39
‘’Water now and in the future’’ Modelling water availability in NoordBrabant. Authors: Carlo Cuijpers, Merla Kubli, Lissette Vanessa Armendáriz Student ID: s3022250, s4375726, s4375505 Course: Group Model Building II (MANMBAM00320132V) Prof.: V. de Gooyert & E. Rouwette Contact person: Merla Kubli, [email protected].

Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

‘’Water  now  and  in  the  future’’  Modelling  water  availability  in  Noord-­‐Brabant.  

 

 

 

 

 

 

 

 

 

 

 

Authors:  Carlo  Cuijpers,  Merla  Kubli,  Lissette  Vanessa  Armendáriz  Student  ID:  s3022250,  s4375726,  s4375505  Course:  Group  Model  Building  II  (MAN-­‐MBAM003-­‐2013-­‐2-­‐V)  Prof.:  V.  de  Gooyert  &  E.  Rouwette  Contact  person:  Merla  Kubli,  [email protected].      

Page 2: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

2    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

This  work  is  licensed  under  a  Creative  Commons  Attribution-­‐NoDerivs  3.0  Netherlands  License.  

Page 3: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

3    

A  collaboration  of:  Main  partners:  

   

               

               

Partner  in  expertise:                            

   

Associated  partners:    

       

Page 4: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

4    

Contents  A  collaboration  of:  ...................................................................................................................................  3  

Introduction  ............................................................................................................................................  5  

1.   Modelling  process  ............................................................................................................................  7  

a)   Group  Model  Building  technique  ............................................................................................  7  

b)   Interview  process  ....................................................................................................................  7  

c)   Group  Model  Building  sessions  ...............................................................................................  9  

2.   The  Model  ......................................................................................................................................  10  

3.   Policies  ...........................................................................................................................................  16  

4.   Simulation  results  ..........................................................................................................................  18  

5.   Access  to  the  model  .......................................................................................................................  19  

6.   Value  and  limitations  of  a  GMB  process  ........................................................................................  20  

7.   Model  Limitations  ..........................................................................................................................  21  

8.   Further  Model  Developments  ........................................................................................................  22  

9.   Learning  Points  ..............................................................................................................................  23  

10.   Conclusion  ...................................................................................................................................  25  

References  .............................................................................................................................................  26  

Appendix  A:  Detailed  planning  of  the  sessions  .....................................................................................  27  

Appendix  B:  Data  sources  ......................................................................................................................  31  

Appendix  C:  Equations  of  the  model  .....................................................................................................  33  

Appendix  D:  Project  Timeline  ................................................................................................................  39  

 

   

Page 5: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

5    

Introduction  

This   report   is   the   final   document  on   a   collaborative   project   of   the  province  of  Noord-­‐Brabant   and  students   from   the   ‘European  Master   in   System  Dynamics’   and  major   stakeholders   on   the   issue   of  water  scarcity   in  this  province.  This  report   is  meant  to  provide  a  total  overview  on  the  project  as  a  basis   for  evaluation.  Therefore   this   report  will  address   the  background  of   the  project,  describe   the  process  behind  the  project,  present  and  discuss  the  resulting  model  constructed  in  the  project,  share  the  most   important   insights  which  can  be  drawn   from  this  model,  and  share   the  evaluation  of   the  project.   To   provide   a   complete   overview   other   relevant   additional   information   is   included   in   the  appendix.    Water   scarcity   is   a   recognized   issue   in  Noord-­‐Brabant   also   addressed   in   previous   projects   like   the  ‘Deltaplan   Hoge   Zandgronden’   (DHZ)   (Deltaplan   Hoge   Zandgronden,   2009),   the   ‘WaterCore  project’(EU,  2012),  and  the  Telos  project  ‘waardecreatie  met  water’  (Telos,  2010).  DHZ  focussed  on  specific  areas  in  Noord-­‐Brabant  with  sandy  soils  through  which  the  water  drains  faster,  therefore  in  these  areas  water  scarcity  is  a  more  pressing  issue.  Continuing  intensification  of  agricultural  activities  together   with   effects   from   climate   change   asked   for   solutions   to   secure   water   availability   in   the  future  for  these  areas.  The  WaterCore  project  was  a  collaboration  of  different  EU-­‐regions   including  the   province   of   Noord-­‐Brabant   to   share   policies-­‐   and   practical   experiences   related   to   the  management   of   water   scarcity.   It   is   recognized   that   to   effectively   –   and   efficiently  manage  water  scarcity  on  a  regional  level  an  integrated  systems  view-­‐  and  stakeholder  participation  is  required  (EU,  2012,  p.23).  The  Telos  project  focussed  on  an  in-­‐  and  output  analysis  of  water  in  the  natural  system  in  Noord-­‐Brabant.  Hydrological  models  were  used  to  map  and  analyse  the  different  ‘’flows’’  of  water.    This   project   brings   an   additional   value   to   these   previous   projects   by   analysing   water   scarcity   in  Noord-­‐Brabant   based  on   an   integrated  model   of   natural-­‐   and  human   systems,  which   is   developed  together   with   major   stakeholders.   Through   the   use   of   Group   Model   Building   (GMB)   a   joint  understanding  is  achieved  on  the  basis  of  a  System  Dynamics  (SD)  model  is  achieved,  leading  to  more  consensus   about   the   nature   of   the   issue   (Größler,   2007;   Vennix,   1996).   The   resulting   model  additionally  provides   the  opportunity   to   test  policies   aimed  on  managing   the   issue  and   supporting  policy  design.        Methods  of  constructing  SD  models  together  with  groups  of  stakeholders  have  been  widely  applied  for   environmental   issues   (Van   den   Belt,   2004).   The   complexity   of   environmental   issues-­‐   in  combination  with   a   generally   high   level   of   uncertainty   asks   for   an   integrated   analysis   combining   a  plurality   of   views   (from   different   relevant   stakeholders).   SD   modelling   with   groups   is   a   tool   do  integrate-­‐   and   test   these   perspectives   (Videira,   Antunes,   Santos,  &   Lopes,   2010).   To   consult   other  cases   on   SD  modelling   addressing   water  management   together   with   stakeholder   groups   see   P.E.:  Kallis,  Videira,  Antunes,    Pereira,  Spash,  Coccossis,  &  Santos  (2006).    The  goal  of  this  project  therefore  was  to:    ‘’to  increase  dynamic  understanding  of  the  water  scarcity  issue  in  Noord-­‐Brabant  from  1990  to  2040,  and   test   different   policy   options   addressing   this   issue   providing   guidance   on   which   solutions   to  implement  by  developing  a  System  Dynamics  model  in  collaboration  with  major  stakeholders’’.    The  model  was  constructed  based  on  literature  on  previous  projects,  -­‐  interviews  with  stakeholders,  -­‐  and   focus   groups   with   stakeholders   and   GMB   meetings.   Interviews   were   conducted   with  representatives   of:   province   Noord-­‐Brabant,   Waterschap   Aa   &   Maas,   ZLTO,   Brabant   Water,   and  Staatsbosbeheer.  Representatives  of  these  organizations  were  also  invited  to  the  focus  groups/GMB  meetings  but   the   response  was   low.  Two  of   these  meetings  were  organized,   the   first   in  December  2013  and  the  second  in  January  2014,  in  which  the  model  was  constructed  and  validated.    

Page 6: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

6    

 This   report   is   organized   as   follows:   first  more   information  will   be   provided   on   the   process   of   the  project   including   reports   of   the   interviews   and   both   GMB   sessions,   second   the   model-­‐   and   the  analysed  polices  will  be  presented  and  explained,  third  simulation  results  and  insights  will  be  shared,  fourth   the  additional  value  of  a  SD  model  constructed  using  GMB  over  hydrological  models  will  be  discussed,  fifth  model  limitations  and  points  for  further  improvement  of  the  model  will  be  addressed  and   finalized   in   a   conclusion.   In   the   appendix   other   relevant   information   regarding   this   project   is  included.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 7: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

7    

1. Modelling  process  

In  the  following  section  the  process  of  the  project  is  described.  This  includes  an  explanation  of  the  Group  Model  Building  technique,  a  summary  of  the  conducted  interviews  and  a  report  on  the  two  sessions  held.  An  overview  on  the  relevant  steps  and  meetings  in  the  course  of  the  project  can  be  found  in  the  appendix  (Appendix  D).    

a) Group  Model  Building  technique  Group   Model   Building   (GMB)   is   considered   a   form   of   group   decision   making   support   where  stakeholders  work  together  in  order  to  solve  a  specific  problem  within  a  complex  system  (Hovmand  et  al.  2001).  This  process  allows  having  an  exceptional  space  of  dialogue  where  different  entities  are  capable  of  analysing  collectively  a  situation,  create  a  shared  vision  of  a  problem,  and  get  information  that  will   be  used   to   create  a   computer   simulation   to  produce   scenarios  and   test  policies  assessing  their  effects.  

