasions (Elvi-ra & Almodovar, 2001). The Guadiana River�sh community was dominated by native spe-cies prior to the construction of Alqueva dam,whereas the �sh community is now dominatedby introduced species. According with its life-characteristics (Ribeiro et al., 2008) we predicta notable success for S. lucioperca in the Al-queva reservoir, as has occurred with other in-troduced species in the Iberian waters. Publicawareness and effective control of illegal intro-

ductions are needed to avoid future introduc-tions (Filipe et al., 2002; Ribeiro et al., 2006).

ACKNOWLEDGEMENTS

We wish to thank to the local �sherman “Pi-jin” for previous information about the presenceof pikeperch on the reservoir, and to the Portu-guese authorities (ICNB, Ministerio do Ambien-te, do Ordenamento do Territorio e do Desen-volvimiento Regional) for permission to capture�sh in Portuguese waters.

REFERENCES

BARROS, J. S., M. J. CUNHA, M. LINO, N. VIEI-RA & A. C. N. VALENTE. 2000. Evaluation of thewater quality and biotic communities of two Por-tuguese reservoirs (Alto Lindoso and Ermal) andtheir relationship with recreational �shing. Verh.Internat. Verein. Limnol., 27: 2693-2698.

CLAVERO, M. & E. GARCIA-BERTHOU. 2006.Homogenization dynamics and introduction routesof invasive freshwater �sh in the Iberian Peninsula.Ecol. Model., 16: 2313-2324.

COPP G. H., K. J. WESLEY, V. KOVAC, M. J. IVES& M. G. CARTER. 2003. Introduction and esta-blishment of the pikeperch Stizostedion lucioper-ca (L.) in Stanborough Lake (Hertfordshire) andits dispersal in the Thames catchment. The LondonNaturalist, 82: 139-153.

DOADRIO, I. (ed.). 2002. Atlas y libro rojo de lospeces continentales de Espana. Ministerio de Me-dio Ambiente. Madrid. 374 pp.

ELVIRA, B. & A. ALMODOVAR. 2001. Freshwa-ter �sh introductions in Spain: facts and �guresat the beginning of the 21th century. J. Fish Biol.,59: 323-331.

FILIPE, A. F., I. G. COWX & M. J. COLLARES-PEREIRA. 2002. Spatial modelling of freshwater�sh in semi-arid river systems: a tool for conserva-tion. River. Res. Applic., 18: 123-136.

GANTE, H. F., L. MOREIRA, J. MICAEL, & M. J.ALVES. 2008. First record of Barbonymus schwa-nenfeldii (Bleeker) in the Iberian Peninsula. J. FishBiol., 72: 1089-1094.

GOMEZ-CARUANA, F. & J. L. DIAZ-LUNA. 1991.Gu�a de los peces continentales de la Pen�nsula

Page 51: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

228 Perez-Bote & Roso

Iberica. Madrid. Penthalon. 399 pp.HERMOSO, V., F. BLANCO-GARRIDO & J.

PRENDA. 2008. Spatial distribution of exotic �shspecies in the Guadiana river basin, with two newrecords. Limnetica, 27: 189-194.

KARAS, P. & A. SANDSTROM. 2002. Effects ofeutrophication on Y-O-Y freshwater �sh commu-nities in coastal areas of the Baltic. Environ. Biol.Fish., 63: 89-101.

KITCHELL, J. F., M. G. MINNS, K. H. LOFTUS, L.GREIG & C. H. OLIVER. 1977. Percid habitat:the river analogy. J. Fish. Res. Bd. Can., 34: 1936-1940.

KRPO-CETKOVIC, J. & S. STAMENKOVIC. 1996.Morphological differentiation of the pike perchStizostedion lucioperca (L.) populations from theYugoslav part of the Danube. Ann. Zool. Fennici,33: 711-723.

LAPPALAINEN, J., M. OLIN & M. VINNI. 2006.Pikeperch cannibalism: effects of abundance, sizeand condition. Ann. Zool. Fennici, 43: 35-44.

LEVER, C. 1996. Naturalized �shes of the world.Academic Press. London. U.K. 448 pp.

MINANO, P. A., F. J. OLIVA & M. TORRALBA.2002. Primera cita de la lucioperca Sander lucio-perca (Actinopterygii, Percidae) en la cuenca delr�o Segura, SE de Espana. Ann. Biol., 24: 77-79.

OLIVA, O. & V. SAFRANEK. 1962. On some me-ristic characters of the European pikeperch Lucio-perca lucioperca (Linnaeus 1758). Ichthyologica,1: 13-14.

PEREZ-BOTE, J. L., R. ROSO, H. J. PULA, F.DIAZ & M. T. LOPEZ. 2004. Primeras citas dela lucioperca, Sander (= Stizostedion) lucioperca(Linnaeus, 1758) y del alburno, Alburnus alburnus(Linnaeus,1758) en las cuencas extremenas de losr�os Tajo y Guadiana, SO de la Pen�nsula Iberica.Ann. Biol., 23: 96-100.

RIBEIRO, F., M. L. CHAVES, T. A. MARQUES &L. MOREIRA. 2006. First record of Ameiurus me-las (Siluriformes, Ictaluridae) in the Alqueva reser-voir, Guadiana basin (Portugal). Cybium, 30: 283-284.

RIBEIRO, F., B. ELVIRA. M. J. COLLARES-PE-REIRA & P. B. MOYLE. 2008. Life-history traitsof non-native �shes in Iberian watersheds acrossseveral invasion stages: a �rst approach. Biol. In-vasions, 10: 89-102.

SMITH P. A., R. T. LEATH & J. W. EATON. 1998.A review of the current knowledge on the introduc-tion, ecology and management of zander, Stizoste-dion lucioperca, in the UK. In: Stocking and Intro-duction of Fish. I. G. Cowx (ed.): 209-224. FishingNews Books. Oxford.

Page 52: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 229-242 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

Effects of Phragmites australis growth on nitrogen retention in atemporal stream

Mar�a Isabel Arce∗, Rosa Gomez, Mar�a del Rosario Vidal-Abarca and Mar�a Luisa Suarez

Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, Campus de Espinardo,30100, Murcia. Spain.2

∗ Corresponding author: [email protected]

Received: 6/12/08 Accepted: 5/5/09

ABSTRACT

Effects of Phragmites australis growth on nitrogen retention in a temporal stream

In recent years in Southeast Spain with the increase in irrigated land surface, there has been a massive growth number ofPhragmites australis populations which ended up invading completely the intermittent streams (ramblas) and the shallowwater channels in general. This situation brings forth the physical transformation of the channels, thus modifying many cha-racteristics implicated in the biotic and abiotic processes involved in nitrogen retention. In this study, we tested the hypothesisthat the channel invasion by Phragmites australis negatively affects nitrogen retention. Therefore, we compared the retentionrates ( %R) of NO−3 − N and NH+4 − N in different subreaches of the same temporal stream: a unvegetated subreach (238 m2),and two vegetated subreaches that differed in surface areas (480 m2 and 910 m2). The results showed that the retention ef�-ciency ( %R) for both solutes were higher in the unvegetated subreach. Although there are no conclusive results, it seems thatthe differences were more important outside the vegetated period of the helophytes, while during the spring-summer periodan increase of the retention rates in the vegetated subreaches could occur. In the same way, the capacity of the subreaches forN-nitrate retention, showed a clear dependency of the nitrogen inputs, decreasing as the nitrogen load increases. However, theunvegetated subreach showed a greater load capacity than the vegetated subreach with larger surface, and this one, greaterthan the vegetated subreach with the smaller surface. This study reveals that channel invasion by Phragmites australis, a ge-neralized phenomenon in many parts of the world, not only can bring about changes in the structure of the vegetation and thefauna in the streams, but can also affect its function, and especially a key process involved in water quality, such as nitrogenelimination.

Key words: Nitrogen retention, ramblas, intermittent streams, Phragmites australis, invasion.

RESUMEN

Efecto del crecimiento de Phragmites australis en la retencion de nitrogeno en un r�o intermitente

En los ultimos anos, en el SE iberico con el incremento de la super�cie de regad�o, se ha producido un crecimiento masivode las poblaciones de Phragmites australis que terminan invadiendo por completo las ramblas y en general los cauces deaguas super�ciales. Esta situacion lleva consigo la transformacion f�sica de los cauces, modi�cando muchas caracter�sticasimplicadas en los procesos bioticos y abioticos de retencion de N. En este estudio testamos la hipotesis de que la ocupacionde los cauces por Phragmites australis afecta negativamente a la retencion de N. As� comparamos las tasas de retencion ( %R)de N − NO−3 y N − NH+4 en diferentes subtramos de una misma rambla: un subtramo no vegetado (238 m2) y dos subtramosvegetados que difer�an en super�cie (480 m2 y 910 m2). Los resultados demostraron que las e�cacias de retencion ( %R) paraambos solutos fueron superiores en el tramo no vegetado. Aunque no existen resultados concluyentes parece intuirse que estasdiferencias fueron mas acusadas fuera del periodo vegetativo del helo�to, mientras que en los meses de primavera y veranopudiera ocurrir un incremento de las tasas de retencion en los tramos vegetados. As� mismo, la capacidad de los subtramospara la retencion de N-nitrato, mostro una clara dependencia de los aportes de nitrogeno, disminuyendo conforme la cargade nitrogeno aumenta. Sin embargo, el tramo no vegetado mostro una mayor capacidad de carga que el tramo vegetado demayor super�cie y este que el tramo vegetado de menor super�cie. Este estudio pone de mani�esto que la ocupacion de loscauces por Phragmites australis, fenomeno generalizado en muchas partes del mundo, no solo puede suponer cambios en la

Page 53: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

230 Arce et al.

estructura de la vegetacion y la fauna de las ramblas sino que tambien afectar a su funcionamiento y muy especialmente a unproceso clave implicado en la calidad de las aguas como es la eliminacion del nitrogeno.

Palabras clave: Retencion de nitrogeno, ramblas, cauces intermitentes, Phragmites australis, invasion.

INTRODUCTION

In recent years, the Southeast Iberian Peninsu-la landscape has undergone an important mo-di�cation due to an increase in irrigated lands.From 1960 to the present-day, the surface ofirrigated lands has increased from 10 000 ha to17 000 ha, that is, a 70% increase of land surface(Mart�nez & Esteve, 2002). Moreover, the drai-nage of irrigated soils has brought about chan-ges in the quality of water streams, such as adecrease in salinity and an increase in nitrogenlevels due to the use of fertilizers (Ballester etal., 2003; Gomez et al., 2005), as observed inother streams around the world (e.g., Vitousek etal., 1997; Mitsch et al., 2001; Turner & Raba-lais, 2003). This situation has led to an exten-sive modi�cation of the physical structure andthe plant composition of wetlands and streamsof the Southeast Iberian Peninsula, among otherimportant changes (Ballester et al., 2003; Gomezet al., 2005). In the Murcia Region, the presen-ce of temporary streams, known as “ramblas”,is very common (Pulido, 1993; Lopez Bermudezet al., 1998; Gomez et al., 2005). Those ram-blas affected by agricultural runoff present a per-manent �ow and, typically, Phragmites australis(Cav.) Trin.ex Steud. covers 100% of the channelarea. The expansion of reeds not only generatesthe replacement of halophyte communities, thesebeing the most common vegetation of the ram-blas (Gomez et al., 2005), but also brings aboutsigni�cant changes in their structure and hydro-logic conditions. In Europe, the accumulation oflitter and the resulting drying-out of ground sur-faces are a major conservation problem in bedsof reeds (Cowie et al., 1992). Furthermore, themost important effects of reed growth in ramblas

are the reduction of the surface/volume ratio ofthe watersheet, higher water velocity and, con-sequently, lower water residence time, and lesslight availability. The modi�cation of these cha-racteristics in�uences some of the processes in-volved in nitrogen retention, such as biotic assi-milation, denitri�cation or adsorption onto sedi-ments (De Laune et al., 1981; Howard-Williams,1985; Reddy et al., 1989; Pinay et al., 1993; Hill,1996; Hernandez & Mitsch, 2007). Nitrogen (N)removal mechanisms are well documented: mi-neralisation, ammonium volatilisation, biotic as-similation, abiotic adsorption and nitri�cation-denitri�cation (Reddy & Patrick, 1984; Bernot& Dodds, 2005). Among them, the most ef�cientN removal mechanism is the coupling of nitri�-cation and denitri�cation (Neely & Baker, 1989;Reddy & D’Angello, 1994). Plant or microbialuptake and the dissimilatory reduction of nitra-te to ammonium represent 1-34% of the total Nretention, whereas between 60-95% of N is re-moved via denitri�cation (Bartlett et al., 1979;Cooke, 1994). In fact, even though denitri�cationdepends strongly on temperature, it can be activeat between 4 − 5 ◦C (Sirivedhin & Gray, 2006).

Several studies have demonstrated that smallerstreams, because of their high surface/volume ratioscomparedwith larger streams, havehighprocessingactivity in relation to their transport capacity andhence play a disproportionate role in controllingnitrogen flux from large catchments (Alexanderet al., 2000; Peterson et al., 2001; Wollheim etal., 2001; Webster et al., 2003), which makesramblas to have a high potential for nitrogen re-tention and removal from agricultural runoff.

Therefore, the first aim of this study was toanalyse the effects of the invasion of Phragmitesaustralis on NO−3 − N and NH+4 − N removal. We

Page 54: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Effects of P. australis on nitrogen retention 231

hypothesise that this invasion decreases the capacityfor N removal from water as a consequence ofthe resulting changes in the ramblas which affectthe N removal processes. Thus, we predict thatreaches in the same stream without reeds wouldremove more N than reaches with reeds. In ad-dition, we predict that these differences wouldbe greater outside the vegetative period (autumn-winter) when N uptake by reeds is lower, and thatother N removal processes, such as denitri�ca-tion, could be active (e.g., Denny, 1987).

The second objective was to analyse the effectof the temporal variability of N input (g day−1 m−2)on stream retention rates. We hypothesise that Nretention decreases while the N load increases(Howard-Williams, 1985;Kemp&Dodds, 2001).

MATERIALS AND METHODS

The area of study, the Rambla of Ajauque, is apermanent stream located in a sedimentary basin

(with marl lithology) in the most arid area of theMurcia Region, in the Southeast of the IberianPeninsula (Fig. 1). Its climate is characterised bya mean annual precipitation below 300 mm, andthe average annual temperature is close to 18 ◦C.The Rambla de Ajauque receives in�ows fromthe irrigated areas around it, which are used forgrowing citrus and horticultural crops, and thereis a tourist hot spring runoff located 5 km ups-tream. In time, this situation has led to an increasein surface �ow, reduced water salinity, an increa-se in the nutrient levels, and to a channel inva-sion by P. australis covering 100% of the channelarea. However, and as a result of the constructionof a bridge over the rambla channel, vegetationhas been removed from a portion of the channel.An unvegetated subreach upstream of a vegeta-ted subreach was selected to carry out this study.The bridge construction �nalised one year priorto the start of this study. Because reed invasionis extended throughout the Murcia Region, it wasno possible to �nd more replicates of vegetated

Iberian

Peninsula

Murcia

Region

Ajauque Basin

VSR2

p4

UVSR

VSR1

Up stream

Downstream

Iberian

Peninsula

Murcia

Region

Ajauque Basin

Iberian

Peninsula

Murcia

Region

Ajauque Basinp1

p2

p3

Up stream

Downstream

Figure 1. Location of the study area and the subreaches (UVSR = unvegetated subreach; VSR1=vegetated subreach of lesser surfaceand VSR2 = vegetated subreach of greater surface), as well as the indication of the sampling points (p). Localizacion del area deestudio y de los subtramos (UVSR=subtramo sin vegetacion; VSR1 = subtramo vegetado de menor super�cie y VSR2 = subtramovegetado de mayor super�cie), as� como de los distintos puntos de muestreo (p).

Page 55: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

232 Arce et al.

and unvegetated reaches in the same channel, noteven as far away as Rambla de Ajauque.

Sample collection

In order to test the initial hypothesis, two su-breaches with a similar surface area were chosen.Both differed in terms of the presence/absenceof P. australis (Fig. 1), and were named vege-tated and unvegetated subreaches, respectively.After the �rst sampling event, a third vegetatedsubreach with a larger surface area was chosen.The unvegetated subreach (UVSR) had a surfa-ce area of 238 m2 and a reed coverage of 5%(young and small reed stems) (Table 1). The ve-getated subreaches (VSR1 and VSR2) were loca-ted downstream of UVSR, and had a surface areaof 480 m2 and 910 m2, respectively, and both had100% reed coverage. The study period began inDecember 2006 and continued until March 2008.The sampling frequency was each other month atthe beginning of the study, and avery month atthe end of the study period, resulting in 15 sam-pling dates for UVSR, 14 for VSR1 and 6 forVSR2 (Table 1). Initially, 4 sampling points werelocated in the in�ows and out�ows of each su-breach (Fig. 1). Salinity (‰), temperature (◦C)and conductivity (ms/cm) were measured at eachsampling point throughout the study with a con-ductivity meter (Tretacon 235, WTW, Munich,Germany). Surface water samples were collec-ted at each sampling point with plastic syringesand were stored in previously acid-washed pol-

yethylene bottles (250 ml). Samples were storedat 4 ◦C and kept in the dark until analysed. Theanalyses were performed within 24 h of samplecollection. Discharge was estimated as the pro-duct of the average water velocity (current me-ter MiniAir2, Schiltknecht Co, Zurich, Switzer-land) and the cross-sectional area at the studyreach in�ows (in�ow to UVSR, Fig. 1). The sur-face areas of the subreaches were delimited andcalculated with a GPS (GeoXT, Trimble GeoEx-plorer, USA) and the ArcView GIS 3.2 software.

For the purpose of testing the possible effectof reed growth on N retention in the unvegeta-ted subreach, 40 P. australis stems were selectedrandomly and marked. On each sampling event(n = 15), the height and diameter of the stems (ata height of 15 cm from the ground) were recor-ded using a rigid metre and a vernier caliper, res-pectively. In addition, 4 plots of 1 m2 were deli-mited to estimate the growth of new P. australisstems over the study period, which were expres-sed as the number of stems/m2.

Chemical Analyses

Water samples were analysed for nitrogen dis-solved forms within 24 hours of collection. Thesamples were �ltered through glass-�bre �l-ters (Whatman GF/C, 1.2 μm nominal pore si-ze; Whatman International Ltd., Maidstone, En-gland). The NO−3−N concentration was measuredby a colorimetric method following cadmium re-duction to NO−2 −N (Wood et al., 1967). NO−2 −N

Table 1. Environmental characteristics of each subreach. The width, depth, speed of current, temperature, salinity and conductivityvalues have been expressed as mean ± SD (with n according to each subreach). Caracter�sticas ambientales de cada subtramo deestudio. Los valores de anchura profundidad, velocidad de la corriente, temperatura, salinidad y conductividad se expresan como suvalor medio ± desviacion t�pica (con n, segun cada subtramo).

UVSR VSR1 VSR2

Sampling events (n) 15 14 6

Surface (m2) 238 480 910Plant coverage ( %) 5 100 100Length reach (m) 30 32 78.5Width reach (m) 7.9± 5 15± 3 11.5± 4Depth water (cm) 3.6± 2 9± 2 8± 3Speed of current (m/s) 0.02± 0.007 0.06± 0.014 0.06± 0.025Temperature (◦C) 15± 2 9± 2 8± 3Salinity (‰) 7.2± 0.065 6.95± 0.6 6.8± 0.1Conductivity (ms/cm) 12.7± 1 12± 2 11± 2

Page 56: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Effects of P. australis on nitrogen retention 233

values are not presented since their concentra-tions in the water samples were below the detec-tion limit. The NH+4 − N concentration was mea-sured by the phenol-hypochlorite method (Solor-zano, 1969). The Cl− concentration was analysedwithin 48 hours of collection by the silver nitratevolumetric method (APHA, 1985).

Data analyses

Chloride was used to calculate the nitrogen re-tention in the subreaches. As a conservative so-lute, Cl− underwent dispersion, dilution, and dif-fusion, but was not signi�cantly removed fromthe solutions and, consequently, its movementslargely tracked water �ow. Thus, the variationsin the Cl− concentration allowed the detection ofthe possible dilutions (by lateral water inputs) orsolute concentrations (by evapotranspiration) thatalso affected nitrogen forms. The retention ef�-ciency (%R) was calculated for the different ni-trogen forms (NO−3 − N and NH+4 − N) on eachsampling date by considering the equation usedby Trudell et al. (1986):

%R = (1 − (N/Cl−out/N/Cl−in)) × 100.

In this equation, N/Cl−in and N/Cl−out are the con-centration ratios of both solutes in the inlet andoutlet of each subreach (p1 and p2 for UVSR; p2

and p3 for VSR1; p2 and p4 for VSR2, respec-tively, Fig. 1). %R is the percentage of nitrogenremoved by the subreach in relation to the in�owof nitrogen. A negative retention value indicatesthat the out�ow of the nitrogen/chloride ratio washigher than the in�ow of the nitrogen/chloride ra-tio. The N in�ow load (g/day) to the whole reachwas calculated as the product of the N in�ow con-centration (g/l) by the discharge (l/day) at UVSR.The %R obtained from UVSR was applied tothe N in�ow load to the whole reach to estimatethe N in�ow load to VSR1 and to VSR2. Then,the N in�ow loads were divided by the surfacearea of each subreach to calculate the N input(g day−1 m−2) for each subreach.

The NO−3 − N and NH+4 − N retention valueswere compared between subreaches by meansof a Student’s t-test. When the criterion of ho-mocedasticity was not ful�lled, the Satterthwai-te t-test was performed. The relationships bet-ween the number of stems/m2, the diameter andlength of the stems and NO−3 − N and NH+4 − Nretention in UVSR were analysed by Spearmancorrelations. Univariate regression analyses we-re performed to analyse the effect of the N in-�ow load on the N retention in each subreach.All the statistical analyses were conductedusing SPSS R© for Windows, version 15.0 (SPSS,Chicago, USA). The signi�cance level for statis-tical assessment was p < 0.05.

-5

0

5

10

15

20

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Flow (l/s) mg/l NO3--N mg/l NH4

+-N

Period Study

mg

/ld

eN

O3

an

dF

low

(l/s

)

2006 2007 2008

mg

/lN

H4

7/12 20/12 3/1 18/1 3/2 17/2 3/3 15/3 29/3 1/5 15/6 2/11 2/12 4/1 2/3-5

0

5

10

15

20

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Flow (l/s) mg/l N mg/l NH4

+N

Period Study

mg

/ld

eN

O3

Na

nd

Flo

w(l

/s)

2006 2007 2008

mg

/lN

H4 +

N

7/12 20/12 3/1 18/1 3/2 17/2 3/3 15/3 29/3 1/5 15/6 2/11 2/12 4/1 2/3

NO3

Figure 2. Temporal variation of the input (mg/l) of NO−3 − N (black circles) and NH+4 − N (black squares) concentrations anddischarge (black diamonds) in the study reaches. Variacion temporal de las concentraciones de N-nitrato (c�rculos negros), N-amonio(cuadros negros) y del caudal (rombos negros) a la entrada del tramo de estudio.

Page 57: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

234 Arce et al.

Table 2. Mean value± SD, and maximum and minimum values of the NO−3 − N, NH+4 − N and Cl− concentrations (mg/l) anddischarge (l/s), measured at the input (I) and output (O) of each subreach. Note that the output of UVSR is the input of VSR1and VSR2, and that the discharge was measured only at the input of UVSR. Valor medio± SD y valores maximos y m�nimos de laconcentracion (mg/l) de N − NO−3 , N − NH+4 , Cl− y del caudal (l/s) medidos a la entrada (I) y salida (O) de cada subtramo. Noteseque la salida del subtramo UVSR se corresponde con la entrada a los subtramos VSR1 y VSR2 y que el caudal solo se midio a laentrada del subtramo UVSR.

I UVSR O UVSR O VSR1 O VSR2

X± SD max. min. X± SD max. min. X± SD max. min. X± SD max. min.

NO−3 − N 3± 2.3 7.7 0.3 2.54± 2.1 6.7 0.02 2.77± 2.1 6.75 0.004 2.67± 2.8 6.5 0.000

NH+4 − N 0.07± 0.2 0.7 0.001 0.064± 0.2 0.73 0.00 0.073± 0.2 0.72 0.000 0.11± 0.23 0.59 0.00

Cl− 2922± 428 3960 2177 2980± 348 3646 2451 2911± 323 3597 2404 2845± 286 3115 2470

Flow (l/s) 4.6± 4.2 18.6 0.37

RESULTS

NO−−−3−N and NH+++4−N retention

The data of the NO−3 − N, NH+4 − N and Cl−

concentrations in the water surface and the in-let discharge in the studied reach are presen-ted in Table 2. The NO−3 − N concentration washigh and represents the major form of dissol-ved inorganic nitrogen in the water (97± 3% ofDIN). The inlet discharge, and the NO−3 − N andNH+4 − N in�ow concentrations, displayed highvariability during the study period (Fig. 2), sho-wing coef�cients of variation (CV) of 0.9, 2.8and 0.76, respectively. However, the temporal va-riability of the inlet N concentration did not re-late with the inlet discharge variability (Fig. 2).Although no signi�cant differences were obser-ved in the inlet N concentrations between subrea-ches (Table 2) when the N input was calculatedby g N day−1 m−2, the differences between themwere higher. The NO−3 − N input to UVSR was2.4-fold higher than VSR1 and 3.5-fold higherthan VSR2 (Table 3). Despite the higher NO−3 −Ninput, the UVSR showed a signi�cantly higherNO−3 − N %R (p < 0.05) than VSR1 (Table 3).In addition, VSR1 showed NO−3 − N %R negati-ve values (the outlet, represented as g day−1 m−2,was higher than the inlet), whereas UVSR sho-wed positive values for NO−3 − N %R (Fig. 3).When UVSR was compared to VSR2, no signi-�cant differences were found in NO−3 − N %R(p > 0.05). In contrast to VSR1, VSR2 did notshow negative values for NO−3 − N %R (Fig. 3).

Regarding NH+4 − N, the unvegetated subreachretained more (p < 0.05) than the vegetated su-breaches (Table 3), and these subreaches sho-wed negative values for NH+4 − N %R in mostsampling events (Fig. 3). When the %R/m2 va-lues were analysed (Table 3), the UVSR sho-wed the highest ef�ciency in the NO−3 − N re-

-80

-60

-40

-20

0

20

40

60

80

100

120

UVSR

VSR1

VSR2

%R

Dry period

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

Period Study2006 2007 2008

Dry period

%R

7/12 20/12 3/1 8/1 3/2 17/2 3/3 15/3 29/3 1/5 15/6 2/11 2/12 4/1 2/3

NO3--N

NH4+-N

A

B-80

-60

-40

-20

0

20

40

60

80

100

120

UVSR

VSR1

VSR2

%R

Dry period

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

Period Study2006 2007 2008

Dry period

%R

7/12 20/12 3/1 8/1 3/2 17/2 3/3 15/3 29/3 1/5 15/6 2/11 2/12 4/1 2/3

NO3--N

NH4+-N

A

B

Figure 3. Temporal variation of the percentage of retention( %R) of NO−3 − N (A) and NH+4 − N (B) in the UVSR (grey),VSR1 (black) and VSR2 (white). Variacion temporal del por-centaje de retencion ( %R) de N−NO−3 (A) y de N−NH+4 (B) enel UVSR (gris), VSR1 (negro) y VSR2 (blanco).

Page 58: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Effects of P. australis on nitrogen retention 235

Table 3. Means values± SD of the input, output and retention (g day−1 m−2) and ef�ciency of retention (R% and R%/m2) inNO−3 − N and NH+4 − N in each subreach. The different letters and symbols indicate signi�cant differences ( p < 0.05) between thesubreaches for N − NO−3 and N − NH+4 respectively. Valores medios ± SD de entrada, salida y retencion (g d�a−1m−2) junto con lae�ciencia de retencion ( %R y %R/m2) de N−NO−3 y N−NH+4 en cada subtramo. Las letras y los s�mbolos distintos indican diferenciassigni�cativas ( p < 0.05) entre subtramos para el N − NO−3 y el N − NH+4 respectivamente.

g day−1 m−2

Subreach Input Output Retention %R %R/m2

NO−3 − NNH+4 − N

)UVSR

3.54± 3.50.37± 1.3

2.90± 3.20.36± 1.33

0.65± 0.550.005± 0.01

34± 27a

29± 38b0.14± 0.11a

0.12± 0.12∗

NO−3 − NNH+4 − N

)VSR1

1.45± 1.60.18± 0.6

1.40± 1.60.17± 0.6

0.05± 0.10.007± 0.02

11± 25b

8± 13†0.02± 0.05b

0.01± 0.02†

NO−3 − NNH+4 − N

)VSR2

1.01± 1.20.20± 0.5

0.95± 1.20.16± 0.4

0.1± 0.040.04± 0.11

39± 38a

4± 8†0.04± 0.04b

0.004± 0.01†

tention (p < 0.05), followed by VSR2 and �na-lly by VSR1. In the same way, the NH+4 − N re-tention in UVSR was higher than the retentionobserved in the vegetated subreaches (p < 0.05).Although no statistical differences were found inthe %R/m2 values between both vegetated su-breaches (p = 0.10), VSR1 was more ef�cientthan VSR2 in terms of NH+4 − N retention.

Temporal variability of N retention andinvolved factors

The temporal variability of NO−3 −N and NH+4 −N%R was high during the period of study (Fig. 3),with coef�cients of variation for UVSR, VSR1and VSR2 of 0.79, 2.29 and 0.97, respectively, inthe case of NO−3 − N, and 0.97, 1.86 and 2.24,respectively for NH+4 − N %R.

The highest NO−3 − N %R for the three sub-reaches was observed in May. Exceptionally atthis time, the %R of VSR1 was higher than thatof UVSR (Fig. 3). From May to November, the%R there was not data due to the drought situa-tion to which the vegetated subreaches were sub-jected. In contrast, the unvegetated subreach un-derwent drought later, speci�cally in the secondhalf of June, after the maximum NO−3 − N %Rwas observed (95%). No clear seasonal patternwas seen in relation to the variation of the dif-ferences of NO−3 − N %R between UVSR andVSR1 (Fig. 3). Nevertheless, the NO−3 −N reten-tion in VSR1 increased in May and its %R va-

lue (94%) was even higher than that of UVSR(77%). A seasonal pattern was neither detectedfor NH+4 − N %R with the vegetated subreachesand showed negative %R values on many sam-pling dates throughout winter (Fig. 3). This factstresses the differences with the unvegetated su-breach,mainly in thewintermonths.Nevertheless inspring (March and May), the retention of NH+4 − Nin the vegetated subreaches was higher, while thedifferences with the unvegetated subreach werelower. Indeed at the end of March, the NH+4 − Nretentions in VSR1 (4%) and VSR2 (20%) werehigher than in UVSR (–3%), and the %R inVSR1 in May exceeded (38%) that of UVSR(19%), whereas VSR2 exported NH+4 − N (–2%).

Spearman correlations were performed to eva-luate the relationship between the NO−3 − N andNH+4 − N %R values in the UVSR, and thereed growth variables (diameter and length ofstems, and number of stems/m2) (Table 4) revea-led no relationship between them. However, therelationship between the variables used to studyreed growth was positive (diameter and length ofstems, and number of stems/m2).

Regarding the second objective of testingfor the effect of N in�ow load variability(g day−1 m−2) on N retention ef�ciency, the re-gression analyses (Fig. 4) were only signi�cantfor NO−3−N, whereas a non-signi�cant regressionwas obtained for NH+4 − N. A negative relation-ship between the NO−3 − N inputs (g day−1 m−2)and NO−3 −N %R values was observed for all the

Page 59: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

236 Arce et al.

NO3- -N load (g day-1 m-2)

%R

NO

3- -

N%

RN

O3

- -N

UVSR

VSR2

%R

NO

3- -

N

VSR1

y= -ln 16.50x+ 44.90

R2=0.76; p<0.001

y= -ln 12.07x + 11.51

R2=0.37; p=0.016

y= -ln 16.03x + 28

R2=0.80; p=0.010

A

B

C

NO3- -N load (g day-1 m-2)

%R

NO

3- -

N%

RN

O3

- -N

UVSR

VSR2

%R

NO

3- -

N

VSR1

y= -ln 16.50x+ 44.90

R2=0.76; p<0.001

y= -ln 12.07x + 11.51

R2=0.37; p=0.016

y= -ln 16.03x + 28

R2=0.80; p=0.010

A

B

C

NO3- -N load (g day-1 m-2)

%R

NO

3- -

N%

RN

O3

- -N

UVSR

VSR2

%R

NO

3- -

N

VSR1

y= -ln 16.50x+ 44.90

R2=0.76; p<0.001

y= -ln 12.07x + 11.51

R2=0.37; p=0.016

y= -ln 16.03x + 28

R2=0.80; p=0.010

A

B

C

NNO

− 3−

N%

RN

O− 3−

N%

RN

O− 3−

N%

R

NO−3 −N

Figure 4. Logarithmic regression (best �t) between NO−3 −Nload (g day−1 m−2) and percentage of retention ( %R) for eachsubreach: UVSR (A), VSR1 (B) and VSR2 (C). Regresionlogar�tmica (mejor ajuste) entre los aportes de N − NO−3(g d�a−1 m−2) y el porcentaje de retencion ( %R) para cada sub-tramo: UVSR (A), VSR1 (B) y VSR2 (C).

subreaches (Fig. 4). The retention of NO−3 −N de-creased in the three subreaches when the NO−3−Ninput increased, which �tted a logarithmic model(Fig. 4). The �t was greater for UVSR and VSR2,with a higher level of signi�cance than that ob-served for VSR1. Besides, the model showed athreshold value in the NO−3−N input for which theretention was null and even negative. Therefore,a maximum NO−3 − N load was detected in each

Table 4. Values of the Spearman correlation analyses betweenthe reed growth variables at UVSR and the retention percenta-ges of NO−3 − N and NH+4 − N at UVSR. Asterisks indicatesigni�cant correlation (**p < 0.01). Valores del analisis de co-rrelacion de Spearman entre las variables de crecimiento decarrizo en UVSR y los porcentajes de retencion de N − NO−3 yN−NH+4 en UVSR Los asteriscos indican correlacion signi�ca-tiva (**p < 0.01).

P. australis growth and %R of N UVSR

Diameterstem

Heigthstem

Numberstems/m2

Diameter stem 0.85∗∗ 0.82∗∗Height stem 0.97∗∗

%R NO−3 − N UVSR −0.31 −0.19 0.08

%R NH−4 − N UVSR 0.11 0.23 0.38

subreach from which the subreaches were unableto retain N and started to export it. This patternwas observed mainly in the regression model forVSR1 where negative values of %R were found,indicating NO−3 − N exportation. The analysis ofthese regression models (Fig. 4) reveals that thethreshold value between subreaches differs andthat the UVSR subreach shows a higher load ca-pacity for NO−3 − N than for VSR1 and VSR2.

