16
Introduction Vortices Interaction Numerical results Vortex – radiation interactions in φ 4 theory Árpád Lukács MTA KFKI Research Institute for Nuclear and Particle Physics Austria-Croatia-Hungary Triangle Workshop on Strong Interactions in Quantum Field Theory, Fürstenfeld, 16 April, 2009. Collaborators: Péter Forgács, Tomasz Roma´ nczukiewicz Lukács Á. Vortex Scattering

Vortex -- radiation interactions in 4 theory - UNIGRAZphysik.uni-graz.at/itp/siq/talks/lukacs.pdf · Vortex – radiation interactions in ... Vortex – radiation interactions

  • Upload
    voliem

  • View
    227

  • Download
    6

Embed Size (px)

Citation preview

  • Introduction Vortices Interaction Numerical results

    Vortex radiation interactions in 4 theory

    rpd Lukcs

    MTA KFKI Research Institute for Nuclear and Particle Physics

    Austria-Croatia-Hungary Triangle Workshop onStrong Interactions in Quantum Field Theory,

    Frstenfeld, 16 April, 2009.

    Collaborators: Pter Forgcs, Tomasz Romanczukiewicz

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Introduction

    Motivation: negative radiation pressure in the vortexradiationinteraction

    (Video: Tomasz Romanczukiewicz) The vortex starts moving towards the source

    Lukcs . Vortex Scattering

    amplitude.aviMedia File (video/avi)

  • Introduction Vortices Interaction Numerical results

    Outline

    1 Introduction

    2 Vortices

    3 Vortex radiation interactionsThe perturbation problem of the vortexCross sections and force

    4 Numerical results

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Vortexek

    (Figure source: Vilenkin and Shellard: Cosmic strings. . . , CUP, 2000)

    We are working with a 2 + 1D scalarfield theory (z-translation invariantconfigurations in 3 + 1D).

    L = V (, ) ,

    with V (, ) = ( 1)2. Weexamine solutions of the form

    (r , ) = f (r)ein .

    Eqn. for the vortex profile:

    f 1r

    f +n2

    r2f + 2f (f 2 1) = 0

    Asymptotic behaviour of the solution:

    f (r) f (n)rn (r 0) and f (r) 1 n2

    4r2(r ) .

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Vortex profile

    (r , ) = f (r)ein

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Vortices in Physical Theories I

    Cosmic StringsA vortex is a slice of an idealized (straight) cosmic stringFormation of vortices: during phase transitionPhysical background: field theoryDescription of the dynamics

    field theoryNambuGoto action from field theorystring network simulationsstring formation

    Observation: based on the effects of cosmic strings on CMBRs

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Vortices in Physical Theories II

    Vortex strings in superfluid heliumA vortex is a slice of an idealized (straight) vortex stringDescription of superfluids: Gross-Pitaevskii equation:

    i~

    t=

    ( ~

    2

    2m + V0||2

    ) ,

    which is the non-relativistic limit of 4 theory.Forces acting on the vortex

    Magnus forceacoustic drag (interaction with incoming radiation)transversal force

    The physical backgrounds of the two examples differ significantly.The mathematical descriptions of the vortices are very similar.

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results Perturbations Force

    The perturbation problem of the vortex I

    Field equations:+ 2( 1) = 0

    We add perturbations to the vortex solution: + ,

    + 2(2 1)+ 22 = 0

    Partial wave expansion:

    =

    `=

    ei(n+`)(eits+` + e

    its`)

    Let =

    r(s+` , s` )

    T . (D` 2f 2

    2f 2 D`

    ) = 2

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results Perturbations Force

    The perturbation problem of the vortex II

    with

    D` = d2

    dr2+

    (n + `)2 1/4r2

    + 2(2f 2 1)

    Properties of the vortex perturbation problem:asymptotically decoupled modes: a` = 12 (s

    +` + s

    ` ),

    g` = 12 (s+` s

    ` )

    at the origin the two modes are mixing; the coupling is 1/r2

    Asymptotic solution of the scattering problem = +eit + eit with

    =12r

    `

    ei(n+`)i`[

    (ha`,hg`)S`

    (ag

    )+ (ha`,h

    g`)

    (ag

    )]+ =

    12r

    `

    ei(n`)i`[

    (ha`,hg`)S`(

    ag

    )+ (ha`,hg`)

    (ag

    )].

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results Perturbations Force

    Cross sections

    The cross sections expressed with the S-matrix elements: usualformulae. Transition amplitudes:

    fa,ga,g() =1

    2ka,gei

    4

    `=

    ei(n+`)(S11,22 1) ,

    fag,ga() =1

    2kg,aei

    4

    `=

    ei(n+`)S21 ,

    This yields the total cross sections

    aa,gg =1

    ka,g

    `=

    |S(`)11,22 1|2 ,

    ag,ga =1

    kg,a

    `=

    |S(`)21 |2 .

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results Perturbations Force

    Force

    The force can be calculated from the momentum balance T = 0:

    Px = Fx =

    Rd(Txx cos+ Txy sin) ,

    averaging over a period: Px = Fx = 1T t+T/2

    tT/2 Fx (t)dt . The part of

    the stressenergy tensor quadratic in the perturbations:

    T (2) = +

    g{

    ()2()2 ()2()2 2(2 1)},

    thus

    Fx = 4 Re`

    [(a,g)S`

    (ka

    kg

    )S`+1

    (ag

    ) (a,g)

    (ka

    kg

    )(ag

    )].

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Numerical results I

    Obtaining the vortex profile: (r , ) = f (r)ein: to solve the scatteringproblem, a good precision solution of the vortex profile equation

    f 1r

    f +n2

    r2f + 2f (f 2 1) = 0

    is needed (esp. for large vals of `). The method used: collocations(COLSYS).

    f (r) f (n)rn (r 0)

    f (r) 1 n2

    4r2(r ) .

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Numerical results II

    To calculate the force, we solve the scattering problem of the coupled2-component Schrdinger-operator.

    The method of solution: RK oninterpolated backgound

    Negative force in the case of thea modePositive force in the case of theg mode (acoustic drag)

    Explanation : scattering from a modeof mass 4 into a massless one;surplus momentum behind the vortex

    Further possibilities: calculating the transverse (Iordanskii) force.(D` 2f 2

    2f 2 D`

    ) = 2

    with D` = d2

    dr2 +(n+`)21/4

    r2 + 2(2f2 1).

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Numerical results III

    Partial wave components of the force for 2 = 6.5, 9 and 11.5:

    force dominated by components with moderate `

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Properties of the scattering problem

    (n `)2

    r2terms in the diagonal AharonovBohm effect

    ( integer flux; tricky partial wave summation)analytical approximation for large `partial wave components of the force vanish rapidly for large `: (ka/kg)`, ka < kg .contribution of modes for ` = 7 . . . 7 provides a very goodapproximation for a wide range of in this setting: no transversal force, unlike for moving superfluidvortices (Iordanskii force)

    Lukcs . Vortex Scattering

  • Introduction Vortices Interaction Numerical results

    Conclusion

    For the massive incoming wave mode the vortex is pulledtowards the sourceExplanation: scattering of a massive mode into a massless one;surplus momentum behind the vortexSimilar effect: negative radiation pressure for 1+1 D kinksPossible applications: superfluid vortices, cosmic stringsTodo: generalization for moving vortices, both in fluid andvacuum

    Lukcs . Vortex Scattering

    IntroductionVorticesVortex -- radiation interactionsThe perturbation problem of the vortexCross sections and force

    Numerical results