The  analysis   and  model  will   be  based  on   the   fundamentals  of   the  System  Dynamics   (SD)  discipline  using   specialized   computer   software.   The   formal   steps   of   the   GMB   process   are   i)   the   problem  definition   where   stakeholders   will   defined   the   time   horizon   and   reference  mode   to   focus   on   the  boundaries  of  the  model;  ii)  the  conceptualization  stage  where  the  relevant  variables,  the  interaction  among   them,   identification  of   feedback   loops  and   important   flows  and  stocks  will  be  done;   iii)   the  formulation  stage  where  the  mathematical  equations  and  parameters  will  be  set;  iv)  analysis  which  is  mainly  a  validation  process:  and  policy  evaluations  stage  where  the  model  is  ready  to  conduct  policy  experiments   and   make   an   analysis   out   of   it   (Vennix   et   al.,   1992).     Capability   building   during   the  period  of  the  sessions  and  after  is  possible.  Mental  models  from  stakeholders  can  be  modified  during  and  after  discussions  and  interactions  with  other  participants  and  from  the  SD  methodology  use.  Also  it   can   increase   the   coordination   and   interaction   among   parties   to   resolve   shared   problems   and  provide  a  space  for  consensus  or  agreements.  

In  the  case  of  the  water  scarcity  in  Noord-­‐Brabant  GMB  Project,  the  stakeholder  composition  is  very  diverse.    National,   local  and  neighbouring  authorities  on  water,  agriculture,  and   forestry   issues  are  involved   but   there   are   also   private   entities   such   as   farmer   organizations.     The   entity   holding   the  leadership  of   the  process   is   the  Noord-­‐Brabant  Government.  The  call   for  participation,   selection  of  the   stakeholders,   and   communication   with   the   University   staff   are   functions   developed   by   the  gatekeeper:  Frank  van  Lamoen,  ecology  department  of  the  province  of  Noord-­‐Brabant.  

b) Interview  process  From   20th   of   November   to   December   4th,   five   semi-­‐structured,   interviews   with   relevant  stakeholders  were   planned   and   conducted.     The   interview   process   supported   the   first   step   of   the  modelling  activity:  the  problem  definition,  the  time  horizon  selection,  identification  of  the  reference  mode  and  model  boundary   selection.     Those  were  1-­‐1   interviews,   i.e.,   one  of   the  members  of   the  project   team   will   interview   one   stakeholder   each   time.   The   interview   content   responded   to   the  following   topics:   details   about   the   organization,   problem   definition   according   the   organization,  perception  and  interaction  of  stakeholders,  knowledge  on  SD  in  the  entity,  interest  on  participation  in  the  sessions.  

The  entities   interviewed  were:  Brabant  Water  Company,  Staatsbosbeheer  regio  Zuid,  ZLTO  and  the  Water  Board.  The  most  relevant  information  elicited  from  the  interviews  is  the  following:  

Page 8: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

8    

ü ZLTO   is   a   collaboration  platform  and  –lobbying  organization   for   the  agricultural   industry   in  the   South   of   the   Netherlands   which   is   part   of   the   national   federation   LTO.   Agricultural  activities  are  considered  to  be  the  main  water  consumers  and  –polluters,  especially  in  Noord-­‐Brabant  were  a  lot  of  intensive  agricultural  industry  is  located.  ZLTO  (partially)  recognises  this  and  supports  a  transition  to  a  more  sustainable  agriculture.  The  interviewee  helped  to  create  a   macro   picture   of   the   water   system   in   Noord-­‐Brabant   by   together   drawing   a   qualitative  model,   additionally   the   interviewee   helped   by   illustrating   the   system   with   different   facts.  This  interview  formed  the  basis  for  the  later  interviews  with  other  stakeholders.    

 ü ‘Waterschap  Aa  &  Maas’,  is  the  local  water  board,  which  was  also  the  main  institution  behind  

the  DHZ.  The  system  of  water  boards   in   the  Netherlands   is   the  oldest   still  existing  political  system   in   the   country,   and   still   is   a   separate   political   system   responsible   for   water  management  with   the  right   to  collect  a  specific   type  of   taxes.  Because  of   their  mission   the  water  board  is  also  the  most  important  local  knowledge  institution  on  water  therefore  it  was  important  to  include  them  in  the  project.  The  interview  helped  to  validate  the  initial  model  which  was  used  to  start  the  modelling  process  with  stakeholders  in  the  session,  and  –  to  gain  specific  knowledge  on  the  water  system  in  Noord-­‐Brabant.    

 ü Brabant  Water  Company  (BWC):  Their  main  activities  are  extracting  the  water,  purifying  and  

distributing  it  among  the  province.  They  pointed  out  that  farmers  and  households  pollute  the  water  which  increases  the  cost  of  purifying  it  back  because  the  Water  Board  in  the  treatment  plans  uses  a  very  simple  way  to  clean  the  water  before  putting  it  again  back  in  the  rivers.  In  their   view   there   are   two  main   problems:     1)   climate   change,   because   it  will   condense   the  water   available   thus   pollutants   concentration   at   the   same   time   will   increase   the   cost   of  purifying   2)   The   competition   for   water,   increasing   mainly   because   industries   from   energy  sector.     Specific   activities   that   affect   the   underground   water   are:   extraction   of   oil,   geo-­‐thermal  heat  (to  heat  houses  or  use  air  conditioning  during  the  summer),  and  the  extraction  of  shale  gas.  The  legislation  regulating  the  shale  gas  extraction  is  100  years  old,  it  should  be  adapted   because   those   activities   are   heavily   polluting.   Regarding   the  main   situation,   ideas  looking   for   solutions  mentioned   in   the   interview:   farmers   should   stop  using  pesticides  and  other   toxics   and   moderate   their   livestock;   law   should   be   stricter,   reallocation   of   their  extraction   places.   BMF   environmentalist   groups   and   Limburg   province   are   considered   by  BWC  as   relevant   stakeholders.   BWC  already  uses   simulation  models   to  measure   the  water  availability.    

ü Staatsbosbeheer  –  National  Forestry  Agency:  Their  main  concern  mentioned  was  the  need  of  restoration   of   the   hydrological   systems;   the   scarcity   consequence   for   the   wetlands   is   the  reduction   in   the   amount   of   water   needed   for   their   natural   and   healthy   development.  Differences  in  the  water  demand  of  the  wetlands  regarding  the  season  and  type  of  land  are  fundamental  to  consider  while  assessing  the  water  scarcity  project.  Biodiversity  loss  is  one  of  the  main   current   problems   related  with   the  water   scarcity   situation.   Nowadays,   efforts   to  buy   agricultural   land   to   restore   hydrological   system   in   those   areas   are   being  made   by   the  Agency   but   it   is   considered   a   hard   task   due   the   economic   interest   of   farmers   and   the  complexity  of  the  environmental  engineering  works.  

An   initial   model   was   built   on   the   information   gathered   from   the   preliminary   interviews.   This  preliminary   model   will   be   called   a   seed   model   in   the   next   sections,   since   it   is   a   model   that   is  supposed  to  grow  and  become  more  elaborated.  

Page 9: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

9    

c) Group  Model  Building  sessions  Two   sessions   conducted   during   the   modelling   process;   the   number   of   sessions   and   location   was  agreed  between  the  gatekeeper  and  the  modelling  team.    The  sessions  were  held  at  the  province  of  Noord-­‐Brabant  in  's-­‐Hertogenbosch.  In  order  to  select  the  date  of  the  sessions  a  doodle  survey  was  sent  to  all  participants.  One  session  was  held  in  December  and  the  other  on  the  beginning  of  January  due  to  participant's  agenda  constrains.    

1st  Session:  December  16th,  2013,  from    10:00  am-­‐12:00  am  

Participants:   Marteen   Verkerk   from   the  Waterboard,   Frank   Van   Lamoen   from   Noord  Brabant  Province.    

Facilitating   team:   Merla   Kubli,   Carlo   Cuijpers   and  Vanessa  Armendáriz.  

During   this   session   the   fundamentals   of   System  Dynamics   were   explained   and   the   seed   model  developed   from   the   interviews   was   exposed.  Participants  shared  some  references  modes  on  how  they   thought   the   system   was   expected   to   behave  regarding   key   issues.   The   reference  modes   are   the  following:  

Water  supply  1990-­‐2040,  GMB  Session  1  

 

Afterwards,  with   the  participant's   input   and  knowledge  a  model   structure   aiming   to   represent   the  problematic  behaviour  was  built  on  the  basis  of  the  seed  model.     Information  sources  on  the  main  variables  needed  to  run  the  model  were  suggested  and  some  policies  were  elicited  to  develop  and  test  during  the  next  session.  

 

 

Water  consumption  by  agriculture  1990-­‐2040  GMB  Session  1  

Ground  water  level  1940  –  2040,  GMB  Session  1  

Page 10: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

10    

2nd  Session:    7th  January,  2014,  9am-­‐12pm  

Participants:  Frank  Van  Lamoen  from  the  province  of  Noord-­‐Brabant.    