DISCUSSION

Effect of the expansion of P. australis onNO−−−3 − N and NH+++4 − N retention

The differences shown for the N retention(%R/m2) between subreaches support our initialhypothesis that a massive invasion of P. australisin stream channels has negative effects on N re-tention. We suspect that the physical and hydrolo-gical changes that reed growth brings about, altersome of the processes involved in net N retention,such as denitri�cation or adsorption onto sedi-ments (De Laune et al., 1981; Howard-Williams,1985; Bowden, 1987; Reddy et al., 1989; Pinayet al., 1993; Hill, 1996; Bernot & Dodds, 2005),thus leading to a decrease in N retention. In ac-cordance with the results of NO−3−N %R, the un-vegetated subreach (238 m2) is the most ef�cientof the three subreaches of this study. Howeverwhen P. australis is present (VSR2), it is neces-sary to increase the surface area 4-fold (910 m2)

Page 60: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Effects of P. australis on nitrogen retention 237

to obtain a similar %R.As for the results obtainedfor reed growth, although we observed a moderategrowth in the unvegetated subreach, it was not suf-ficient to influence its %R. The lack of correlationbetween this last variable and those used to estimatethe growth of P. australis confirm this hypothesis.

Despite the presence of reeds in the streamspossibly playing an important role in N assimila-tion, we believe that other biotic (microbial assi-milation and desnitri�cation) and abiotic (adsor-ption onto sediments) processes may prove moreimportant in N removal given the ramblas’ cha-racteristics. Several authors have reported thatdenitri�cation may be potentially more impor-tant than plant uptake in aquatic ecosystems un-der speci�c conditions, such as low redox poten-tial of sediments, �ne substrate, high NO−3 − Ncontent and organic carbon availability (Kaplan& Valiela, 1979; Reddy et al., 1980; De Lau-ne et al., 1998; Clement et al., 2003; Toet etal., 2003). Although we did not evaluate deni-tri�cation in this study, we suspect that this pro-cess may be an important pathway for NO−3 − Nloss in the unvegetated subreach given its envi-ronmental characteristics. Moreover, variables li-ke a larger surface/volume ratio, higher water re-sidence time and a higher insolation in the un-vegetated subreach have a positive effect on thebiotic and abiotic processes implicated in N re-tention if compared to the vegetated subreaches(e.g., Howard-Williams, 1985).

Although we must be careful when interpre-ting the results obtained in this study given theabsence of a second study area, our results sug-gest that the loss of heterogeneity in streams, andconsequently the loss of diversity in biogeoche-mical processes, negatively affects N removal.The same idea, based on the different environ-mental conditions required by N retention pro-cesses, has been suggested by other authors (e.g.,Kemp & Dodds, 2001; McClain et al., 2003).

Detritus accumulation in the stream bed notonly alters the structure and hydrological condi-tions of streams, but could also be a source ofnitrogen. This idea is another important factor tounderstand our results. The nitrogen net retentioncould lower due to detritus accumulation (whenreed leaves decay), organic matter decomposi-

tion, and the release of NH+4 −N and NO−3 −N intosystems. Several research works have demonstra-ted that detritus decomposition in systems wherethese nutrients are not limited could enrich thenutrient level of streams (e.g., Howarth & Fi-sher, 1976; MacLean & Wein, 1978). In a studyconducted in small arti�cial wetlands, Braskerud(2002) explained the loss in retention ef�ciencythrough detritus accumulation. Indeed in Europe,a number of studies have recently evaluated theeffect of reeds on N availability in wetlands byconsidering them a strong nutrient releaser (Lip-pert et al., 1999; Picek et al., 2000).

This hypothesis could also explain not onlythe differences in N retention between the su-breaches, but also the low ef�ciency of the ve-getated subreaches. We hypothesize that the Nexport processes in the vegetated reaches aregreater than the N retention processes, and thatthey result in a negative net retention balance.The low N-ammonium retention in the vegeta-ted subreaches (mainly in VSR2) supports ourhypothesis. The stream invasion by Phragmitescould contribute to water and sediment oxygena-tion. This situation could increase the minerali-sation and nitri�cation processes over denitri�ca-tion, as demonstrated in several wetland researchworks (Reddy et al., 1989).

With the exception of denitri�cation, theNO−3−N uptake by plants is considered one of themain mechanisms of N removal, although this isa short term retention (temporal retention). Du-ring the non-vegetative period, plant uptake de-creases, and both the translocation of nutrientsfrom stems to rhizomes and the decompositionof tissues also take place, thus increasing the nu-trient concentrations in the water column (Pe-verly, 1985; Denny, 1987; Ruiz, 2006).

To explain the short ef�ciency in the NH+4 −Nretention, in addition to detritus mineralizationand the consistent export of nutrients, we haveto consider that ammonium is the more unsta-ble N form that changes according to the en-vironmental conditions such as the redox sta-te of the sediments (Buturini & Sabater, 2002;Gucker & Boechat, 2004). Slight physical andchemical changes in sediments can lead to theiradsorption or release into the system.

Page 61: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

238 Arce et al.

Regarding our second prediction, �nding a clearseasonal pattern in the differences in retentionbetween subreaches proved dif�cult. Initially,we expected the differences in the %R valuesbetween the unvegetated and vegetated subrea-ches to be higher outside the vegetative period(autumn-winter) when plant uptake is low. No-netheless, the remaining nitrogen removal pro-cesses remained active. As expected, we obser-ved retention in the unvegetated subreach in au-tumn and winter, whereas the %R in the vege-tated subreach (VSR1) was very low, and evennegative. The increase in the %R of the vege-tated subreaches in May (spring) could mean anactivation of the assimilation process by plants.However, the absence of data in spring-summer,given the absence of water in the stream, did notallow us to test this prediction.

The factors involved in nitrogen retention

In the subreaches studied, NO−3 −N retention de-creased while NO−3 − N load increased which fo-llowed a logarithmic model and showing a thres-hold value for NO−3 −N input. Over this thresholdvalue, the subreaches began to export. However,this value differed between subreaches. Similarresponses in relation to N retention have beenfound in natural and arti�cial wetlands (e.g., Co-oke, 1994; Spieles & Mitsch, 2000).

The N retention observed in the vegetated sub-reaches indicates a clear effect of the surfacearea occupied by reeds on retention ef�ciencies.In this way, the different loading capacity ofthe vegetated subreaches; %R/m2 = 0.02%/m2

and 0.04%/m2 for VSR1 (480 m2) and VSR2(910 m2), respectively, suggested that a minimumsurface area of stream channel is required for apositive net N retention (i.e., retention proces-ses overtake decomposition and releasing proces-ses). In fact, the high frequency of the NO−3 − Nand NH+4 − N releasing events in the vegetatedsubreach with a smaller surface area comparedto the vegetated subreach with a larger surfacearea supports our hypothesis. Furthermore, a 2-foldincrease in the surface area of the vegetatedsubreach (VSR1 vs. VSR2) did not duplicate the%Rvalue as expected; instead it increased4-fold.

It is well-known that the main factor causing thechanges in the structure of vegetation in wetlandsis the variability in the water level, followedby an increase in nutrients load (e.g., Howard-Williams, 1985; van der Valk, 1987). In the Sout-heast Iberian Peninsula, streams receive water in-puts from agriculture because of the increase ofirrigated lands which, in turn, decreases naturalwater salinity and increases water nutrient levels.This situation is one of the most optimum for anexpansion of Phragmites in wetlands and streams(e.g., Burdick et al., 2001), a situation which haspresently discontinued, partly due to the high na-tural salinity of some of these systems in the Pro-vince of Murcia. The phenomenon of antropic ac-tivities enabling an invasion of Phragmites aus-tralis, which affects the presence of other plantspecies, has been analysed in several studies thatdescribe how to stop such expansion (Cowie etal., 1992; Benoit & Askins, 1999; Chambers etal., 1999; Bart & Hartman, 2002). In general,these studies show that the invasion of Phragmi-tes causes the loss of not only plant communi-ties, but also animal communities, especially so-me bird species (Cowie et al., 1992; Benoit &Askins, 1999). However, fewer studies have beenconducted on how the invasion of reed affectsthe function of aquatic systems (e.g., Marks etal., 1994, Chambers et al., 1999). Therefore, al-though the results obtained in this report are li-mited to one study case, they represent the �rstdata on the effect of Phragmites on N retentionin ramblas mediated by changes in plant structu-re and hydrological conditions. We conclude thatthis study emphasises the importance of furtherresearch on this topic in order to obtain appli-cable results for the appropriate management oframblas in agricultural catchments.

ACKNOWLEDGEMENTS

We would like to thank Nazaret Gonzalez andAntonio Garc�a-Lacunza for their help in thisstudy. We also wish to thank Antonio Rocamo-ra for the information about the study area.

This research was supported by projectCGL2006-08134 from theSpanishMinistryofEdu-

Page 62: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Effects of P. australis on nitrogen retention 239

cation and Science (2006-09), and by R-238/2006project from the General Authorities of the SpanishMinistry of the Environment (2005-07). Finally, theauthors would like to thank the two anonymousreviewers for their comments which have greatlycontributed to the improvement of this paper.

REFERENCES

ALEXANDER, R. B., R. A. SMITH & G. E. SCH-WARTZ. 2000. Effect of stream channel size onthe delivery of nitrogen to the Gulf of Mexico. Na-ture, 403: 758-761.

APHA-AWWA-WPCF. 1985. Standard methods forthe examination of water and wastewater, 16th ed.Washington. 769 pp.

BALLESTER, R., M. R. VIDAL-ABARCA, M. A.ESTEVE & M. L. SUAREZ. 2003. Los humeda-les de la Region de Murcia (Humedales y Ram-blas). Consejer�a de Agricultura, Agua y MedioAmbiente de la Comunidad Autonoma de la Re-gion de Murcia. 137 pp.

BART, D. & J. M. HARTMAN. 2002. Environmentalconstraints on early establishment of Phragmitesaustralis in salt marshes. Wetlands, 22: 201-213.

BARTLETT, M. S., L. C. BROWN, N. B. HANES& N. H. NICKERSON. 1979. Denitri�cation infreshwater wetlands soil. J. Environ. Qual., 8: 460-464.

BENOIT, L. K. & R. A. ASKINS. 1999. Impactof the spread of Phragmites on the distributionof birds in Connecticut tidal marshes. Wetlands,19: 194-208.

BERNOT, M. J. & W. K. DODDS. 2005. Nitrogenretention, removal, and saturation in lotic ecosys-tems. Ecosystems, 8: 442-453.

BOWDEN, W. B. 1987. The biogeochemistry of ni-trogen in freshwater wetlands. Biogeochemistry,4: 313-348.

BRASKERUD, B. C. 2002. Factors affecting nitro-gen retention in small constructed wetlands trea-ting agricultural non-point source pollution. Ecol.Eng., 18: 351-370.

BURDICK, D. M., R. BUCHSBAUM & E. HOLT.2001. Variation in soil salinity associated with ex-pansion of Phragmites australis in salt marshes.Environ. Exp. Bot., 46: 247-261.

BUTURINI, A. & F. SABATER. 2002. Nitrogen con-centrations in a small Mediterranean stream: 1.

Nitrate 2. Ammonium. Hydrol. Earth Syst. Sci.,6: 539-550.

CHAMBERS, R. M., L. MEYERSON & K. SAL-TONSTALL. 1999. Expansion of Phragmites aus-tralis into tidal wetlands of North America. Aquat.Bot., 64: 261-273.

CLEMENT, J. C., R. M. HOLMES, B. J. PETER-SON & G. PINAY. 2003. Isotopic investigation ofdenitri�cation in a riparian ecosystem in westernFrance. J. Appl. Ecol., 40: 1035-1048.

COOKE, J. G. 1994. Nutrient transformations in anatural wetland receiving sewage ef�uent and theimplications for waste treatment. Water Sci. Tech-nol., 29: 209-217.

COWIE, N. R., W. J. SUTHERLAND, M. K. M.DITLHOGO & R. JAMES. 1992. The effects ofconservation management of reed beds. II. The �o-ra and litter disappearance. J. Appl. Ecol., 29: 277-284.

DE LAUNE, R. D., C. N. REDDY & W. H. PA-TRICK. 1981. Effect of pH and redox potential onconcentration of dissolved nutrients in an estuarinesediment. J. Environ. Qual., 10: 276-279.

DE LAUNE, R. D., C. W. LINDAU, E. SULAE-MAN & A. JUGSUJINDA. 1998. Nitri�cation anddenitri�cation estimates in a Louisiana swamp fo-rest soil as assessed by 15N isotope dilution anddirect gaseous measurements. Water Air Soil Poll.,106: 149-161.

DENNY, P. 1987. Mineral cycling by wetland plants-a review. Arch. Hydrobiol. Beih., 27: 1-25.

GOMEZ, R., I. HURTADO, M. L. SUAREZ & M. R.VIDAL-ABARCA. 2005. Ramblas in south-eastSpain: threatened and valuable ecosystems. Aquat.Conserv., 15: 387-402.

GUCKER, B. & I. G. BOECHAT. 2004. Streammorphology controls ammonium retention in tro-pical headwaters. Ecology, 85: 2818-2827.

HERNANDEZ, E. M. & M. J. MITSCH. 2007. De-nitri�cation in created riverine wetlands: in�uenceof hydrology and season. Ecol. Eng., 30: 78-88.

HILL, A. R. 1996. Nitrate removal in stream riparianzones. J. Environ. Qual., 25: 743-755.

HOWARD-WILLIAMS, C. 1985. Cycling and reten-tion of nitrogen and phosphorus in wetlands a theo-retical and applied perspective. Freshwater Biol.,15: 391-431.

HOWARTH, R. W. & S. G. FISHER. 1976. Carbon,nitrogen, and phosphorus dynamics during leaf de-cay in nutrient-enriched stream micro-ecosystems.Freshwater Biol., 6: 221-228.

Page 63: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

240 Arce et al.

KAPLAN, W. & I. VALIELA. 1979. Denitri�cationin a salt marsh ecosystem. Limnol. Oceanogr.,24: 726-734.

KEMP, M. J. & W. K. DODDS. 2001. Spatial andtemporal patterns of nitrogen in prairie streams.Biogeochemistry, 53: 125-141.

LIPPERT, I., H. ROLLETSCHEK, H. KUHL & J. G.KOHL.1999. Internal and external nutrient cyclesin strands of Phragmites australis-a model for twoecotypes. Hydrobiologia, 408: 343-348.

LOPEZBERMUDEZ, F., C. CONCESA & F. ALON-SO. 1998. Ramblas y barrancos mediterraneos:medio natural y respuesta humana. Mediterraneo,12-13: 223-242.

McCLEAN, D. A. & R. W. WEIN. 1978. Weight lossand nutrient changes in decomposing litter and fo-rest �oor material in New Brunswick forest stand.Can. J. Botany, 56: 2730-2749.

McCLAIN, M. E., E. W. BOYER, C. L. DENT, S. E.GERGEL, N. B. GRIMM, P. M. GROFFMAN, S.C. HART, J. W. HARVEY, C. A. JOHNSTON, E.MAYORGA, W. H. MCDOWELL & G. PINAY.2003. Biogeochemical hot spots and hot momentsat the interface of terrestrial and aquatic ecosys-tems. Ecosystems, 6: 301-312.

MARKS, M., B. LAPIN & J. RANDALL. 1994.Phragmites australis (Phragmites communis): th-reats, management, and monitoring. Nat. Areas J.,14: 285-194.

MARTINEZ FERNANDEZ, J. y M. A. ESTEVESELMA. 2002. Agua y regad�o en la cuenca delSegura: una espiral de insostenibilidad. En: Agua,regad�o y sostenibilidad en el Sudeste iberico.J. Mart�nez Fernandez y M. A. Esteve Selma(eds.): 23-49. Bakeaz, Bilbao, Espana.

MITSCH, W. J., J. W. DAY, W. J. WILLIAM, P. M.GROFFMAN, D. L. HEY, G. W. RANDALL &N. WANG. 2001. Reducing nitrogen loading to theGulf of Mexico from the Mississippi River Basin:strategies to counter a persistent ecological pro-blem. BioScience, 51: 373-388.

NEELY, R. K. & J. L. BAKER. 1989. Nitrogen andphosphorus dynamics and the fate of agricultu-ra runoff. In: Northern Prairie Wetlands. A. G.Van der Valk (ed.): 92-131. Iowa State UniversityPress, IA, USA.

PETERSON, B. J., W. H. WOLLHEIM, P. J. MOL-HOLLAND, J. R. WEBSTER, J. L. MEYER, J. L.TANK, E. MARTI, W. B. BOWDEN, H. M. VA-LETT, A. E. HERSHEY, W. H. MCDOWELL, W.K. DODDS, S. K. M. HAMILTON, S. GREGORY

& D. J. MORRALL. 2001. Control of nitrogen ex-port from watersheds by headwater streams. Scien-ce, 292: 68-90.

PEVERLY, J. H. 1985. Element accumulation and re-lease by macrophytes in a wetland stream. J. Envi-ron. Qual., 14: 137-143.

PICEK, T., F. LUSBY, H. CIZKOVA, H. SAN-TRUCKOVA, M. SIMEK, J. KVET & L. PE-CHAR. 2000. Microbial activities in soils of ahealthy and a declining reed stand. Hydrobiologia,418: 45-55.

PINAY, G., L. ROQUES & A. FABRE. 1993. Spatialand temporal patterns of denitri�cation in a ripa-rian forest. J. Appl. Ecol., 30: 581-591.

PULIDO, A. 1993. Las ramblas mediterraneas: con-dicionantes geomorfologicos e hidrologicos. Lasramblas mediterraneas. Actas de la VI Aula deEcolog�a, Institutos de Estudios Almerienses, Di-putacion de Almer�a, Almer�a: 135-144.

REDDY, K. R. & E. M. D’ANGELLO. 1994. Soilprocesses regulating water quality in wetlands.In: Global Wetlands: Old World and New. W. J.Mitsch (ed.): 309-324. Elsevier, Amsterdam, TheNetherlands.

REDDY, K. R. & W. H. PATRICK. 1984. Nitrogentransformations and loss in �ooded soils and sedi-ments. CRC Crit. Rev. Environ. Control, 13: 273-309.

REDDY, K. R., W. H. PATRICK & R. E. PHILLIPS.1980. Evaluation of selected processes controllingnitrogen loss in a �ooded soil. Soil Sci. Soc. Am.J., 44: 1241-1246.

REDDY, K. R., W. H. PATRICK & C. W. LINDAU.1989. Nitri�cation-denitri�cation at the plant root-sediment interface in wetlands. Limnol. Oceanogr.,34: 1004-1013.

RUIZ MARTINEZ, M. D. M. 2006. Bioacumulacionde nutrientes en Phragmites australis en la rambladel Albujon. Elemento de gestion para la reduc-cion de la contaminacion del Mar Menor. Tesis deLicenciatura, Universidad de Murcia. 78 pp.

SIRIVEDHIN, T. & K. A. GRAY. 2006. Factorsaffecting denitri�cation rates in experimentalwetlands: �eld and laboratory studies. Ecol. Eng.,26: 167-181.

SOLORANZO, L. 1969. Determination of ammoniain natural waters by the phenolhypochlorite met-hod. Limnol. Oceanogr., 14: 799-801.

SPIELES, D. J. & W. J. MITSCH. 2000. The effectsof season and hydrologic and chemical loading on

Page 64: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Effects of P. australis on nitrogen retention 241

nitrate retention in constructed wetlands: a com-parison of low- and high-nutrient riverine systems.Ecol. Eng., 14: 77-91.

TOET, S., L. H. F. A. HUIBERS, R. S. P. VAN LOG-TESTIJN & J. T. A. VERHOEVEN. 2003. Deni-tri�cation in the periphyton associated with plantshoots and in the sediment of a wetland systemsupplied with sewage treatment plant ef�uent. Hy-drobiologia, 501: 29-44.

TRUDELL, M. R., R. W. GILLHAM & J. A. CHE-RRY. 1986. An in-situ study of the occurrence andrate of denitri�cation in a shallow uncon�ned sandaquifer. J. Hydrol., 83: 251-268.

TURNER, R. E. & N. N. RABALAIS. 2003. Linkinglandscape and water quality in the Mississippi Ri-ver Basin for 200 years. BioScience, 53: 563-572.

VAN DER VALK, A. G. 1987. Vegetation dynamicsof freshwater wetlands: A selective review of theliterature. Arch. Hydrobiol. Beih., 27: 27-39.

VITOUSEK, P. M., J. D. ABER, R. W. HOWARTH,G.E.LIKENS,P.A.MATSON,D.W.SCHINDLER,W. H. SCHLESINGER & D. G. TILMANET. 1997.

Human alteration of the global nitrogen cycle:sources and consequences. Ecol. Appl., 7: 737-750.

WEBSTER, J. R., P. J. MULHOLLAND, J. L.TANK, H. M. VALETT, W. K. DODDS, B. J.PETERSON, W. B. BOWDEN, C. N. DAHM, S.FINDLAY, S. V. GREGORY, N. B. GRIMM, S.K. HAMILTON, S. L. JOHNSON, E. MARTI,W. H. MCDOWELL, J. L. MEYER, D. D. MO-RRALL, S. A. THOMAS & W. M. WOLL-HEIM. 2003. Factors affecting ammonium uptakein streams-an interbiome perspective. FreshwaterBiol., 48: 1329-1352.

WOLLHEIM, W. M., B. J. PETERSON, L. A. DEE-GAN, J. E. HOBBIE, B. HOOKER, W. B. BOW-DEN, K. J. EDWARSON, D. B. ARSCOTT &A. E. HERSHEY. 2001. In�uence of stream sizeon ammonium and suspended particulate nitrogenprocessing. Limnol. Oceanogr., 46: 1-13.

WOOD, E. D., F. A. ARMSTRONG & F. A. RI-CHARDS. 1967. Determination of nitrate in sea-water by cadmium-copper reduction to nitrate. J.Mar. Biol. Assoc., 47: 23-31.

Page 65: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats
Page 66: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 243-252 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

Lutein and the C/N as tracers of organic matter in the Palmones Riverestuary

Ma Angeles Arrojo1,∗, Carlos. Jimenez1, Lourdes Rubio2 and F. Xavier Niell1

1 Department of Ecology. University of Malaga. Campus de Teatinos s/n 29071. Malaga. Spain.2 Department of Plant Biology. University of Malaga. Campus de Teatinos s/n 29071. Malaga. Spain.2

∗ Corresponding author: [email protected]

Received: 19/11/08 Accepted: 24/3/09

ABSTRACT

Lutein and the C/N as tracers of organic matter in the Palmones River estuary

Plant pigments have been used as biomarkers of the presence of phototrophic organisms in rivers, estuaries and sea sedimentsin present and in paleolimnological studies. Chlorophyll a and lutein concentration, C/N ratio and organic matter content havebeen studied in the sediment of the Palmones River estuary (Algeciras Bay, Southern Spain). Using the concentration of thesetwo pigments at different depths, as well as the sedimentation rate (determined by Rubio et al. in 2003 by means of the 210Pbmethod), lutein and chlorophyll a degradation rate has been determined, in the saltmarsh. Lutein persistence in the sedimentwas higher than the persistence of chlorophyll a. According to these results, it was possible to discriminate the organic mattersources.

Key words: Sediment, lutein, chlorophyll a, estuary, organic matter.

RESUMEN

La lute�na y el C/N como trazadores de materia organica en el estuario del r�o Palmones

Los pigmentos vegetales han sido usados como bioindicadores de la presencia de organismos fototropicos en r�os, estuarios ysedimentos marinos actuales y en estudios paleolimnologicos. En el sedimento del estuario r�o Palmones (Bah�a de Algeciras,Sur de Espana) se ha estudiado las concentraciones de cloro�la a y lute�na, el �ndice C/N y el contenido en materia organica.Utilizando la concentracion de estos dos pigmentos en diferentes profundidades as� como el �ndice de sedimentacion (determi-nado por Rubio et al. En 2003 por el metodo del 210Pb), se ha determinado el �ndice de degradacion de la lute�na y cloro�la aen la marisma. La permanencia de la lute�na en el sedimento es mayor que la de la cloro�la a. Segun estos resultados se hapodido discriminar las fuentes de materia organica.

Palabras clave: Sedimento, lute�na, cloro�la a, estuario, material organica.

INTRODUCTION

Hydrodynamic factors (e.g. tidal movement, wa-ves, river �ow, winds) are the most important fac-tors in estuaries formation. The intertidal zoneaccumulates and transforms the organic matter of

marine and terrestrial origin (Mayer et al., 1988;Cifuentes, 1991), including anthropogenic origin(Requejo et al., 1986; Billen et al., 1991).

Agricultural exploitations and industrial activi-ties around the estuary can induce changes the trans-fer of organic and inorganic matter from the con-

Page 67: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

244 Arrojo et al.

tinent to the sea. Industrialization and deforestationincrease the soil loss, with concomitant increasedsedimentation in the coastal regions. In addition,dam construction also affects river contribution,drastically reducing the contribution with particu-late material to the coasts. Thus, these changes inthe material contribution also affects to the car-bon, nitrogen and phosphorus biogeochemicalcycles in coastal areas (Berner, 1980).

Increase in the nutrient input to the rivers(mainly nitrate and phosphate mobilized throughhuman activity), and the transport of carbon fromthe rivers to the ocean, can force primary produc-tion in the shoreline. Coastal and estuarine sedi-ments contain organic matter both of terrestrialand aquatic origin (Ertel and Hedger, 1985; Hed-ger et al., 1988). In the sediments, plant pigmentscan be used to re�ect the different sources of thatorganic matter (Watts et al., 1975; Bianchi andFindlay, 1990). The usefulness of the pigmentsas tracers of organic matter sources can dependon the magnitude of the input, their decompo-sition rates and the speci�city of the source ofthe organic matter (Repeta, 1989; Bianchi andFindlay, 1991; Sun et al., 1991).

Lutein (3R, 3R′ − β, β-caroten-3, 3′-diol) is anexclusive pigment of vascular plants, chlorophy-tes and rhodophytes, being the most abundant ca-rotenoid in the photosynthetic tissues (van denHoek et al., 1995), so, it is being used as an indi-cator of this particular origin of the organic mat-ter. C/N ratio is also being used as indicator ofthe organic matter source, due to its different ran-ge of variation depending on the origin of the or-ganic matter. These main organic matter sourcesin estuarine regions are: the marsh, planktonic or-ganisms, estuarine macroalgae, terrestrial vegeta-tion of the basin and the anthropogenic material.

The first objective of this study is to use thetwo main photosynthetic pigments (e.g. lutein andchlorophyll a) and the C/N ratio in the sedimentto discriminate the plant organic matter originaccumulated in Palmones estuary sediment (andthen to be able to have an initial estimation of theimportance of the organic matter natural sources tothe estuary). The second objective is to determinethe average rate of lutein, chlorophyll a and orga-nic matter degradation in this marsh.

6

River

Coast

Sea

x1x2x3x4x5

1 km

1 km

River

AlgecirasBaySPAIN

Figure 1. Sampling stations in Palmones estuary. Estacionesde muestreo en el estuario de Palmones.

MATERIAL AND METHODS

Study area

Palmones River estuary is the westernmost es-tuary in the Mediterranean (from 36◦16′55.40′′N;5◦35′06.39′′Wto36◦16′19.59′′N;5◦15′35.69′′W).It is located in Algeciras Bay (Southern Spain)at the end of a small basin (302 km2), beingrepresentative of the small estuaries along theWestern Mediterranean coast. Palmones estuaryis a well-mixed, shallow estuary with a maximaldepth of 2.5 m and a range of salinity from 29to 35 (Clavero et al., 1997a). Tidal movement inthe area has a maximal amplitude of 2 m, so anextensive area of mud and sand emerge daily atlow tide (Clavero et al., 1997a).

Seven sampling stations have been selected inthe estuary in order to obtain a spatial and depth

Page 68: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Lutein and C/N as organic matter markers 245

Table 1. Characteristics of the sampling stations. Caracter�sticas de las estaciones de muestreo.

Station High tidal Substrate UTM Coordinates Vegetationname level (cm) X Y

1 00 Mud 0280581.09 4005767.33 No vegetation

2 45 Mud 0280582.28 4005764.17 Halimione portulacoidesSarcocornia fruticosa

3 60 Mud 0280583.47 4005759.81 Sarcocornia fruticosa

4 50 Mud 0280585.06 4005755.05 Sarcocornia fruticosa

5 45 Mud 0280586.64 4005750.07 Sarcocornia fruticosaSarcocornia perennis

6 00 Mud 0279445.07 4006436.06 Juncus maritimus

7 00 Sand 0281306.08 4005951.15 No vegetation

pro�le of lutein, chlorophyll a and organic mat-ter distribution in the sediment. Five samplingstations were located in the middle zone accor-ding with the gradient of emersion (from 1 to5; Fig. 1), while station 6 was placed in the up-per zone of the estuary. Finally, station 7 wasin the lower part of the tidal level. Six of themwere located in the right margin of the river (1,2, 3, 4, 5, 7) and one in the left margin (station6). The characteristics of the sampling stationsare summarized in Table 1.

Cores of 4.5 cm of diameter and 20cm longwere inserted by hand in the sediment and removed.Then they were transported to the laboratory incold and dark conditions. In the laboratory theywere kept at −20 ◦C until further processing. Thecores were cut in slices of 1 cm thick from thesurface to 5 cm deep. Then, 2 g of each slicewere submerged in acetone (8ml), and extractedin continuous shaking for 48 hours at 4 ◦C indark, and then centrifuged at 5 000 rpm. Successiveextractions were made until colourless supernatant(near zero absorbance) were obtained. A mixtureof diethyl-ether (2 ml) and water (2 ml) was ad-ded to every 4 ml of extract. Phase separation wasachieved after centrifugation, and the diethyl-ether phase containing the pigments was extrac-ted and concentrated under N2 �ow. Extracts we-re kept at −20 ◦C until HPLC analysis.

A Waters 600 (Waters Cromatograf�a S.A.,Barcelona, Spain) system provided with a rever-se-phase VYDAC201TP54 C-18 column (25 cm×4.6 mm, 5 μm particle size) with a precolumn

VYDAC201TPC18301A was used for pigmentseparation. Elution was performed in a two-solvent gradient system: Solvent A, acetonitri-le (75%), methanol (15%) and tetrahydrofurane(10%); and Solvent B, 100% bi-distilled water.

Samples were treated in a 0-30 min lineargradient in 80% A + 20% B followed by a10 min of isocratic gradient to 100% A; then pas-sed through a 10 min linear gradient to newlyreach 80% A + 20% B, and �nally 10 mo-re min through isocratic 80% A + 20% B forcolumn stabilization between consecutive injec-tions (Carnicas et al., 1999).

A programmable photodiode array detector (Wa-ters 996) was used for pigment detection between400 and 750nm. Data were collected and analyzedusing the computer programme MillenniumTM.Peaks were identified both by retention time andtheir absorption spectra. Standards of chloro-phyll a and b (Sigma) and lutein (Fluka) were

Table 2. Retention times and absorption maxima of commer-cial standards of lutein, chlorophyll a and b (values in bracketscorrespond to shoulders in the spectra). Tiempo de retenciony maximos de absorcion de los estadares comenrciales de lu-te�na,cloro�la a y b (los valores entre parentesis correspondena hombros del espectro).

Peaks of absorptionPigment I II III Retention time

Lutein 429 448.8 476.6 22.726-26.257

Chlorophyll a 431.9 662.5 — 31.120-35.794

Chlorophyll b 462 647.9 — 26.257- 30.739

Page 69: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

246 Arrojo et al.

used for this propose (Table 2). Results of previousstudies have also been taken into account forpeak identification (Brotas et al., 1995; Bianchi etal., 1993; Cartaxana and Brotas, 2003) (Table 2).Pigment concentrations were calculated applyingan extension of the Lambert-Beer equation throughthe area of the peaks in the chromatogram, andexpressed inμg of pigment g−1 of sediment.

Organic matter and C/N determination

Organic matter (o.m.) was estimated as percenta-ge of weight loss by at 550 ◦C (3 hours). Beforeincineration, sediment was dried at 110 ◦C (24 h)and grinded in a mortar to a particle size below125 μm. (Boyle, 2004).

Total particulate carbon and nitrogen in the se-diment were determined in the surface and deeplayers using a CHN 2400C Perkin Elmer Ele-mental Analyser, following the method of Kris-tiensen and Andersen (1987).

RESULTS

Pigment analyses

Two characteristic chromatograms are presentedin Fig 2. They correspond to the surface of station2 (Fig. 2a) and to its homologous extract obtainedat 4 cm deep (Fig. 2b). Clear differences can bedetected between samples, evidencing the fast di-

AU

a

0,04

020 40 60

0,02

Lut

Chl b

Chl a

Minutes

AU

b

0 2 0 4 0 6 0

0 ,0 0 5

L u t

C h l a

Figure 2. Chromatogram for the �rst cm of Station 2 (a) andbetween 3 and 4 cm of depth (b). The area of the lutein, chloro-phyll a and chlorophyll b diminishes. Notice the lack of peaksbetween 12 and 25 minutes of retention time in �gure 2b. Cro-matograma del primer cent�metro de la estacion 2 (a) y entre 3y 4 cm de profundidad (b). El area de la lute�na, cloro�la a yb dismunuye. Notese la falta de picos entre los 12 y 25 minutosde retencion en la �gura 2b.

Table 3. Lutein (top table) and chlorophyll a (bottom table) average concentration expressed in ppm with respect to the C contentin the sediment (n.d.-not detected). Concentracion media de lute�na (tabla superior) y cloro�la a ( tabla inferior) expresada en ppmrespecto al contenido en C en el sedimento (n.d.: no detectado).

Depth (cm) Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7

1 0.01 0.14 0.78 0.14 0.06 0.62 1.042 n.d. 0.18 0.02 0.04 n.d. 0.04 1.093 n.d. 0.04 0.08 0.03 n.d. 0.28 0.604 n.d. 0.04 n.m. n.d. n.d. n.d. 0.255 n.d. 0.03 n.d. n.d. 0.03 n.d. 0.21

Depth (cm) Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7

1 0.39 1.20 7.37 2.77 0.71 5.08 1.922 n.d. 0.20 0.28 0.21 1.05 0.16 2.253 n.d. 0.81 0.48 0.17 n.d. 1.01 0.714 n.d. 0.63 0.57 0.05 0.85 n.d. 0.195 n.d. 0.14 n.d. n.d. 0.44 n.d. 0.14

Page 70: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Lutein and C/N as organic matter markers 247

sappearance of some pigments in the deep layers.Among them, it is worth noting the disappearan-ce of some products (xanthophylls, between 12and 24 min), and lutein. Lutein and chlorophyll aconcentrations in all sampling stations are sum-marized in Table 3.

Figure 3 shows the average pro�le of luteinand chlorophyll a in all stations, referred as per-centage of the pigment concentration found inthe surface. Chlorophyll a decreased quickly inthe �rst 2 cm (at 2 cm it remained just 20% ofthe chlorophyll a found in the surface of the se-diment). From this depth, disappearance of thispigment was gradual. Lutein decrease was slo-wer, and more gradual than that of chlorophyll a;thus, nearly 40% of the lutein concentration pre-sent in the surface was still found at 4 cm deep.