Facilitating  team:  Merla  Kubli,  Carlo  Cuijpers  and  Vanessa  Armendáriz.  

The  model  structured  improved  by  the  facilitating  team  after  the  first  session  was  exposed  in  order  to   get   feedback   from   the   gatekeeper.   This   included:     data   collection   explanation   and   limitations,  corrections  in  variables  and  structure  details  developments.  The  simulation  results  were  shown  and  discussed.  One  of  the  main  limitations  was  pointed  out  as  the  lack  of  data  on  the  reference  modes  and  other  variables   (details  on   the  model   limitations  are  discussed   in   section  8.  Model   limitations)  affecting  the  reliability  on  the  simulation  results.    An  exercise  to  evaluate  the  policies  elicited  during  the  first  session  was  made;  the  evaluation  consisted  of  an  assessment  regarding  impact  and  effort  to  implement   each   policy   in   particular.   Possible   structure   incorporations   on   the   model   with   its  relevance   were   discussed,   i.e.   climate   change   effect,   new   permits   policy.   Format   and   basic  information  to   include   in   the  project   report  was  agreed  on   in  order   to  make   the  project  outcomes  understandable  and  manageable  in  the  short  future.  

For  a   richer  model   the  participation  of  more  stakeholders  would  be  necessary.  Participation   in   the  modelling   sessions   was   considered   very   low:   2   out   of   12   called   people   were   attending   the   first  session   and   1   person   at   the   second   session.   The   main   reason   identified   for   this   was   agenda  constrains   of   different   stakeholders   during   the   time   assigned   to   develop   this   project:   mid   of  November  2013  until  January  2014.  This  issue  can  be  solved  with  the  coordination  of  University  and  governmental   offices   times;   also,   developing   incentives   for   both   sides   could   increase   participation  and  commitment  to  the  project.  

2. The  Model  

The  model  consists  of  tree  major  stocks  of  water.  These  are  the  water  on  surface,  including  lakes  and  rivers,   the   ground   water   in   the   upper   layer   of   the   soil   and   the   deep   ground   water.   The   major  consumers  are   the  households,   the   industry  and  agriculture  affecting   the  availability  of  water.  The  general  framework  of  the  model  is  represented  in  the  following  picture.  

 

Page 11: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

11    

The   actual   simulation   model   is   more   complex   and   addresses   these   areas   in   more   detail.   In   the  following   section   a  more   detailed   description   of   the  model   is   provided.   The   variables   in   italic   are  variables  considered  in  the  model.  

The  stock  of  water  on  surface  is  increased  through  the  amount  of  rain,  the  water  entering  the  area  as  a  river  stream  and  consumption  of  water  that  is  fed  back  into  the  system  after  some  treatment.  The  water  on  surface   is  decreased  through  the  evapotranspiration,   the  water   leaving  the  area  with  the  stream  and   the  water  which   is   extracted   for   agricultural   or   industrial   use   and   the  drainage   to   the  ground  water.  The  ground  water  in  the  upper  soil   is  increased  through  the  drainage  water  from  the  water  on  surface.  It  is  decreased  by:  the  flows  of  the  natural  extraction  for  agriculture,  meaning  the  water   extracted   by   the   plants,   the  water   that   is   flowing   into   the   stream   back   to   surface   and   the  drainage   to   the   deep   ground   water   level.   The   deep   ground   water   shows   also   the   pattern   of   the  entering  flow  and  the  leaving  stream.  Additionally  large-­‐scale  extractions  and  agriculture  extractions  are  considered  as  major  determinants  of  the  stock.  The  stock  and  flow  structure  is  represented  in  the  model  in  the  following  manner.  

 

In   the   next   steps   we   will   look   at   how   the   major   flows   are   governed.   The   evapotranspiration   is  governed  by   the   amount  of  what   that   is   extracted   for   agricultural   purposes   and   the  share   of   how  much  what  is  evaporated  and  transpirated.  This  factor  is  influenced  by  the  efficiency  of  the  irrigation  

Page 12: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

12    

system  in  use.  In  this  model  the  flow  of  leaving  area  is  defined  as  residual  between  water  on  surface  and  the  flows  evapotranspiration  and  extraction  for  agricultural  and  industrial  use.  

The  extraction  of  water  from  surface  for  agriculture  and  industrial  use  is  defined  by  a  permit  system.  Permits   are   given   for   an   area   of   farmland   and   allowing   for   the   extraction   of   a   certain   amount   of  water.  For  extreme  cases  a  policy  exists  that  allows  to  withdrawal  the  policies  for  a  short  period  of  time  to  reduce  the  stress  on  the  water  system.  Low  levels  of  the  water  on  surface   lead  to  that  the  extraction   permits   are   intermediately   withdrawn,   leading   to   the   effect   that   the   farmers   are   not  allowed   to   use   the  water   anymore   from   the   respective   source.   This   is   represented   in   the   variable  short  term  policy  permit  reduction.  This  policy  works  as  a  balancing  feedback  loop  in  the  system.    

 

In   cases  when   the   surface  water   permits   are  withdrawn   it   is   observed   that   the   consumers   simply  move   to   the   deep   ground   water   and   apply   for   these   permits.   This   is   represented   by   the   next  structure  piece.  The  higher  the  gap  in  surface  permits  the  more  application  will  be  there  for  the  deep  ground   water.   This   effect   is   combined   with   the   available   data,   meaning   that   the   effect   is   simply  reinforcing  or  lowering  the  projections  based  on  the  calculations  of  the  model.  

Page 13: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

13    

 

 

 

 

 

The  consumption  of  the  deep  ground  water  is  governed  by  the  household  water  consumption  and  the  effective   industrial  water  use.  The  household  consumption   is  defined  as   the  number  of  households  and  the  effective  water  use  per  household.  

 

The  effective  water  use  per  household  and   the  water  price  households  defines   the  spent  costs  of  a  household  for  the  water  consumption.  When  these  costs  are  raising  the  pressure  to  invest  into  water  saving   technology   increases.   This   pressure   can   be   interpreted   as   an   incentive.   The   technological  means  are  in  use  for  a  certain  time  and  will  then  be  replaced.  This   is  represented  in  the  stock  with  

Page 14: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

14    

the  inflow  “increase”  and  the  outflow  “  decrease”.  The  higher  the  efficient  technology  water  saving  for  households  the  lower  the  amount  of  water  used  per  household.  In  System  Dynamics  language  we  call  this  a  feedback  loop.  This  feedback  loop  is  of  a  balancing  nature.  This  means  that  an  initially  high  amount  of  water  per  households  is  corrected  to  lower  levels  by  the  power  of  the  feedback  loop.  

 

The   same   principle   is   applied   for   the   water   saving   incentive   in   the   industrial   usage.   The   major  difference  is  here  that  not  the  consumption  per  industrial  unit  is  considered,  but  the  total  industrial  water  use  and  the  total  costs  for  the  industry  in  the  region  to  use  water.  

 

Page 15: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

15    

To  conclude  we  come  to  the  full  model.  The  full  model  integrates  all  the  parts  that  were  discussed  in  more  detail   in   the  above  sections.  We  can  see   in   the  centre   the   flow  structure  between   the   three  main  stocks  of  water  -­‐  water  on  surface,  ground  water  upper  soil  and  the  deep  ground  water.  On  the  right  side  is  the  feedback  loop  of  the  permit  system  (B  permit  withdrawal  policy).  On  the  left  side  we  have  the  household  and   industrial  water  consumption.  For  both  forms  of  consumption  there   is  the  feedback   loop  of   the   saving   technology,  named   “B   saving   technology  households”   respectively   “  B  saving  technology  industry”.  

 

 

 

 

 

   

Page 16: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

16    

3. Policies  During  the  first  session  the  following  policies  were  elicited  and  discussed:    

1)   Putting  the  right  price  tag  on  water;  increase  the  price  of  water  for  specific  industrial  sectors.    

2)   Fostering   water   efficient   technologies   and   practices   for   industrial,   agriculture   and  households  use  

a.   Increase   efficiency   on  water   saving   technologies:   in   the  model  we   have   structures  per   sectors   that   show  how   the   increase   in   consumption   can  boost   the  pressure   to  save  water  and  the  investment  on  water  saving  technologies.  

3)   Ending  the  permits  of  extraction  of  agriculture  use  of  surface  and  ground  water.  

4)   Restriction   to   households   and   industrial   consumption   when   the   level   of   groundwater   is  critically  low  

5)   Allocating  water;  improving  land-­‐use  planning  (not  feasible  to  be  included  in  this  model).  

In   the   following   model   representation   you   can   see   where   the   considered   policies   attack   in   the  system.  The  policies  are  numbered  in  the  same  order  as  above.  

 

Page 17: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

17    

Policies  were  discussed  with  the  client   in  the  second  session  by  the  use  of  an  effort-­‐impact  matrix.  This   is   a   tool   to  help   the   client   think   systematically   about   the  policy  options.  Additionally   this   tool  helps  narrowing  the  gap  between  policy  options  towards   implementation,  because  the  matrix  adds  effort  as  a  factor  to  the  analysis  as  a  combination  of  costs/time  required/political  feasibility/etcetera.    Before   simulation  demonstrated   the  effectiveness  of  policies,   the   client  assessed   the   impact-­‐effort  matrix  as  the  following:  

 

 Following  the  theory  by  Meadows  (1999)  parameters  which  influence  the  strength  of  a  feedback  in  a  model  have  a  relatively  high  impact,  which  is  backed-­‐up  by  the  simulation  runs  of  the  model.    

 

 

 

 

 

 

 

 

 

Putting  the  right  price  on  water    

Household  water  saving  incentive  

Industrial  water  saving  incentive  

New  regulation  

Page 18: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

18    

4. Simulation  results  

The  current  state  of  the  model  doesn't  allow  a  simulation  of  reliable  results  in  numeric  terms,  since  a  couple   a   limitations   and   missing   data   (more   about   that   in   section   “Model   limitations”).   The  simulation   results   presented   here   are   to   be   understood   as   an   indication   of   where   the   current  development   of   this   model   is   and   what   needs   to   be   improved.   Nevertheless,   the   model   allows  drawing   certain   conclusion   on   this   basis.   This   will   be   done   here.   The   sources   of   the   data   are  documented   in   the   appendix.   Additionally   you   can   also   find   the   full   set   of   equations   of  which   the  model  built  on.  

The   graph   on   the   major   stocks   “ground   water   upper   soil”   and   “water   on   surface”   (see   below)  highlights  the  enormous  dependence  of  the  water  on  surface  on  the  amount  of  rainfall.  The  amount  of  water  in  ground  water  upper  soil  is  increasing  over  time,  same  as  the  water  on  surface.  Although  there   is  no  data  available   for  the  past  and  future  development  of  theses  stocks  we  can  derive  that  the  model  is  currently  not  able  to  explain  the  problematic  behaviour  in  that  part  of  the  model,  since  the  stock  of  “water  on  surface”  as  well  as  “ground  water  upper  soil”  is  increasing.  

 

In  the  next  graph  the  deep  ground  water  is  represented.  Here  we  can  see  that  the  amount  of  water  in  this  layer  of  ground  water  is  decreasing  over  time  (note  that  the  scale  is  not  to  zero  though).  This  fact   highlights   that   the   deep   ground   water   still   can   be   heavily   threatened   by   exhaustive   water  consumption   although   it   is   not   a   non-­‐renewable   resource   per   definition,   since   there   are   in-­‐   and  outflows   to   the   stock.   In   the   case  of   the  deep  ground  water   the  model   represent   the  problematic  behaviour  observed  in  reality.    

Page 19: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

19    

   

To   give   an   example   how   a  more   sophisticated  model   could   examine   a   policy   evaluation   with   the  model  we  make  a  test  with  the  price  for  industrial  water  use.  The  effect  of  current  price  of  2.5  euros  per  cubic  meter  of  water  on  the  system  is  compared  with  a  hypothetical  price  of  5  euros  per  cubic  meter  of  water.  The  blue  line  in  the  graph  shows  the  effective  industrial  water  use  with  a  price  of  2.5  euros,  the  red  line  comes  from  a  price  of  5  euros.  

 

We  can   see   that   the  price   increase  has  a   significant   impact  on   the   system.  The  effective   industrial  water  use  is  strongly  reduced  and  stabilizes.  The  strong  effect  of  this  policy  comes  through  the  fact  that   it   alters   the   strength   of   a   feedback   loop.   Policies   that   function   within   a   feedback   loop   have  proven  to  be  the  most  effective  ones  in  general  (Meadows,  1999).    

5. Access  to  the  model  

The  model  is  built  in  a  specific  software  designed  for  System  Dynamics  models  called  iThink.  The  software  issuer  isee  systems  provides  a  free  player  version  that  allows  running  the  model.  The  isee  Player  can  be  downloaded  under  this  link  (a  registration  is  necessary):  http://www.iseesystems.com/softwares/player/iseeplayer.aspx  

Page 20: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

20    

6. Value  and  limitations  of  a  GMB  process  

Treating  water  issues  is  a  highly  complex  process  that  normally  requires  much  elaborated  data  with  high   details,  which   increase   the   complexity   of   analysing   issues   in   a   numerical   and   integrated  way.    There  are  mainly  two  kinds  of  hydrological  models,   i)  the  stochastic  models  with  a   less  explanatory  capacity   due   the   seldom   use   of   mathematic   and   statistical   concepts   and   ii)   the   process-­‐based  models,   considered   deterministic   models,   where   the   flows   of   water   and   the   main   physical  components  of   the   region  where   the  hydrological   cycle   is   taking  place  are  analysed.  These  models  can   be   discrete   (single   events)   or   continuous   simulation   models,   as   the   model   explained   in   this  report.  Nevertheless,  most  continuous  hydrological  models  do  not  develop  other  important  systems  or   sectors   (economy,   government,   environment,   households)   interconnected  with   the  hydrological  system.   Instead,   they   are   focused   on   a   specific   application   area,   thus,   they   offer   high   details   and  strong   delimitation   on   the   choice   of   dimension,   scale,   process   delimitation   and  discretization.   The  more  narrow  boundaries  of  hydrological  models,  which  are  aimed  to  provide  a  realistic  simulation  of  the  area  of  application  within  uncertain  situations,  increase  the  reliability  of  their  results.  

According   to   Frank   Van   Lamoen,   in   the   province   there   are   entities   developing   projections   on   the  issue.  Within  any  model  building  process,  information  and  quality  of  data  will  define  the  reliability  of  the  scenarios.  In  this  case,  the  technique  used  in  this  project  corresponds  to  a  participatory  process.  In   a  GMB  process   information  on  how   the   system  actually  work  and   the  data   gathering  process   is  subjected   to   a   public   scrutiny,   which   results,   after   a   validation   process   in   a   higher   quality   of  information  inputs.    

The  level  of  aggregation  and  scale  of  this  System  Dynamics  Model  makes  easier  to  see  the  system  as  a  whole  because  it  considers  the  most  important  variables  or  processes  in  its  performance  specially  when  there  are  different  players   tackling  different  parts  of  a  shared  complex  situation  and  each  of  them   has   different   information   related   to   the   water   scarcity   in   the   region.   The   sessions   and   the  model   itself   represent  a  common  space  of  dialogue,  mapping  and  structure  building  of   the  current  situation.  This  same  scale  of  analysis  makes  the  topic  manageable  and  the  simulation  feature  allows  the  assessment  of  possible  policies  and  their  impact.  Nevertheless,  since  the  primary  application  area  is   one   of   the   most   important   factors   to   consider   in   the   model   building   process   of   a   traditional  hydrological  model,   the   integration  of  all  areas  would  simply  not  be  desired  and  will  decreases  the  level  of  analysis  of  the  specific  issues  the  experts  aim  to  get  at.  

Rather  than  a  static  view  of  net  amounts  of  water  flows  and  a  static  division  of  its  composition,  an  SD  model   gives   the   opportunity   to   model   the   natural   flows   of   the   water   in   the   region   dynamically  through  the  different  land  layers,  channels  and  rivers.  The  interactions  of  this  amounts  of  water  with  the  most  relevant  “sectors”   (civil,   industrial,  governmental  activities  or  environmental  phenomena)  provoke   the   major   impact   in   the   hydrological   situation   of   a   region.   The   individual   or   aggregated  assessment   on   sectors   impacts   on   the   whole   system   is   achievable   with   this   tool.   Of   course,   this  would  require  an  effort  of  having  updated  in  the  model  structure  the  changes  in  the  systems  or  the  tendencies  of  these  changes  in  order  to  keep  the  predictive  capacity  of  the  model  in  shape.  

The  structure  developed  can  be  adapted  to  different  regions   if  the  institutional  dynamics  work   in  a  similar   way.   Also,   the   structure   presented   can   be   used   as   a   base   to   keep   modelling   the   further  developments  named  in  this  document.  

Page 21: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

21    

We  can  conclude  that  the  application  area  and  the  purpose  of  the  model  should  define  the  type  of  techniques  and  the  type  of  hydrological  model  applied.  While  SD  and  GMB  can  provide  an   integral  view  of  the  system  as  a  whole  and  a  dynamic  projection  within  a  space  of  high  legitimacy  because  of  the   consideration   of   different   stakeholders   perspective,   the   traditional   hydrological   models   give  more  detail  on  how  a  specific  application  area  of  the  hydrological  system  works  and  more  accurate  implementation  insights  regarding  a  specific  area.  