Organic matter

Organic matter content in the sediment rangedfrom 0.96 to 25.36% of the dry weight. Data aresummarized in the Table 4. Lowest average va-lue was found in station 7, that is, in the rivermouth (less than 2%, thus it can be assumed tobe a non-polluted sediment). Values in the midand high marsh re�ected the general eutrophi-zation of the estuary. The most distant locationfrom the river mouth (station 6) and the one inthe lowest tidal level (station 1, that shows thehighest renewal rate) averaged values of organicmatter between 2.16 and 8.41%. Largest valuesof o.m. were found in the highest stations abo-ve the tidal level (7.21% to 25.36% in stations5 and 3), the differences being statistically signi-

0

1

2

3

4

5

Dep

th(c

m)

0 20 40 60 80 100

% Lutein

Surface lutein concentration

0.40 μg lut g-1 C

0

1

2

3

4

5

De

pth

(cm

)

0 20 40 60 80 100

% Chlorophyll a

Surface chloropyll a

concentration: 2.78 μg chl g-1 C

Figure 3. Mean pro�les for lutein and chlorophyll a in the�rst 5 cm, expressed as percentage with respect to the surfa-ce concentration. Per�les medios de lute�na y cloro�la a en los5 cm super�ciales expresados en porcentaje respecto a la con-centracion en super�cie.

Table 4. Average organic content matter in the sediment, expressed in % over its dry weight. Media del contenido de materiaorganica en el sedimento, expresada en % del peso seco.

Depth Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7

1 5.72 15.35 24.98 16.27 07.21 5.13 1.26

2 7.95 14.69 13.72 12.37 07.31 2.50 0.96

3 7.61 12.90 11.27 12.55 07.52 2.16 1.35

4 8.41 08.91 12.11 17.29 13.11 2.40 1.52

5 8.13 10.62 25.36 17.42 13.95 2.91 1.96

Mean value 7.56 12.49 17.49 15.18 09.82 3.02 1.41

S.D. 1.07 02.72 07.07 02.52 03.40 1.21 0.37

Page 71: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

248 Arrojo et al.

Table 5. Average C/N ratio at different depths in all sampling stations. Media del �ndice C/N a diferentes profundidades en todaslas estaciones de muestreo.

Depth Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Station 7

1 09.60 11.92 11.57 11.24 9.78 13.04 12.73

2 11.93 11.69 11.13 10.31 10.79 25.14 09.85

3 10.92 11.06 11.25 10.33 10.17 29.84 10.67

4 11.83 10.15 11.59 11.82 10.43 29.70 12.05

5 10.77 11.98 13.80 10.59 10.87 23.79 16.65

Mean value 11.01 11.36 11.87 10.86 10.41 24.30 12.39

S.D. 00.95 00.77 01.10 00.66 00.45 06.85 02.64

0

1

2

3

4

5

De

pth

(cm

)

0 40 80 120

Organic matter(% with respect to the surface content)

Surface organicmatter: 10.84%

Figure 4. Organic matter content in the �rst 5 cm, expressedas % with respect to the surface content. Contenido de materiaorganica en los 5 cm super�ciales expresados como % respectoal contenido super�cial.

�cant (ANOVA, p < 0.005). Figure 4 shows theaverage pro�le of organic matter in all stations,as referred to the surface of the sediment.

C/N

Carbon content in the sediment ranged between1.75mmolg−1 DW and 7.55mmolg−1 DW, whe-reasNitrogenvalueswerebetween 0.14mmolg−1

DW and 0.47 mmol g1 DW. C/N ratio (Table 5)was around 11 in all transect stations (1 to 5), andin station 7, whereas in station 6 average value

was 24.3. These differences in the C/N ratio we-re statistically signi�cant (ANOVA, p < 0.001),with the highest values in station 6 and the lowestin the marsh stations.

DISCUSSION

Organic matter content in the sediment of Palmo-nes river estuary found in this work agrees withprevious reports of Clavero et al. (1996, 1999),whereas C/N in the area was around 11. Thesevalues are also in agreement with the expectedones for estuarine sediments (Moreno and Niell,2003). However, in station 6, close to the dam,the accumulated organic matter is more resilient,and its degradation much more dif�cult (Morenoand Niell, 2003), with C/N values around 24.

According to Rubio et al. (2003), present se-dimentation rate in the zone is 0.9 cm year−1, inagreement with previous observations of directdeposition (Clavero et al., 1999; Rubio, 2000)).Then, the sediment column studied in this workincludes a period of 5.5 years.

Both the average pro�le of organic matter(Fig. 4) and the organic matter pro�les in thedifferent stations (Fig. 5) show the existence oftwo differentiated processes: one in the surfaceof the sediment, where o.m degradation seems tobe the prevalent process, and a second process,occurring from 2-3 cm of depth, where accumu-lation, compaction and mineralization of the or-ganic matter coexist, in other words, early dia-genesis takes place. Depending on which of the-se three processes prevails in these deeper layers,

Page 72: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Lutein and C/N as organic matter markers 249

Figure 5. Organic matter pro�les in the different sampling stations. Per�les de materia organica en las distintas estaciones demuestreo.

organic matter may either increase (accumulationand compaction) or decrease (mineralization). Inall cases the degradation-diagenetic model takesdifferent organic matter pro�les (Fig. 5).

From the organic matter pro�les (Table 4), wecan see that degradation is the main process thattakes place in the surface, except in station 1. Inthis station the sediment becomes anoxic, with

Page 73: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

250 Arrojo et al.

negative redox potential, in the �rst millimetresof depth, thus organic matter degradation is dras-tically reduced, thus explaining organic matteraccumulation in this sediment. From 2-3 cm ofdepth, station 2 is the only one in which the orga-nic matter content decreases (mineralization pre-vails in an early diagenetic process) (Fig. 5).

Pigment content in the sediment clearly fo-llows the degradation model. Using lutein andchlorophyll a pro�les, together with the sedimen-tation rate of organic matter in the zone, it is pos-sible to calculate pigment degradation rate. Ave-rage lutein degradation rate in the �rst 5 cm ofthe sediment column is around 17% year−1, whi-le chlorophyll a is around 83% in the �rst cen-timetre and around 4.6% year−1 from 2 to 5 cmdeep, with an average chlorophyll a degradationrate in the �rst �ve centimetres of 20% year −1.

Abele (1991) obtained much smaller pigmentdegradation rates in the sediment of Kiel Bight(Baltic Sea); however, in his system the water co-lumn above the sediment was larger, and with fre-quent anoxic periods. In these conditions, appro-ximately 70% of the lutein present in the surfa-ce was still detected at 5 cm of depth in the se-diment, while chlorophyll a still accounted fornearly 20%. Sedimentation rate in the zone was0.14 cm year −1, thus the annual degradation ra-te was 0.17% for lutein and 0.45% for chloro-phyll a. Event though these data differ from thoseobtained in Palmones by two orders of magnitu-de for lutein and one for chlorophyll a, lutein andchlorophyll a pro�les in both cases are similar. InAbele study both pigments decrease with a slopeof −13.6 for the lutein in the 5 cm studied and,for the chlorophyll a, −80 in the �rst centimeterand −5 between 2 and 5 studied cm. In PalmonesRiver they are −22.13 for the lutein and −75 and−5.5 for the chlorophyll a both depths.

Bianchi et al. (1993) obtained a degradationrate of chlorophyll a in the River Hudson of 78%in the �rst cm of the sediment. From this depththe rate decreased to 4.6%. These values are si-milar to the ones obtained in Palmones. In ad-dition, it is worth noting that chlorophyll a pro-�les in the sediment of both rivers are similar.However, lutein pro�le is absolutely different inboth rivers. While in Palmones lutein concentra-

tion decreases with depth, in the River Hudsonit increases with depth. These authors conclu-ded that this increase of lutein with depth wasdue the large amount of vascular terrestrial plantsremains, of very dif�cult degradation, that arecontinuously buried in the sediment. Then, lu-tein concentration increases with depth due tothe very low degradation rates. Sedimentationrate in the Hudson River ranges from 0.38 to1.20 cm year−1, making it vary dif�cult to obtaina reliable average annual degradation rate.

In general, chlorophyll a degradation rate is largerthan that of the lutein (Abele, 1991; Bianchi andFindlay, 1991;Bianchi et al., 1993; thiswork) thoughother authors indicate that both degradation ratesmight be similar (Brotas and Plante-Cuny, 2003).

Using the average values of C/N, o.m. contentin the sediment and pigment concentration in thesampled stations, it is possible to deduce the originof the plant organic matter accumulated in everysampling point. C/N values lower than 10, absenceof lutein and low amount of chlorophyll a indicatethat the main origin of the plant organic matter ofthe zone is the phytoplankton. C/N values slightlyhigher than 10, with significant amounts of luteinand chlorophyll a in the sediment, will indicatethat the origin of the organic matter are red and/orgreen macrophytes. C/N values between 11-12 andpresence of lutein indicate organic matter frommarsh plants (these plants have a C/N value of30-32, being able to come even to 60 in the mostwoodypart of the plants; Palomo, 2004).C/Nvalueshigher than 20 and presence of lutein show thatthe origin of the organic matter is in the catch-ment basin vascular terrestrial plants.

Thus, organic matter of plant origin accumu-lated in station 6 corresponds to allocthonousplants remains of dif�cult degradation. In station1, the low concentration of pigments and the C/Nvalue make us to think that the organic matteraccumulated seems to be of allocthonous origin,and possibly of antropogenic origin. The quan-tity of pigments in the sediment in stations 2, 3,4 and 5 is high, which together with C/N valuesindicate that the contribution of plant matter ishigher in the stations placed at the higher inter-tidal level. Highest pigment concentration in thesediment has been found in station 7, with C/N

Page 74: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Lutein and C/N as organic matter markers 251

around 11, thus the organic matter accumulatedwould come mainly from the remains green al-gae of the zone, due to the fact that the quantityof red algae is minimal with regard to the greenalgae, then nearly no contribution of red algae isexpected to the organic matter of the sediment.

CONCLUSIONS

Plant pigment concentrations in the sediment of allsampled stations were very low, thus it is possibleto deduce that the contribution of plant matter tothe pool of organic matter accumulated in thesediment is also very low. Then, we assume that themajor contribution corresponds to organic matterof anthropogenic origin. This is supported by C/Nvalues; our values of C/N are low enough to helpus to discard an important contribution of vascularplants remains, and high enough to discard thatthe main origin is the phytoplankton.

Lutein degradation rate averaged for the �rst5 cm of the sediment was 17.2% year−1. Chloro-phyll a degradation rate was 83.4% year−1 in thesurface of the sediment, averaging 4.6% year−1

from the �rst centimetre. Then, average chloro-phyll degradation ratio for �rst 5 cm of the sedi-ment was 20% year−1.

The organic matter averaged degradation ra-te for the �rst three centimetres of the sedimentwas 10% year−1. From that depth, diagenetic ac-cumulation rate accounted for 16.7% year−1.

ACKNOWLEDGEMENTS

This work has been supported by projects P06-RNM-01892 of the Junta de Andaluc�a andCTM2005-05011/MAR of the Ministerio deEducacion y Ciencia, Spain.

REFERENCES

ABELE, D. 1991. Potential of some carotenoids in2 recent sediments of Kiel Bight as biogenic in-dicators of phytodetritus. Mar. Ecol. Progr. Ser.,70: 83-92.

BERNER, R. 1980. Early diagenesis: A theoreticalapproach. Princeton University Press, New York,421 pp.

BIANCHI, T. S. & S. FINDLAY. 1990. Plant pig-ments as tracers of emergent macrophytes fromHudson River. Canad. J. Fish. Aquat. Sci., 47: 492-494.

BIANCHI, T. S. & S. FINDLAY. 1991. Decomposi-tion of Hudson Estuary macrophytes: Photosynt-hetic pigment transformations and decay cons-tants. Estuaries, 14: 65-73.

BIANCHI, T. S., J. E. DIBB & S. FINDLAY. 1993.Early diagenesis of plant pigments in Hudson Ri-ver sediments. Estuar. Coast. Shelf Sci., 36: 517-527.

BILLEN, G. F., C. LANCELOT & M. MEYBECK.1991. N, P, and Si retention along the aquatic con-tinuum from land to ocean . In: Ocean MarginProcesses in Global Change. R. F. C. Mantoura,J. M. Martin, R. Wollast. (eds.): 19-44. Wiley, NewYork.

BOYLE, J. 2004. A comparison of two methods forestimating the organic matter content of sediments.J. Paleolimnol., 31: 125-127.

BROTAS, V. & M. R. PLANTE-CUNY. 2003. Theuse of HPLC analysis to study microphytobenthoscommunities. Oceanol. Acta, 24: 109-115.

CARNICAS, E., C. JIMENEZ & F. X. NIELL. 1999.Effects of changes of irradiance on the pigmentcomposition of Gracilaria tenuistipitata var. liuiZhang et Xia. J. Photochem. Photobiol., 50: 149-158.

CIFUENTES, L. A. 1991. Spatial and temporal va-riations in terrestrial derived organic matter fromsediments of the Delaware Estuary. Estuaries,14: 414-429.

CLAVERO, V., P. GARCIA-VALLEJO, C. JIME-NEZ, J. A. FERNANDEZ & F. X. NIELL. 1996.Eutro�zacion del sedimento del estuario del r�oPalmones debido a inundaciones. I Seminario deQu�mica Marina, 115-122.

CLAVERO, V., J. A. FERNANDEZ & F. X. NIELL.1997a. The in�uence of tidal regime on phosphateaccumulation in a shallow small estuary (PalmonesRiver, Southern Spain). Sci. Mar., 6: 59-65.

CLAVERO, V., J. J. IZQUIERDO, L. PALOMO, J.A. FERNANDEZ & F. X. NIELL. 1999 b. Wa-ter management and climate change increasesthe phosphorus accumulation in the small sha-llow estuary of Palmones River (Southern Spain).Sci.Total Environ., 228: 193-202.

Page 75: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

252 Arrojo et al.

ERTEL, E. R. & J. I. HEDGES. 1985. Sources ofsedimentary humic substances: structure, genesisand properties. Rev. Aquatic Sci., 49: 2097-2107.

HEDGER, J. I., W. A. CLARK & G. I. COWIE. 1988Organic matter sources to the water column andsur�cial sediments of a marine bay. Limnol. Ocea-nogr., 35: 1116-1136.

KRISTENSEN, E. & F. O. ANDERSEN. 1987. De-termination of organic carbon in marine sediments:A comparison of two CHN-analyzer methods. J.Exp. Mar. Biol. Ecol., 109: 15-23.

MAYER, L. M., S. A. MACKO & L. CAMMEN.1988. Provenance, concentrations and nature of se-dimentary organic nitrogen in the Gulf of Maine.Mar. Chem., 25: 291-304.

MORENO, S. & F. X. NIELL. 2004. Scales of va-riability in the sediment chlorophyll content ofthe shallow Palmones River estuary, Spain. Estuar.Coast. Shelf Sci., 60: 49-57.

PALOMO, L. 2004. La in�uencia de Sarcocornia pe-rennis alpini en el �ujo se nutrientes del estuariodel r�o Palmones. Tesis doctoral. Universidad deMalaga. 225 pp.

REPETA, D. 1989. Early diagenesis of carotenoids inrecent marine sediments. II. Degradation of fuco-xanthin to loliolides. Geochim. Cosmochim. Acta,

53: 699-707.REQUEJO, A. G., J. S. BROWN & P. D. BOEHM.

1986. Lignin geochemistry of sediments from theNarragansett Bay estuary. Geochim. Cosmochim.Acta, 50: 2702-2717.

RUBIO, L. 2000. Distribucion vertical del 137Cs ycronolog�a del sedimento en el estuario del r�oPalmones. Tesis de Licenciatura. Universidad deMalaga. 130 pp.

RUBIO, L., A. LINARES-RUEDA, C. DUENAS, M.C. FERNANDEZ , V. CLAVERO, F. X. NIELL& J. A. FERNANDEZ. 2003. Sediment accumu-laion rate and radiological characterisation of thesediment of Palmones River estuary (Southern ofSpain). J. Environ. Radioactiv., 65: 267-280.

SUN, M., R. C. ALLER & C. LEE. 1991. Early dia-genesis of chlorophyll a in Long Island Sound se-diments: A measure of carbon �ux and particle re-working. J. Mar. Res., 49: 379-401.

VAN DEN HOEK, C., D. G. MANN & H. M.JAHNS. 1995. An introduction to phycology. Cam-bridge University Press. Cambridge. 623 pp.

WATTS, C. D., J. R. MAXWELL & H. KJOSEN.1977. The potential of carotenoids as environmentalindicators. Adv. Org. Geochim., 391-413. Proc. 7th.Int.MeetingOrg.Geochem.Madrid 1975. Pergamon.

Page 76: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 27 (2): xxx-xxx (2008)Limnetica, 28 (2): 253-260 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

Diversidad �toplanctonica en los cuencos principal y norte de lalaguna Don Tomas (La Pampa. Argentina)

Susana Beatriz Alvarez1,∗, Graciela Ines Bazan1 y Jaime Nicolas Bernardos1,2

1 Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa. Uruguay 151, Santa Rosa (6300),La Pampa, Argentina. [email protected] INTA, Estacion Experimental Agropecuaria Guillermo Covas, Anguil, La Pampa, Argentina. Ruta 5 km [email protected]

∗ Autor responsable de la correspondencia: [email protected]

Recibido: 14/5/07 Aceptado: 27/7/09

ABSTRACT

Phytoplanktonic diversity in the main and north basins of the Don Tomas lagoon (La Pampa. Argentina)

This work analyzes the composition, diversity and speci�c richness of phytoplankton species in the Don Tomas lagoon, anatural shallow lake which belongs to the Eastern physiographic region of the La Pampa province, during an annual cycle(2002-2003). The lake has an area of about 200 ha, 2, 5-3 m in depth, and in this opportunity two sampling areas are con-sidered, the main and north basins. There were no temperature differences between both basins ( p > 0.5) and the variationrange between winter and summer was between 11 ◦ and 26 ◦C. Signi�cant differences were found between basins regardingpH ( p < 0.01) Phytoplankton was characterized by an extensive variety of taxa qualitatively dominated by green algae. Thespeci�c richness of the Main Basin was larger than for the North Basin. The Main Basin showed a sharp decline in the speci�crichness in November associated with a blooming of Cyanophyceae. This blooming occurred again between March and April2003 with a dominance of Planktothrix agardhil (Gom.) Anag. Kom., species that produced a high �sh mortality.

Key words: Phyco�ora, diversity, seasonal distribution.

RESUMEN

Diversidad �toplanctonica en los cuencos principal y norte de la laguna Don Tomas (La Pampa. Argentina)

El presente trabajo analiza la composicion, diversidad y riqueza espec��ca de las especies �toplanctonicas de la LagunaDon Tomas, un lago somero natural que pertenece a la region �siogra�ca oriental de la provincia de La Pampa, durante unciclo anual (2002-2003). La laguna posee una super�cie aproximada de 200 ha, con una profundidad de 2,5-3 m y en estaoportunidad se consideran dos areas de muestreo, los cuencos Principal y Norte. No se hallaron diferencias en los valoresde temperaturas de ambos cuerpos de agua (p > 0.5) y el rango de variacion entre invierno y verano fue entre 11 ◦ y 26 ◦C.Con respecto al pH se hallaron diferencias signi�cativas (p < 0.01). El �toplancton estuvo caracterizado por una ampliavariedad de taxa cualitativamente dominada por algas verdes. La riqueza espec��ca en el Cuenco Principal fue mayor que enel Cuenco Norte. El Cuenco Principal evidencio un brusco descenso de la riqueza espec��ca en el mes de noviembre asociadoa una �oracion de cianof�ceas, reiterada entre marzo y abril de 2003, con una �oracion de Planktothrix agardhii (Gom.) Anag.Kom., la cual ocasiono una elevada mortandad de peces.

Palabras clave: Fico�ora, diversidad, distribucion estacional.

Page 77: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

254 Alvarez et al.

INTRODUCCION

Existen numerosos aportes en relacion al estudiode lagos someros (lagunas), tanto en zonas tro-picales y subtropicales como en zonas templa-das, los que estan relacionados con las reg�me-nes hidrologicos de r�os (Rai, H. & G. Hill, 1980;Garc�a de Emiliani & Depetris, 1982; Zolacarde Domitrovic et al., 1982; Boltovskoy et al.,1990; Izaguirre & Vinocur, 1994).

Las lagunas de la pampa deprimida de laprovincia de Buenos Aires) registran un esta-do tro�co que var�a entre eutro�co e hipertro�-co (Quiros et al., 2002), al igual que las pro-vincia de La Pampa, pero a diferencia de estasla mayor parte de ellas carecen de relacion conreg�menes hidrologicos, salvo las lagunas de lacuenca del r�o Desaguadero-Salado-Chalideuvu-Curaco (Lag. La Dulce y Lag. Urrelauquen, De-partamento Curaco) (Quiros R., 1988).

Los trabajos �cologicos de tipo taxonomicocomenzaron a realizarse en la provincia de LaPampa, en la decada del noventa (Alvarez, 2002;Alvarez et al., 1998a; 1998b; 2004; 2005; Bazanet al., 1996; 1998; 2004; Wenzel et al., 1996; Ro-mero 1993; 1995; Maidana & Romero, 1995).

La laguna Don Tomas es un cuenco naturalsemipermanente que se utilizo como estanque re-ceptor de los l�quidos cloacales de la ciudad deSanta Rosa. A partir del ano 1991 esta evacua-cion tiene lugar por medio de un sistema de bom-beo mixto, por entubacion, hasta el Parque Indus-trial y, a partir de all�, se desviaron las aguas atraves de un canal a cielo abierto hacia el Bajo deGiuliani. La laguna Don Tomas se transformo enun cuerpo de agua utilizado con �nes recreativos,cuyo exceso de agua es bombeado tambien haciael cuenco mencionado en meses y anos de fuertesprecipitaciones (Carballo et al., 2000).

Asimismo se han realizados en la misma tra-bajos de tipo taxonomico en estudios �or�sticosde las Div. Chlorophyta (Alvarez, 1992) y Div.Cyanophyta (Alvarez et al., 1994) de la provin-cia. En los mismos se registraron 40 taxa de laDiv. Chlorophyta y 20 de la Div. Cyanophyta.

El presente trabajo tiene como objetivo analizary comparar la composicion, diversidad, riquezaespec�fica y la distribucion estacional de las especies

�toplanctonicas en los Cuencos Principal y Nortede La Laguna Don Tomas, durante un ciclo anual.

AREA DE ESTUDIO

Descripcion e historia de la LagunaDon Tomas

La Laguna Don Tomas, situada en la region oc-cidental de la ciudad de Santa Rosa. Capital dela Provincia de La Pampa, Argentina, perteneceal grupo de las lagunas de la region �siogra�-ca oriental de la provincia y posee una super�cieaproximada de 200-220 ha, con una profundidadmedia que oscila entre 2.5 y 3 metros. La tempe-ratura media anual para la ciudad de Santa Rosaes de 15 ◦C y la Precipitacion Media Anual de600 mm (Servicio Meteorologico Nacional).

El area de estudio se encuentra ubicada en laregion Neotropical, Dominio chaqueno, Provinciabiogeografica pampeana, Distrito fitogeograficopampeano-occidental (Cabrera y Willink, 1980).

La Laguna “Don Tomas”, es una depresion na-tural localizada en 36◦37′30.2′′ S y 64◦18′29.8′′W(Fig. 1) elongada en el sentido Nor-Noroeste yEste-Sureste, y se halla circundada por una suavependiente meridional de 1.5% de gradiente y unaseptentrional de inclinacion mayor, aproxima-damente 5%, ambas de con�guracion convexa.

El lugar fue utilizado para fabricacion de la-drillos hasta la decada del sesenta, iniciandose de

Figura 1. Localizacion de la laguna Don Tomas. Don TomasLake location.

Page 78: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Diversidad �toplanctonica de una laguna de la La Pampa 255

esa forma la actividad antropica, con el conse-cuente impacto posterior. El agua acumulada enesta depresion provoco un aumento en su dimen-sion natural mediante el aporte de l�quidos cloa-cales de la ciudad y los del molino harinero, yel agua de origen pluvial proveniente de la ciu-dad de Santa Rosa. Estos nuevos aportes con-formaron una laguna de tipo semipermanente,fuertemente contaminada debido a que los me-canismos de autodepuracion no llegaron a fun-cionar e�cazmente. Estas circunstancias origina-ron una creciente eutro�zacion natural, de tipocultural, es decir, ocasionada por una aceleracionantropogenica (Laws, 1993).

Este bajo salino endorreico presenta un regi-men de alimentacion constituido por el aporte delas aguas precipitadas sobre su super�cie, el es-currimiento pluvial de la ciudad de Santa Rosa yla carga y descarga de la napa freatica. Existe uncuenco donde se desarrollan actividades recreati-vas y al que nosotros hemos denominado “Cuen-co Principal” y en la zona aledana nos referire-mos al “Cuenco Norte”. En la actualidad el sis-tema de alcantarillado sanitario es independientedel sistema de drenaje pluvial.

MATERIAL Y METODOS

Para el presente estudio se definieron seis estacionesdemuestreoen areaperimetral de la laguna, cincoenel Cuenco Principal y una en el Cuenco Norte. Lospuntos seleccionados en elCuencoPrincipal fueron:1) Zona de juncos, 2) Puente del embarcadero, 2) LaCruz, 3) El Faro, 4) Alcantarilla desague Av. Perony la estacion 6) frente a la cruz, en el CuencoNorte. El muestreo se realizo con una frecuenciamensual, durante el per�odo comprendido entreagosto de 2002 y julio del 2003.

Las muestras cualitativas de �toplancton seobtuvieron por arrastre con una red de 20 μm.

El fitoplancton se observo en vivo bajo micros-copioKyowaMedilux para realizar una correcta ob-servacion de formas coloniales, agregados celularese individuos flagelados. Las muestras se fijaron conformaldeh�do al 4% y se depositaron en el herbariode la Facultad de Agronom�a de la UNLPam,bajo las siglas SRFA legado Alvarez-Bazan.

Las determinaciones espec��cas se realizaron si-guiendoGeitler, 1932;Komarek&Agnostidis, 1989;1999; 2005; Komarek & Fott, 1983; Prescott, 1951.

Simultaneamente a la extraccion demuestras, seregistraron parametros f�sico-qu�micos tales como:temperatura del agua y del aire, la conductividadse registro con un conduct�metro LUFMAN Mod.HIDROSALT 12 y el pH, con un pHmetro MA-TAROM PHMETER E-516. Mediante el Disco deSecchi, se obtuvo la transparencia y profundidad.

Se confecciono una tabla de presencia-ausenciade los taxa y su frecuencia relativa segun Fr =

Si/N · 100.Donde Si es presencia de la especie, i esde inventarios y N es el numero total de inventarios.

Se calculo la riqueza espec��ca mensual paracada cuenco. Se formaron grupos de especies pormedio de analisis de agrupamientos por el meto-do Ward y el complemento de la distancia bina-ria, utilizandose el software R version 2.9.

RESULTADOS

Aspectos Ambientales

La transparencia del agua oscilo entre 0.07 y0.28m de profundidad del disco de Secchi, no

MESES

TE

MP

ER

AT

UR

AºC

510

15

20

25

Ago Sep Oct Nov Dic Ene Feb Mar Abr May Jun Jul

06

12

18

24

30

TR

AN

SP

AR

EN

CIA

(cm

)

Temperatura Cuenco PrincipalTemperatura Cuenco NorteTransparencia Cuenco PrincipalTransparencia Cuenco Norte

Figura 2. Transparencia y temperatura del agua durante el ci-clo anual 2002-2003 en los Cuencos Principal y Norte del Siste-ma de la laguna Don Tomas. Water transparency and tempera-ture during the annual cycle 2002-2003 for the Main and Northbasins of Don Tomas Lake.

Page 79: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

256 Alvarez et al.

encontrandose diferencias significativas entre am-bos cuencos ( p > 0.64) (Fig. 2). La transparenciam�nima en el Cuenco Principal se hallo en el mesde febrero, en concordancia con el verano en elhemisferioSur, noobstante, es de destacar la impor-tante variabilidad hallada entre sitios de muestreo.

La temperatura del agua de ambos cuencos hasido similar, entre un maximo y un m�nimo de 26y 5 ◦C. ( p > 0.58) (Fig. 2).

La conductividad vario entre 1400 y 1950 μS cm−1, para ambos cuencos, nohallandose diferen-cias significativas. El pH fluctuo entre 6 y 8.3 parael cuenco Principal y entre 8.5 y 11 para el cuencoNorte, (Fig. 3) presentado diferencias de mediasaltamente significativas ( p < 0.01).

Analisis de cualitativo

La riqueza espec��ca �toplanctonica a lo largodel ano en el Cuenco Principal fue de 146 taxonesy la del Cuenco Norte de 110 taxones.

Las divisiones estudiadas estuvieron repre-sentadas para el Cuenco Principal por la Div.Chlorophyta (49%), Div. Cyanophyta (30%),Div. Bacillariophyta (16%) y para otras algas el

MESES

pH

Ago Sep Oct Nov Dic Ene Feb Mar Abr May Jun Jul

56

78

910

11

pH Cuenco PrincipalpH Cuenco Norte

Figura 3. pH del agua durante el ciclo anual 2002-2003 en losCuencos Principal y Norte del Sistema de Lagunas Don Tomas.Water pH during the annual cycle of 2002-2003 for the Mainand North basins of Don Tomas Lake.

5% (Div. Euglenophyta, Chrysophyta, Dinophy-ta y Cryptophyta) (Fig. 4).

ago sep oct nov dic ene feb mar abr may jun jul

02

04

06

08

0

CyanophytaChlorophytaBacillariophytaDinophytaEuglenophytaChrysophytaCryptophyta

RIQ

UE

ZA

PO

RD

IVIS

ION

Figura 4. Frecuencia de especies por Division a lo largo del ciclo anual anual 2002-2003 en el Cuenco Principal del Sistema deLagunas Don Tomas. Species Frecuency (by Division) during the annual cycle 2002-2003 for the Main basin of Don Tomas Lake.

Page 80: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Diversidad �toplanctonica de una laguna de la La Pampa 257

ago sep oct nov dic ene feb mar abr may jun jul

02

04

06

08

0

CyanophytaChlorophytaBacillariophytaDinophytaEuglenophytaChrysophytaCryptophyta

RIQ

UE

ZA

PO

RD

IVIS

ION

Figura 5. Frecuencia de especies por Division a lo largo del ciclo anual anual 2002-2003 en el Cuenco Norte del Sistema deLagunas Don Tomas. Species frequency (by Division) during the annual cycle of 2002-2003 for the North basin of Don Tomas.

El Cuenco Norte tuvo una composicion de 49%para la Div. Chlorophyta, 34% para Cya-nophyta; 10% para Bacillariophyta y el 7%restante para individuos incluidos en las divi-siones Euglenophyta, Chrysophyta, Dinophytay Cryptophyta (Fig. 5).

La riqueza espec��ca se presento constanteen ambos cuencos salvo en el mes de noviem-bre en el cuerpo principal en el que se eviden-cio una brusca baja de la misma asociada a una�oracion de cianof�ceas.

Para el Cuenco Principal en cuanto al nume-ro de especies por Division, la Div. Chlorophy-ta se encontro en mayor numero durante todoslos meses, seguida de la Div. Cyanophyta, y enmenor proporcion por las Div. Heterokontophyta,Clase Bacillariophyceae.

En el Cuenco Norte, el predominio de especiesde Chlorophyta sobre Cyanophyta fue marcado.Durante los meses de febrero y julio se observo unamayor riqueza espec��ca de Cyanophyta.

Asociado a las �oraciones de cianof�ceas laClase Bacillariophyceae predomino en amboscuencos en el mes de noviembre. El 23% de

las especies se hallaron presentes en nueve delos meses estudiados, destacandose Anabaenop-sis arnoldii, Planthotrix agardii, Phomidium sp,Chlorella elipsoidea, Monoraphidium grifithii, M.arcuatum, Tetraedrum minimun, Actinastrum rap-hidioides, Scenedesmus acuminatus, Aulacoseirasp.,Cyclotella sp.,Navicula sp., Euglena sp.1.

En el cuenco principal, 30 de 146 especies, sehallaron en al menos 9 meses del ano, mientras queen Cuenco Norte se encontraron presentes solo 7de 110 especies, entre ellas Aphanothece stagnina,Merismopedia tenuisima, Microcystis flos-aquae,Chamaesiphon subglobosum, Tetraedron mini-mum, Scenedesmus acuminatus, Euglena sp.

A lo largo del ciclo anual se encuentra que losmeses de diciembre y enero fueron los que pre-sentaron la mayor riqueza espec��ca (73) para elCuenco Principal, mientras que el mes de abrilfue el que presento la mayor riqueza espec��ca(44) en el Cuenco Norte. En ambos cuencos elmayor numero de especies pertenecieron a la Di-vision Chlorophyta (Figs. 4 y 5).

El analisis de agrupamientos muestra 5 gru-pos de asociaciones algales bien de�nidos, tan-

Page 81: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

258 Alvarez et al.

to en Cuenco Principal como en el Cuenco Nor-te. El Cuenco Principal presento un grupo dealgas conformado por Microcystis sp, Coelomo-rum sp, Nostoc commune , Oscillatoria proli�ca,Pandorina sp, Pediastrum boryanum var borya-num, Francecia ovalis, Scenedesmus opoliensisvar carinatus y un segundo grupo integrado porCyanocystis sp, Gomphophaeria lacustris, Sce-nedesmus quadrispina, Stephanodiscus sp y Ac-tinodiscus sp., como los mas representativos. Asu vez, el Cuenco Norte presento la asociacionde Alaucoseira sp, Euastrum, Tetrastrum stau-rogeniaforme, Gomphophaeria lacustres y Tetra-edron caudatum, con un marcado un predominiode Chlorococcales y la presencia de Desmidia-ceae junto a una diatomea. En la segunda aso-ciacion hay una fuerte presencia de cianof�ceascomo Coelomorum sp., Oscillatoria acuta, Osci-llatoria okeni, y Chloroccocales (Pediastrum sp,Crucigenia sp.) y Melosira sp.

DISCUSION Y CONCLUSIONES

El fitoplancton del sistema Laguna Don Tomasesta caracterizado por una amplia variedad de taxa,cualitativamente dominada por algas verdes. El48-49% del total de la ficoflora pertenece a lasChlorophyceae, preferentemente del grupo de lasChlorococcales. La composicion del fitoplancton delsistema muestra similitudes con la de aquellas lagu-nas estudiadas en la provincia Pampa (Alvarez, 2002;Alvarez et al., 1998a; 1998b; 2004; 2005; Bazan etal., 1996; 1998; 2004; Wenzel M.T et al., 1996;Romero 1993; 1995; Maidana & Romero, 1995).

El numero de taxa registrados en la actualidadfue mayor que en los estudios �or�sticos de lasDiv. Chlorophyta (Alvarez, 1992) y Cyanohy-ta (Alvarez et al., 1994) de la provincia. En losmismos se registraron 40 taxa de la Div. Chlo-rophyta y 20 de la Div. Cyanophyta, en el Sistemade la Lag. Don Tomas.