7. Model  Limitations  

The  model  presented  corresponds  to  the  elicited  knowledge  on  what  the  important  issues  regarding  the   water   scarcity   situation   in   the   Province   are.   The   number   of   stakeholders   in   the   sessions   and  during   the   interview   period   is   determining   for   the   information   captured   in   a   model;   at   a   bigger  number  of  stakeholders   the  model   is  more   likely   to  be  comprehensive  and  useful.   In   this  case,   the  participation  was  low.  The  model  structure  was  built  that  has  the  potential  to  be  improved  in  further  sessions  with  other  participants.  

 The  level  of  aggregation  it  possesses  is  the  result  of  the  need  to  address  the  most  relevant  issues  in  a  manageable   way.   During   the   last   session   the   importance   of   the   characterization   of   seasonal  differences  in  the  structure  was  mentioned  because  the  water  needed  and  available  heavily  relies  on  this.   In  the  same  way,  the  regional  difference  in  the  province  such  as  weather,   land  and  crop  types  affect  the  water  needed  for  wetlands,  agriculture  or  households.  

A   development  on   the   regional   differences  or   seasonal   stages   and   its   consequences   for   the  water  cycle   in   the   province   can   be   considered   as   potential   development   on   the   model.   The   current  structure  can  be  adapted  to  a  possible  phenomenon  under  study  or  specific  scenarios  making.  

In   order   to   increase   the   reliability   of   the   current   model   structure   to   address   policy   effects,   the  availability  and  quality  of  the  following  data  information  is  essential,  but  currently  missing.  

ü Flow  “leaving  area”  ü Initial  value  stocks  ü References  modes  ü Rain  ü Review  of  structure  of  industrial  water  use  efficiency  and  households  water  use  efficiency  ü Drainage  time  ü Fraction  up  ü Fraction  drainage  Deep  Ground  Water  ü Water  usage  per  agricultural    ü Representation  of  the  area  water  use  of  wetlands      ü System  responses  when    deep  water  level  in  a  critical  low  level  

   

Page 22: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

22    

8. Further  Model  Developments  

According   to   stakeholder's   opinions,   further   potential   steps   to   be   developed   on   the  model,   either  singularly  or  in  a  joint  further  development  and  its  relevance  are  the  following:  

Climate   change   effect:   It   is   considered   to   be   one   of   the   most   influential   phenomena   by   the  WaterCore  Project.  Before  a  managerial  strategy   is  developed  to  tackle  the  consequences  of   it,  the  need   to   address   the   effects   of   the   climate   change   on   the   water   availability   in   the   region   is  fundamental.  Predicting  these  effects  is  very  complex  due  the  diversity  of  consequences  and  events  it   can   provoked.   The   expected   impacts   on   the   hydrological   cycle   are   related   to   the   rain   rates   per  season   and   the   condensation   of   superficial  waters,  which  will   eventually   reduce   the   availability   of  water  in  a  context  of  increasing  competition  for  this  resource.    Nevertheless,  other  kind  of  extreme  events  could  be  expected  as  climate  change  consequences  such  as  sea  level  raising,  soil  subsidence,  severity  and  frequency  of  heat  waves,  droughts,  forest  fires  and  storminess  and  flooding,  that  at  the  same  time  will  impact  the  water  cycle.  In  order  to  assess  the  climate  change  effects  by  using  the  SD  model  structure,  a  selection  on  the  kind  of  effects  would  have  to  be  done  because  not  every  single  consequence  could  be  worthy  to  be  modelled.    

New  permit  system:  There  are  already  some  ideas  in  the  WaterCore  project  being  studied  to  update  the  mechanism  of  the  permits  issuing  for  water  extraction.  They  required  institutional  challenges.  In  the  model  structure  a  new  consensual  scheme  for  these  permits  can  be  tested.  

Policy   for   households   with   similar   mechanism   to   recycling   processes   at   industrial   level:   An  exploration  of  a  policy  that  produces  the  same  effects  of  water  saving  due  to  re-­‐utilization  for  certain  kind  of  households  activities  was  suggested.    

Area   adaptation:   In   order   to   have   a  more   accurate  model   and  make   scenarios,   the   calibration   of  variables   according   to   the   local   levels,   for   instance,   specific   information  on  water   use   by   the   local  household,   industrial,   farming   companies   and   natural   wetlands   of   an   specific   region   and   their  interaction  mechanisms  are  needed.  

Restoration   of   the   hydrological   system:   The   restoration   of   hydrological   systems   was   expressed  during   the   interviews   to  be  a  powerful  mechanism   to   re-­‐balance   the  hydrological   systems  but   it   is  considered  to  be  high  costly,  since  agricultural  land  of  current  needs  to  be  purchased.  Environmental  engineering  efforts  should  be  performed.  According  to  the  Forestry  Agency  representative  this  kind  of  policy  has  a  high  long-­‐term  integral  impact  on  the  whole  hydrological  system.  

   

Page 23: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

23    

9.  Learning  Points    During  the  project  the  team  gained  experience  with  the  facilitation  of  a  GMB  process.  This  resulted  in  practical  lessons,  which  could  be  considered  for  upcoming  projects.  Note  that  these  lessons  are  not  meant   as   critique.   Lessons   are   categorized   on:   ‘organization/administration/communication’,  ‘facilitation’,  and  ‘stakeholder  participation’.    Organization/Administration  /  Communication  In  general,  we  experienced  that  the  organization  of  the  process  can  be  considered  as  almost  half  of  the  total  workload.  This  was  underestimated,  although  it  was  mentioned  by  the  supervisor  in  the  beginning  of  the  project.  Because  it  was  the  first  time  this  team  facilitated  a  whole  project  in  collaboration  with  a  client  such  seemingly  basic  lessons  were  learned  to  keep  in  mind  for  later  projects.  These  lessons  include:  

• From  the  first  contact  and  meeting  with  the  gatekeeper  who  represents  a/part  of  a   ‘’client  group’’   test  wether   there   is  demand   for  a   certain  project  within   the   larger  group.  This  will  provide  an  indication  of  the  participation  of  stakeholders  throughout  the  project.      

• In  the  same  meeting  one  should  focus  on  the  definition  of  project  goals,  -­‐system  boundaries,  and   discuss   ‘deliverables’.   This   is   an   important   beginning   towards   shaping   the   project   and  setting  up  a  project  planning.  Both  are  important  to  know  when  addressing  other  members  of   the  client  group  or  –   stakeholders  and  with  whom   it   is   important   to  plan   the  project  as  soon  as  possible.    

 • The   planning   of   the   sessions   remained   a   problem   throughout   the   collaboration   with   the  

stakeholders  within   this  project.  Because   the   time  horizon   for   the   total  project,  due   to   the  deadline  for  the  course,  was  rather  short  and  –  overlapped  with  the  busy  period  in  December  and   the   holidays.   From   this   experience   it   is   advised   for   future   projects,  when   possible,   to  take   a   longer   planning   horizon   for   GMB   exercises   in   which   stakeholders   from   multiple  organizations  are  involved.      

 • Regarding   the   invitation   of   the   participants   it   is   reasonable   to   have   a   focus   on   having   a  

representative   per   interest   group   and   not   necessarily   per   organization.   Because   this   may  result   in   an   overrepresentation   of   a   certain   background.   Additionally   this   keeps   the   total  number  of   initial   invitations   lower.  Making  the   invitation  more  of  a  personal  contact  to  ask  stakeholders  for  their  specific  expertise  might  help  increasing  the  participation.  This  is  also  a  solution   to   avoid   negative   group   effects,   such   as   the   cancellation   of   further   participation  when  certain  people  are  not  attending,  which  was  experienced  in  this  project.  

 • It   has   proven   useful   and   efficient   that   all   e-­‐mails   to   be   sent   out   by   the   gatekeeper   were  

prepared  by  the  facilitation  team.  This  allowed  for  a  faster  communication  procedure.      

• Regarding   the   communication   with   stakeholders   we   learnt   that   the   theme   of   the   project  should   be  more   clearly   the   central   subject,   and   that   the  method   used   in   the   project   only  facilitates  a  dialogue  on  this  theme.  This  makes  the  project  appear  less  technical,  and  lowers  the  step  for  stakeholders  to  participate.  

   

Facilitation  

Page 24: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

24    

This  project  was   the   first   time  this   team  worked   together,  and  –   facilitated  GMB  sessions   in  which  actual  stakeholders  were  present.  This  experience  will   therefore  form  a  basis   for  many  projects-­‐  or  other  experiences  to  come.      

• In  general  in  this  project  it  is  experienced  as  valuable  to  know  your  fellow  (facilitating)  team  members  and  to  have  a  certain  connection  and  –  shared  background.  This  eases  the  shaping  –  and  planning  of  the  project,  and  dampens  personal-­‐  and  cognitive  conflict.    

 • For  during  the  sessions  a  solution  was  found  to  represent  the  interest  groups  which  were  not  

present  that  seemed  to  work  pretty  well.  A  person  of  the  facilitating  team  was  added  to  the  group   of   present   participants   as   a   representative   of   the   knowledge   gained   during   the  interviews  and  participated   in   the  discussion.  This  seemed  a  good  practice   to  minimize   the  loss  of  a  diversity  of  backgrounds  (cognitive  conflict)  in  the  session.  It  may  be  developed  into  a  formal  script  for  others  to  try.    

 • In  any  project  like  this  it  is  uncertain  how  sessions  will  turnout  to  be:  which  participants  will  

be  present,  which  scripts  work  for  the  group,  etcetera.  Therefore  it  is  important  to  be  able  to  anticipate   on   the   developments   during   the   session.   Because   it   was   the   first   project   with  actual  stakeholders  for  this  team  it  felt  save  to  remain  with  a  certain  flexibility  and  prepare  different  agendas   for   the  sessions  allowing   to  easily  make  a  different   try.  This  was  done   in  this  project  for  the  second  GMB  session.  

   Stakeholder  participation  The  most  pressing  problem   in  the  project  was  the   low  participation  of   relevant  stakeholders.  Most  interest  groups  were  represented  in  the  interviews,  but  only  two  of  these  groups,  one  of  which  was  the   client,   were   present   in   the   sessions.   Therefore   only   two   of   a   plurality   of   views   is   directly  represented   in   the  model.  The  model   can   therefore  not  be  considered  a   full   representation  of   the  problem  of  increasing  water  scarcity  in  Noord-­‐Brabant.  This  limits  the  accomplishment  of  the  goal  of  this   project.   Several   of   the   lessons   mentioned   in   the   other   categories   already   addressed   this  problem,  -­‐  in  this  category  lessons  specifically  on  this  issue  are  mentioned.      

• To   come   to   a   successful   collaboration  with   stakeholders   a   strong   commitment   is   required  from  the  start  of  the  project,  -­‐  of  both  sides.  Which  may  be  enforced  by  a  set  of  incentives.  This  was  lacking  in  this  project,  and  felt   like  missing.  Incentives  could  be:  symbolic  rewards,  public  acknowledgement,  internship  possibilities,  etcetera.    

   

Page 25: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

25    

10.  Conclusion  This  projects  focussed  on  water  scarcity  in  Noord-­‐Brabant  also  addressed  in  previous  projects  like  the  ‘Deltaplan  Hoge  Zandgronden’  (DHZ)(Deltaplan  Hoge  Zandgronden,  2009),  -­‐  ‘WaterCore  project’(EU,  2012),   and   -­‐Telos   project   ‘waardecreatie   met   water’(Telos,   2010).   This   project   added   to   these  previous  projects  by  analysing  water  scarcity  in  Noord-­‐Brabant  based  on  an  integrated  SD  model  of  natural-­‐  and  human  systems.      A  System  Dynamics  model  was  developed  together  with  major  stakeholders  through  interviews  and  -­‐  the  use  of  GMB.  Unfortunately  not  much  stakeholders  participated  in  the  GMB  sessions,  limiting:  the  inclusion  of  different  viewpoints  on  the  problem  in  the  model,  -­‐  amount  of  holistic  insights,  and  –  the  possibility  to  build  a  joint  understanding  of  the  problem  which  creates  commitment  and  –  consensus  among  the  stakeholders  on  solving  the  problem.  Additionally  the  validation  of  the  resulting  model  is  problematic  because  a  formal  reference  mode  was  not  available.      Nevertheless   the   project  was   partially   successful   in   the   achieving   the   goal   of   ‘’increasing   dynamic  understanding  of  the  water  scarcity   issue   in  Noord-­‐Brabant’’.  The  constructed  SD  model   integrated  natural-­‐   and   human   systems   which   was   new   for   the   participants   and   resulted   in   insights   in:   the  interrelations  between  water  management  interventions  and  the  functioning  of  the  natural  system,  and  the  effectiveness  of  intervening  in  feedback  loops.    Additional   insights   could   be   derived   in   follow-­‐ups   on   this   project   by   addressing   the   lessons   we  learned   during   this   project,   and   –   by   continuing   to   develop   the   model   with   a   larger   group   of  stakeholders  which   special   attention   to:   the  effects  of   climate   change,  alternatives   for   the  existing  water   extraction   permit   scheme,   regional   differences,   future   developments   in   water   saving   by  households,   and   the   effects   of   restoring   natural   water   systems.   For   which   this   project   and   the  resulting  model  could  serve  as  a  basis  to  interest  stakeholders  and  for  a  conceptual  model.            

Page 26: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

26    

References  

• Deltaplan  Hoge  Zandgronden,  (2009).  Een  Deltaplan  Hoge  Zandgronden:  Naar  een  klimaatbestendige  watervoorziening  voor  hoog  Nederland,  retrieved  on:  12-­‐01-­‐2014,  from:  http://www.deltaplanhogezandgronden.nl/  

• Telos,  (2010).  Waardecreatie  met  water  multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant.  

• EU,  (2012).  Watercore:  Good  practices  Guide,  EU  Regional  Development  Fund.  • Größler,  A.  (2007).  System  dynamics  projects  that  failed  to  make  an  impact.System  Dynamics  

Review,  23(4),  437-­‐452.  • Vennix,  J.  A.  M.  (1996).  Group  model  building:  Facilitating  team  learning  using  system  

dynamics.  J.  Wiley.  • Videira,  N.,  Antunes,  P.,  Santos,  R.,  &  Lopes,  R.  (2010).  A  participatory  modelling  approach  to  

support  integrated  sustainability  assessment  processes.Systems  Research  and  Behavioral  Science, 27(4),  446-­‐460.  

• Van  den  Belt,  M.  (2004).  Mediated  modeling:  a  system  dynamics  approach  to  environmental  consensus  building.  Island  press.  

• Kallis,  G.,  Videira,  N.,  Antunes,  P.,  Pereira,  A.  G.,  Spash,  C.  L.,  Coccossis,  H.  &  Santos,  R.  (2006).  Participatory  methods  for  water  resources  planning.  Environment  and  Planning  C,  24(2),  215.  

• Meadows, D. (1999). Leverage points: Places to intervene in a system. The Sustainability Institute.  

       

Page 27: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

27    

Appendix  A:  Detailed  planning  of  the  sessions  

 

WATER&SCARCITY&IN&NOORDBRABANT&GMB&PROJECT!

Session&1&9&approx.&3hrs,&planned&170min&

December&16h,&2013&

!

1) Introductions&of&participants&9&5min&2) Project&Background&and&Explanation&of&the&problem&9&&5&min&

a. Explain!goals!of!the!session!i. Understand!how!the!problem!arises!ii. Work!together!on!a!model!that!represent!the!problem!

Second!part!of!the!session!iii. Elicit!policies!that!can!be!integrated!to!the!model!

3) Graphs&over&time&–&10&min&Ask!the!participants!to!draw!in!a!graph:!How!do!they!think!water!consumption!and!water!availability!has!developed!during!past!20!years!and!will!in!the!30!years.!

4) Explanation&of&SD&with&the&conceptual&model&9&20&min&5) What&is&missing&and&what&is&wrong&&9&10&min&

a. Write!a!list!!b. Ask!to!write!the!variables!that!are!missing!on!the!conceptual!model!c. Ask!each!participant!to!express!their!variable,!make!rounds!until!all!variables!are!

expressed.!d. List!the!variables!

Think&how&those&variables&can&be&integrated&in&the&model&

Break&9&15min&

Remember&the&goal&of&the&second&part&of&the&session&

6) Expanding&model–&25&min&a. Retake!the!ideas!of!what!is!wrong!

i. Modify!them!in!the!model!b. Retake!the!ideas!that!are!missing!from!the!model!

i. Moment!to!add!all!of!this!using!ratio!exercise!7) “Extreme&values”&exercise&–&20&min&

a. Work!in!pairs!and!think!what!would!happen!in!relevant!stock!go!to!extreme!values!b. Report!to!the!group!

Break&9&15min&

8) Data&script&–&10&min&a. Show!the!model!and!identify!the!relevance!of!this!information!to!run!the!model!

Page 28: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

28    

 

b. Show!a!excel!chart!with!all!variables!and!assign!who!has!that!information!c. Fill!the!information!if!the!participants!present!know!it!d. Ask!to!send!it!to!emails.!

!9) Policy&Proposals&&9&25min&&

a. Individually!ask!to!think!on!the!policies!proposals,!which!policies!are!considering!right!now!and!what!would!you!suggest!(new!policies)&

b. Express!the!policy!proposals&c. List!the!policies&d. Ask!them!if!those!fit!into!the!model!and!ask!them!which!the!most!relevant!ones!

are&e. Next!session!we!would!simulate!that&

!10) Summary&by&the&observer:&what&we&did&and&what&will&happen&next&–&5&min&&

&&Remember&to&ask&to&contact&them&for&data,&Recorder&make&a&list&of&the&information&needed&and&&

!

Material&

1. Papers!for!exercise!5!and!9.!!2. Paper!already!with!the!graphs!to!the!session.!3. Tape!4. Laptop!with!I!think!5. Projector!6. Papers!7. Pens!