La sucesion estacional y la composicion es-pec��ca del �toplancton fueron similares en lasdiferentes estaciones de muestreo durante el es-tudio. Las razones de estas similitudes puede de-

berse a que las estaciones tuvieron caracter�sticasf�sicas y qu�micas muy parecidas.

Las diatomeas pennadas predominaron enambos cuencos.

Planthotrix aghardii fue la especie dominanteen el crecimiento masivo registrado en el cuen-co Norte, siendo la especie toxicogenica mas fre-cuente en ambos cuencos (Marshall et al. 2008).

La variacion estacional del fitoplancton esta rela-cionada con las fluctuacion de los factores ambien-tales (Vila & Pardo, 2003) tales como pH, turbidez,temperaturay la transparencia enprimer lugar.

La temperatura del agua regula fuertementelas variaciones estacionales de �toplancton (Ri-chardson et al., 2000). El aumento de biomasaalgal durante primavera y verano en el sistema dela Laguna Don Tomas, podr�a ser el resultado delaumento de la temperatura del agua.

La luz recibida es el mayor recurso utilizadopor el �toplancton y determina un patron de va-riabilidad espacial y temporal (Litchman, 2000).La inexistencia de una arboleda rodeando la la-guna Don Tomas, permite la penetracion de unaintensa radiacion solar sobre la misma, en conco-mitancia con un aumento de la autotro�a.

El rango m�nimo de transparencia en el cuen-co principal se observo en los meses de febreroy mayo de 2003, con la �oracion de Planktothrixagardii (Gom.) Anagh. & Kom. coincidente conuna elevada mortandad de peces.

En los lagos naturales los niveles de turbidezson menores que en los lagos urbanos arti�cia-les, la combinacion de alta concentracion de al-gas y turbidez reduce la transparencia del agua,los niveles de turbidez estan asociados a la lixi-viacion de los sedimentos contiguos (disueltos ysedimentables) durante la epoca de lluvia (Schue-ler & Simpson, 2003).

El cuenco Norte, presenta una disminucion ensu transparencia debido a la falta de aportes deagua produciendose una elevada concentracionde biomasa a partir de enero de 2003, situacionque aun persiste. Estas algas, preferentemente delgrupo de las cianof�ceas, que no son pastoreadaspor herb�voros, producen efectos organolepticos nodeseados en el entorno del cuenco (Laws 1993).

Page 82: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Diversidad �toplanctonica de una laguna de la La Pampa 259

AGRADECIMIENTO

A la Dra. Ana Lujan Martinez de Fabricius por lalectura cr�tica del manuscrito.

REFERENCIAS

ALVAREZ, S. B. 1992. Algas de aguas continenta-les de La Pampa. Argentina. I. O.Volvocales yO.Chloroococcales. Rev. Fac. Agronom�a. UNL-Pam., 6(2): 35-51.

ALVAREZ, S. B. 2002. Estudio bioecologico y cito-taxonomico del �toplancton de una laguna eutro-�zada, reservorio �nal de las aguas residuales dela ciudad de Santa Rosa, La Pampa. Tesis Univer-sidad Nacional del Sur. Bah�a Blanca. Argentina.272 pp.

ALVAREZ, S. B. & G. I. BAZAN.1994. Cianof�ceasContinentales de Pcia. de La Pampa. (Argentina).Rev. Fac. Agronom�a. UNLPam., 7(2): 43-62.

ALVAREZ, S. B., G. I. BAZAN & M. T. WENZEL.1998a. Blue green algae of Chroococcales andChamaesiphonales orders in intermitent streamsand isolated stagnant pools within the Lihuel CalelNational Park (La Pampa province) in Argentina.Acta Hydrobiologica, 40: 131-146.

ALVAREZ, S. B., G. I. BAZAN & M. T. WENZEL1998b. Blue green algae of Hormogonales orders(Nostocaceae, Scytonematacae, MicrochaetaceaeFamilies) in intermitent streams and isolated stag-nant pools within the Lihuel Calel National Park(La Pampa province) in Argentina. Acta Hydrobio-logica, 40: 147-160.

ALVAREZ, S. B., G. I. BAZAN & E. R. PARODI.2004. Fico�ora del Reservorio �nal de aguas re-siduales de Santa Rosa ( La Pampa, Argentina).Cyanophyta y Chlorophyta (Tetraselmidales, Vol-vocales y Chlorococcales). Bol. Soc. Argent. Bot.,39(1-2): 277-293.

ALVAREZ, S. B., A. E. BIASOTTI, J. BERNAR-DOS &G. I BAZAN. 2005 . Fico�ora de la lagu-na Don Tomas (La Pampa, Argentina). Junio 2005.Biolog�a Acuatica, 22: 1-6.

BAZAN, G. I., M. T. WENZEL & S. B. ALVAREZ.1996. Ciano�ceas nuevas para Argentina del Par-que Nacional Lihuel Calel (Pcia. de La Pampa).Darwiniana. 34(1-4): 285-292.

BAZAN, G. I., S. B. ALVAREZ & M. T. WENZEL.1998. Blue green algae of Oscillatoriaceae Family

in intermitent streams and isolated stagnant poolswithin the Lihuel Calel National Park (La Pam-pa province) in Argentina. Acta Hydrobiologica,40: 161-172.

BAZAN, G. I., S. B. ALVAREZ , M. C. MARTIN &J. BERNARDOS. 2004. Analisis de la taxoceno-sis de la �co�ora de la Laguna El Ojo de Agua,Uriburu, La Pampa, Argentina Biolog�a Acuatica,20: 1-5.

BOLTOVSKOY, A., A. DIPPOLITO, M. FOGGET-TA, N. GOMEZ & G. ALVAREZ. 1990. La Lagu-na Lobos y su a�uente: Limnolog�a descriptiva conespecial referencia al plancton. Biolog�a Acuatica,14. 37 pp.

CABRERA, A. L. & A. WILLINK. 1980. Biogeo-graf�a de America Latina. Sec. Gral de la OEA,Washington, D.C. 271 pp.

CARBALLO, O. C., A. P. CALMELS, E. S. SOTO-RRES, J. L. MARANI & J. A. SBROCCO. 2000.Evolucion ambiental del Humedal Don Tomas,provincia de La Pampa, Argentina. V SeminarioLatinoamericano de Calidad de Vida Urbana, Actas,Universidad de B�o-B�o, Chillan, Chile. CD 7 pp.

GARCIA DE EMILIANI, M. O. & P. J. DEPETRIS.1982. A principal components analysis of the phy-toplankton from a pond in the Parana River RiverValley, Argentina. Hidrobiologia, 89: 117-122.

GEITLER, L. 1932. Cyanophycae. Rabenhorst’sKryptogamen Flora 14, Akademische Verlagsge-sellschaft. Leipzig. 1196 pp.

IZAGUIRRE, I. & A. VINOCUR. 1994. Algal as-semblages from shallow lakes of the Salado RiverBasin (Argentina). Hydrobiologia, 289: 57-64.

KOMAREK, J. & K. ANAGNOSTIDIS. 1989. Mo-dern approach to the classi�cation system of Cya-nophytes, 4-Nostocales. Arch. Hydrobiol. Suppl.82(1). Algol. Stud., 56: 247-345.

KOMAREK, J. & K. ANAGNOSTIDIS. 1999. Cya-noprokaryota. 1. Teil: Chroococcales. Susswasser-�ora von Mitteleuropa. begr. von Pascher Hrsg.von H. Ettl. Jena. G. Fischer Bd. 19. 548 pp. 643�gures.

KOMAREK, J. & K. ANAGNOSTIDIS. 2005. Cya-noprokaryota. 1. Teil: 2nd Part: Oscillatoriales.Susswasser�ora von Mitteleuropa. begr. von Pas-cher Hrsg. von H. Ettl. Jena. G. Fischer Bd. 19.759 pp. 1010 �gures.

KOMAREK, J. & B. FOTT. 1983. Systematik undBiologie. Chlorophyceae (Grunalgen) Ordnung:Chlorococcales. Die Binnengewasser. Das Phyto-plankton des Susswasser. von Huber-Pestalozzi. E.

Page 83: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

260 Alvarez et al.

Schweizerbart’sche Verlagsbuchhandlung (Nageleu. Obermiller) Sttugart. Germany. 1043 pp.

LAWS, E. A. 1993. Aquatic Pollution. An Introduc-tory Text. 2o Ed. John Wiley & Sons, INC. 611 pp.

LITCHMAN, E. 2000. Growthrates of phytoplank-ton under �uctuating light. Freshwat. Biol.,44: 223-235.

MAIDANA N. I. & O. E. ROMERO. 1995. Diatomsfrom the hypersaline “La Amarga” Lake (La Pam-pa, Argentina). Cryptogamie. Algol., 16(3): 173-188.

MARSHALL, H. G., L. BURCHARDT, T. A. EGER-TON , K. STEFANIAK & M. LANE. 2008.Potentially toxic cyanobacteria en Chesapeake Bayestuaries and a Virginia lake. In: CyanobacterialHarmful algal blooms. State of the Science andResearch Needs. H. Kenneth Hudnell (ed.): 172-173.Springer.USA.

PRESCOTT, G. W. 1951. Algae if the Western GreatLakes Area. Cranbrook Inst. Sci. Bull. 31. Bloom-�eld Hills, Michigan. 946 pp.

QUIROS R., C. R. M. BAIGUM, S. CUCH, R. DEL-FINO & A. De NICHILO. 1988). Evaluacion delrendimiento pesquero potencial de la RepublicoArgentina. I. Datos 1. Informe tecnico No 7, Dpto.De Aguas Continentales , Instituto Nacional de In-vestigacion y Desarrollo Pesquero. Mar del Plata.Argentina. 55 pp.

QUIROS, R., A. M. RENNELLA, M. B. BOVERI,J. J. R0SS0 & A. SOSNOVSKY. 2002. Factoresque afectan la estructura y el funcionamiento de laslagunaspampeanas.Ecolog�aAustral, 12: 175-185.

R Development Core Team.2009. R: A language andenvironment for statistical computing. R Founda-tion for Statistical Computing, Vienna, Austria.URL http://www.R-project.org.

RAI, H. & G. HILL. 1980. Classi�cation of CentralAmazon Lakes on the basis of their microbiolo-gical and physico-chemical characteristics. Hydro-biologia, 72: 85-99.

RICHARDSON, T. L., C. E. GIBSON & S. I. HEA-NEY. 2000. Temperature, growth and seasonalsuccession of phytoplanctonic Lake Baikal, Sibe-ria. Freshwat. Biol., 44: 430-440.

ROMERO, O. E. 1993. Diatomeas (Bacillariophy-ceae) de la Provincia de La Pampa (Argentina) I.Darwiniana, 32(1-4): 303-313.

ROMERO, O. E. 1995. Diatomeas (Bacillariophy-ceae) de la Provincia de La Pampa (Argentina) II.Darwiniana, 33(1-4): 177-193.

SCHUELER, T. & J. SIMPSON. 2003. Why urbanlakes are different. Urban lake management. Wa-tershed Protection Techniques, 1(2): 747-750.

VILA, I. & R. PARDO. 2003. Respuesta de la estruc-tura �toplanctonica a las perturbaciones antropicasen un lago templado. Limnetica, 22(1-2): 93-102.

WENZEL, M. T., S. B. ALVAREZ & G. I. BAZAN,1996. Estudio preliminar de las cianof�ceas delEmbalse Casa de Piedra (Pcia. de La Pampa). Ar-gentina. Physis. Secc. B., 51(120-121): 9-16.

ZOLACAR DE DOMITROVIC, Y., C. A. BONET-TO & H. G. LANCELLE, 1982. Algunos aspec-tos limnologicos de la laguna Herradura (Formosa,Argentina). Ecosur, 9: 171-188.

Page 84: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 261-272 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

Comparative study of algal communities in acid and alkaline watersfrom Tinto, Odiel and Piedras river basins (SW Spain)

Gemma Urrea-Clos1,∗ and Sergi Sabater1,2

1 Institute of Aquatic Ecology, University of Girona. University of Girona. Faculty of Sciences. Campus Montilivis/n. 17071 Girona2 Catalan Institute for Water Research (ICRA). Scienti�c and Technologic Park of the UdG, Girona. 17003 Girona2

∗ Corresponding author: [email protected]

Received: 12/1/09 Accepted: 14/7/09

ABSTRACT

Comparative study of algal communities in acidic and alkaline waters from Tinto, Odiel and Piedras River basins (SWSpain)

The distribution patterns of benthic algal assemblages in the Tinto, Odiel and Piedras rivers were analyzed during the winter of2005 in 18 sampling stations. The main objective was to assess and compare the algal communities and parameters affectingthem both in the zones affected by acid mine drainage (AMD) and in naturally alkaline waters. A total of 108 benthic diatomtaxa and 31 non-diatom taxa were identi�ed. Results showed large differences between algal communities in the two envi-ronments: Pinnularia acoricola, P. subcapitata and Eunotia exigua were the most frequent diatom taxa in regions affected byacid mine drainage, along with algae like Klebsormidium and Euglena mutabilis were the most relevant non-diatom taxa. Inalkaline waters the dominant diatom taxa were Planothidium frequentissimum, Gomphonema angustum, Fragilaria capucina,and some species of Navicula (N. viridula, N. veneta or N. radiosa), accompanied by Oscillatoria and Anabaena as well asby streptophytes of the group of zygnemataceae and desmidiaceae.

Key words: Acid mine drainage, Diatom, algal community, watershed, Tinto, Odiel, Piedras.

RESUMEN

Estudio comparativo de las comunidades algales en aguas acidas y alcalinas de las cuencas de los r�os Tinto, Odiel yPiedras (SW Espana)

Se han analizado los patrones de distribucion de las comunidades algales bentonicas en los r�os Tinto, Odiel y Piedras,sumando un total de 18 estaciones de muestreo visitadas durante el invierno de 2005. El objetivo principal ha sido evaluar ycomparar las comunidades algales y los parametros que las afectan tanto en zonas in�uenciadas por el drenaje acido como enlas zonas libres del mismo. Se han identi�cado un total de 108 taxones de diatomeas bentonicas y 31 taxones de otras algas.Se observaron grandes diferencias en las poblaciones de productores primarios en ambos tipos de ambientes: Pinnulariaacoricola, P. subcapitata y Eunotia exigua fueron las diatomeas mas frecuentes en los ambientes afectados por el drenaje acido,acompanadas por algas como Klebsormidium y Euglena mutabilis. En las aguas alcalinas las diatomeas dominantes fueronPlanothidium frequentissimum, Gomphonema angustum, Fragilaria capucina y algunas especies de Navicula (N. viridula,N. veneta o N. radiosa), acompanadas por Oscillatoria y Anabaena y estrepto�tos del grupo de las zygnemataceas y de lasdesmidiaceas.

Palabras clave: Drenaje acido de minas, diatomeas, comunidad algal, cuenca, Tinto, Odiel, Piedras.

Page 85: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

262 Urrea-Clos and Sabater

INTRODUCTION

The Iberian Pyrite Belt (IPB) is one of the mostextensive sul�de mining regions in the world, andit ranges from sw Spain to the Portuguese Atlan-tic coast. Associated with the complex sedimen-tary materials in this area, many massive sulphidedeposits occur, and they have been explored andmined for more that 5000 years (Nocete et al.,2005). Minas de R�o Tinto has been intensivelyexploited during the Phoenician and Roman pe-riods and again during the 19th century, but about80 mines have been operative during the last hun-dred years (Saez et al., 1999).

The Tinto and Odiel river systems have theirsource in the Sierra de Aracena, at an altitudeof 900 m a.s.l. Part of their courses run overthe IPB, and they are seriously affected by acidmine drainage. Even though there is no activemining nowadays, pollution continues to arriveto the watercourses due to the oxidation of mi-ning wastes (Nieto et al., 2007). These waterscan be de�ned as an extreme habitat in termsof their very low mean pH (near 2.5) and highconcentration of heavy metals, especially ferriciron, copper and zinc, as well as some anionssuch as sulfate (Lopez-Archilla & Amils, 1999).Only extremophilous taxa can survive on thesesituations of very low pH (Lopez-Archilla et al.,2001) and high heavy metals deposition (Niyo-gi et al., 2002; Gerhardt et al., 2008). The Tintoand Odiel rivers converge into a common coastalwetland, with marked tidal in�uence. Around thissalt marsh zone there is an intensive agricultural,industrial and urban development (MMA, 2005).

The Piedras river basin is a short stream withvery restricted �uvial catchment located betweenthe Guadiana and the Tinto-Odiel system. The �-nal part of this river ends into an extensive andwell delimited estuary. Regarding the human oc-cupation, the river is divided in two main zones:the upper part which is of low density and withscarce crops, and the middle-lower part which ismore densely populated and includes extensiveirrigations (MMA, 2005). In this area, two reser-voirs enormously alter the natural �uvial regime.

This study will analyze the relationship bet-ween the physico-chemical characteristics of the

Spain

N

Piedras stations

Odiel stations

Tinto stations

AMD affected stations0 20 40

Km

Figure 1. Location map of 18 sampling stations in the Pie-dras, Odiel and Tinto watersheds Mapa de localizacion de las18 estaciones de muestreo en las cuencas de los r�os Piedras,Odiel y Tinto.

three �uvial systems and their respective algal�oras (diatom, microalgae and cyanobacteria).This study includes both zones in�uenced byAMD (Lopez-Archilla et al., 2001; Sabater etal., 2003; Aguilera et al., 2006; Aguilera et al.,2007), and areas free of AMD of which algaecommunities have not been described to present.

METHODS

A total of 18 sampling stations have been visitedduring winter of 2005 in the Tinto, Odiel and Pie-dras rivers (Fig. 1). From these, six sampling sta-tions were affected by acid mine drainage, 3 ofthem were situated in the Tinto river basin, and3 of them were situated in the Odiel river basin.The other 12 were situated in the upper tributa-ries of both rivers, and in the upper and middlepart of the Piedras river.

Epilithon samples for algal andpigment analyseswere obtained from 6 rocks collected from themainwater course andwell-lighted river part (CEN,2002). Samples for species composition were ob-tained by combining 1 cm2 from each substratum,preserved with 4% formaldehyde and taken to thelaboratory for algae analyses. Three other combi-ned samples were immediately frozen and storedin a freezer at the dark until pigment analyses.

Page 86: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Algal communities in Tinto, Odiel and Piedras river basins 263

Several environmental variables were measuredsimultaneously to the algal sampling. Conduc-tivity, pH, dissolved oxygen concentration andwater temperature were measured in the �eldwith WTW MultiLine F/SET-3 P4. Current ve-locity and water depth were measured every 10to 50 cm along a transect with a portable current-meter (Neyr�ux 80, Neyrtec). Water �ow in eachsite was derived from these measurements. Wetwidth, wet perimeter, hydraulic radius and ma-ximum depth were also determined. River habi-tat index (IHF) was determined in the �eld follo-wing Pardo (Pardo et al., 2002). This index eva-luates the relationships between habitat heteroge-neity and those physical variables of the streamchannel in�uenced by hydrology and substratacomposition. Therefore, this index considers va-riables such as frequency of rif�es, �ow velocity,mean depth, and substratum diversity, amongothers. Finally, some physiographical variablesand some basin characteristics were GIS-derivedfrom the 1993 CORINE Land Cover data. Landuse was expressed as the percentage of each ofthe �ve land-use types recognized in the water-shed (industrial-urban, mining, cultivated land,forested land and water bodies). Drainage area,distance to the source, dominant geology andgeospatial measures (latitude, longitude and al-titude) were also obtained from this database.

Benthic diatom observation

An aliquot of algal suspension from each sam-ple was prepared by acid oxidation with concen-trated sulfuric acid (H2SO4), potassium dichro-mate (K2Cr2O7) and hydrogen peroxide (H2O2)(Barber & Haworth 1981). Permanent slides weremounted usingNaphrax (r.i. 1.74).Up to 400 valveswere counted and identified in each sample with alight microscope using Nomarski differential inter-ference contrast optics at a magnification of 1000(Iserentant et al., 1999). They were mainly iden-ti�ed following Krammer and Lange-Bertalot(Krammer & Lange-Bertalot, 1985-1991). In so-me cases, SEM observation was also performedwith a scanning Philips XL-30 microscope.

Non-diatom algae and cyanobacteriaobservation

An aliquot of algal suspension from each sam-ple has been observed for the algae and cyano-bacteria identi�cation (Woel� & Whitton, 2000).Identi�cation was carried out using light micro-scope equip at a 100 or 400 magni�cation. Theidenti�cation mainly followed (Bourrelly, 1957;Komarek & Anagnostidis, 1998-2005).

Benthic chlorophyll concentration

Chlorophyll a content of the periphyton wasmeasured spectrophotometrically (at 430, 665and 750 nm) after extraction with 90% acetone(Jeffrey & Humphrey, 1975).

Estimation of algal biomass was derivedfrom these measurements, and this metric wasused as an indicator of the trophic state of thesystem (Sabater, 1988).

Data analyses

All data were scrutinized for normality, and sometransformations were used in order to achieve thehomogeneity of variances. A square root trans-formation was applied to diatom data rather thana log transformation, since it was desirable toretain zero values. Environmental variables, ex-cept for pH and percentage variables were alsotransformed by log10 (x + 1).

Species richness (R), Shannon-Wiener diver-sity (H′) (Shannon & Weaver, 1963) and density(D = number of cells/cm2) were calculated fromthe taxonomic composition of diatom samples.

Relationships from these biological parameters(R, H′, E and D) between them and among theenvironmental variables were analyzed by usingSpearman rank correlations for the non-parametricvariables (biological), and Pearson rank correlationsfor parametric variables (physico-chemical and landuses). All these analyses were performed usingSPSS v.15 (SPSS-Inc., 2004).

Sampling stations were classi�ed into groupsbased on environmental data using a hierarchi-

Page 87: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

264 Urrea-Clos and Sabater

cal cluster analysis applying the farthest neigh-borhood method and Bray-Curtis similarity dis-tance. One-way ANOVA was used to test for sig-ni�cant differences in environmental data amongthe main cluster groups.

The association between diatom communityassemblages and environmental data was analy-zed at station level, and the attributes were plottedin an ordination by non-metric multidimensionalscaling analysis (NMDS).

Finally, the �oristic data for the stations we-re classi�ed using a two way indicator speciesanalysis (TWINSPAN), and indicator taxa foreach previous group was determined by the Ind-Val analysis (Dufrene & Legendre, 1997).

Apresence/absencematrixwas constructedwiththenon-diatomalgal community.Anewcluster ana-

lysis was performed with this data using UPGMAmethod and Jaccard similarity distance.

All previous analyses were performed usingPc-Ord v.4 statistical package (McCune & Mef-ford, 1999).

RESULTS

Physicochemical variables versus biologicalparameters

AMD streams in this study were well characterizedby environmental parameters, the most influentialbeing pH and conductivity which exhibited extremevariations between the systems. Stations affected byAMD had significantly lower pH (average value

Table 1. Maximum, minimum and mean values of physico-chemical and biological variables for the entire watershed, for theacid affected stations, and alkaline ones. Parameters with signi�cant differences between acid and non acid group were also shown.ANOVA (*p < 0.05; **p < 0.01). Valores maximo, m�nimo y medio de las variables �sicoqu�micas y biologicas para el total de lascuencas, para las localidades de aguas acidas y las de aguas alcalinas. Se muestran tambien las variables que presentan diferenciassigni�cativas entre ambos grupos a partir de un ANOVA (*p < 0.05; **p < 0.01).

Entire watershed Acid waters Alkaline waters ANOVAMin Max Mean Min Max Mean Min Max Mean p

Conductivity (μS/cm2) 145 3000 960 1520 3000 2122 145 926 379 **F1,16 = 63.12

Temperature (◦C) 5.10 15.00 8.98 5.10 15.00 8.25 6.40 13.10 9.35

Oxygen (mg/L) 2.50 18.02 12.31 2.50 13.70 10.87 10.20 18.02 13.03

pH 2.71 8.95 6.72 2.71 4.67 3.44 7.67 8.95 8.19 *F1,16 = 102.75

IHF 34 81 62.06 34 53 47.75 49 81 66.83 **F1,16 = 16.08

Flow (m3/s) 0.00 0.17 0.03 0.00 0.03 0.01 0.00 0.17 0.03

Wet Perimeter (cm) 41.62 1833.45 430.08 250.66 1833.45 783.26 41.62 833.78 312.35 *F1,16 = 5.92

Wet width (cm) 30 1825 487.19 250 1825 966.25 30 830 327.50 **F1,16 = 6.44

Maximum Depth (cm) 8 60 19.88 8.00 60.00 24.50 10.00 40.00 18.33

Hydraulic Radius (cm) 2.99 59.81 12.45 2.99 59.81 18.24 3.60 39.50 10.52

Altitude (m a.s.l) 35 500 171.72 35 500 197 35 300 159.08

% Cultivated land use 0 36.86 14.81 0 36.17 12.59 2.57 36.86 15.92

% Forested land use 47.52 97.43 78.57 47.52 90.12 69.02 62.67 97.43 83.34

% Urban land use 0 2.59 0.33 0 0.32 0.14 0.00 2.59 0.42

% Mining land use 0 52.17 6.04 0.73 52.17 17.97 0.00 0.73 0.08 *F1,16 = 5.83

% Water Bodies land use 0 1.39 0.15 0 0.09 0.01 0.00 1.39 0.22

Distance to the source (km) 4.83 52.39 18.18 4.83 52.39 22.8 10.34 23.46 15.86

Drainage Area (km2) 11.03 572.73 114.00 11.03 572.73 195.48 25.13 227.70 73.26

Diatom richness (R) 4 43 23.44 4 12 6.67 11 43 31.83 **F1,16 = 61.59

Diatom diversity (H′) 0.26 3.98 2.20 0.26 1.86 0.99 1.10 3.98 2.80 **F1,16 = 19.73

Diatom density (cells/cm2) 518 133910 27224 518 67863 18833 1096 133910 31420

Algal biomass (mg/m2) 4.04 168.85 38.60 4.04 12.20 24.51 8.20 168.85 51.80

Page 88: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Algal communities in Tinto, Odiel and Piedras river basins 265

Table 2. Summary of physico-chemical parameters that sig-ni�cantly affect biological variables. Signi�cant correlation ofthese physico-chemical variables with the axes of NMDS graphare also shown (*p < 0.05; **p < 0.01). Resumen de las va-riables �sicoqu�micas que afectan de manera signi�cativa alas variables biologicas. Se muestran tambien las correlacio-nes signi�cativas de estas variables �sicoqu�micas con los ejesdel gra�co NMDS (*p < 0.05; **p < 0.01).

Spearman’s r Kendall’s τττR H′′′ D Axis 1 Axis 2

Conductivity

(μS/cm2) −0.61** −0.57* −0.289**pH 0.61** 0.56* 0.425**

Flow (m3/s) 0.59**Altitude (m a.s.l) 0.296*Longitude (UTM Y) 0.529*% Mining land use −0.77** −0.72** −0.604**Distance to thesource (km) 0.56*

Drainage Area (km2) 0.50*Diatom diversity (H′) 0.657**

of 3.44, ANOVA p < 0.05 F1,16 = 102.75) andhigh conductivity (average value of 2122μS/cm,ANOVA p < 0.01 F1,16 = 63.12), while in stationsnot affected by AMD pH ranged from 7.95 to8.95, and conductivity was near 400 μS/cm. Bothparameters have been commonly used as indica-tors of AMD (Verb & Vis, 2000).

From the biological parameters, diatom diver-sity (ANOVA p < 0.01 F1,16 = 19.73) and taxarichness (ANOVA p < 0.01 F1,16 = 61.59) we-re signi�cantly lower in waters affected by AMD(Table 1). Applied to non-diatom taxa, the twoparameters were also lower in AMD sites.

Correlation analyses between physico-chemicaland biological parameters were summarized inTable2. Percentage of mining land use, and con-ductivity affected negatively richness ( p < 0.01)and diatom diversity ( p < 0.05), while pH affec-ted positively both parameters ( p < 0.01 for rich-ness, and p < 0.05 for diversity).

By contrast, diatom density was positivelycorrelated with �ow ( p < 0.01), distance to thesource and drainage area ( p < 0.05).

Finally, algal biomass became independentfrom the physical studied parameters.

Benthic diatom community structure

A total of 108 diatom taxa were identi�ed fromthe 18 stations, but only those taxa with relative

Group 1

Mining

Conductivity

Bray Curtis = Distance measure12.34 = Final Stress

Group 2B

Piedras stations

Odiel stations

Tinto stations

Group 2A

pH

H

0.5

_0.5

_1.5.

Axis

2(1

6.6

%)

_2.0. _1.0 Axis 1 (61.4%) 0.0 1.0

Figure 2. NMDS ordination graph based on diatom commu-nity in which three groups of localities were detected. Points tothe left of axis 1 corresponded to the localities whose pH< 4.The localities with pH> 6 were located to the right of the �rstaxis. Among them we can discriminate 2 groups: 2B correspon-ded to upland localities with small and forested drainage areas;Group 2A integrated stations situated in the lower part of thecatchment with agricultural drainage area. Gra�co de ordena-cion del NMDS en el que se distinguen tres grupos de localida-des en funcion de las comunidades de diatomeas que presentan.En la parte izquierda del eje 1 se situan las localidades cuyopH< 4, mientras que las localidades cuyo pH> 6 se situan ala derecha del primer eje. Entre ellas podemos discriminar 2grupos: grupo 2B correspondiente a las localidades situadasen las partes mas altas de la cuenca, con super�cies de drenajepequenas y forestadas; y grupo 2A que integra las localidadesde las zonas medias y bajas de la cuenca, con super�cies dedrenaje agr�colas.

abundances higher than 1.5% were included inthe analyses in order to minimize the in�uence ofrare taxa. A total of 62 taxa were therefore inclu-ded in the analysis (Table 3).

Final stress for the NMDS analysis was 12.33(< 17) indicating a reliable ordination (McCune &Mefford, 1999). Axis 1 and 2 explained 61.4% and16.6% of the total variance respectively, indicatinga strong ordination in the first axis, where the acidicwere delineated from the non-acidic stations as itwasexpectedbecauseof the importanceofpH.

AMD stations consistently grouped togetheron the left side of the NMDS axis-1 where the%of mining soil use and the conductivity werehigher while diversity and diatom richness we-re lower. Non-affected AMD localities were si-tuated on the right part of the axis-1 where pH,diversity and richness were higher. The second

Page 89: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

266 Urrea-Clos and Sabater

Table 3. Diatom taxa with relative abundance higher than 1.5 % used in multivariate analysis. Lista de taxones de diatomeasutilizados en los analisis multivariantes cuya abundancia supera el 1.5 %.

Diatomtaxa

relativeabundance

( %) in AMD

relativeabundance

( %) in non-AMD

Achnanthes biasolettianaGrunow 100.00

Achnanthes lanceolata ssp.frequentissima Lange-Bertalot 1.97 98.03

Achnanthes minutissima Kutzing 1.94 98.06

Amphipleura pellucida Kutzing 100.00

Amphora inariensis Krammer 3.85 96.15

Amphora pediculus (Kut)Grunow 100.00

Amphora veneta Kutzing 100.00

Anomoeoneis vitrea (Grun.) Ross 100.00

Aulacoseira granulata (Ehr.)Simonsen 100.00

Cocconeis pediculus Ehrenberg 100.00

Cocconeis placentula Ehrenberg 1.50 98.50

Cocconeis placentula var.pseudolineata Geitler 100.00

Cyclotella meneghiniana Kutzing 100.00

Cymbella microcephala Grunow 100.00

Cymbella minuta Hilse exRabenhorst 6.67 93.33

Cymbella proxima Reimer 12.50 87.50

Cymbella silesiaca Bleisch inRabenhorst 100.00

Cymbella sinuata Gregory 100.00

Eunotia exigua (Breb. ex Kut.)Rabenhorst 99.64 0.36

Fragilaria capucina var. rumpens(Kutz.) L-B. ex Bukht 100.00

Fragilaria capucina var.vaucheriae (Kut.) Lange-Bertalot 100.00

Fragilaria fasciculata (Ag.)Lange-Bertalot 100.00

Fragilaria pinnata Ehrenberg 100.00

Fragilaria ulna (Nitzsch.)Lange-Bertalot 0.49 99.51

Gomphonema angustatum (Kut.)Rabenhorst 100.00

Gomphonema angustum Agardh 100.00

Gomphonema gracile Ehrenberg 100.00

Gomphonema minutum (Ag.)Agardh 100.00

Gomphonema parvulum (Kut.)Kutzing 0.83 99.17

Gomphonema truncatumEhrenberg 100.00

Melosira varians Agardh 100.00

Diatomtaxa

relativeabundance

( %) in AMD

relativeabundance

( %) in non-AMD

Navicula antonii Lange-Bertalot 100.00

Navicula atomus var. permitis(Hust.) Lange-Bertalot 100.00

Navicula buderi Hustedt 100.00

Navicula capitatoradiataGermain 8.33 91.67

Navicula cryptotenellaLange-Bertalot 4.88 95.12

Navicula gregaria Donkin 100.00

Navicula minuscula Grun. in V.Heurck 100.00

Navicula radiosa Kutzing 100.00

Navicula reichardtianaLange-Bertalot 11.11 88.89

Navicula schroeteri Meister 100.00

Navicula seminulum Grunow 100.00

Navicula subminuscula Manguin 8.11 91.89

Navicula vandamii Schoeman &Archibald 100.00

Navicula veneta Kutzing 100.00

Navicula viridula (Kut.)Ehrenberg 100.00

Nitzschia acicularis (Kut.)W.M.Smith 100.00

Nitzschia capitellata Hustedt inA.Schmidt et al. 72.50 27.50

Nitzschia constricta (Greg.)Grunow 100.00

Nitzschia dissipata (Kut.)Grunow 100.00

Nitzschia fonticola Grun. inCleve et Moller 11.11 88.89

Nitzschia frustulum (Kut.)Grunow 9.52 90.48

Nitzschia inconspicua Grunow 100.00

Nitzschia linearis (Ag.) W. Smith 100.00

Nitzschia linearis var. tenuis(W.Sm.) Grunow 100.00

Nitzschia microcephala Grunowin Cleve & Moller 100.00

Nitzschia palea (Kut.) W. Smith 1.83 98.17

Pinnularia acoricola Hustedt 100.00

Pinnularia subcapitata Gregory 100.00

Rhoicosphenia abbreviata (Ag.)Lange-Bertalot 100.00

Stephanodiscus niagaraeEhrenberg 100.00

Thalassiosira pseudonana Hasleet Heimdal 100.00

Page 90: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Algal communities in Tinto, Odiel and Piedras river basins 267

100 75 Information remaining (%) 25 0

Farthest neighbor = Linkage methodBray Curtis = Distance measure

Group 1

2A

2B

Group 2

Figure 3. Dendrogram resulting of the hierarchic cluster analysis based on physico-chemical parameters. Dendrograma resultadodel analisis jerarquico de clusters que agrupa las localidades de muestreo en funcion de su las variables f�sico-qu�micas.

axis was positively correlated ( p < 0.05) withthe spatial components latitude and altitude in-dicating that even in rather small spatial scales,regional factors had some in�uence on diatomdistribution (Table 2, Fig. 2).