!Make!sure!the!room!has!a!screen!to!project!and!a!board.!!!Work!on!week!after:!Improve!the!model!

! Integrate!the!policies!! Gather!data!! Prepare!the!policy!analysis!

Develop!the!Workbook!Send!to!participants!and!ask!for!additional!feedback!Integrate!the!feedback!in!the!workbook!and!model!Call!for!the!second!session!(can!be!by!phone!calls!or!e!mails)!!!

Page 29: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

29    

 

WATER&SCARCITY&IN&NOORDBRABANT&GMB&PROJECT&

Session&2&–&January&7th,&2013&

Agenda&for&Session&with&Frank&van&Lamoen&

!I.&Introduction&round&(5min)&

II.&Recall&of&the&first&session&and&Workbook&(5min)&

III.&Explanation&of&SD&and&Conceptual&Model&&(10min)&

IV.&Explanation&of&the&whole&model&(20min)&

V.&Run&the&model&and&elaborate&on&the&behavior&of&most&important&variables&and&stocks&&

! 1)!Deep!ground!water!and!main!flows!! 2)!Surface!water!and!main!flows!! 3)!Upper!soil!water!and!main!flows!! 4)!Permits!mechanism!! 5)!Efficiency!technology!VI.&Validation&and&elaboration&of&the&model:&What&is&missing&and&what&is&wrong?&

@ Use!the!printed!model!to!identify!missing!things!!and!make!a!nominal!group!technique!!@ Bring!to!the!discussion!when!it’s!proper!the!variables!where!we!have!identified.!Mention!

those!that!were!absent!of!the!discussion.!!Variables&to&validate:&

Flow!“leaving!area”!Initial!value!stocks!References!modes!Rain!Graphical!functions!OR!logical!structure!of:!Ind.!water!use!efficiency!and!Households!water!use!efficiency!Drainage!time!Fraction!up!Fraction!drainage!DGW!Water!usage!per!agricultural!!Representation!of!the!area!water!use!of!wetlands!!What!happens!when!the!deep!water!level!reaches!a!critical!low!level!!Further&steps&to&keep&developing&the&model&

Global!warming!!Forestry!Area!!!VI.&Policies&elaboration&and&analysis&

! Right!pricing!on!water;!increase!the!price!of!water!for!specific!industrial!sectors.!!! Fostering!water!efficient!technologies!and!practices!for!industrial,!agriculture!and!households!use!! Increase!efficiency!on!water!saving!technologies:!in!the!model!we!have!structures!per!sectors!that!show!how!the!increase!in!

consumption!can!boost!the!pressure!to!save!water!and!the!investment!on!water!saving!technologies.!! Ending!the!permits!of!extraction!of!agriculture!use!of!surface,!upper!soil!and!ground!water.!! Restriction!to!households!and!industrial!consumption!when!the!level!of!groundwater!is!critically!low!! Allocating!water;!improving!land@use!planning!(not!feasible!to!develop!!in!this!model).!

1)!Ask!for!new!policies!2)!Matrix!of!effort!and!impact!!3)!Plot!the!most!relevant!policies!on!the!model!

Example:!amount!of!the!water!per!permit,!check!how!does!it!can!make!an!impact!*!If!the!policy!is!not!runnable!in!that!model!in!that!specific!moment!it!will!be!just!drawn!in!the!model.!

!VI.&Evaluation& &

Page 30: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

30    

 

   

   

WATER&SCARCITY&IN&NOORDBRABANT&GMB&PROJECT&

Session&2&–&January&7th,&2013&

Agenda&for&Session&with&Frank&van&Lamoen&

&

I.&Recall&of&the&first&session&and&Workbook&(5min)&

II.&Explain&changes&on&the&model&

III.&Run&the&model&and&elaborate&on&the&behavior&of&most&important&variables&and&stocks&&! 1)!Deep!ground!water!and!main!flows!! 2)!Surface!water!and!main!flows!! 3)!Upper!soil!water!and!main!flows!! 4)!Permits!mechanism!! 5)!Efficiency!technology!

!VI.&Policies&elaboration&and&analysis&

! Right!pricing!on!water;!increase!the!price!of!water!for!specific!industrial!sectors.!!! Fostering!water!efficient!technologies!and!practices!for!industrial,!agriculture!and!households!use!

a. Increase!efficiency!on!water!saving!technologies:!in!the!model!we!have!structures!per!sectors!that!show!how!the!

increase!in!consumption!can!boost!the!pressure!to!save!water!and!the!investment!on!water!saving!technologies.!

! Ending!the!permits!of!extraction!of!agriculture!use!of!surface,!upper!soil!and!ground!water.!

! Restriction!to!households!and!industrial!consumption!when!the!level!of!groundwater!is!critically!low!

! Allocating!water;!improving!land@use!planning!(not!feasible!to!develop!!in!this!model).!

1) Ask!for!new!policies!2) Matrix!of!effort!and!impact!!3) Plot!the!most!relevant!policies!on!the!model!

Example:!amount!of!the!water!per!permit,!check!how!does!it!can!make!an!impact!*!If!the!policy!is!not!runnable!in!that!model!in!that!specific!moment!it!will!be!just!drawn!in!the!model.!

!VI.&Validation&and&elaboration&of&the&model:&what&is&missing&and&what&is&wrong?&

@ Ask!Frank!his!points!of!concerns!on!the!model,!other!issues!to!keep!developing.!@ Express!the!variables!where!we!have!identified!that!needs!validation!

&

Variables&to&validate:&

Flow!“leaving!area”!Initial!value!stocks!References!modes!Rain!Graphical!functions!OR!logical!structure!of:!Ind.!water!use!efficiency!and!Households!water!use!efficiency!Drainage!time!Fraction!up!Fraction!drainage!DGW!Water!usage!per!agricultural!!Representation!of!the!area!water!use!of!wetlands!!What!happens!when!the!deep!water!level!reaches!a!critical!low!level!!

Further&steps&to&keep&developing&the&model&

Global!warming!process!and!consequences!Forestry!Area!!!

VI.&Evaluation&

Page 31: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

31    

Appendix  B:  Data  sources    Parameter/stock:   Data  required  from:  Households   Untill  2010:  (CBS,  2013)  

From  2010:  Projection  provincie  Noord-­‐Brabant  (2009)    

km2  agricultural  land   Untill  2010:  (CBS,  2013)  From  2010:  Linear  projection  

Price  water  households,  euro/m3   Untill  2012:  (CBS,  2013)  From  2012:    Linear  projection  

Water  consumption  total    households  1000  m3   Untill  2012:  (Brabantwater,  2013)  From  2012:  (linear  projection)  

Non  retuning  consumption,  %  of  total  household  consumption  

Untill  2007:  (Brabantwater,  2013)  From  2007:  (remains  on  2012  level)  

Maximum  water  usage  permit  groundwater  agriculture,  m3  water  per  year  

(Waterschap  Aa  &  Maas,  2013)(assumed  to  stay  in  on  the  same  level)  

#permits  groundwater  Untill  2012:  (CBS,  2013)  From  2012:  (linear  projection)  

#permits  surface  water   Untill  2012:  (CBS,  2013)  From  2012:  (linear  projection)  

Industrial  water  usage,  m3  Untill  2012:  (INM,  2013)  From  2012:  (linear  projection)  

Industrial  water  lozingen,  1000m3   data  on  2006:  (VEMW,  2013)  Price  industrial  water  usage,  euro  per  m3   Untill  2012:  (INM,  2013)  

From  2012:  (linear  projection)  

Price  industrial  water  lozing.  Euro  per  m3  Untill  2012:  (INM,  2013)  From  2012:  (linear  projection)  

Rainfall  Noord-­‐brabant,  m3   (KNMI,  2013,  only  to  2011,  after  which  -­‐  linear  projection)  

         

Variable/stock   Value   Source  Surface  water  inflow    1,2  m3/s  

 37,843  millions  of  m3/year  

Calculations  for  2007*  Source:  Tabel  2  Debieten  beken,  kanalen,  gemalen  en  grote  rivieren  Waardecreatie  met  water  multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant,  2010  

Surface  water  outflow   27,9  m3/s    879,85  millions  of  m3/year  

Calculations  for  2007*  Source:  Tabel  2  Debieten  beken,  kanalen,  gemalen  en  grote  rivieren  Waardecreatie  met  water  multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant,  2010  

Surface  water  level  1990  

-­‐   Not  available  

Deep  ground  water  inflow  

132  millions  m3/  year  

Tabel  9  Waterbalans  Noord-­‐Brabant  in  miljoen  m3  per  jaar,    Waardecreatie  met  water  multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant,  2010  

Deep  ground  water  outflow  

298  millions  m3/  year  

Tabel  9  Waterbalans  Noord-­‐Brabant  in  miljoen  m3  per  jaar,    Waardecreatie  met  water  

Page 32: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

32    

multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant,  2010  

Deep  ground  water  level  1990  

-­‐   Not  available  

Ground  water  upper  soil  level  1990  

-­‐   Not  available  

Evaporation   3100  millions  m3/  year  

Tabel  9  Waterbalans  Noord-­‐Brabant  in  miljoen  m3  per  jaar,    Waardecreatie  met  water  multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant,  2010  

Evapotranspiration  total  water  (considers  groundwater)  

2.620  mln.  m3          

Tabel  1  Hoeveelheden  atmosferisch  water  in  2007,  Waardecreatie  met  water  multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant,  2010  

Evaportranspiration     0.3  %  for  liter  of  water      0.1%  lost  and  0.6%  goes  back  to  the  uppersoil    

Information  elicited  during  the  first  Group  Model  Building  session  on  December  16th,  2013.  