The �rst TWINSPAN division primarily sepa-rated sampling stations according to pH (Fig. 3,Table 4), i.e. the acidic-water stations (group 1)from the alkaline stations (group 2). IndValanalysis indicated that Eunotia exigua, Pinnula-ria acoricola and P. subcapitata were the mostrepresentative taxa for the acidic group of sites.A major division in the group 2 separated twofurther groups according to land use: group 2Awhich was integrated by stations placed in low-lands with high proportion of cropland and highhuman occupation. Indicator taxa for this groupwere Fragilaria capucina, F. ulna, Navicula ra-diosa, N. schroeteri, N. veneta, N. viridula andNitzschia palea. The group 2B was integrated byupland and lowly human occupation sites, withclean waters. Representative taxa for this groupwere Cocconeis placentula var. lineata, Gompho-nema angustum, Planothidium frequentissimumand Rhoicosphenia abbreviata.

Algal (non-diatom) community structure

A total of 31 non-diatom taxa were identified fromthe 18 sampled sites. A presence/absence matrixwas constructed, and the resulting dendrogrambroadly corroborated the previous diatom commu-nity analysis: the algal flora from acidic sampling

stations was significantly poor and different fromthe algal flora present in alkalinewaters.

The algal community present in acidic wa-ters was composed almost exclusively by Kleb-sormidium �accidum, Euglena mutabilis and so-me unicellular chlorophyta like Chlamydomo-nas sp. All this taxa did not occur in alkali-ne waters. The algal community in alkaline wa-ters was composed by a higher number of taxa.The assemblage included cyanobacteria (Oscilla-toria and Anabaena), and chlorophyta: severalgenera of zygnemataceae (Spirogyra, Zygnemaand Mougeotia) and desmidiaceae (Cosmariumbotrytis, Closterium ehrenbergii, Staurastrumdilatatum and Micrasterias sp.).

Benthic chlorophyll concentration

Chlorophyll-a in AMD stations ranged between4 to 12 mg/m2 whereas it ranged between 8 to160 mg/m2 in non-affected AMD sites.

In spite of that, there were no signi�cant dif-ferences in chlorophyll-a between the two ty-pe of sites stations (Table 1). In all the sta-tions the values of chlorophyll-a did not exceed200 mg/m2, so the whole set of sites can be con-sidered as mesotrophic (Dodds et al., 1998).

DISCUSSION

The Tinto-Odiel system constitutes an exteme en-vironment for the aquatic life where water pH

Page 91: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

268 Urrea-Clos and Sabater

Table 4. Indicator diatom taxa from the 3 clusters. IndVal = Indicator Value in %. Only taxa with statistically signi�cant IndicatorValues were shown (*p < 0.05 **p < 0.01), based on Monte-Carlo test. Taxones de diatomeas indicadoras de los 3 clusters. IndVal= Valor indicador en %. Solo se muestran aquellos taxones con valores indicadores estad�sticamente signi�cativos (*p < 0.05**p < 0.01) basandonos en el test de Monte-Carlo.

Group 1 (n = 6) Acid waters IndVal

Eunotia exigua 97.2**

Pinnularia acoricola 83.3*

Pinnularia subcapitata 66.7*

Group 2A (n = 8) IndVal Group 2B (n = 4) IndVal

Fragilaria ulna 78.3** Planothidium frequentissimum 70.2**

Fragilaria capucina 75.0** Rhoicosphenia abbreviata 68.1*

Navicula viridula 75.0** Cocconeis placentula var. lineata 68.1*

Nitzschia palea 71.2** Gomphonema angustum 67.9**

Navicula veneta 63.2*

Navicula radiosa 62.5**

Navicula schroeteri 62.5*

plays a very important role organizing the de-velopment of biological communities. The sitesaffected by AMD produce both chemical stress(low pH, dissolved heavy metals) as well asphysical stress (deposition of metal oxides) onstream biota (Gerhardt et al., 2008).

As described in similar situations (Verb & Vis,2000;Niyogiet al.,2002;Rosset al.,2008)diversity(H′) and taxa richness (R) are significantly low inAMD affected systems, since few taxa are able toadapt to such situations. However, algal biomassis stable along all the sampling stations, probablybecause tolerant species compensate for the lossof sensitive species by increasing their biomass(Margalef, 1983). The existence of indirect effects,such as the suppression of grazing because of stresson the herbivores, may allow greater autotrophicbiomass to develop than would be found in theabsence of stress (Elwood & Mulholland, 1989;Niyogi et al., 2002). Algal biomass values inAMD stations are close to that observed in othernutrient rich systems elsewhere (Dodds et al., 1998;Roman� & Sabater, 2000) indicating that algaewould significantly contribute to primary contributeto primaryproductionof those acidic systems.

Heavily impacted sites consistently groupedtogether and were well characterized by envi-ronmental parameters being pH and conductivitythe most influential. Pinnularia acoricola wasthe dominant taxon in AMD affected stations,

accompanied by Eunotia exigua and Pinnulariasubcapitata. All of these taxa have a cosmopo-litan distribution in this low pH environments(DeNicola, 2000; Ivorra et al,. 2000; Verb & Vis,2000; Lorh et al., 2006). As water pH increasessome other accompanying taxa like Achnanthidiumminutissimum or Nitzschia capitellata appeared,both frequently reported in low-pH waters (Verb& Vis, 2000; Gerhardt, A., et al., 2008). SomeEunotia species have been described as facul-tative heterotrophs (Hill, 1996). Such capacitymay be important in acidic environments in or-der to signi�cantly enhance scarce carbon andphosphorus supplies (Lessmann, et al., 2000).

In not AMD-affected sampling sites and inthe Piedras river basin, the diatom communityis mostly distributed throughout an eutrophica-tion gradient. In upstream sections, not highlyaffected by human activities, the sites could beconsidered as reference stations (Tison et al.,2005). In these situations pollution-sensitive ta-xa whose distribution is associated to geochemi-cal variables (Leira & Sabater, 2005) dominated.Amongst these occurred Planothidium frequen-tissimum, Rhoicosphenia abbreviata and Cocco-neis placentula var. lineata. In localities situa-ted in the middle and lower sections of the ri-ver nutrient-tolerant taxa like Nitzschia palea andNavicula veneta, dominated. Their occurrencecould be related with the existence of phosphate-

Page 92: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Algal communities in Tinto, Odiel and Piedras river basins 269

enriched or organically polluted waters (Fore &Grafe, 2002; Tornes, et al., 2007), that can be as-sociated to agricultural land use in these sections.

In AMD affected localities, the non-diatomalgal community had low diversity. These weremainly dominated by Klebsormidium that producedlong greenish filaments, and by motile cells ofEuglena mutabilis. Both taxa are frequent in theseenvironments (Olaveson & Nalewajko, 2000; Lorh,et al., 2006). Euglena mutabilis have been shownto growth heterotrophically in culture (Tuchman,1996) and in absence of light (Johnson, 1998).

Macroinvertebrate samples were collected inparallel with our study (Red Control, unpubli-shed data). The macroinvertebrate taxa richnessin AMD stations was lower than in non affec-ted stations (Gray & Delaney, 2008). Only thechironomid genus Lymnophyes was present in allAMD affected stations, together with AMD tole-rant coleopteran or hemiptera. Lymnophyes waspreviously described in the Tinto river basin (Sa-bater et al., 2003) and in other AMD affected en-vironments (Gerhardt et al., 2004; Lorh, et al.,2006; Ross et al., 2008).

The importance of pH on algal distributionwas confirmed by the different analyses, whichsuggested that large differences existed bet-ween AMD-affected and non-affected systems.AMD systems host few taxa capable to survive,but the relevance of primary producers in termsof biomass is not greatly affected (Mulhollandet al., 1986; Verb & Vis, 2000).

ACKNOWLEDGEMENTS

The authors thank the Confederacion Hidrogra�-ca del Guadiana and the Ministerio de Me-dio Ambiente of Spain which supported thissurvey through the project “Consolidacion yExplotacion de la Red de Control Biologicodel Guadiana”. The writing of this chapter be-ne�ted from funding by the Commission ofthe European Community (Modelkey, Contract-No. 511237, GOCE). The authors are gratefulto Red-Control for macroinvertebrate identi�ca-tion, and especially thankful for �eld assistanceby the URS staff members.

REFERENCES

AGUILERA, A., S. C. MANRUBIA, F. GOMEZ,N. RODRIGUEZ & R. AMILS. 2006. Eukaryo-tic community distribution and its relationship towater physicochemical parameters in an extre-me acidic environment, R�o Tinto (southwesternSpain). Applied and Environmental Microbiology,72: 5325-5330.

AGUILERA, A., V. SOUZA-EGIPSY, F. GOMEZ &R. AMILS. 2007. Development and structure ofeukaryotic bio�lms in an extreme acidic environ-ment, R�o Tinto (SW, Spain). Microbial Ecology,53: 294-305.

BARBER, H. G. & E. Y. HAWORTH. 1981. A guideto the morphology of the diatom frustule. Amble-side, Cumbria. 112 pp.

BOURRELLY, P. 1957. Les algues d’eau douce.initiation a la systematique. I Les Algues Vertes.Paris. 182 pp.

CEN, E. C. F. S. 2002. Water quality-Guidance stan-dard for the routine sampling and pretratment ofbenthic diatoms from rivers for water quality as-sessment. European Standard. prEN 13946. Co-penhagen.

DENICOLA, D. M. 2000. A review of diatoms foundin highly acidic environments. Hydrobiologia,433: 111-122.

DODDS, W. K., J. R. JONES & E. B. WELCH.1998. Suggested classi�cation of stream trophicstate: distributions of temperate stream types byclorophyll, total nitrogen, and phosphorous. WaterResearch, 32: 1455-1462.

DUFRENE, M. & P. LEGENDRE. 1997. Species as-semblages and indicator species: the need for a�exible asymmetrical approach. Ecol. Monogr.,67: 345-366.

ELWOOD, J. W. & P. J. MULHOLLAND. 1989. Ef-fects of acidic precipitation on stream ecosystems.In: Acidic precipitation; vol 2. Biological and eco-logical effects. D. C. Adriano and A. H. Johnson(eds.): 88-135. Springer-Verlag. New York.

FORE, L. S. & C. GRAFE. 2002. Using diatoms toassess the biological condition of large rivers inIdaho (U.S.A.). Freshwat. Biol., 47: 2015-2037.

GERHARDT, A., L. J. DE BISTHOVEN, K. GUHR,A. M. SOARES & M. J. PEREIRA. 2008. Phy-toassessment of acid mine drainage: Lemna gibbabioassay and diatom community structure. Ecoto-xicology, 17: 47-58.

Page 93: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

270 Urrea-Clos and Sabater

GERHARDT, A., L. JANSSENS DE BISTHOVEN& A. M. V. M. SOARES. 2004. Macroinvertebrateresponse to acid mine drainage: community me-trics and on-line behavioural toxicity bioassay. En-vironmental Pollution, 130: 263-274.

GRAY, N. F. & E. DELANEY. 2008. Comparison ofbenthic macroinvertebrate indices for the asses-ment of the impact of acid mine drainage on anIrish river below an abandoned Cu-S mine. Envi-ronmental Pollution, 155: 31-40.

HILL, W. R. 1996. Effecs of light. In: Algal ecology.R. J. Stevenson, M. L. Bothwell and R. L. Lowe(ed.): 121-148. Academic Press. San Diego.

ISERENTANT, R., L. ECTOR, F. STRAUB & D.U. HERNANDEZ-BECERRIL. 1999. Methodeset techniches de preparation des echantillons dediatomees. Cryptogamie, Algologie, 20: 143-148.

IVORRA, N., S. BREMER, E. GUASCH, H. S.KRAAK & W. ADMIRAAL. 2000. Differencesin the sensitivity of benthic microalgae to Zn andCd regarding bio�lm development and exposurehistory. Environmental Toxicology and Chemistry,19: 1332-1339.

JEFFREY, S. W. & U. G. HUMPHREY. 1975. Newspectrophotometric equations for determining ch-lorophylls a, b and c in higher plants, algae and na-tural phytoplankton. Biochemie Physiologie P�an-zen, 167: 191-194.

JOHNSON, D. B. 1998. Biodiversity and ecology ofacidophilic microorganisms. FEMS MicrobiologyEcology, 27: 307-317.

KOMAREK, J. & K. ANAGNOSTIDIS. 1998-2005.Cyanoprokariota. 19/1: Chroococcale: 548 pp.;19/2: Oscillatoriales, 759 pp. Fischer, G. Stuttgart.

KRAMMER, K. & H. LANGE-BERTALOT. 1985 -1991. Bacillariophyceae. (I) Naviculaceae. 876pp; (2) Bacillariaceae, Epithemiaceae, Surirella-ceae. 596 pp; (3) Centrales, Fragilariaceae, Euno-tiaceae. 576 pp; (4) Achnanthaceae. 437 pp. Fis-cher, G. Stuttgart.

LEIRA, M. & S. SABATER. 2005. Diatom assem-blages distribution in catalan rivers, NE Spain, inrelation to chemical and physiographical factors.Water Research, 39: 73-82.

LESSMANN, D., A. FYSON & B. NIXDORF. 2000.Phytoplankton of the extremely acidic mining la-kes of Lusatia (Germany) with pH<3. Hydrobiolo-gia, 433: 123-128.

LOPEZ-ARCHILLA, A. I. & R. AMILS. 1999. AComparative Ecological Study of Two Acidic Ri-

vers in Southwestern Spain. Microbial Ecology,38: 146-156.

LOPEZ-ARCHILLA, A. I., I. MARIN & R. AMILS.2001. Microbial Community Composition andEcology of an Acidic Aquatic Environment: TheTinto River, Spain. Microbial Ecology, 41: 20-35.

LORH, A. J., R. SLUIK, M. M. OLAVESON, N.IVORRA, C. A. M. VAN GESTEL & N. M. VANSTRAALEN. 2006. Macroinvertebrate and algalcommunities in an extremely acidic river and theKawah Ijen crater lake (pH<0.3), Indonesia. Arch.Hydrobiol., 165: 1-21.

MARGALEF, R. 1983. Limnologia. Ed. Omega. Bar-celona. 1010 pp.

MCCUNE, B. & M. J. MEFFORD. 1999. PC-ORD.Multivariate analyses of ecological data. v.4 MjMSoftware Design. Glenenden Beach.

MMA. 2005. Informe resumen de los art�culos 5 y6 de la Directiva Marco del Agua. Demarcacionhidrogra�ca del r�o Guadiana (parte espanola) yambito complementario de los r�os Tinto, Odiel yPiedras. 92 pp.

MULHOLLAND, P. J., J. W. ELWOOD, A. V. PA-LUMBO & R. J. STEVENSON. 1986. Effectsof stream acidi�cation on periphiton composition,chlorophyll, and productivity. Can. J. Fish. andAquat. Sci., 43: 1846-1858.

NIETO, J. M., A. M. SARMIENTO, M. OLIAS, C.R. CANOVAS, I. RIBA, J. KALMAN & T. A.DELVALLS. 2007. Acid mine drainage pollutionin the Tinto and Odiel rivers (Iberian Pyrite Belt,SW Spain) and bioavailability of the transportedmetals to the Huelva Estuary. Environment Inter-national, 33: 445-455.

NIYOGI, D. K., W. M. LEWIS JR & D. M. MCK-NIGHT. 2002. Effects of stress from mine drainageon diversity, biomass, and function of primary pro-ducers in Mountain Streams. Ecosystems, 5: 554-567.

NOCETE, F., E. ALEX, J. M. NIETO, R. SAEZ &M. R. BAYONA. 2005. An archaeological ap-proach to regional environmental pollution in thesouth-western Iberian Peninsula related to Thirdmillennium BC mining and metallurgy. Journal ofArchaeological Science, 32: 1566-1576.

OLAVESON, M. M. & C. NALEWAJKO. 2000. Ef-fects of acidity on the growth of two Euglena spe-cies. Hydrobiologia, 433: 39-56.

PARDO, I., M. ALVAREZ, J. CASAS, J. L. MO-RENO, S. VIVAS, N. BONADA, J. ALBA-TER-CEDOR, P. JIMENEZ-CUELLAR, G. MOYA, N.

Page 94: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Algal communities in Tinto, Odiel and Piedras river basins 271

PRAT, S. ROBLES, M. L. SUAREZ, M. TORO &M. R. VIDAL-ABARCA. 2002. El habitat de losr�os mediterraneos. Diseno de un �ndice de diversi-dad de habitat. Limnetica, 21: 115-133.

POTAPOVA, M. & D. F. CHARLES. 2002. Benthicdiatoms in USA rivers: distributions along spatialand environmental gradients. Journal of Biogeo-graphy, 29: 167-187.

ROMANI, A. & S. SABATER. 2000. Variability ofheterotrophic activity in Mediterranean stream bio-�lms: A multivariate analysis of physical-chemicaland biological factors. Aquat. Sci., 62: 205-215.

ROSS, R. M., E. S. LONG & D. S. DROPKIN. 2008.Response of macroinvertebrate communities toremediation-simulating conditions in Pennsylvaniastreams in�uenced by acid mine drainage. Envi-ronmental Monitoring and Assessment, 145: 323-338.

SABATER, S. 1988. Composicion y ciclo de pig-mentos clorof�licos en las poblaciones del �toben-tos del r�o Ter durante un per�odo de nueve meses.Oecologia aquatica, 9: 61-75.

SABATER, S., T. BUCHACA, J. CAMBRA, J. CA-TALAN, E. GUASCH, N. IVORRA, I. MUNOZ,E. NAVARRO, M. REAL & A. ROMANI. 2003.Structure and function of benthic algal communi-ties en a extremely acid river. Journal of Phyco-logy, 39: 481-489.

SAEZ, R., E. PASCUAL, M. TOSCANO & R. AL-MODOVAR. 1999. The Iberian type of volcano-sedimentary massive sulphide deposits. Minera-lium Deposita, 34: 549-570.

SHANNON, C. E. & W. WEAVER. 1963. The mat-hematical theory of communication. University ofIllinois Press. Urbana. 125 pp.

SOININEN, J., R. PAAVOLA & T. MUOTKA. 2004.Bentic diatom communities in boreal streams:community structure in relation to environmentaland spatial gradients. Ecography, 27: 330-342.

SPSS-INC. 2004. SPSS for windows. v.13.0 SPSSInc. New York.

TISON, J., Y. S. PARKA, M. COSTE, J. G. WAS-SON, L. ECTOR, F. RIMET & F. DELMAS. 2005.Typology of diatom communities and the in�uen-ce of hydro-ecoregions: A study on the French hy-drosystem scale. Water Research, 39: 3177-3188.

TORNES, E., J. CAMBRA, J. GOMA, M. LEIRA& S. SABATER. 2007. Indicator taxa of benthicdiatom communities: a case study in Mediterra-nean streams. Annales de Limnologie - Internatio-nal Journal of Limnology, 43: 1-11.

TUCHMAN, N. C. 1996. The role of heterotrophy inalgae. In: Algal ecology. R. J. Stevenson, M. L.Bothwell and R. L. Lowe (ed.): 299-319. Acade-mic Press. San Diego.

VERB, R. G. & M. L. VIS. 2000.Comparisonofben-thic diatom assemblages from streams drainingabandoned and reclaimed coal mines and nonim-pacted sites. J. North Am. Benthol. Soc., 19: 274-288.

WOELFL, S. & B. A. WHITTON. 2000. Sampling,preservation and quanti�cation of biological sam-ples from highly acidic environments (pH<3). Hy-drobiologia, 433: 173-180.

Page 95: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats
Page 96: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 273-282 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

Cyanobacteria and Cyanotoxin in the Billings Reservoir (Sao Paulo,SP, Brazil)

Viviane Moschini-Carlos1,∗, Stella Bortoli3, Ernani Pinto3, Paula Yuri Nishimura2, LeandroGomes de Freitas1, Marcelo L. M. Pompeo2, and Felipe Dorr3

1 Sao Paulo State University-UNESP, Department of Environmental Engineering. 3 de Marco Avenue n. 511, POBox: 18087-180, Sorocaba, Sao Paulo State, Brazil.2 University of Sao Paulo, Institute of Biociencias, Department of Ecology, Rua do Matao, Trav. 14, no 321, POBox 05508-900, Sao Paulo-SP, Brazil3 University of Sao Paulo, Laboratory of Toxin and Algae Natural Products, School Pharmaceutical Sciences,Prof. Lineu Prestes Avenue, 580, PO Box 05508-900, Sao Paulo-SP, Brazil.2

∗ Corresponding author: [email protected]

Received: 19/12/08 Accepted: 7/9/09

ABSTRACT

Cyanobacteria and Cyanotoxin in the Billings Reservoir (Sao Paulo, SP, Brazil)

The Billings Complex and the Guarapiranga System are important strategic reservoirs for the city of Sao Paulo and surroundingareas because the water is used, among other things, for the public water supply. They produce 19,000 liters of water per secondand supply water to 5.4 million people. Crude water is transferred from the Taquacetuba branch of the Billings Complex to theGuarapiranga Reservoir to regulate the water level of the reservoir. The objective of this study was to evaluate the water qua-lity in the Taquacetuba branch, focusing on cyanobacteria and cyanotoxins. Surface water samples were collected in February(summer) and July (winter) of 2007. Analyses were conducted of physical, chemical, and biological variables of the water,cyanobacteria richness and density, and the presence of cyanotoxins. The water was classi�ed as eutrophic-hypereutrophic.Cyanobacteria blooms were observed in both collection periods. The cyanobacteria bloom was most signi�cant in July, re-�ecting lower water transparency and higher levels of total solids, suspended organic matter, chlorophyll-a, and cyanobacteriadensity in the surface water. Low richness and elevated dominance of the cyanobacteria were found in both periods. Cylin-drospermopsis raciborskii was dominant in February, with 352 661.0 cel mL−1, and Microcystis panniformis was dominantin July, with 1 866 725.0 cel mL−1. Three variants of microcystin were found in February (MC-RR, MC-LR, MC-YR), aswell as saxitoxin. The same variants of microcystin were found in July, but no saxitoxin was detected. Anatoxin-a and cylin-dropermopsin were not detected in either period. These �ndings are of great concern because the water in the Taquacetubabranch, which is transferred into the Guarapiranga Reservoir, is not treated nor managed. It is recommended that monitoringbe intensi�ed and more effective measures be taken by the responsible agencies to prevent the process of eutrophication andthe consequent development of the cyanobacteria and their toxins.

Key words: Reservoirs, eutrophication, cyanobacteria, cyanotoxins.

RESUMEN

Cianobacterias y Cianotoxinas en el Embalse Billings (Sao Paulo, Brasil)

El Complejo Billings y el Sistema Guarapiranga son embalses estrategicos importantes para la ciudad de Sao Paulo (Brasil) yareas circundantes porque, entre otras cosas, el agua es utilizada para el abastecimiento publico. Este sistema produce 19 millitros de agua por segundo, que es suministrado a 5.4 millones de personas. El agua bruta es transferida por el a�uente Ta-quacetuba desde el Complejo Billings hacia el Embalse Guarapiranga, para regular el nivel de agua del embalse. El objetivode este estudio fue evaluar la calidad del agua en el tramo del Taquacetuba, teniendo como foco las cianobacterias y ciano-toxinas. El muestreo de agua bruta super�cial fue realizado en febrero (verano) y julio (invierno 2007). Fueron analizadasvariables f�sicas, qu�micas y biologicas, cianobacteria, riqueza, densidad y la presencia de cianotoxinas. El tramo fue clasi�-cado como eutro�co-hipereutro�co. Las cianobacterias fueron observadas en ambos periodos de colecta. El crecimiento mas

Page 97: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

274 Moschini-Carlos et al.

signi�cativo de algas fue observado en julio, re�ejando baja transparencia del agua y niveles mas altos en el agua super�cialde solidos totales, materia organica, cloro�la-a y densidad de cianobacterias en el agua super�cial. Una baja riqueza y unelevado dominio de cianobacteria fueron encontrados en ambos per�odos. Cylindrospermopsis raciborskii fue dominante enfebrero, con 352 661.0 cel mL−1, y Microcystis panniformis fue dominante en julio, con 1 866 725.0 cel mL−1. Tres varieda-des de microcistina fueron encontradas en febrero (MC-RR, MC-LR, MC- YR), as� como saxitoxina. Las mismas variedadesde microcistina fueron encontradas en julio, pero ninguna saxitoxina fue observada. Anatoxina-a y cylindropermopsina nofueron observadas en ningun per�odo. Estas conclusiones son preocupantes porque el agua del tramo del Taquacetuba, quees transferida al Embalse Guarapiranga, no es tratada o manejada. Se recomienda intensi�car el monitoreo y medidas mase�caces deben ser tomadas por parte de las agencias responsables para prevenir el proceso de eutro�zacion y el desarrolloconsiguiente de cianobacterias y sus toxinas.

Palabras clave: Embalses, eutro�zacion , cianobacterias, cianotoxinas.

INTRODUCTION

Cyanobacteria blooms in reservoirs, resultingfrom the accelerated process of eutrophication,causes the water to have an unpleasant appearan-ce, an increase in turbidity, and it changes the �a-vor and smell of the water. Some of the main ef-fects due to cyanobacteria blooms comprise a de-crease in water transparency, heavy �uctuation ofoxygen levels and the release of toxins (Vascon-celos, 2006). Nowadays, cyanobacteria bloomsand its toxins are the main problem related to thetreatment of public supply water, which can leadto serious public health problems.

In Brazil, the number of cases of cyanobacteriablooms in reservoirs designated for public supplyis increasing each year (Andrade, 2005; Azevedo& Vasconcelos, 2006; Chellappa & Costa, 2003;Komarek et al., 2002; Sant’Anna & Azevedo,2000; Tucci & Sant’anna, 2003; Yunes et al.,2003). The most severe case of intoxication due tocyanobacterial toxin occurred in 1996 in Caruaru,Pernambuco State, when around 60 people diedfollowing treatment hemodialysis sessions donewith not well-treated water from a reservoirwhich had shown cyanobacterial dominance in theprevious years (Azevedo et al., 1994).

Considering that urban reservoirs used for wa-ter supply in Brazil have been subjected to fre-quent cyanobacteria blooms due to several varia-bles, such as ecological, physiological, and envi-ronmental, research in this area must be encou-raged (Calijuri et al., 2006). Therefore, the aim

of this study was to evaluate the water quality inthe Taquacetuba branch of the Billings Reservoir,focusing on the cyanobacteria and cyanotoxins.

The Billings Reservoir (Fig. 1) is located westof the city of Sao Paulo at 23◦47′S, 46◦40′W,an altitude of 746 m a.s.l. and its watershed co-vers an area of 560 km2. Its uses include leisu-re, �sheries, �ow control, domestic and indus-trial wastewater reception, power generation, andwater supply. The reservoir’s limnological featu-res changed substantially since 1940, when partof the polluted water from the Tiete River (SaoPaulo city) started to �ow into the Billings Re-servoir, aiming to increase the water �ow andconsequently, the electric power generation. Thisoperation, along with the disorganized occupa-tion of the watershed, contributed to increase theeutrophication and consequently, the cyanobacte-rial blooms (Beyruth & Pereira, 2002; Carvalhoet al., 2007; Souza et al., 1998).

Due to its peculiar shape, the Billings Reser-voir is divided into eight units called branches.The Taquacetuba branch has a particular use.In August of 2000, the Basic Sanitation Com-pany of the State of Sao Paulo (SABESP) beganto operate a system of transporting crude waterfrom the Taquacetuba branch to the Guarapiran-ga Reservoir, with a license for 2.0 m3 s−1. Cu-rrently it operates at a volume of 3.0 to 4.0 m3s−1,contributing 29% of the total water producedin the Guarapiranga Reservoir, which supplieswater to southeastern Sao Paulo at a rate of1.2 billion L day−1 (Whately & Cunha, 2006).

Page 98: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Cyanobacteria and Cyanotoxin in the Billings Reservoir (Brasil) 275

Sao Paulo State

Sao Paulo City

Figure 1. Location of the Billings Reservoir watershed (Taquacetuba branch), State of Sao Paulo, Brazil. Localizacion del Embalsede Billings (rama de Taquacetuba), Sao Paulo, Brasil.

Therefore, the study of the Taquacetuba branch’swater quality along with the cyanobacteria com-munity and its toxins, will contribute to unders-tand the actual state of degradation of the waterthat is transferred into the Billings-Guarapirangasystem, which are important strategic reser-voirs for the Sao Paulo city and its surroun-ding areas, as they produce 19 000 L s−1 of waterto supply 5.4 million people.

METHODOLOGY

Surface water samples were collected in Fe-bruary (summer) and July (winter) of 2007.Analyses of dissolved oxygen, total and dis-

solved nutrients, suspended matter, total solids,chlorophylls a, b, and c, and phaeopigments(Table 1) were performed. Water transparencywas also determined using a Secchi disk, as wellas water temperature, electrical conductivity (va-lues corrected to 25 ◦C), and pH with YSI multi-parameter sensor, model 63/100 FT.

Classi�cation of the trophic state of the bodiesof water was carried out according to the Tro-phic State Index (TSI) (Carlson, 1977), modi�edby Toledo et al. (1983), as follows: oligotrophicTSI < 44; mesotrophic 44 < TSI < 54; eutrophic54 < TSI < 74; hypertrophic TSI > 74.

Species composition was analyzed using aJENAVAL/ZEISS binocular microscope. Countingwas carried out using the sedimentation method

Page 99: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

276 Moschini-Carlos et al.

Table 1. Variables analyzed and their respective detection limits (when applicable), unit, method, and reference. Variables analiza-das y sus l�mites de deteccion respectivos (cuando aplicable), unidad, metodo, y referencia.

VariableDetection limitof the method

Unit Method Reference

Total, organic,and inorganic

suspended matter (TSM, OSM, ISM) mg ·L−1 Gravimetric Wetzel & Likens (1991)

Total solids (TS) mg ·L−1 Gravimetric

Total nitrogen (TN) < 5.0 μg ·L−1 Spectrophotometry Valderrama (1981)

Total phosphorous (TP) < 10.0 μg ·L−1 Spectrophotometry Valderrama (1981)

Nitrite (N − NO−3 ) < 8.0 μg ·L−1 Spectrophotometry Mackereth et al. (1978)

Nitrate (N − NO−3 ) < 5.0 μg ·L−1 Spectrophotometry Mackereth et al. (1978)

Dissolved ammonium (N − NH+4 ) < 4.2 μg ·L−1 Spectrophotometry Koroleff (1976)

Orthophosphate (Pi) < 10.0 μg ·L−1 Spectrophotometry Strickland & Parsons (1960)

Dissolved oxygen mg ·L−1 Titulometric Golterman et al. (1978)

Chlorophyll a, b, c,phaeopigments

μg ·L−1 SpectrophotometryJeffrey & Humphrey (1975),Lorenzen (1967),Strickland & Parsons (1960)

according Utermohl. The number of chamber cellscounted in each individual sample varied accordingto the species accumulation curve. To quantifycyanobacterial density in indml−1, an individualwas considered a filament, a tricome, a colony, acenobium or a cell (for unicellular individuals). Toquantify cyanobacterial density in cell ml−1, thedensity based on ind ml−1 was multiplied by themean number of cells per individual (calculatedfor 30 individual specimens of each species).

For cyanotoxin analysis, water samples werecentrifuged (5000 rpm, 10 min at 4◦C) and the re-sulting pellet stored at −20 ◦C. Microcystin de-termination was carried out after sample clean-up, using solid phase extraction (SPE). Brie�y,100 mg of the pellet were re-suspended in 10 mLof water, vortexed for 15 s and subjected to an ul-trasonic probe for 1 min in an ice bath. After cen-trifugation (5,000 rpm, 10 min at 4 ◦C), the su-pernatant was loaded into a C18 cartridge (Sep-Pak, Waters) previously conditioned with MeOH(3 mL) and H2O (3 mL). After the sequential wa-shing with water (3 mL) and MeOH/H2O 30%(3 mL), toxins were eluted with MeOH (3 mL).The eluate was dried in a gentle stream of ni-trogen and reconstituted in 200 μL of MeOH for

LC-MSn Ion Trap analysis. The method propo-sed by Hiller et al., 2007 was employed for saxi-toxin, anatoxin-a and cilindrospermopsin analy-ses.Briefly, 100mg of the pellet were re-suspendedin 1 mL MeOH:Acetic acid 0.1% (1:1), subjec-ted to an ultrasonic bath for 30 min and centrifu-ged at 5000 rpm for 10 min. The resulting super-natant was �ltered and analyzed.

RESULTS

Physical, chemical, and biological variables ofthe water

The physical, chemical, and biological variablesof the water are shown in Table 2. The water tem-perature was higher in February (summer) thanin July (winter), 25.2 ◦C and 19.5 ◦C, respecti-vely. The water transparency was low in both pe-riods. Electrical conductivity, pH, and dissolvedoxygen were 145.1 μS cm−1, 7.8 and 7.4 mg L−1

in February, respectively, and 204.1 μS cm−1, 7.6and 6.2 mg L−1 in July, respectively. Total ni-trogen concentrations were high in both pe-riods, measuring 473.6 μg L−1 in February and

Page 100: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Cyanobacteria and Cyanotoxin in the Billings Reservoir (Brasil) 277

Table 2. Values for the physical, chemical, and biological variables of the water in the Taquacetuba branch of the Billings Reservoir(Sao Paulo, Brazil) in February and July, 2007. Valores de las variables f�sicas, qu�micas, y biologicas del agua en la rama deTaquacetuba del Embalse de Billings (Sa o Paulo, Brasil) en febrero y julio de 2007.

Variables February July

Water temperature (◦C) 25.2 19.5

Secchi disc (m) 1.1 0.95

Electrical conductivity (μS cm−1) 145.1 204.1

pH 7.8 7.6

Dissolved oxygen (mg L−1) 7.4 6.2

Total solids (mg L−1) 114.0 339.5

Suspended particulate matter (mg L−1) 8.8 164.0

Suspended particulate organic matter ( %) 88.7 95.1

Suspended particulate inorganic matter ( %) 11.2 4.9

Total nitrogen (μg L−1) 473.6 431.6

Nitrate (μg L−1) 336.8 288.9

Nitrite (μg L−1) 25.7 8.1

Ammonium (μg L−1) 20.1 —

Total phosphorous (μg L−1) 54.6 402.2

N:P ratios 19:1 2:1

Inorganic phosphorous (μg L−1) — 11.7

Chlorophyll a (μg L−1) 33.2 867.0

Chlorophyll b (μg L−1) 5.9 586.4

Chlorophyll c (μg L−1) 0.3 29.9

Phaeophytin (μg L−1) 12.0 310.0

—: below the detection limit of the method

431.6 μg L−1 in July. Among dissolved nitrogenforms, nitrate levels were higher than nitrite andammonium in both periods. Total phosphorouswas considerably higher in July (402.2 μg L−1)compared to February (54.6 μg L−1). In February,inorganic phosphate was below the analytic me-thod limit (< 10 μg L−1), while levels in July we-re found to be 11.7 μg L−1. Values of total solids,suspended particulate matter, and its organic frac-tion were much higher in July compared to thosein February. Algae biomass, represented by con-centrations of chlorophyll a, b, and c and phaeo-phytin and the density of cyanobacteria also fo-llowed this same pattern of higher values in Julyand lower values in February. This pattern wasdue to an increased cyanobacterial bloom in July.

Trophic state index

According to the Trophic State Index (TSI) forchlorophyll, the waters of the Taquacetuba branchwere classified as eutrophic in both periods(February with TSI = 63 and July with TSI = 72),whereas according to the TSI for total phospho-rous, they were classified as eutrophic in February(TSI = 57) and hypereutrophic (TSI = 83) in July.

Cyanobacteria composition and density

A total of 13 taxa of cyanobacteria were iden-ti�ed, 8 in February and 10 in July (Table 3).Higher densities of cyanobacteria were foundin July (2 914 035.0 cel mL−1) compared to Fe-

Page 101: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

278 Moschini-Carlos et al.

Table 3. Cyanobacteria taxa and densities in February andJuly, 2007, in the Taquacetuba branch of the Billings Reservoir(Sao Paulo, Brazil). Taxa de cianobacterias y densidades en fe-brero y julio de 2007, en la rama de Taquacetuba del Embalsede Billings (Sao Paulo, Brasil).

Density (cel mL)

Cyanobacteria taxa February July

Anabaena sp. 0 1 328

A. spiroides 0 416 511

Aphanocapsa sp. 0 1 287

Cylindrospermopsis philippinensis 6 240 0

C. raciborskii 352 661 9 082

Merismopedia tenuissima 12 849 0

Microcystis aeruginosa 14 053 68 840

M. panniformis 0 1 866 725

Microcrocis sp. 21 397 0

Planktothrix agardhii 23 391 147 665

Pseudanabaena sp. 7 804 3 361

P. galeata 9 004 29 508

Woronichinia naegeliana 0 369 729

Total 447 399 2 914 035

bruary (447 399 cel mL−1). In February, the ta-xa with higher densities were Cylindrosper-mopsis raciborskii (352 661 cel mL−1), Plank-tothrix agardhii (23 391.0 cel mL−1), Microcro-cis sp (21 397 cel mL−1), and Microcystis ae-ruginosa (14 053 cel mL−1). In July, a highdensity of Microcystis panniformis was found(1 866 725 cel mL−1), followed by Anabaenaspiroides (416 511 cel mL−1), Woronichinia nae-geliana (369 729 cel mL−1), Planktothrix agar-dhii (147 665 cel mL−1), and Microcystis aerugi-nosa (68 840 cel mL−1) (Table 4).

Cyanotoxin analyses

Microcystin analysis showed the presence ofthree different variants in both sampling periods,MC-RR, MC-LR and MC-YR, in different con-centrations (Table 4). In February, three differentmicrocystin variants were found (MC-RR, MC-LR and MC-YR) in concentrations ranging from0.26-0.47 μg L−1 (7.83-14.15 ng MC/μg Chl a).

Table 4. Results of the microcystin analysis in February andJuly, 2007, in the Taquacetuba branch of the Billings Reservoir(Sao Paulo, Brazil). Resultados de analisis microcystin en fe-brero y julio de 2007, en la rama de Taquacetuba del Embalsede Billings (Sao Paulo, Brasil).

μμμgMC L−1 ngMC μμμgChl a−1

MC-RR MC-LR MC-YR MC-RR MC-LR MC-YR

February 0.47 0.28 0.26 14.15 8.43 7.83

July 0.55 0.57 0.29 0.64 0.66 0.33

In July, the same microcystin variants were found,ranging in concentration from 0.29-0.57 μg L−1

(0.33-0.66 ng MC/μg Chl a).Saxitoxin was detected only in February. Nei-

ther cylindrospermopsin nor anatoxin-a were de-tected in either of the samples.

DISCUSSION

Analyses of the physical, chemical, and biologi-cal variables of the water from the Taquacetubabranch in February (summer) and July (winter)revealed a marked seasonality.

In this study, the cyanobacterial bloom wasmore intense in July (winter) than in February(summer), re�ecting major electrical conducti-vity, higher levels of total solids, suspendedparticulate matter, total phosphorus, chlorophylla, b, c, phaeophytin, and cyanobacteria density.The dominance of cyanobacteria in nutrient-richenvironments has been associated with a varietyof factors. Environmental factors, such as lowturbulence (Reynolds, 1987), low light (Smith,1986), low ratio of euphotic zone to mixing zo-ne (Jensen et al., 1994), high temperature (Sha-piro, 1990), low CO2/high pH (Caraco & Miller,1998), high total-P (Falconer, 2005; Watson etal., 1997), low total-N (Smith, 1983), and phos-phorus storage strategy (Pettersson et al., 1993),have all been refereed to as being able to promoteor allow cyanobacterial dominance.

According to Tilman’s (1982) resource-ratiohypothesis, cyanobacterial dominance had alsobeen attributed to low N:P ratios (Bulgakov &Levich, 1999; Hoyos et al., 2004; Smith, 1983;Tilman et al., 1986). Indeed, in this study, weobserved higher cianobacterial density in July,

Page 102: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Cyanobacteria and Cyanotoxin in the Billings Reservoir (Brasil) 279

when the N:P ratios were very low. Accordingto Falconer (2005), phosphorus availability is amajor determinant of growth rate for cyanobac-teria and has a substantial effect on toxin produc-tion. However, this pattern was not re�ected in ahigher cyanotoxin production in July. It may sug-gest that environmental factors (water tempera-ture and light, for instance) in this period didn’tfavor the production of toxins, despite of the mo-re intense bloom. The irregularity of the toxicityof cyanobacteria is not yet de�ned (Carmichael,1992). Environmental factors such as light, tem-perature, and nutrients have a large in�uence onthe production of cyanotoxins.

Sant’Anna et al. (2007) yield a study of cya-nobacteria biodiversity and distribution in reser-voirs of the upper Tiete River, in which the Bi-llings Reservoir is located. The authors conclu-ded that within the results of the physical andchemical conditions of the reservoirs, BillingsReservoir proved to be the most favorable envi-ronment for the development of these organisms.

The abundance and persistent predominance ofcyanobacteria species observed in this study areprobably linked to the high levels of eutrophicationin the Taquacetuba branch, as indicated by theTSI (eutrophic-hypereutrophic), which re�ectedelevated algae biomass, low water transparency,very high concentrations of nutrients (total ni-trogen and phosphorous) and, consequently, se-riously compromised the use of the water for thepublic’s water supply, as well as other uses.

Sant’Anna & Azevedo (2000) and Komareket al. (2002) reported cyanobacteria blooms inBrazil resulting from the increase in nutrients.According to Tucci & Sant’Anna (2003), Cylin-drospermopsis raciboskii blooms have been in-creasingly frequent in Brazilian reservoirs becau-se of its high competitiveness in eutrophic tro-pical environments. In an eutrophic reservoir inRio Grande do Norte State with high concentra-tions of inorganic matter, reduced transparency,anoxic hypolimnion, and high electrical conduc-tivity, Chellappa & Costa (2003) detected a lar-ge presence of cyanobacteria (Cylindrospermop-sis raciborskii, Raphidiopsisi curvata, Microcys-tis aeruginosa, and Oscillatoria sp) in the dryseason. Azevedo & Vasconcelos (2006) detected

toxic strains of cyanobacteria in bodies of waterincluding reservoirs used for public water sup-ply, arti�cial lakes, salt lakes, and rivers in thestates of Sao Paulo, Rio de Janeiro, Minas Ge-rais, Parana, Bahia, and Pernambuco, and in theFederal District. At these locales, approximately82% of the strains isolated were found to be to-xic, with 9.7% being neurotoxic and the rest he-patotoxic. Minillo et al. (2000) detected the pre-sence of microcystins in an estuary in Rio Grandedo Sul, Lagoa dos Patos, in the summer and fallmonths. Carvalho et al. (2007) detected greaterbiodiversity of potentially toxic cyanobacteria inthe Billings Reservoir compared to the Guarapi-ranga Reservoir. They found 67% of the speciescollected in the Billings Reservoir to be potentia-lly toxic and 50% in the Guarapiranga Reservoir.Analyses of microcystin confirmed these results, asmicrocystin was detected in the Billings Reservoirthroughout the entire study period, whereas inthe Guarapiranga Reservoir, microcystin was onlydetected in the samples containingMicrocystis.

Brazilian studies have shown that the mostcommon toxic cyanobacteria blooms are thosethat produces microcystins and saxitoxin, the sa-me toxins found in the Taquacetuba branch in thisstudy (Molica & Azevedo, 2009).

Microcystins are produced by several cyano-bacterial genera, such as Microcystis, Anabae-na, Planktothrix (Oscillatoria), Nostoc, Hapalo-siphon, and Anabaenopsis while saxitoxins areproduced by Anabaena, Aphanizomenon, Lyng-bya, and Cylindrospermopsis (Chorus & Bar-tram, 1999). A Cylindrospermopsis raciborskiibloom in February, associated with the presen-ce of saxitoxin, suggests the production of thistoxin by this species, as already demonstrated inother freshwater environments in Brazil (Lagos etal., 1999; Molica et al., 2002). However, furtherresearch is necessary in order to con�rm the ori-gin of this toxin and to quantify it. The presenceof microcystin in both periods was probably dueto high densitites of Microcystis aeruginosa andPlanktothrix agardhii in February and Microcys-tis panniformis and also Planktothrix agardhii inJuly. A more intense bloom with higher cyano-bacterial densities in July was related to highermicrocystins concentrations in this period.

Page 103: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

280 Moschini-Carlos et al.

In an eutrophic Brazilian reservoir (Armando Ri-beiro Goncalves Reservoir, Rio Grande do Nor-te State), Costa et al. (2006) detected microcys-tins concentrations as high as 8.8 μg L−1. An-drade (2005) found lower concentrations of mi-crocystins (3.5 μg L−1) at the Guarapiranga Re-servoir (Sao Paulo State) and Yunes et al. (2003)found much lower concentrations of this toxin(0.03 μg L−1) in the Duro reservoir (Rio Gran-de do Sul State) and 0.01 μg L−1 of saxito-xin in the Taiacupeba reservoir (Sao Paulo Sta-te). Most Brazilian reservoirs are in exceptiona-lly good conditions for the development of to-xic cyanbacteria: light availability, high tempe-ratures, water column stability, high water re-tention time and high nutrient concentrations(N and P) (Fernandes et al., 2009).

Cyanobacteria density during this study exceededthe levels for drinking water (> 2 · 103 cellsmL−1)recommended by the WHO-World Health Or-ganization (Chorus & Bartram, 1999), and al-so the limit set by the Brazilian Health Mi-nistry (20 · 103 cells mL−1) (Brasil, 2004). Dueto the high toxicity of microcystins, WHO es-tablished the value 1.0 μg L−1 as the maxi-mum microcystin-LR concentration in drinkingwater (Chorus & Bartram, 1999).

Although water from Taquacetuba is not di-rectly used for water supply, microcystin-LR le-vel at 0.57 μg L−1 in July is a cause of concernbecause of the dif�cult removal of this toxin withconventional water treatment process (Lambertet al., 1996). Additionally, raw water containing1.01 and 1.41 μg L−1 of total microcystins in Fe-bruary and July, respectively, mean exposures todoses near the guideline value for the local popu-lation that uses the reservoir as a recreation site.This situation should be considered as a seriouspublic health threat, since prolonged exposure tomicrocystins can lead to a higher incidence ofliver cancer (Azevedo, 1998; Chorus & Bartram,1999). Exposure of the local population throughcyanotoxin accumulation in fish musculature mustalso be considered (Magalhaes et al., 2001).

The �ndings of the present study are of greatconcern. The water in the Taquacetuba branch isnot treated nor managed, and it is channeled in-to the Guarapiranga Reservoir. Thus, it is recom-

mended that monitoring be intensi�ed, and moreeffective measures be taken by the agencies res-ponsible for the elimination of the causes of theeutrophication process and the consequent deve-lopment of cyanobacteria and its toxins.

ACKNOWLEDGEMENTS

Funded by: CNPQ (NUM. 475166/2006-6)-FAPESP (NUM. 0213376-4). FUNDUNESP:(NUM. 00675/08-DFP).

REFERENCES

ANDRADE, A. A. S. 2005. Analise da e�ciencia davarzea do Ribeirao Parelheiros na melhoria dequalidade das aguas que a�uem a represa do Gua-rapiranga, Sao Paulo. Tesis Doctoral, EESC. Uni-versity of Sao Paulo. 91 pp.

AZEVEDO, S. M. F. O., W. R. EVANS, W. W. CAR-MICHAEL & M. NAMIKOSHI. 1994. First re-port of microcystins from a Brazilian isolate of theCyanobacterium Microcystis aeruginosa. Journalof Applied Phycology, 6: 261-5.

AZEVEDO, S. M. F. O. 1998. Toxinas de ciano-bacterias: Causas e consequencias para a saudepublica. Medicina on line, 3: 1-19.

AZEVEDO, S. M. F. O. & V.VASCONCELOS.2006.Toxinas de cianobacterias: causas e consequenciaspara a saude publica. In: Ecotoxicologia aquatica.Pr�ncipios e Aplicacoes. P. A. Zagatto & E. Berto-letti (Eds.): 433-452. Ed. Rima.

BEYRUTH, Z. & H. A. D. S. L. PEREIRA. 2002. Oisolamento do Rio Grande da represa Billings, SaoPaulo: Efeitos sobre o �toplancton durante um ci-clo hidrologico completo. B. Inst. Pesca, 28: 111-123.

BRASIL 2004. Portaria 518, de 25 de marco de 2004.Diario O�cial da Republica Federativa do Brasil,Poder Executivo. Bras�lia (DF).

BULGAKOV, N. G. & A. P. LEVICH. 1999. The ni-trogen:phosphorus ratio as a factor regulating phy-toplankton community structure. Arch. Hydrobiol.,146: 3-22.

CALIJURI, M. C. C., M. S. A. ALVES & A. C. A.DOS SANTOS. 2006. Cianobacterias e cianotoxi-nas em aguas continentais. 109 pp. Ed. Rima.

Page 104: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Cyanobacteria and Cyanotoxin in the Billings Reservoir (Brasil) 281

CARACO, N. & R. MILLER. 1998. Factors in�uen-cing the abundance of blue-green algae in Floridalakes. Can. J. Fish. Aquat. Sci., 46: 1232-1237.

CARMICHAEL, W. W. 1992. Cyanobacteria secon-dary metabolites-The Cyanotoxins. J. Appl. Bact.,72: 445-459.

CARVALHO, L. R., C. SANT’ANNA, M. C. P.GELMEGO & M. T. P. AZEVEDO. 2007. Cya-nobacterial occurrence and detection of microcys-tin by planar chromatography in surface water ofBillings and Guarapiranga reservoir. Revta. Brasil.Bot., 30(1): 141-148.

CHELLAPPA, N. T. & M. A. M. COSTA. 2003. Do-minant and co-existing species of cyanobacteriafrom a eutrophicated reservoir of Rio Grande doNorte State, Brazil. Acta Oecologica, 24: S3-S10.

CHORUS, I. & J. BARTRAM. 1999. Toxic cya-nobacteria in water-a guide to their publichealth consequences, monitoring and manage-ment. WHO, Spon Press, London.

COSTA, I. A. S., S. M. F. O. AZEVEDO, P. A. C.SENNA, R. R. BERNARDO, S. M. COSTA &N. T. CHELLAPPA. 2006. Occurrence of toxin-producing cyanobacteria blooms in a Brazilian se-miarid reservoir. Braz. J. Biol., 66: 211-219.

FALCONER, I. R. 2005. Cyanobacterial toxins ofdrinking water supplies-cylindrospermopsins andmicrocystins. CRC Press, U.S. 299 pp.

FERNANDES, V. D. O., B. CAVATI, L. B. D. OLI-VEIRA & B. D. A. D. SOUZA. 2009. Ecolo-gia de cianobacterias: Fatores promotores e conse-quencias das �oracoes. Oecol. Bras., 13: 247-258.

GOLTERMAN, H. L., R. S. CLYMO, & M. A. M.OHNSTAD. 1978. Methods for physical and che-mical analysis of freshwaters: Oxford. BlackwellScienti�c Publications, I.B.P. Handbook. 1978.v.8. 213 pp.

HILLER, S., B. KROCK, A. CEMBELLA & B.LUCKAS. 2007. Rapid detection of cyanobacte-rial toxins in precursor ion mode by liquid chro-matography tandem mass spectrometry. Journal ofMass Spectrometry, 42: 1238-1250.

HOYOS, C., A. I. NEGRO & J. J. ALDASORO.2004. Cyanobacteria distribution and abundance inthe Spanish water reservoirs during thermal strati-�cation. Limnetica, 23: 119-132.

JEFFREY, S. W. & G. F, HUMPHREY. 1975. Newspectrophotometric equations for determining ch-lorophylls a, b, c1 e c2 in higher plants, algae, andnatural phytoplankton. Physiol. P�anzen (BPP),167: 191-194.

JENSEN, J. P., E. JEPPESEN, K. OLRIK & P. KRIS-TENSEN. 1994. Impact of nutrients and physicalfactors on the shift from cyanobacterial to chlo-rophyte dominance in shallow Danish lakes. Can.J. Fish. Aquat. Sci., 51: 1692-1699.

KOMAREK, J., J. KORMAKOVA-LEGNEROVA,C. L. SANT’ANNA, M. C. T. AZEVEDO &P. S. SENNA 2002. Two commom Microcystisspecies (Chroococcales, Cyanobacteria) fromtropical America, including M. Panniformics spnov. Cryptogamie. Algologie, 23(2): 159-177.

KOROLEFF, F. 1976. Determination of nutrients. In:Methods of seawater analysis. K. GRASSHOFF(ed.): 117-181. Verlag Chemie Weinhein,

LAGOS, N., H. ONODERA, P. A. ZAGATTO, D.ANDRINOLO, S. M. F. Q. AZEVEDO & Y. OS-HIMA. 1999. The �rst evidence of paralytic she-ll�sh toxins in the freshwater cyanobacterium Cy-lindrospermopsis raciborskii, isolated from Brazil.Toxicon, 37: 1359-1373.

LAMBERT, T. W., HOLMES, C. F. B. & HRUDEY,S. E. 1996. Adsorption of microcystin-LR by acti-vated carbon and removal in full scale water treat-ment. Water Res., 30: 1411-1422.

LORENZEN, C. J. 1967. Determination of chlo-rophyll and pheo-pigments: spectrophotometricequations. Limnol. Oceanogr., 12: 343-346.

MAGALHAES, V. F., R. M. SOARES & S. M. F. O.AZEVEDO. 2001. Microcystin contamination in�sh from the Jacarepagua lagoon (Rio de Janeiro,Brazil): Ecological implication and human healthrisk. Toxicon, 39: 1077-1085.

MACKERETH, F. J. H., J. HERON. & J. F. TA-LLING. 1978. Water analysis: some revised met-hods for limnologists. Freshwater Biological Asso-ciation. Scienti�c Association. n. 36. Titus Wilson& Son Ltda. Kendall. 117 pp.

MINILLO, A., A. H. F. FERREIRA, G. T. YOGUI& J. S. YUNES. 2000. Concentracoes de micro-cistinas e toxicidade na formas coloniais de Mi-crocystis aeruginosa de �oracoes no estuario dalagoa dos Patos, RS. In: Ecotoxicologia. Perspec-tivas para o Seculo XXI. E.L.G. Esp�ndola, C.M.RBotta-Paschoal, O. Rocha, M.B.C. Bohrer, A.L.Oliveira-Neto (eds.): 521-536. Sao Carlos, Ed. Ri-ma.

MOLICA, R. & S. AZEVEDO. 2009. Eco�siologiade cianobacterias produtoras de cianotoxinas. Oe-col. Bras., 13: 229-246.

MOLICA, R., H. ONODERA, C. GARCIA, M. RI-VAS, D. ANDRINOLO, S. NASCIMENTO, H.

Page 105: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

282 Moschini-Carlos et al.

MEGURO, Y. OSHIMA, S. AZEVEDO & N. LA-GOS. 2002. Toxins in the freshwater cyanobacte-rium Cylindrospermopsis raciborskii (Cyanophy-ceae) isolated from Tabocas reservoir in Caruaru,Brazil, including demonstration of a new saxitoxinanalogue. Phycologia, 41: 606-611.

PETTERSSON, K., E. HERLITZ & V. ISTVANO-VICS. 1993. The role of Gloeothrichia echinulatain transfer of phosphorus from sediments to waterin lake Erken. Hydrobiologia, 253: 123-129.

REYNOLDS, C. S. 1987. Cyanobacterial water-blooms. In: Advances in botanical research.Callow, J. (ed.): 67-143. Academic Press. London.

SANT’ANNA, C. L., M. T. D. AZEVEDO. 2000.Contribution to the knowledge of potentially to-xic Cyanobactera from Brazil. Nova Hedwigia,71: 359-385.

SANT’ANNA, C., S. M. SILVA, M. C. CARVALHO,M. C. P. GELMEGO & M. T. P. AZEVDO.2007. Planktic cyanobacteria from upper Tiete basinreservoir, SP, Brasil. Revta. Brasil. Bot., 30: 1-17.

SHAPIRO, J. 1990. Currents beliefs regarding domi-nance by blue-greens: The case for the importanceof CO2 and pH. Vehr. Int. Verein. Theor. Angew.Limnol., 24: 38-54.

SMITH, V. H. 1983. Low nitrogen to phosphorus ra-tios favour dominance by blue-green algae in lakephytoplankton. Science, 221: 669-671.

SMITH, V. H. 1986. Light and nutrient effects on therelative biomass of blue-green algae in lake phyto-plankton. Can. J. Fish. Aquat. Sci., 43: 48-153.

SOUZA, R. C. R., M. C. CARVALHO & A. C.TRUZZI. 1998. Cylindrospermopsis raciborskii(Wolosz.) Seenaya and a contribution to the know-ledge of Rio Pequeno arm, Billings reservoir, Bra-zil. Environmental Toxicology and Water Quality,13: 73-81

STRICKLAND, J. D. & T. R. PARSONS. 1960. Amanual of seawater analysis. Bull. Fish. Res.Board. Can., 125: 1-185.

TILMAN, D., R. KIESLING, R. STERNER, S. S.KILHAM & F. A. JOHNSON. 1986. Green, blue

green and diatom algae: Taxonomic differences incompetitive ability for phosphorus, silicon and ni-trogen. Arch. Hydrobiol., 106: 473-485.

TUCCI, A. & C. L. SANT’ANNA. 2003. Cylindros-permopsis raciborskii (Woloszynska) Seenayya &Subba Raju (Cyanobacteria): Variacao semanal erelacoes com fatores ambientais em um reser-vatorio eutro�co, Sao Paulo, SP, Brasil. RevistaBrasil. Bot. 26: 97-112.

TOLEDO Jr., A. P. DE, N. TALARICO, S. J. CHI-NEZ & E. G. AGUDO. 1993. Aplicacao de mo-delos simpli�cados para a avaliacao de processode eutro�zacao em lagos e reservatorios tropicais.Anais 120 Congresso Brasileiro de Engenharia Sa-nitaria e Ambiental. CETESB: 1-34.

TUCCI, A. & C. L. SANT’ANNA. 2003. Cylindros-permopsis raciborskii (Woloszynska) Seenayya &Subba Raju (Cyanobacteria): variacao semanal erelacoes com fatores ambientais em um reser-vatorio eutro�co, Sao Paulo, SP, Brasil. Revta.Brasil. Bot., 26(1): 97-112.

VASCONCELOS, V. 2006. Eutrophication, toxiccyanobacteria and cyanotoxins: When ecosystemscry for help. Limnetica, 25: 425-432.

VALDERRAMA, J. C. 1981. The simultaneousanalysis of total nitrogen and phosphorus innatural waters. Mar. Chem., 10: 109-122.

WATSON, S. B., E. MCCAULEY & J. A. DOW-NING. 1997. Patterns in phytoplankton taxonomiccomposition across temperate lakes of differingnutrient status. Limnol. Oceanogr., 42: 487-495.

WHATELY, M. & P. CUNHA. 2006. Seminario Gua-rapiranga - Proposicao de acoes prioritarias pa-ra garantir agua de boa qualidade para abasteci-mento publico. Instituto Socioambiental. Sao Pau-lo, 171 pp.

WETZEL, R. G. & G.E. LIKENS. 1991. Limnologi-cal Analyses. 2ond ed. Springer-Verlag. 391 pp.

YUNES, J. S., N. T. CUNHA, L. P. BARROS, L.A. O. PROENCA & J. M. MONSERRAT. 2003.Cyanobacterial Neurotoxins from Southern Brazil.Comments on Toxicology, 9: 103-115.

Page 106: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 283-300 (2009)c© Asociacion Iberica de Limnolog�a, Madrid. Spain. ISSN: 0213-8409

Historical importance of wetlands in malaria transmission insouthwest of Spain

Arturo Sousa1,∗, Fatima Andrade2, Alfredo Felix3, Vicente Jurado4, Alejandra Leon-Botubol1,Pablo Garc�a-Murillo1, Leoncio Garc�a-Barron5 and Julia Morales1

1 Department of Plant Biology and Ecology, University of Seville, C/ Profesor Garc�a Gonzalez, 2, 41012 Seville,Spain. [email protected]; [email protected]; [email protected] Consejer�a de Medio Ambiente de la Junta de Andaluc�a, 41003 Seville, Spain;[email protected] Empresa de Gestion Medio Ambiental S. A. (EGMASA), 41092 Seville, Spain; [email protected] Area of Ecology, University of Pablo Olavide, 41013 Seville, Spain;5 Department of Applied Physics II, University of Seville, Avda. Reina Mercedes s/n, 41012 Sevilla, [email protected]

∗ Corresponding author: [email protected]

Received: 9/1/09 Accepted: 23/9/09

ABSTRACT

Historical importance of wetlands in malaria transmission in southwest of Spain

Malaria is a parasitic disease that is currently affecting a good number of countries with approximately one million deathsper year. Traditionally, this pathology has been related to wetlands and other unhealthy water bodies. It disappeared frommost of Western Europe after the Second World War; however, its eradication from Spain took place later. In fact, the WHOdidn’t of�cially declare malaria in Spain eradicated until 1964, after a gradual controlled process of the illness, through theimprovement of health and hygienic conditions in the country, and the �ght against the vectors, the parasite, and its reservoirs.In 1913, the Spanish regions with the largest number of municipalities with autochthonous malaria were, precisely, those con-taining larger areas covered by unhealthy water bodies (except for Extremadura). Among them, Western Andalusia outstoodas the main region with the largest area of unhealthy malaria focuses and with high mortality and morbidity rates. WithinWestern Andalusia, Huelva —and especially its coastal areas— has been, for centuries, one of the provinces with greaterendemicity.After the Spanish Civil War a process of reforestation with fast-growing species took place in the Coastal Aeolian Sheet ofthe Province of Huelva, which led to an 88 % reduction of the surface covered by ponds in this territory. These lagoons hadstarted a natural regression process by the end of the XIXth Century related to the post-Little Ice Age warming in Andalusia.The parallel evolution of malaria patients and the regression process experienced by these wetlands for the above mentionedreasons have had a determinant in�uence in the eradication of the disease. All of this leads us to consider the relevant role ofwetlands when studying the future risk of malaria reemergence in SW Spain.

Key words: Wetlands, malaria, peat ponds, climate change, Donana, Huelva, SW Spain.

RESUMEN

La importancia historica de los humedales del suroeste de Espana en la transmision de la malaria

La Malaria es una enfermedad parasitaria que, actualmente, afecta a numerosos pa�ses con alrededor de un millon de falleci-dos al ano. Tradicionalmente esta patolog�a se ha asociado a humedales y otros cuerpos de agua insalubres. Desaparecio dela mayor parte de Europa Occidental despues de la II Guerra Mundial, pero en Espana su erradicacion fue mas tard�a. Dehecho hasta 1964, la O.M.S. no declaro erradicada o�cialmente la malaria en Espana, tras un paulatino proceso de controlde la enfermedad, mediante la mejora de las condiciones higienico-sanitarias del pa�s, y las lucha contra los vectores y elparasito, as� como sus reservorios.En 1913 las regiones espanolas con un mayor numero de municipios con paludismo autoctono eran, precisamente, las queten�an una mayor super�cie de cuerpos de aguas insalubres (con la excepcion de Extremadura). Entre ellas Andaluc�a Occi-dental destacaba como la principal region con la mayor super�cie de focos paludicos insalubres, y con una elevada tasa de

Page 107: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

284 Sousa et al.

mortalidad y morbilidad. Dentro de Andaluc�a Occidental Huelva, y especialmente su litoral, ha sido secularmente una delas provincias con mayor endemicidad.Tras la Guerra Civil Espanola se inicia un proceso de reforestacion en el Manto Eolico Litoral onubense, con especies decrecimiento rapido, que condujo a la reduccion del 88 % de la super�cie de las lagunas turbosas de este territorio. Estas la-gunas hab�an iniciado un proceso natural de regresion a �nales del S. XIX asociados a calentamiento posterior a la PequenaEdad del Hielo en Andaluc�a. La evolucion paralela del numero de enfermos de paludismo y el proceso de regresion de estoshumedales, por las causas anteriores, ha in�uido de manera determinante en la erradicacion de la enfermedad. Todo ello noslleva a considerar el papel relevante de los humedales en el estudio del riesgo futuro de re-emergencia de la malaria en elSW de Espana.

Palabras clave: Humedales, paludismo, lagunas turbosas, cambio climatico, Donana, Huelva, SO de Espana.

INTRODUCTION

Traditionally, the presence of malaria and itsprevalence have been related to the existence ofwetlands. This is made evident in the etymology ofthe Spanish word for malaria, “Paludismo”, whichderives from the Latin Palus = “swamp, pool”(Corominas, 1997). Nowadays, malaria is conside-red as the most important among all the parasiticdiseases. It affects more than 100 countries, causesapproximately one million deaths per year and40% of the world population lives in risky areas(White & Breman, 1994; Rotaeche et al., 2001).

Malaria was eradicated from most of WestEurope after the end of the SecondWorldWar (D�azet al., 2005). Its eradication from Spain occurredlater. Concretely at the beginning of the 1960s, asa general improvement of the levels of health andhygiene in Spanish society, specifically through theprevention of infections, the elimination of vectors,and its possible reservoirs, among other strategies.In fact, there are documents reporting deaths until1959 and people suffering autochthonous malariauntil 1961. This is why it was only in 1964 whentheWHOdeclaredmalaria as officially eradicated inSpain (Pletsch, 1965; Bueno & Jimenez, 2008).

Several expert panels have alerted to the riskof reemergence of malaria in temperate (andmountainous) areas, from which it had been al-ready eradicated, as a result of Global Warming(Parry, 2000; McCarthy et al., 2001). Some re-searchers (Loevinsohn, 1994; Mouchet et al.,1998; Martens, 2000) have posed the possibilityof relating the expansion of this pathology to cli-

matic modi�cations or changes, such as GlobalWarming. Other authors question these analy-ses, considering them inaccurate (Reiter, 2004),labelling them as “green alarmism” (Bate, 2004)or pointing out that they disregard the historicalepidemiology of the disease.

As a result of this debate, studies on the risk ofmalaria reemergence have been performed in se-veral West European countries, such as Italy (Ro-mi et al., 2001) and the United Kingdom (Kuhnet al, 2003; Chin & Welsby, 2004). Although the-se results are not so de�nitive as their equiva-lent performed in Africa (Nchinda, 1998), theydo contemplate certain risks related to GlobalWarming. In many cases, aquatic media cons-titute a necessary reservoir for the breeding ofAnopheles, vectors of the Plasmodium parasi-te producing the disease. In spite of the above,the studies considering the role that wetlands areplaying in this issue —as from a multidiscipli-nary perspective— are scarcer. Furthermore, stu-dies approaching the issue as from a limnologi-cal perspective are still less frequent. This is howKuhn et al. (2003) relate the reduction of malariain the United Kingdom at the end of the XIXthcentury to the reduction of wetlands (amongother factors). In addition, Reiter (2000) demons-trated that, during the XVIIth century, the morta-lity rate in England was duplicated, and even tri-pled, in the parishes located in swampy areas, ascompared with those located elsewhere.

In view of this background, this study intro-duces the preliminary results of a multidiscipli-nary project aimed at a thorough analysis of the

Page 108: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Malaria and wetlands in SW Spain 285

historical evolution of malaria in SW Spain andits possible connections with wetlands. Therefo-re, the objective of our work is to analyse someof the main data about the number of patientsand deceased related to malaria in SW Spain and,more speci�cally, regarding the Coastal AeolianSheet in the Province of Huelva (Donana and itssurroundings). Besides, our aim is contributing toknowledge on one of the reasons for the histori-cal desiccation of a good portion of the Spanishwetlands. Finally, we will attempt to contributewith some preliminary considerations referred tothe recent climatic trends and to the risk of re-emergence of malaria in Spain.

In order to attain these goals and consideringthat data is obtained from very different sources,therewas a need to apply diversemethods, althoughalways as fromamultidisciplinary perspective.

DATA AND METHODS

The study is being performed on the basisof two different lines: relative information todeceased and malaria patients and the evolutionof the area of the wetlands.

On one hand, the intent is to reconstruct theevolution of malaria in SW Spain (Western Anda-lusia). These trends need to be put into context, asfar as it is possible, within the framework of therest of Spain. For this purpose, the study of theillness is introduced both at a more general level(the whole Spanish territory) and at a more detailedone (Western Andalusia and, within the latter, theCoastal Aeolian Sheet in the Province of Huelva).

On the other hand, the data related to wetlandsand other water bodies involve an approach on ascale similar to the previous one. First, we willintroduce the data related to focuses of swam-ped areas and malaria for the whole Spanish te-rritory. Further on, a more thorough analysis willbe made on the particular case of the wetlandsin the Coastal Aeolian Sheet in the Province ofHuelva. The area is located in SW Spain (at ap-proximately 37◦10′ latitude N and 6◦45′ longitu-de W), speci�cally within the boundaries of theDonana Natural Park, between the tourist cen-tres of Matalascanas, Mazagon and El Roc�o. The

Table 1. Time period under study on historical data on mala-ria and wetlands. Per�odo temporal estudiado de datos histori-cos de malaria y humedales.

Spatial scale XXth C. XIXth C. XVIIIth C.

Malaria Spain Yes Partial data —

SW Spain Yes Partial data Partial data

Wetlands Spain Partial data — —

SW Spain Yes Yes —

best-preserved formations of hygrophyte heathsof Erica ciliaris in the whole Donana (Andalu-sian) environment, as well as a large number ofsmall lagoons, are located in this area. Today,only a few disperse patches of the original com-munity can be found; they are associated to a se-ries of peat ponds known as Rivatehilos.

In Table 1, a synthesis is provided of both thetemporal distribution of the sources of data andthe spatial scale used in the analysis of the histo-rical data about Malaria and of that related to theevolution of the wetlands.

Data related to patients and deceased byMalaria

The data referred to the XVIIIth Century wereobtained from the questionnaire sent by the ro-yal geographer Tomas Lopez (compiled by RuizGonzalez, 1999) to the parish priests in all theSpanish towns. More precisely, the questionsnumbered four and thirteen referred to the stag-nant waters in each district and to the predomi-nant diseases therein. On the other hand, the da-ta related to the mid XIXth Century were mostlycollected from the Madoz geographic-statistical-historical dictionary (1848).

Both in the XVIIIth and the XIXth centu-ries, the historical documents, report these dataas referred to “tertians” and “quartans” and notto malaria. This terminology can be extrapolatedto other European countries and its relationshipwith the malarial fevers has been clearly eviden-ced by Reiter (2000), when he analysed the cli-nical descriptions in England during the XVIthand XVIIth centuries, and in the case of Spain,by Riera (1984), when he studied the epidemicsin the XVIIIth Century. Concerning the south of

Page 109: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

286 Sousa et al.

Spain, Sousa et al. (2006a) have also performed acomprehensive review, of this very issue, for theProvinces of Granada, Huelva and Seville duringthe XVIIIth Century. According to D�az et al.(2005), during the period in which Malaria wasendemic in Spain, the parasite responsible for thebenign tertian fevers was Plasmodium vivax, forthe malign tertian was Plasmodium falciparum,and for the quartan fevers Plasmodium malariae.

With regard to the XXth Century, we haveused diverse documents from the forest �les inthe region (compiled by Sousa & Garc�a-Murillo,2001) written by Manuel Kith Tassara and Gas-par de la Lama responsible for the intensive refo-restation performed on the coastal sandy areas inthe east of the Province of Huelva.

In order to quantify the evolution of malaria inSpain during the XXth Century, a very thoroughreview was made of the Documentary Archiveof the “Instituto Nacional de Estad�stica” (Natio-nal Institute of Statistics; hereinafter INEbase).These �les correspond with yearly reports startedin 1858 in compliance with the organic regula-tion issued by the General Royal Commission onStatistics (INEbase, 1858).

The first complete data about malaria for thewhole Spanish territory (understood as within thecurrent international boundaries) appeared in 1900.An additional difficulty was the fact that the nameof the disease kept changing in the various yearlyreports at the INEbase; during the first years,reference is made mostly to the symptoms ratherthan to the aetiology itself. Between the early 1900sand 1930, the disease is called “Intermittent feverand malarial cachexia”. From there on, it appearsunder the nameof “Paludismo” (malaria).

These data allowed us to rebuild the trends(in absolute numbers) of malaria patients anddeceased due to malaria in Spain during theXXth Century. For the years 1949 and 1954-1961, for which complete data are available fromall the provinces, the trends were representedcartographically (using the annual mean num-ber of patients at a provincial scale). In order toanalyse the seasonal variations of the disease, themonthly mean number of cases was also repre-sented for the periods in which complete dataare available (1949 and 1954-1960).

Considering that the main objective of the studyis SW Spain, in the case of the Andalusianregion, a more detailed analysis was perfor-med of the local evolution, always dependingon the data available at the INEbase. In orderto study the eradication of malaria in Westernand Eastern Andalusia in a differentiated man-ner, we have used the provincial data for decea-sed (1916-1930) and malaria patients (1949 and1954-1961) in absolute numbers.

Evolution of the extension of the Wetlands

In this section, reference will be made, �rst, to thearea occupied by malaria focuses all over Spainand, secondly, to the evolution of the areas cove-red by malarial wetlands in the Coastal AeolianSheet of the Province of Huelva.

A review was made of the data available onwetlands and other water bodies (“coleccionesl�quidas” in original Spanish) suspicious of beingfocuses of malaria transmission. In this regard,very interesting information was found concerningthe whole Spanish territory, at a regional scale,for the early XXth Century. This informationwas collected from the advanced summary ofstatistical data on malaria in Spain published by theRural Health Inspection (General Department ofAgriculture) for the years 1913 and 1916 (INEbase,1915; INEbase, 1917). In these inventories, thesurface covered by malaria “focuses” in hectareswas collected, understood as the swamped landrequiring sanitation in order to prevent it frombeco-ming contagious focuses and to develop some sortof exploitation. These areas exclude —as itis textually pointed out in the aforementionedinventory— “the focuses involving rice planta-tions, hemp rafts, banks of channelled rivers andbrooks, and road and railway ditches”. Evenso, this inventory of water bodies might con-tain some arti�cially swamped areas. Another in-nate limitation in these data is that, apparently,they exclude swamped areas that are not consi-dered as unhealthy, thus limiting the accountingof wetlands that, potentially, are not a culture me-dium for the vector transmitting malaria.

These inventories also contain data on thenumber of municipalities with cases of malaria

Page 110: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Malaria and wetlands in SW Spain 287

Table 2. Sources of data used for the reconstruction of the area covered by peat ponds. Fuentes de datos empleadas en la recons-truccion del area ocupada por las lagunas turbosas.

Period FieldworkAerial

photographySatelliteimagery

Forestryarchives

Historicaldocuments

Historicalmaps

Microtopographicanalysis

1987 X X X X — — —

1956 — X — X X — —

19th (∼∼∼ 1869) — — — — X X X

vs. their total number in each region, understoodas the municipalities in which malaria is perma-nent (and not imported from other municipali-ties). Furthermore, they collect data on a numberof malaria patients, number of deceased, morbi-dity, mortality, current pricing of the sites withmalaria, approximate cost of works for their sa-nitation, lost work days due to malaria, currentconsumption of quinine, etc.

In the particular case of the Coastal Aeo-lian Sheet in the Province of Huelva, in order tostudy the evolution of the surface covered by peatponds, their situation in 1987, in 1956 and in thelate XIXth Century was mapped. For this purpo-se, data from diverse sources were used, depen-ding on the date, as summarised in Table 2.

More precisely, we have used flights dated in1956 (1:33000) and in 1987 (1:20000), (althoughwe have also consulted flights dated in 1998 andin 2000), along with LANSAT-TM (1986), SPOT(1989) andLANSAT-TM(1990) satellite images.

The analysed historical data obtained fromdocumentary archives and sources (more than20) are essentially from centuries XVI throughXX, along with 49 writings and forest reports onscrubland in the region under study (1932-1978).Besides, studies were made on over 70 his-torical maps especially related to the XVIIIth,XIXth and early XXth centuries.

The situation in 1987, and then in 1956, of thepeat ponds to which the heathlands of Erica cilia-ris are associated was mapped by means of �eld-work and through the photointerpretation of ae-rial photographs and satellite images. The situa-tion at the end of the 19th Century was mappedthrough the interpretation of the historical docu-mentation in the light of the situation in 1956.However, by themselves, these data do not giveway to a standard mapping. Therefore, the his-

torical situation was represented in conventionalmapping with the help of micro relief analyses.The original contour lines at a 1:10 000 scale(from more than 250 topographic elevations) we-re interpolated manually, following a method de-veloped in earlier publications (Sousa & Garc�a-Murillo, 2003). This method enables contour linesto be obtained approximately every 2 metres, fromwhich a hypsometric map is constructed, revealingthe original situation of the former large lagoons,thereby corroborating the historical sources.

RESULTS

Issues related to the historical distribution ofmalaria in Spain

Although the origin of the disease is much ol-der, the �rst known European malaria pandemicsdate back to the XVIth Century (1557-1558) ac-cording to Saenz & Marset (2000). At the end ofthe XVIIIth Century, malaria was markedly epi-demic in Spain (Rico-Avello, 1950; Sousa et al.,2006a). During the XIXth century, it was still sig-ni�cantly virulent, although tending to be moresevere in certain endemic regions that were pri-marily related to different types of inland aquaticecosystems. During the XXth century, the dryingup of wetlands, the improvement in hygienic-social conditions, and the creation in 1924 ofthe Central Anti-Malaria Commission produceda slow reduction of the disease.

According to the data in the INEbase (INEba-se, 1955), an important rise in the number of ma-laria cases took place in Spain right after the Ci-vil War; the greatest mortality took place duringthe years 1941, 1942 and 1943, when the num-ber of deaths was tripled. In the case of the Ebro

Page 111: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

288 Sousa et al.

Delta, although the rise coincided with an increa-se in the area covered by rice plantations, thisdoes not seem to be the cause for the new epide-mic outbreak according to Fabregat (2007). Da-ta obtained from INEbase source reveal that, asfrom the 1950 decade, there were many diseaseswhose morbidity was reduced, although the mostpronounced decrease took place in malarial fe-vers. In the mid ’50s, Seville, Huelva and Cadiz—in this order— were the three provinces inSpain with the largest number of malaria cases,highly distant from the rest, thus turning Wes-tern Andalusia into an important focus of ende-mic malaria. In 1959, the last individual deceasedue to autochthonous malaria occurred in Spain,while the last registered infected individuals inthe provinces of Caceres, Huelva, Salamanca andToledo (INEbase, 1961; INEbase, 1964).This pa-thology evidences a markedly rural distribution,whichmight be related to the proximity ofwetlandsand other swamped areas acting as reservoirs forthe vector transmitting the disease. 2514 caseswerereported in 1955, among which only 20 (0.79%)belonged to provincial capitals, 160 (6.36%) tomunicipalities with more than 20000 inhabitantsand, contrarily, 2334 (92.84%) to municipalitieswith 20 000 or less inhabitants.

The data in the INEbase do not always containthe completenumberofmalaria patients or deceasedin the provincial, regional or national environments.Consequently, there was a need to find out whetherthe data on malaria patients or deceased can beused indistinctly, so as to reach a conclusion onthe distribution of the main focuses of the disease.In order to solve this issue, an analysis was madeof the correlation between absolute number ofmalaria patients and number of deceased at aregional level throughout Spain in 1913. This yearwas selected for the following three reasons: atthat time, eradication work had not been startedby the Central Anti-Malaria Commission, it wasa year with a high number of deceased (almost2000 deaths) and, finally, because this is a year forwhich data are available on the surface covered bymalarial swamped areas throughout Spain.

The analysis of provincial patients versus de-ceased in Spain in 1913, R2 = 0.9091, con�rmedthe expected correlation of both variables and,

therefore, any of them could be used as a tool forexploring the evolution of the disease.

A different although supplementary issue isthe distribution of the number of malaria patientsdue to malaria in the whole Spanish territory.For this purpose, knowing how the disease wasdistributed during the last few years and beforeits de�nite eradication became especially interes-ting. As the pathology starts to be under control,the focuses with the greatest endemicity could beidenti�ed more clearly. As these focuses becameknown, an attempt could be made to establish ifthere was a relationship with the surface and thenumber of swamped areas. Figure 1 shows theprovincial distribution of patients due to malariain Spain during the 1949-1961 period.

Although the number of cases decreased sig-ni�cantly as from 1949, when these years wereanalysed separately, in general terms, the patternof provincial distribution of malaria patients inSpain remained constant. SW Spain continued tobe the main focus of malaria. To be noted are thelow course of the Guadalquivir (Seville, Cadizand the coastal sandy areas of Huelva), alongwith Extremadura (especially Caceres) andCiudadReal. Also the Spanish Mediterranean coastalareas (especially Murcia) were included amongthem. They all correspondwith provinces that havehad or still have important swamped areas.

Malaria focuses and wetlands in Spain

The INEbase contains detailed data on diseases forwhich reporting was mandatory, such as malaria.The same source does also provide interesting datarelated to the presence and the distribution of themalaria focuses (INEbase, 1915; INEbase, 1917).

The information provided is highly relevantbecause, ononehand, aquantificationof theSpanishwetlands is made available, far before than thatperformed by Pardo (1948), in a comprehensive andsystematic manner. On the other hand, it allows torelate the distribution of wetlands with that of mala-ria, especially because it refers to dates prior to thestart of the anti-malaria campaigns all over Spain.

Obviously, these data are not complete becau-se they refer, exclusively, to areas with malariaand unhealthy due to the presence of water bo-

Page 112: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Malaria and wetlands in SW Spain 289

5-20 infected per year

< 5 infected per year

21-100 infected per year

101-400 infected per year

401-725 infected per year

Figure 1. Mean number of malaria patients per province in Spain during the 1949-1961 period. Media provincial anual de enfermospor malaria en Espana durante el per�odo 1949-1961.

dies. Even so, they constitute a novel source ofindirect limnological information by providing a�rst historical image of the distribution of a cer-tain group of wetlands in Spain in the early XXthCentury. Figure 2 shows the regional distributionof malarial focuses, understood as potentially un-healthy water bodies but excluding many wateraccumulations of an anthropic character, some ofwhich can act as important habitat for anopheli-nes. For instance, rice �elds, road and railway dit-ches, and hemp rafts; non-channelled brook andriver banks are neither included.

In 1913, the total malarial surface in the Spa-nish territory that was more or less swamped fordiverse reasons reached 341 070 ha, a �gure thatwas reduced to 313 200 ha by 1916. As can beseen in �gure 2, Western Andalusia outstands asthe region with the greatest surface of malarialfocuses (above 200 000 ha) followed by La Man-cha and Levante. However, the malaria focuses inthe latter region evidenced a strong reduction du-ring the next two years, as can be seen in �gure 2.

The same source includes other social andhealth-related data (the price of malarial land inpesetas, the cost of sanitation works, the yearly

consumption of quinine, an assessment of thelabour days lost due to malaria, etc.). Figure 3shows the regional percentages of municipalitieswith autochthonous malaria in 1913 and 1916.

These data do neither allow us to establisha statistically signi�cant correlation between theregional percentages of malarial municipalitiesand the surface of malarial focuses. However,when �gures 2 and 3 are compared, it can be seenthat, as a general rule, the regions where mala-ria is spread to a higher percentage of munici-palities evidence a larger surface involving mala-rial areas or focuses. De�nitely, Extremadura isan exception in this trend with 86.7% of its mu-nicipalities suffering malaria. Except for this ca-se, the regions with the largest surfaces coveredwith unhealthy water bodies (Western Andalusia,La Mancha and Levante) are the ones involvinga greater density of malarial municipalities (bet-ween 40 and 60% of the whole regions).

Another interesting issue is the seasonal dis-tribution of the disease. Monthly malaria patientsdata are available for all the Spanish territory co-rresponding to 1949 and the 1954-1960 periods.An individual analysis for the various years re-

Page 113: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

290 Sousa et al.

Figure 2. Regional distribution of malaria focuses in Spain in 1913 and 1916. Distribucion regional de focos paludicos en Espanaen 1913 y 1916.

veals a very homogeneous behaviour, regardlessif referred to years with a high rate of patients,such as 1949 (33,919 cases), or to those with ascarce rate, such as 1960 (31 cases). Although thedisease is present throughout the year, the num-ber of cases increases during the warmest monthsand decreases during the coldest ones. This is arelevant issue because of the tentative relation-ship that could exist between the disease and cli-matic variables such as mean or minimal tempe-rature and rainfall. In �gure 4 we have summari-sed the mean seasonal distribution of malaria inSpain during 1949 and the 1954-1960 period.

In �gure 4 it can visualise how —at least du-ring the second half of the XXth Century— thenumber of malaria patients is especially associa-ted to the summertime. The pattern of maximumand minimum temperature is fundamental for the

vector and parasite activity cycles as gathered by(D�az et al., 2005). In a speci�c case of the eas-tern coastal area of Huelva, Anopheles atropar-vus show a distribution that continues from Juneuntil the end of September, although the more nu-merous populations are located in June and Au-gust (Lopez, 1989). According to Sallares (2006)environmental changes altering mosquito bree-ding sites in coastal wetlands had a substantialin�uence on the history of malaria in many partsof Europe during the Holocene.

The case of wetlands in the surroundings ofDonana and malaria

In the late XVIIIth Century, malaria (tertian andquartan fevers) was the most frequent pathologyin most of Andalusia. No relationship could be

Figure 3. Distribution, in percentage terms, of Spanish municipalities with autochthonous malaria with regard to the total numberof municipalities in each region. Distribucion en Espana, en porcentaje, de municipios con paludismo autoctono respecto del totalde municipios de cada region.

Page 114: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Malaria and wetlands in SW Spain 291

Figure 4. Monthly distribution of malaria patients due to ma-laria in Spain during the 1949-1960 period. Distribucion men-sual del numero de enfermos por malaria en Espana durante elper�odo 1949-1960.

established for this period between malaria andthe distribution of wetlands, considering that, inthe late XVIIIth Century (1786-1792), a greatepidemic of tertian fevers ravaged the wholeSpanish territory (Segura, 1990). According toRico-Avello (1950), this one was the most se-vere malaria epidemic in Spain, surpassing theoutbreaks occurred after the First World Warand after the Spanish Civil War.

In the XIXth Century, the data published byMadoz (1848) and Heraso (1890) do alreadyhighlight that the malarial fevers had acquiredgreater endemicity, due to the fact that they hadstarted to be limited and concentrated in the mostswampable areas. Thus, in connection with theCoastal Aeolian Sheet in the Province of Huel-va, Heraso (1890) points out: “... additionally,

a good number of infected lagoons and puddlesare scattered on it, which �ll up the environmentwith unhealthy malarial vapours” (translate toEnglish). However, malaria continues to be a fre-quent disease all over Spain.

Specifically, the municipalities of the easterncoastal area of the Province of Huelva, in whichlagoons and marshlands are present or closer(Almonte, Moguer and Palos), are the ones wherethe presence of malaria appears more clearly. Acomparative summary of the situation in these mu-nicipalities, within the environment of the CoastalAeolian Sheet in the Province of Huelva, during theXVIIIth and XIXth centuries, is shown in Table 3.

During the XXth Century, more-or-less com-plete statistics were already available, allowingthe quantifying of the patient numbers and de-ceased due to malaria all over Spain. The evolu-tion of the disease in the south of Spain con�rmsthe greater signi�cance of the focuses located inWestern Andalusia, as opposed to those in Eas-tern Andalusia. These results are consistent withthe estimated size of the areas involving poten-tially unhealthy marshy or swamped locations inboth regions in 1913 y 1916 (Fig. 2). As it can beseen in �gure 5, from the points of view of bothdeceased and patients, Western Andalusia was amuch more affected region than Eastern Andalu-sia throughout the XXth Century.

This trend remains unchanged in the CoastalAeolian Sheet of the Province of Huelva until the

Table 3. Presence of tertian and quartan fevers in the municipalities of the Coastal Aeolian Sheet of the Province of Huelva duringthe XVIIIth and XIXth centuries. Presencia de �ebres tercianas y cuartanas en los municipios del Manto Eolico Litoral onubensedurante los siglos XVIII y XIX.

MunicipalityMost frequent diseases according

to Tomas Lopez (1785-1790)Most frequent diseases according

to Madoz (1848)

Almonte Tertian diseases Tertian diseases and some pneumonias produced by the vapours ofthe swamps and the warmth of the sand

Bonares Tertian diseases Tertian diseases caused by humidity (winter) and by in�ammatoryfevers (summer)

Hinojos Tertian diseases or periodical fevers Tertian diseases and pneumonias

Huelva Tertian diseases or periodical fevers —

Lucena del Puerto Fevers —

Moguer Typical seasonal diseases Intermittent diseases that started to disappear when the lagoon clo-se to the city was desiccated

Palos de la Frontera Seasonal diseases Intermittent fevers

Page 115: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

292 Sousa et al.

Figure 5. (A) Number of deceased due to malaria in Andalusia during the 1916-1930 period. (B) Number of malaria patients dueto malaria in Andalusia during the 1949-1961 period. (A) Fallecidos por malaria en Andaluc�a durante el per�odo 1916-1930. (B)Enfermos por malaria en Andaluc�a durante el per�odo 1949-1961.

first half of the XXth Century (De la Lama, 1941).According to Ojeda (1987), malaria could be eradi-cated in Almonte (Huelva) between 1957 and 1959.

The causes for this back move of malaria inthe Coastal Aeolian Sheet of the Province ofHuelva appear to be clearly related to a processof local reforestation with pines and eucalyptus(Sousa & Garc�a-Murillo, 2001). This process ledto a de�nite desiccation of most of the lagoons inthis region. Just before the Spanish Civil War, thisterritory of quaternary sandy areas, riddled withswarms of lagoons, was considered as an inhos-pitable and unhealthy place, a barren waste land.This is why this ambitious reforestation processwas started; in the words of one of its brewers, itsobjective was “... that, once reforested, this area—which is currently arid and unhealthy due tomalaria— can be turned into a magni�cent andhealthy pine forest [...] thus providing the regionwith new bene�ts” (Kith, 1936). Still in the mid-dle of the XXth Century, the impression of insa-lubrity caused by this area to one of the managersof the reforestation process was captured in thisdescription (translate to English): “... in that hugeand depressing loneliness that was only distur-bed by the buzzing of the thick cloud of mosqui-toes, potential carriers of malaria, that envelopedus both horses and riders” (De la Lama, 1951).

The natural transmission of malaria occursthrough the bite of mosquitoes of the genusAnopheles of which, although 70 species trans-mit malaria, only around 40 are of medical im-portance. Anopheles gambiae and Anopheles fu-

nestus are the main vectors in tropical Africa.The only potential vector still present in Spain isAnopheles atroparvus the populations of whichis still widely distributed throughout large areas.Anopheles labranchiae, the other vector invol-ved in the transmission of malaria, disappearedfrom the Southeast of the Peninsula in the 70sof XXth (D�az et al., 2005).

The situation of the Donana Natural Parkwetlands as reservoirs for the anophelines, vec-tors of the protozoan producing the malarial fe-vers, appears clearly in the documents dated inthis period. A proof of this is the report written byGaspar De la Lama for the National Forest Patri-mony on the situation in the region. In his report,De la Lama (1941) includes a budget involvinga series of expenditures for struggling againstmalaria. To this end, he proposes: the protec-tion against mosquitoes in home windows, con-tainers with “citronella oil”, whose strong odourfrightens mosquitoes off, and analyses and treat-ments for the affected workers using quinine incase of infection. From a limnological point ofview, the most interesting issue is that, concer-ning the lagoons, he proposes silting up —shouldthis be possible considering its cost—, the intro-duction of Gambusia holbrooki, a �sh introducedin Spain in 1921 (Elvira & Almodovar, 2001) thatfeeds on the mosquito larvae— and, if possible,pouring “Schweinfurt green” (a larvicide derivedfrom arsenic) into the lagoons every two weeks.

This was how a vast and ambitious reforestationprocess was started when the region named “Forest

Page 116: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Malaria and wetlands in SW Spain 293

Figure 6. Location of the peat ponds of the Donana Natural Park (Abalario sector) obtained during a �ight in 1956. It does alsorepresent the distribution of the estates in the Forest Area of the Southeast of Huelva. Developed from Sousa et al. (2006b), modi�ed.Situacion de las lagunas turbosas del Parque Natural de Donana (sector Abalario) elaborada a partir del vuelo de 1956. Tambien serepresenta la distribucion de los cotos de la Comarca Forestal del Sureste de Huelva. Modi�cado a partir de Sousa et al. (2006b).

Land of the Southeast of Huelva” was declaredof “National Interest” and practically the wholeterritory was planted with fast-growing species.Nowadays, the evolution of this reforestationprocess is well known thanks to the studiesperformed by Espina & Estevez (1993), Sousa &Garc�a-Murillo (2001), and Garc�a Murillo (2006),among others. The impact of forest monocultures(especially that of eucalyptus in the areas with peatwetlands) was highly significant. In fact, the sur-face covered by these types of ponds was reduced88.2% (1352.5 ha) during the 1956-1987 period.

In 1956, most of the ponds located withinthe current Donana Natural Park, to which Dela Lama referred, were peat ponds. This explainsthe relationship between malaria and the peatwetlands in the eastern coastal area of the Pro-vince of Huelva during this period. With regardsto the lagoons at Coto Ibarra, in a technical re-port, De la Lama (1941) stated “... most of themkeep holding water during the summer, but theygreatly facilitate the reproduction of mosquitoes(anopheles) and the resulting spread of malaria”(translate to English). Figure 6 shows an image of

the situation of peat ponds in 1956, with heath ve-getation [community of Erico ciliaris-Ulicetum(minoris) lusitanicus] at Coto Ibarra (and at therest of the scrubland in the Forest Area of theSoutheast of Huelva).

Since the mid ’50s, the zone of Coto Ibarrawas made up of an important wetland. In fact, theman in charge of the desiccation of these wetlands,Gaspar de la Lama pointed out that, when he visitedCoto Ibarra for the first time, all of it was one inchdeep and the horse was squelching around (Garc�aMurillo, pers. comm., 2002). The surface of thiswhole set of peat ponds had already been redu-ced drastically in 1987. The peat ponds that, in1956, covered an area of 1533.0 ha distributed in178 patches (Fig. 6), had been reduced to 30 pat-ches or polygons covering 180.5 ha in 1987. Thismeans a retreat rate of 43.6 ha/year.

The desiccation effect produced by the highevapotranspiration of the eucalyptus monocultu-res led to a fall in the height of the water-table, ascon�rmed by hydrogeological studies (Trick &Custodio, 2003). This process led to the desicca-tion of most of the peatlands dominated by Erica

Page 117: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

294 Sousa et al.

ciliaris and Ulex minor, and their replacement bya hygrophyte scrub (dominated by Erica scopa-ria and Ulex australis), better adapted to seasonalswamping (Sousa & Garc�a-Murillo, 2003).

If we go back to the late XIXth Century, theRivatehilos peat wetlands covered an even lar-ger area than in 1956. Between the end of theXIXth Century and 1956, the surface coveredby the ponds of Rivatehilos (within the currentDonana Natural Park) was reduced from 1 738.9to 1 533.0 ha (retreat rate of 2.4 ha/year). As de-monstrated by Sousa et al. (2009), the anthropicimpact was not relevant during this period. Ho-wever, this reduction coincides, as it was poin-ted out by Sousa & Garc�a Murillo (2003) andSousa et al. (2006b), with the end of the thirdand last humid pulse of the Little Ice Age (he-reinafter LIA) in Andalusia. These results are inagreement with the spread of malaria in the mu-nicipalities of the Coastal Aeolian Sheet of theProvince of Huelva at the end of the XIXth Cen-tury, as summarised in Table 3.

All the above leads us to think that the situationcould be more or less similar in most of thewetlands of the Donana National Park and inthose of Palos and Las Madres, which are alsolocated within the eastern coast of the Provinceof Huelva (municipalities of Palos de la Fronteraand Moguer). With regard to the latter ponds,the data obtained from interviews with Mr. PedroWeickert (an ornithologist who used to know andvisit the Palos and Las Madres lagoons in themiddle of the XXth Century), as compiled byFernandez-Zamudio (2005), are quite enlightening.According to these data, at least until the ’40s, thegreat peatland of Las Madres lagoon was a siterejected by the local population because diversehazards were feared, among them the possibilityof catching malaria. The reverse situation occurredwith the lagoons at Palos that, apparently, had acertain social prestige in so far as hunting activitieswere concerned (Fernandez-Zamudio et al., 2007).

Ramsdale and Snow (2000) mention popula-tions of Anopheles atroparvus in the Province ofHuelva. Speci�cally Lopez (1989), has found po-pulations of this species on the Huelva coastli-ne in the “Lagunas de Moguer I and II”, “Arro-yo Galar�n” marshlands, in the “Cabeza del Bu-

jo” marshlands, “Bellavista” marshlands, “Lagu-na del Portil” (and in the adjoining residual pool)and in the “Estero de la Cruz” marshlands. Thisauthor presents the special larvae habitats of theAnopheles atroparvus, on the Coastal AeolianSheet in the Province of Huelva, as small, fresh-water lagoons, although also with low levels ofsaltwater (high saline content can impede the hat-ching of the eggs), with shallow submerged oremerged vegetation, (temporary or permanent la-goon borders) with scarce or no contamination.This description �ts well with the above mentio-ned lagoons, although during the period of stu-dies sampled by Lopez (1989), they were denselyoccupied by eucalyptus, as already commented.

DISCUSSION

Malaria and wetlands in Spain

The possible relationship between the extensionof wetlands and the proliferation of malaria hasbeen lengthily discussed in Spain. There is agood number of historical references on this to-pic; among them, the strong polemics held du-ring the XVIIIth Century with regard to the ex-pansion of the rice �elds at Albufera de Valen-cia, as they were considered as harmful for publichealth (Riera, 1982). This argument is maintai-ned until today, as point out by Fabregat (2007),and only a profound knowledge of the relation-ship between the different components of the ill-ness cycle (vector, parasite, and rice �elds) haspermitted us to overcome, in part, the contradic-tions (Saenz & Marset, 2000; Fabregat, 2007).

In the late XIXth Century and the early XXthCentury, these polemics bore, partially, a policyaimed at the desiccation of swamped and un-healthy areas. Thus, wetlands such as the Padulpeatland in Granada (Perez-Raya & Lopez-Nieto,1991) were desiccated. This issue does also arisein the origin of the process of reforestation of theCoastal Aeolian Sheet in the Province of Huelvaand in the resulting desiccation of large areas ofpeatlands. As it is pointed out by Cirujano & Me-dina (2002), often, malaria has been the reasonput forward for the desiccation of the wetlands.

Page 118: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Malaria and wetlands in SW Spain 295

Rico-Avello (1950) states that Spain containedareas with a marked endemic prevalence that wasaffected by a periodical fluctuation until it acquiredepidemic features all over the country. Accordingto Pittaluga’s data compiled by Rico-Avello (1950)and Fernandez Astasio (2002), between 1903 and1918, the regions affected by malaria were espe-cially Extremadura, Murcia, Andalusia, Toledo andCiudad Real. This distribution is similar to theone existing during the epidemic of the post-Spa-nish Civil War (1939-1943; Rico-Avello, 1950).Therefore, as a general rule, these sources agreewith the provincial mapping on patients for the1949-1961 period developed for this study (Fig. 1).

These data agree with the distribution of malariafocuses in Spain in the early XXth Century. In fact,as it can be seen in figure 2, Western Andalusia,followed by Levante, plus La Mancha, are the re-gions involving the largest areas affected bymalaria.

Evolution of malaria in the Coastal AeolianSheet of the Province of Huelva (SW Spain)

In the early XXth Century, Western Andalusiawas the main focus of malaria in Spain, in so faras its area was concerned. This was an additio-nal factor to the fact that Andalusia contains oneof the richest patrimonies of wetlands in Spainand the European Union, with approximately56% of all the Spanish �oodable areas (Conse-jer�a de Medio Ambiente, 2002).

According to the Consejer�a de Medio Am-biente (2002), the Province of Huelva concen-trates up to 77% of the area of the Andalu-sian wetlands. This very source estimates that themarshlands of the Guadalquivir by themselveshave lost 138 000 ha. These data can be compa-red with the area covered by the malaria focusesin Western Andalusia in 1913 (202,360 ha) andwith the reduction of the Rivatehilos peat pondsstarted in the late XIXth Century (1558.5 ha).

The results of this study evidence how, in theparticular case of the peat ponds located in theCoastal Aeolian Sheet of the Province of Huel-va, its regression has been related to the eradi-cation of malaria. There are several documentsevidencing that the startup of production in thisterritory, previously considered as waste ground

(Espina & Estevez, 1993), was the main objec-tive of intervention upon this space in the Pro-vince of Huelva. Notwithstanding, this processwas also stimulated by the eradication of mala-ria from an area that was historically endemic(Kith, 1936; De la Lama, 1976).

Consequently, these ponds and other wet areaswere subjected to an exhaustive anti-malaria treat-ment, along with a gradual process of desiccation.First, species of eucalyptus more resistant toswamping (such as Eucalyptus camaldulensis)were implanted, followed, as the ponds bowlsdried up, by less-tolerant species (such as Eu-calyptus globulus; Burguers, 1949), until most ofthe peaty formations were dry. In parallel, diver-se activities were performed in a speci�c struggleagainst the reproduction of the Anopheles mos-quitoes in the ponds (De la Lama, 1941).

Thus, the process of desiccation of the peatlandsin the eastern coastal area of the Province of Huelvacontributed effectively (along with other healthfactors) to theeradicationofmalaria fromthecoastalareas of the Province between the late ’50s andthe early ’60s. The presence of the aforementio-ned wetlands, along with other water bodies, ex-plains, to a great extent, why Huelva was one ofthe last provinces in eradicating malaria.

The desiccation of these peat wetlands wasalso related to the LIA in Andalusia (Sousa &Garc�a-Murillo, 2003) and, especially, with thepost-LIA warming (Sousa et al., 2006b). The-se results contrast with the thesis related withthe LIA developed by Reiter (2000) in England.This author argues that there is no relationshipwhatsoever between the algid phase of this cli-matic period in England and the prevalence ofmalaria, so as to prove that there is no rela-tionship between climatic changes and malaria,at least in the past. However, Reiter (2000) con-siders that the effects of the LIA were highly dif-ferent throughout the world and, consequently,that it was not a climatically homogeneous pe-riod in all latitudes. Thus, what in the most north-ern latitudes implied a colder period, implied aseries of wet pulses among drier pulses in mo-re southern latitudes, as in Andalusia (Rodrigoet al., 1999) or the Iberian Mediterranean coast(Barriendos & Mart�n-Vide, 1998).

Page 119: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

296 Sousa et al.

Considerations concerning the risk ofreemergence of malaria in Spain

There is a good number of factors coming intoplay in the analysis of the risk of reappearanceof introduced malaria in Spain. Most of such fac-tors exceed the scope of this study. Although au-tochthonous malaria has been already eradicatedfrom Spain, imported malaria (especially by im-migrants and tourists) is still present. Thus, theSpanish epidemiological pattern is similar to thatin the rest of the surrounding European countries,where a growing trend is observed in this type ofmalaria (Rotaeche et al., 2001).

A priori, Western Andalusia (and, more preci-sely, the eastern coast of the Province of Huelva)is an area involving factors that might favour fu-ture outbreaks of introduced malaria (that is, na-tive mosquitoes with tropical parasites): the pre-sence of wetlands suitable for the reproduction ofthe vector, the presence of nuclei with Anophelesatroparvus (Lopez, 1989), being an area of transitfor emigrants carriers of the disease, etc.

SW Spain has experienced a decrease in springrainfall and an increase in the mean minimumtemperatures since the beginning of the 20th cen-tury (Garc�a-Barron & Pita, 2004; Garc�a-Barron,2007). Loevinsohn (1994) provided evidence ofthe relationship between an increase of the meanminimum temperatures and an increase in theincidence ofmalaria inRwanda.

On the other hand, cases of introduced malariahave appeared in Italy (Baldari et al., 1998), aswell as one case in Spain (Cuadros et al., 2002),although in the opinion of D�az et al. (2005) itmay be a case of airport malaria caused by theproximity of the aerodrome at Torrejon de Ardoz.In the opinionofTran et al. (2008), although severalmodels have predicted a potential increase ofmalaria in Europe, there is a general agreement thatthe risk is very low under current socio-economicconditions. However, occasional autochthonouscases recently reported in Italy, Spain, Germanyand Greece, highlight the importance of updatingthe current distribution of the potential Europeanmalaria vector as a preliminary “mapping risk” steptowardpredicting future scenarios.

An additional factor to be considered is that ofthe current chances for large population move-ments. In the opinion of Rico-Avello (1950), thiswas one of the factors that boosted the epidemicduring the post-Spanish Civil War. In the earlyXXth century, the �ow of emigrants from theSpanish southeast to Algeria did also favour thespread of the disease (Perdiguero, 2005). Morerecently, outbreaks have occurred in the countriesof the former USSR generated by the troops re-turning from Afghanistan (D�az et al., 2005). Thepresence of important demographic �ows, alongwith the proximity of the African coast, imply ad-ditional factors to be considered when analysingthe risk of reemergence.

In the preliminary report on the impact of cli-matic change in Spain (D�az et al., 2005), the re-establishment of malaria is considered as highlyimprobable (as far as a drastic deterioration ofthe social and economic conditions does not ta-ke place). However, in the same report, local andsporadic transmission is not discarded, and nei-ther is the possibility for African vectors suscep-tible to the tropical Plasmodium strains to invadeSpain the southern territory of the Iberian Penin-sula. As Bueno & Jimenez (2008) state, althoughthe socio-economic level of Spain does not ap-pear to foreshadow the possible re-emergence ofthe disease in the short and medium term, the pre-sence of well-established populations of anophe-lini and plasmodium gametocytes circulating in acertain percentage of the human population doesappear to warrant the continuation of the currentstatus of epidemiological surveillance. Moreover,the globalisation of markets and the emergingprocess of climate change could enable the co-lonisation of our territory by part of the Anophe-les species that transmit human plasmodiosis intropical and subtropical regions.

On the other hand Hay et al. (2002a, 2002b),suggest that claimed associations between localmalaria resurgences and regional changes inclimate in East Africa are overly simplistic.Therefore the most parsimonious explanation forrecent changes in malaria epidemiology involvesfactors other than climate change (like variationsin environmental, social and epidemiological fac-

Page 120: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Malaria and wetlands in SW Spain 297

tors). However, this interpretation is not exemptfrom controversy (Patz et al., 2002).

In our opinion, all the above factors lead tothink of a very low risk that is only limited tolittle outbreaks of introduced malaria. However,the history of the disease suggests the need tokeep alert and to increase research efforts as froma multidisciplinary approach.Thisvery idea is sha-red byLindsay&Thomas (2001)with particular re-ference to the marshland areas in southern England.

ACKNOWLEDGMENTS

This study was �nanced by the Spanish Minis-try of Education and Science - Project CGL2006-07194/BOS “Recent climatic changes and risk ofMalaria reappearance in SW Andalusia (Spain)”.

REFERENCES

BALDARI, M., A. TAMBURRO, G. SABATINE-LLI, R. ROMI, C. SEVERINI, G. CUCCAGNA,G. FIORILLI, M. P. ALLEGRI, C. BURIANI &M. TOTI 1998. Malaria in Maremma, Italy. Lan-cet, 351: 1246-1247.

BARRIENDOS,M. & J. MARTIN-VIDE. 1998. Se-cular climatic oscillations as indicated by catastro-phic floods in the SpanishMediterranean coastal area(14th-19th centuries). Clim. Change, 38: 473-491.

BATE, R. 2004. Climate Change and Mosquito-Borne Disease: causal link or green alarmism?.AEI, 2004: 1-6.

BUENO, R. & R. JIMENEZ. 2008. Malaria en Es-pana: aspectos entomologicos y perspectivas de fu-turo. Rev. Esp. Salud Publica, 82: 467-479.

BURGUERS, T. 1949. El arboretum forestal de Vi-llarejo. Rev. de Montes, 29: 400-404.

CHIN, T. & P. D. WELSBY. 2004. Malaria in theUK: past, present and future. Postgrad. Med. J.,80: 663-666.

CIRUJANO, S. & L. MEDINA. 2002. Plantasacuaticas de las lagunas y humedales de Castilla-La Mancha. Junta de Comunidades de Castilla-LaMancha. Madrid. 340 pp.

CONSEJERIADEMEDIOAMBIENTE. 2002. PlanAndaluz de Humedales. Junta de Andaluc�a, Sevi-lla. 218 pp.

COROMINAS, J. 1997. Breve Diccionario Etimologi-co de la Lengua Castellana. Gredos. Madrid. 627pp.

CUADROS, J., M. J. CALVENTE, A. BENITO, J.AREVALO, M. A. CALERO, J. SEGURA & J. M.RUBIO. 2002. Plasmodium ovale malaria acquiredin central Spain. Emerg. Infect. Dis., 8: 1506-1508.

DE LA LAMA, G. 1941. Memoria de reconocimien-to y propuesta de trabajos de la �nca “Coto Iba-rra” (Informe Tecnico). Patrimonio Forestal delEstado. 45 pp.

DE LA LAMA, G. 1951. Diez anos de trabajos fo-restales. Rev. de Montes, 39: 195-201.

DE LA LAMA, G. 1976. Atlas del Eucalipto. I.C.O.N.A. Sevilla.

DIAZ, J., F. BALLESTER & R. LOPEZ-VELEZ.2005. Impactos sobre la salud humana. In: Eva-luacion preliminar de los impactos en Espanapor efecto del Cambio Climatico. J. M. MorenoRodr�guez (ed.): 727-772. Ministerio de MedioAmbiente.

ELVIRA, B. & A. ALMODOVAR. 2001. Freshwa-ter �sh introductions in Spain: facts and �guresat the beginning of the 21st century. J. Fish Biol.,59: 323-331.

ESPINA, J. & A. ESTEVEZ. 1993. El espacio derepoblacion de Cabezudos-Abalario. In: Interven-ciones Publicas en el Litoral Atlantico andaluz.Efectos territoriales. M. Granados & J. F. Ojeda(eds.): 95-107.Agencia deMedioAmbiente. Sevilla.

FABREGAT, E. 2007. Arroz, paludismo y tecnica enel Delta del Ebro (1850-1960). VIII Congreso dela Asociacion de Demograf�a Historica. 30 mayo,1-2 Junio. Mao (Menorca). 1-33.

FERNANDEZ ASTASIO, B. 2002. La erradicaciondel paludismo en Espana: aspectos biologicos dela lucha antipaludica. Ph. D. Thesis. UniversidadComplutense de Madrid, 436 pp.

FERNANDEZ ZAMUDIO, R. 2005. Estudio de la�ora, vegetacion y cambios en el paisaje de la lagu-na de Las Madres (Huelva). Tesis de licenciatura.Universidad de Sevilla, 431 pp.

FERNANDEZ ZAMUDIO R., A. SOUSA. & P.GARCIA MURILLO. 2007. Laguna de las Ma-dres (Huelva). Flora y Vegetacion. Consejer�a deMedio Ambiente. Sevilla. 287 pp.

GARCIA-BARRON, L. & M. F. PITA. 2004. Sto-chastic analysis of time series of temperature inthe south-west of the Iberian Peninsula. Atmosfe-ra, 17: 225-244.

GARCIA-BARRON, L. 2007. La evolucion climati-ca del Suroeste de la Pen�nsula Iberica basada

Page 121: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

298 Sousa et al.

en registros instrumentales. In: Climate Changein Andaluc�a: trends and environmental conse-quences. A. Sousa, L. Garc�a-Barron & V. Jurado(eds.): 81-95. Consejer�a de Medio Ambiente.

GARCIA-MURILLO, P. 2006. Reconstruction of theAbalario Landscape. A referent model for environ-mental restoration in Donana. In: Donana. Waterand Biosphere. F. Garc�a Novo & C. Mar�n Cabre-ra (eds.): 283-287. Ministerio de Medio Ambiente.

HAY, S. I., J. COX, D. J. ROGERS, S. E. RAN-DOLPH, D. I. STERNK, G. D. SHANKS, M. F.MYERS & R. W. SNOW. 2002a. Climate changeand the resurgence of malaria in the East Africanhighlands. Nature, 415: 905-909.

HAY, S. I., J.COX,D. J.ROGERS,S.E.RANDOLPH,D. I. STERNK, G. D. SHANKS, M. F. MYERS &R.W. SNOW. 2002b.Reply toRegionalwarming andmalaria resurgence.Nature, 420:628.

HERASO, J. 1890. Estudio sobre la �jacion de lasdunas situadas en el termino municipal de Almon-te, provincia de Huelva. Primera Parte. Rev. deMontes, 322: 281-287.

INEbase. 1858. Anuario Estad�stico de Espana, p. VII.National Institute of Statistics Document Collection.National InstituteofStatistics.

INEbase. 1915. Anuario Estad�stico de Espana, p. 524.National Institute of Statistics Document Collection.National InstituteofStatistics.

INEbase. 1917. Anuario Estad�stico de Espana, p. 543.National Institute of Statistics Document Collection.National InstituteofStatistics.

INEbase. 1955. Anuario Estad�stico de Espana, p. 751.National Institute of Statistics Document Collection.National InstituteofStatistics.

INEbase. 1961.AnuarioEstad�sticodeEspana, p. 782-783. National Institute of Statistics Document Co-llection. National Institute of Statistics.

INEbase. 1964. Anuario Estad�stico de Espana, p. 331.National Institute of Statistics Document Collection.National InstituteofStatistics.

KITH, M. 1936. Propuesta de ampliacion del pro-yecto de �jacion y repoblacion de las Dunas de Al-monte. V Division Hidrologico-Forestal del Gua-dalquivir. Documento tecnico., 15 pp.

KUHN, K. G., D. H. CAMPBELL, B. ARMSTRONG& C. R. DAVIES. 2003. Malaria in Britain: past,present, and future.PNAS,19: 9997-10001.

LOEVINSOHN, M. E. 1994. Climatic warming andincrease malaria incidence in Rwanda. Lancet,343: 714-718.

LINDSAY, S. W. & C. J. THOMAS. 2001. Globalwarming and risk of vivax malaria in Great Britain.Glob. Change & Human Health, 2: 80-84.

LOPEZ, S. 1989. Control integral de mosquitos enHuelva. Consejer�a de Salud y Servicios Socialesde la Junta de Andaluc�a. Sevilla, 340 pp.

MADOZ, P. 1848.DiccionarioGeografico-estad�stico-historico de Espana y sus posesiones de Ultramar.Edicion facs�mil de las voces de la provincia deHuelva. Sanchez Zorro, D. (ed). Ambito Ediciones(reimpresion1988).Salamanca. 132pp.

MARTENS, P. 2000. Malaria and Global Warming inPerspective? Emerg. Infect. Dis., 6: 313-314.

MCCARTHY, J. J., O. F. CANZIANI, N. A. LEARY,D. J. DOKKEN & K. S. WHITE. 2001. Clima-te Change 2001: impacts, adaptation, and vul-nerability. Contribution of Working Group II tothe Third Assessment Report of Intergovernmen-tal Panel on Climate Change. Cambridge Univer-sity Press. Cambridge. 1100 pp.

MOUCHET, J., S. MANGUIN, S. LAVENTURE, O.FAYE, A. W. ONAPA, P. CARNEVALE, J. JUL-VEZ & D. FONTENILLE. 1998. Evolution of Ma-laria in Africa for the past 40 years: impact of cli-mate and human factors. J. Am. Mosquito Contr.,14: 121-130.

NCHINDA, T. 1998. Malaria: a reemerging diseasein Africa. Emerg. Infect. Dis., 4: 398-403.

OJEDA, J. F. 1987. Organizacion del territorio enDonana y su entorno proximo (Almonte). SiglosXVIII-XX. I.C.O.N.A. Madrid. 459 pp.

PARDO, L. (1948).Catalogo de los Lagos de Espana.Ministerio de Agricultura. Instituto Forestal deInvestigacionesyExperiencias.Madrid. 520pp.

PARRY, M. L. 2000. Assessment of Potential Effectsand Adaptations for Climate Change in Europe: theEurope ACACIA Project. Jackson Environment Ins-titute, University of East Anglia. Norwich. 320pp.

PATZ, J. A., M. HULME, C. ROSENZWEIG, T. D.MITCHELL, R. A. GOLDBERG, A. K. GITHE-KO, S. LELE, A. J. MCMICHAEL & D. LESUEUR. 2002. Regional warming and malaria re-surgence. Nature, 420: 627-628.

PERDIGUERO, E. 2005. Huerta, arroz y mosquitos:la lucha contra el paludismo en la provincia de Ali-cante. Cuad. Hist. Esp., 79: 203-235.

PEREZ RAYA, F. & J. M. LOPEZ NIETO. 1991.Vegetacion acuatica y helof�tica de la depresionde Padul (Granada). Acta Botanica Malacitana,16: 373-389.

Page 122: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Malaria and wetlands in SW Spain 299

PLETSCH, D. 1965. Informe sobre una mision efec-tuada en Espana en septiembre-noviembre de 1963destinada a la certi�cacion de la erradicacion delpaludismo. Rev. Sanid. Hig. Publica, 39: 309-367.

RAMSDALE, C. D. & K. SNOW. 2000. Distributionof the genus Anopheles in Europe. Eur. Mosq.Bull., 7: 1-28.

REITER, P. 2000. From Shakespeare to Defoe: Ma-laria in England in the Little Ice Age. Emerg. In-fect. Dis., 6: 1-11.

REITER, P., C. J. THOMAS, P. M. ATKINSON, S.I. HAY, S. E. RANDOLPH, D. J. ROGERS, G. D.SHANKS, R. W. SNOW & A. SPIELMAN. 2004.Global warming and malaria: a call for accuracy.Lancet Infect. Dis., 4: 323-24.

RICO-AVELLO, C. 1950. La epidemia de paludismode la postguerra. Rev. Sanid. Hig. Publica, 24: 701-737.

RIERA, J. 1982. Estudios y documentos sobre elarroz y paludismo en Valencia (Siglo XVIII). Uni-versidad de Valladolid. Valladolid. 193 pp.

RIERA, J. 1984. Fiebres y paludismo en la EspanaIlustrada (Felix Ibanez y la epidemia de La Alca-rria 1784-1792). Universidad de Valladolid. Valla-dolid. 75 pp.

RODRIGO, F. S., M. J. ESTEBAN-PARRA, D.POZO-VAZQUEZ & Y. CASTRO-DIEZ. 1999.A 500 year precipitation record in Southern Spain.Int. J. Clim., 19: 1233-1253.

ROMI, R., G. SABATINELLI, & G. MAJORI. 2001.Could malaria reappear in Italy? Emerg. Infect.Dis., 7: 915-919.

ROTAECHE, V., G.HERNANDEZ&S.DEMATEO.2001. Vigilancia epidemiologica del paludismo enEspana 1996-1999. Bol. Epidemiologico, 9: 21-25.

RUIZ GONZALEZ, J. E. 1999. Huelva, segun las re-laciones enviadas por los parrocos al geograforeal Tomas Lopez en el siglo XVIII. DiputacionProvincial de Huelva. Huelva. 427 pp.

SAENZ, J. M. & P. MARSET. 2000. Teor�a academi-ca y practica ciudadana en el paludismo. Las cau-sas de las enfermedades endemicas en Murcia du-rante el siglo XVIII desde la perspectiva de la ad-ministracion local. Asclepio, 52: 167-183.

SALLARES, R. 2006. Role of environmental chan-ges in the spread of malaria in Europe during theHolocene. Quat. Int., 150: 21-27.

SEGURA, C. 1990. Introduccion. In: DiccionarioGeogra�co de Andaluc�a: Sevilla C. Segura(ed.): 3-9. Don Quijote.

SOUSA, A. & P. GARCIA-MURILLO. 2001. Canplace names be used as indicators of landscapechanges? Application to the Donana Natural Park(Spain). Lands. Ecol., 16: 391-406.

SOUSA, A. & P. GARCIA-MURILLO. 2003. Chan-ges in the Wetlands of Andalusia (Donana NaturalPark, SW Spain) at the End of the Little Ice Age.Clim. Change, 58: 193-217.

SOUSA, A., P. GARCIA MURILLO & L. GARCIABARRON. 2006a. Paludismo, cambios climaticosy humedales en el litoral oriental onubense. Aes-tuaria, 9: 179-204.

SOUSA, A., L. GARCIA-BARRON, J. MORALES& P. GARCIA-MURILLO. 2006b. Post-Little IceAge warming and desiccation of the continentalwetlands of the Aeolian sheet in the Huelva region(SW Spain). Limnetica, 25: 57-70.

SOUSA, A., P. GARCIA-MURILLO, S. SAHIN, J.MORALES. & L. GARCIA-BARRON. 2009.Wetland place names as indicators of manifes-tations of recent climate change in SW Spain(Donana Natural Park). Clim. Change (in press).

TRAN, A., N. PONCON, C. TOTY, C. LINARD, H.GUIS, J. B. FERRE, D. LO SEEN, F. ROGER, S.DE LA ROCQUE, D. FONTENILLE & T. BAL-DET. 2008. Using remote sensing to map larvaland adult populations of Anopheles hyrcanus (Dip-tera: Culicidae) a potential malaria vector in Sout-hern France. Int. J. Health Geogr., 7: 9.

TRICK, T. & E. CUSTODIO. 2003. Hydrodynamiccharacteristics of the western Donana Region (areaof El Abalario), Huelva, Spain. Hydrogeol. J.,12: 321-335.

WHITE, J. N. & J. G. BREMAN. 1994. Paludismo ybabebiosis. In: Harrison. Principios de Medicina In-terna. K. J. Isselbacher, E. Braunwald, J. D. Wilson,J. B.Martin,A. S. Fauci&D.L.Kasper. (eds.): 1029-1041. Interamericana y McGraw-Hill. Madrid.

Page 123: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats
Page 124: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

INSTRUCCIONES PARA LOS AUTORES

Ambito de publicacion de LimneticaLimnetica publica art�culos originales de investigacion sobre la ecolog�a

de las aguas continentales. El ambito de publicacion de Limnetica incluyela ecolog�a de r�os, lagos, embalses, lagunas costeras, zonas humedas, bio-geoqu�mica, paleolimnolog�a, desarrollo de metodolog�as, taxonom�a, biogeo-graf�a y todos los aspectos de la ecolog�a acuatica continental teorica yaplicada como gestion y conservacion, evaluacion de impactos, ecotoxicolog�ay contaminacion. Por este motivo Limnetica aceptara para su publicacionart�culos cient��cos presentando avances del estado del conocimiento, dedesarrollo tecnologico as� como los que resulten de aplicaciones practicasnovedosas en las especialidades de interes de la revista.

Presentacion de manuscritosLos autores interesados deberan enviar un manuscrito v�a e-mail al

Editor de la revista ([email protected]). Tambien se podra enviar por correoordinario un original mas dos copias en papel y una en soporte magnetico(CD, DVD o similares) al Editor de la revista. La copia en soporte informaticoestandarizado incluira un �chero unico con el texto, las tablas y las �gurassegun las presentes normas de publicacion. Este �chero estara en un editorde textos compatible con un ordenador tipo PC (preferentemente Word, oprograma compatible).

Tanto los originales impresos como las copias en soporte magnetico serealizaran en hojas tipo A-4 y estaran escritos a doble espacio. Los art�culosno sobrepasaran las 6 000 palabras en el texto ni 25 hojas impresas (incluidas�guras y tablas) y podran estar escritos en castellano o en ingles. Excepcional-mente, y previa consulta con el Editor, se podran presentar manuscritos demayor longitud que versen sobre revisiones generales, sistematica de grupostaxonomicos amplios o estudios regionales comparativos de un mismo tipo deecosistemas acuaticos. No se aceptaran aquellos trabajos que no cumplan laspresentes instrucciones de publicacion.

El Comite Editorial de Limnetica decidira sobre la publicacion o no delos trabajos recibidos, e informara de ello a los autores. Los autores recibiranantes de su publicacion una copia de las primeras pruebas de imprenta de sutrabajo para su correccion. Una vez publicado el trabajo, el autor responsablede la publicacion recibira una copia en formato pdf.

Estructura del manuscritoTodas las palabras en MAYUSCULAS se acentuaran tanto en el TITULO

como en los apartados (INTRODUCCION, etc.).La primera pagina del manuscrito ha de contener los siguientes apartados:• T�tulo en mayusculas.• Relacion de autores con indicacion del autor responsable a efectos de la• correspondencia. Se debera indicar expresamente la direccion e-mail de• dicho autor.• Direccion postal completa de los autores.• T�tulo abreviado.La segunda pagina incluira el Resumen en castellano, palabras clave, el

Abstract en ingles y keywords. Tanto el Resumen como el Abstract no deberansobrepasar las 400 palabras y deberan incluir el t�tulo del trabajo en el idiomacorrespondiente.

Las siguientes paginas se ordenaran en apartados que se estructuraran alestilo cient��co. Los apartados y parrafos del texto comenzaran sin sangrado.Se acentuaran las mayusculas en todos los casos.

Los apartados se escribiran sin numerar y se escalaran segun el siguienteformato:

Apartado primario.- Mayusculas y en negrita (INTRODUCCION).Apartado secundario.- Minusculas y en negrita.Apartado terciario.- Italica.Apartado de cuarto nivel.- Letra normal subrayada.Siguientes niveles.- numericos (1), (1.1), (1.1.1), etc.Las Tablas constituyen una de las partes mas costosas en tiempo y

presupuesto por lo que se ruega se preparen procurando ocupar el m�nimoespacio posible. Las tablas pueden tener la anchura de una columna (8 cm) odos columnas (16 cm) y su longitud no puede exceder de 25 cm. Se incluiranal �nal del manuscrito y tendran numeracion arabiga. En el texto siempre secitaran de forma completa (p.e. Segun se puede ver en la Tabla 6... etc. o,Los datos (Tabla 6) indican que... etc.) y nunca en forma abreviada –Tab. 6 otab. 6. Las leyendas de las tablas se presentaran en castellano e ingles y seincluiran en el mismo apartado que el texto de las �guras. No deberan usarsel�neas verticales y los encabezamientos de las columnas deberan ser breves. Se

prestara particular atencion en no publicar tablas que dupliquen informacionque ya esta en forma de �guras.

Las �guras tendran numeracion arabiga con el texto explicativo en el pie.El texto incluira la version en castellano y en ingles. Las �guras pueden ir atres tipos de caja 8, 12.5 y 16 cm. Los autores procuraran que los originalestengan el tamano de letra y el grueso de l�nea necesario para que al reducirsepuedan ser interpretables y legibles. No se aceptaran �guras que no cumplaneste requisito.

Los pies de �gura, junto con los encabezamientos de las tablas, estaran enuna pagina aparte situada inmediatamente despues de la bibliograf�a y antesde las tablas y �guras.

Las citas de las �guras en el texto se haran de forma completa y enminuscula cuando se inserte dentro del texto de un parrafo (p.e. En la �gura1 se indica la situacion de los puntos de muestreo). Por el contrario, secitara de forma abreviada y en mayuscula cuando este entre parentesis y norelacionada directamente con el texto del parrafo [p.e. Las muestras se hanrecogido en cinco estaciones distribuidas a lo largo del r�o (Fig. 1) y con unaperiodicidad mensual]. Las �guras y fotograf�as en color solo se aceptaran deforma excepcional y previa consulta con el Editor.

Las unidades se expresaran preferiblemente en el Sistema Internacional(S.I.) con los s�mbolos en forma abreviada cuando vayan precedidos de unaexpresion numerica. Cuando se exprese un valor como combinacion de dosunidades estas se indicaran con el signo aritmetico correspondiente p.e. m/s,mol/ m3, ind/l, pero para mas de dos unidades se usaran exponentes, p.e. m/s,mol/m3 ind/l, pero para mas de dos unidades se usaran exponentes, p.e. mgCm−2 h−1 μmol m−2 s−1.

Las cantidades con decimales se expresaran con un punto (4.36), los milescon cuatro numeros sin ninguna separacion o s�mbolo (4392) y para valoresiguales o superiores a las decenas de mil se intercalaran blancos separando losmiles (13 723 o 132 437). Siempre que sea posible se indicaran los numeroscon notacion exponencial decimal con el m�nimo posible de decimales (13.7 ·103, 13.2 · 104).

La BIBLIOGRAFIA se ordenara al �nal del texto, alfabeticamente ycronologicamente para cada autor, segun las pautas siguientes:

• Revistas:RUEDA, F. J., E. MORENO-OSTOS & J. ARMENGOL. 2006. The

residence time of river water in reservoirs. Ecological Modelling, 191: 260-275.

GRACA M. A. S. & C. CANHOTO. Leaf litter processing in low orderstreams. Limnetica, 25(1-2): 1-10.

RECHE, I., E. PULIDO-VILLENA, R. MORALES-BAQUERO & E. O.CASAMAYOR. 2005. Does ecosystem size determine aquatic bacterial rich-ness? Ecology, 86: 1715-1722.

• Libro:KALFF, J. 2002. Limnology. Prentice Hall. NJ. USA. 592 pp.• Cap�tulo de libro:IMBODEN, D. M. 1998. The in�uence of Biogeochemical Processes on

the Physics of Lakes. In: Physical Processes in Lakes and Oceans. J. Iberger(ed.): 591-612. American Geophysical Union. Washington. USA.

• Congresos:GEORGE, D. G. 2006. Using airborne remote sensing to study the mixing

characteristics of lakes ans reservoirs.10th European Workshop on PhysicalProcesses in Natural Waters. June 26-28, 2006. Granada, Spain: 2001-207.

• Informes:DOLZ, J. & E. VELASCO. 1990. Analisis cualitativo de la hidrolog�a

super�cial de las cuencas vertientes a la marisma del Parque Nacional deDonana (Informe Tecnico). Universidad Politecnica de Cataluna. 152 pp.

• Tesis y Maestrias:MORENO-OSTOS, E. 2004. Spatial dynamics of phytoplankton in El

Gergal reservoir (Seville, Spain). Ph.D. Thesis. University of Granada. 354 pp.THOMPSON, K. L. 2000. Winter mixing dynamics and deep mixing in

Lake Tahoe. Master’s Thesis, University of California, Davis. 125 pp.En el manuscrito se listaran unicamente los trabajos citados en el texto; en

este, las referencias se haran en minusculas (Kalff, 2002; Dolz & Velasco,1991; Rueda et al., 2006). En ningun caso se aceptaran como referenciastrabajos no publicados (p.e. en preparacion) o aun no aceptados (p.e. enviado).S� se podran incluir citas de trabajos aceptados para su publicacion (enprensa). Se recuerda la conveniencia de reducir al maximo las referenciasbibliogra�cas de dif�cil consulta como informes, resumenes a congresos, etc.

Page 125: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

INSTRUCTIONS FOR AUTHORS

ScopeLimnetica publishes original research papers on ecology of continental

waters. Its scope includes ecology of rivers, lakes, reservoirs, lagoons andwetlands, biogeochemistry, paleolimnology, development of new methods,taxonomy, biogeography, and all aspects of theoretical and applied continentalaquatic ecology, like management and conservation, impact assessment,ecotoxicology and pollution. Limnetica will accept for publication scienti�cpapers presenting advances in knowledge or technological development, aswell as papers derived from new practical approaches on the topics coveredby the journal.

Manuscript presentationManuscripts must be submitted by e-mail to the journal Editor (jarmen-

[email protected]). Manuscripts also can be sent to the Editor by regular mail (orig-inal plus two hard copies and one digital copy. The digital copy must include a�le with text, tables and �gures following the present instructions, made withPC-compatible text-edition software (MSWord, Wordperfect, etc.).

Both hard and digital copies will be typed at double space on A-4 sheets.Papers can be written in Spanish or English, and must not exceed 6000 wordsof text nor 25 printed pages (�gures and tables included). Exceptionally, andafter consulting the Editor, longer manuscripts can be published for generalreviews, systematics of broad taxonomic groups, or regional comparativestudies of one kind of aquatic ecosystems. Papers that do not follow the presentinstructions will be rejected.

Limnetica’s Editorial Board will decide whether to publish or not thereceived manuscripts, and will tell their decision to the authors. Prior topublication, authors will get galley proofs to be corrected. When the paperhas been published, the leading author will get a copy in pdf format.

Manuscript structureFor manuscripts in Spanish, words in UPPER CASE will be accentuated

when convenient, both in the title and section headings (INTRODUCCION,etc.).

The �rst page must include:• Title in upper case.• List of authors detailing the corresponding author, whose e-mail address• must be shown.• Complete postal address of authors.• Running title.The second page will include Abstract and key words, both in English and

Spanish. Abstracts must start with the title and not exceed 400 words.Following pages must be structured in sections following the scienti�c

style. Section headings and text will have no left indent. Upper case words inSpanish will be accentuated.

Sections and subsections will not be numbered, and must adjust to thefollowing format:

Main section.- Bold, upper case (INTRODUCTION).2nd-level section.- Bold, lower case.3rd-level section.- Italics.4th-level section.- Plain text, underlined.Lower-level sections.- They will go numbered (1), (1.1), (1.1.1), etc.Tables are one of the most costly parts, both in terms of time and money;

therefore, they must be drawn as compact as possible. Tables can be 1-column(8 cm) or 2-column (16 cm) wide, and their length cannot exceed 25 cm. Theywill be included at the end of the manuscript and numbered in Arabic numbers.In the text they will be written in complete form (e.g., as can be seen in Table6. . . , or Data (Table 6) show that. . . ), never in abbreviated form (neither Tab.6 nor tab. 6). Table captions will be written in both English and Spanish, andwill be included in the text in the same section than Figure legends. No verticallines can be drawn in tables, and column headings must be short. No table willbe published that shows information presented in �gures.

Figures will have Arabic numbers, and legends will go below, both inEnglish and Spanish. Figures can �t three box-sizes: 8 cm, 12.5 cm, or 16 cm.

Authors must make sure that font size and line thickness can be easily readafter reduction, otherwise �gures will be rejected.

Figure legends and table captions will go in a page after Literature Citedand before Tables and Figures.

Figure calls must be made in complete, lower case form when in the text(e.g., Location of sampling sites is shown in �gure 1), in abbreviated, uppercase when going in a parenthesis and not directly related to the text [e.g.,Samples were taken monthly at �ve sites along the river (Fig. 1)]. The Editorwill accept to publish colour �gures and photographs only exceptionally andwhen explicitly requested.

Units must be expressed preferably following the International System(I.S.), with abbreviated symbols when preceded by numeric expressions.Values combining two units must be expressed with the correspondingarithmetic sign, like m/s, mol/m3, ind/l, but when there are more than twounits exponentials must be used, like in mgC m−2 h−1, μmol m−2 s−1.

Decimal numbers will be expressed with a dot (4.36), thousands with 4digits, with no blank space or symbols (4392), and �gures over ten thousandwill have blank space markings (13 723 or 132 437). Whenever possible thescienti�c notation will be used, with the smallest possible number of decimals(13.7·103, 13.2·104).

BIBLIOGRAPHY will be after the text, in alphabetic order, chronologi-cally for each author, and adhere to the following style:

• Journals:RUEDA, F. J., E. MORENO-OSTOS & J. ARMENGOL. 2006. The

residence time of river water in reservoirs. Ecological Modelling, 191: 260-275.

GRACA M. A. S. & CRISTINA CANHOTO. Leaf litter processing in loworder streams. Limnetica, 25(1-2): 1-10.

RECHE, I., E. PULIDO-VILLENA, R. MORALES-BAQUERO & E. O.CASAMAYOR. 2005. Does ecosystem size determine aquatic bacterial rich-ness? Ecology, 86: 1715-1722.

• Books:KALFF, J. 2002. Limnology. Prentice Hall. NJ. USA. 592 pp.• Book chapters:IMBODEN, D. M. 1998. The in�uence of Biogeochemical Processes on

the Physics of Lakes. In: Physical Processes in Lakes and Oceans. J. Iberger(ed.): 591-612. American Geophysical Union. Washington. USA.

CASTRO, M., J. MARTIN-VIDE & S. ALONSO. 2005. El clima deEspana: pasado, presente y escenarios de clima para el siglo XXI. In:Evaluacion preliminar de los impactos en Espana por efecto del CambioClimatico. J. M. Moreno Rodr�guez (ed.): 113-146. Ministerio de MedioAmbiente.

• Conferences:GEORGE, D. G. 2006. Using airborne remote sensing to study the mixing

characteristics of lakes ans reservoirs.10th European Workshop on PhysicalProcesses in Natural Waters. June 26-28, 2006. Granada, Spain: 2001-207.

• Reports:DOLZ, J. & E. VELASCO. 1990. Analisis cualitativo de la hidrolog�a

super�cial de las cuencas vertientes a la marisma del Parque Nacional deDonana (Informe Tecnico). Universidad Politecnica de Cataluna. 152 pp.

• PhD and Master Dissertations:MORENO-OSTOS, E. 2004. Spatial dynamics of phytoplankton in El

Gergal reservoir (Seville, Spain). Ph.D. Thesis. University of Granada.354 pp.

THOMPSON, K. L. 2000. Winter mixing dynamics and deep mixing inLake Tahoe. Master’s Thesis, University of California, Davis. 125 pp.

The Bibliography will only contain papers cited in the text, where theymust go in lower case (Margalef, 1975; Wetzel & Likens, 1991; Riera et al.,1992). In no case will unpublished (e.g., in prep., submitted) papers be cited,unless they are accepted for publication (in press). References to works hardto get (reports, conference abstracts, etc.) must be limited to the minimumpossible.

Page 126: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

ORDEN DE SUSCRIPCIÓN

NÚMEROS ATRASADOS

En el caso de que la persona o dirección a la que se factura seadiferente de la indicada anteriormente, utilice estos espacios:

Población PoblaciónPaís PaísC.P.

Tel. / Fax NIF / CIF

En el caso de que la persona o dirección a la que se factura seadiferente de la indicada anteriormente, utilice estos espacios:

Población PoblaciónPaís PaísC.P.

Tel. / Fax NIF / CIF

Formas de pago

Formas de pago Ejemplares atrasados

Suscripción anual (2 n )os

Por transferencia bancaria a: CC: 0075 0233 60 0600277602En este caso indicar “Suscripción LIMNETICA” en la transferencia y remitir el resguardo de lamisma junto con esta orden de suscripción.

Por transferencia bancaria a: CC: 0075 0233 60 0600277602En este caso indicar “Suscripción LIMNETICA” en la transferencia y remitir el resguardo de lamisma junto con esta orden de suscripción.

Por cheque bancario a nombre de la ASOCIACIÓN IBÉRICA DE LIMNOLOGÍA

Por cheque bancario a nombre de la ASOCIACIÓN IBÉRICA DE LIMNOLOGÍA

Mediante tarjeta VISA nº

Mediante tarjeta VISA nº

fecha de caducidad

fecha de caducidad

España: 50 Euros

Extranjero: 60 Euros

Indicar los números

4O EUROS/nº

Page 127: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats

Rev

istaL

IMN

ET

ICA

Secció

nd

eP

ub

licacio

nes

Aso

ciació

nIb

éricad

eL

imn

olo

gía

C/L

os

Án

geles,

33

46920

Misla

ta(V

alen

cia)

SP

AIN

Rev

istaL

IMN

ET

ICA

Secció

nd

eP

ub

licacio

nes

Aso

ciació

nIb

éricad

eL

imn

olo

gía

C/L

os

Án

geles,

33

46920

Misla

ta(V

alen

cia)

SP

AIN

Fran

queo

Fran

queo

Page 128: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats
Page 129: Volumen 28 (2) Diciembre de 2009 - limnetica.com · los que han enviado sus trabajos, a todos lo que han citado los trabajos publicados, a todos los que han ... d’Estudis Avanc¸ats