Drainage   46,3  m3/s    1,460,117  millions  m3/  year  

Calculations  for  2007*  Source:  Tabel  2  Debieten  beken,  kanalen,  gemalen  en  grote  rivieren  Waardecreatie  met  water  multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant,  2010  

Water  flowing  back  to  the  stream  

19,7  m3/s    621,25  millions  of  m3/s  

Calculations  for  2007*  Source:  Tabel  2  Debieten  beken,  kanalen,  gemalen  en  grote  rivieren  Waardecreatie  met  water  multi-­‐input  multi-­‐output  analyse  van  water  in  Noord-­‐Brabant,  2010  

   

 

Page 33: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

33    

Appendix  C:  Equations  of  the  model  

 

Agriculture_Land(t) = Agriculture_Land(t - dt) + (change_in_agriculture_land) * dtINIT Agriculture_Land = 3262INFLOWS:

change_in_agriculture_land = GRAPH(3262)(1990, 0.00), (1991, 0.00), (1992, 0.00), (1993, -6.00), (1994, 0.00), (1995, 0.00), (1996, -30.0), (1997, 0.00), (1998, 0.00), (1999, 0.00), (2000, -56.0), (2001, 0.00), (2002, 0.00), (2003, -28.0), (2004, 0.00), (2005, 0.00), (2006, -19.0), (2007, 0.00), (2008, -18.0), (2009, 0.00), (2010, -19.0), (2011, -12.2), (2012, -10.7), (2013, -10.7), (2014, -10.7), (2015, -10.7), (2016, -10.7), (2017, -10.7), (2018, -10.7), (2019, -10.7), (2020, -10.7), (2021, -10.7), (2022, -10.7), (2023, -10.7), (2024, -10.7), (2025, -10.7), (2026, -10.7), (2027, -10.7), (2028, -10.7), (2029, -10.7), (2030, -10.7), (2031, -10.7), (2032, -10.7), (2033, -10.7), (2034, -10.7), (2035, -10.7), (2036, -10.7), (2037, -10.7), (2038, -10.7), (2039, -10.7), (2040, -10.7)

Deep_ground__water(t) = Deep_ground__water(t - dt) + (entering_through_flow + Drainage_to_deep_ground_water - Large_scale_extraction - Consumption - Agriculture_extraction_DGW - DGW__leaving) * dtINIT Deep_ground__water = 20000000000000

INFLOWS:entering_through_flow = 132000000Drainage_to_deep_ground_water = Ground_water_upper_soil*fraction_drainage_DGW

OUTFLOWS:Large_scale_extraction = 5000000Consumption = houshold_water_consumption+effective_industrial_water_useAgriculture_extraction_DGW = permits_DGW*Amount_of_water_per_permit_per_yearDGW__leaving = 298000000

Efiicient_technology_water_saving_households(t) = Efiicient_technology_water_saving_households(t - dt) + (increse_et - decrease) * dtINIT Efiicient_technology_water_saving_households = 1

INFLOWS:increse_et = (Efiicient_technology_water_saving_households*pressure_to_invest_into_saving_technnology)/Investment_AT

OUTFLOWS:decrease = Efiicient_technology_water_saving_households/average_time_of_use

Efiicient_technology_water_saving_industry(t) = Efiicient_technology_water_saving_industry(t - dt) + (increse_1 - decrease_1) * dtINIT Efiicient_technology_water_saving_industry = 1

INFLOWS:increse_1 = (Efiicient_technology_water_saving_industry*pressure_to_invest_into_saving_technnology_1)/Investment_AT_industry

OUTFLOWS:decrease_1 = Efiicient_technology_water_saving_industry/average_time_of_use_1

Ground_water_upper_soil(t) = Ground_water_upper_soil(t - dt) + (Drainage - water_flowing__into_stream - natural_extraction_for_agriculture - Drainage_to_deep_ground_water) * dtINIT Ground_water_upper_soil = 600000

Page 34: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

34    

 

INFLOWS:Drainage = Water_on__surface/drainage_time

OUTFLOWS:water_flowing__into_stream = Ground_water_upper_soil*fraction_upnatural_extraction_for_agriculture = Agriculture_Land*natural_groundwater_use_agricultureDrainage_to_deep_ground_water = Ground_water_upper_soil*fraction_drainage_DGW

Households(t) = Households(t - dt) + (Change_in_households) * dtINIT Households = 950123INFLOWS:

Change_in_households = Change_in_households_dataWater_on__surface(t) = Water_on__surface(t - dt) + (water_entring_area + water_flowing__into_stream + Consumption + Rain - leaving_area - Extraction_for_agricultural_or_industrial_use - Evaportranspiration - Drainage) * dtINIT Water_on__surface = 500000

INFLOWS:water_entring_area = 37843000water_flowing__into_stream = Ground_water_upper_soil*fraction_upConsumption = houshold_water_consumption+effective_industrial_water_useRain = GRAPH(TIME)(1990, 3.4e+09), (1991, 2.7e+09), (1992, 4.7e+09), (1993, 4.3e+09), (1994, 3.9e+09), (1995, 3.7e+09), (1996, 2.9e+09), (1997, 3.8e+09), (1998, 6.3e+09), (1999, 4.6e+09), (2000, 4.6e+09), (2001, 4.7e+09), (2002, 5.3e+09), (2003, 4.7e+09), (2004, 3.1e+09), (2005, 4.4e+09), (2006, 4.4e+09), (2007, 4.1e+09), (2008, 4.8e+09), (2009, 4.5e+09), (2010, 3.9e+09), (2011, 4e+09), (2012, 4.6e+09), (2013, 4.4e+09), (2014, 4.4e+09), (2015, 4.5e+09), (2016, 4.5e+09), (2017, 4.5e+09), (2018, 4.5e+09), (2019, 4.6e+09), (2020, 4.6e+09), (2021, 4.6e+09), (2022, 4.6e+09), (2023, 4.7e+09), (2024, 4.7e+09), (2025, 4.7e+09), (2026, 4.8e+09), (2027, 4.8e+09), (2028, 4.8e+09), (2029, 4.8e+09), (2030, 4.9e+09), (2031, 4.9e+09), (2032, 4.9e+09), (2033, 4.9e+09), (2034, 5e+09), (2035, 5e+09), (2036, 5e+09), (2037, 5e+09), (2038, 5.1e+09), (2039, 5.1e+09), (2040, 5.1e+09)

OUTFLOWS:leaving_area = Water_on__surface-Extraction_for_agricultural_or_industrial_use-EvaportranspirationExtraction_for_agricultural_or_industrial_use = (permits_surface_water*Amount_of_water_per_permit)*(1-evaportation_share)Evaportranspiration = Extraction_for_agricultural_or_industrial_use*((1-evaportation_share)/evaportation_share)Drainage = Water_on__surface/drainage_time

additional_applications_for_DGW_permits = gap_surface_permits

Page 35: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

35    

 

agriculture_land_data = GRAPH(TIME)(1990, 3262), (1991, 3262), (1992, 3262), (1993, 3256), (1994, 3256), (1995, 3256), (1996, 3226), (1997, 3226), (1998, 3226), (1999, 3226), (2000, 3170), (2001, 3170), (2002, 3170), (2003, 3142), (2004, 3142), (2005, 3142), (2006, 3123), (2007, 3123), (2008, 3105), (2009, 3105), (2010, 3086), (2011, 3074), (2012, 3063), (2013, 3053), (2014, 3042), (2015, 3031), (2016, 3021), (2017, 3010), (2018, 2999), (2019, 2989), (2020, 2978), (2021, 2967), (2022, 2957), (2023, 2946), (2024, 2935), (2025, 2925), (2026, 2914), (2027, 2903), (2028, 2893), (2029, 2882), (2030, 2871), (2031, 2861), (2032, 2850), (2033, 2839), (2034, 2829), (2035, 2818), (2036, 2807), (2037, 2797), (2038, 2786), (2039, 2775), (2040, 2765)

Amount_of_water_per_permit = 600000Amount_of_water_per_permit_per_year = 600000Amount_of_water__per_household_data = GRAPH(TIME)(1990, 181), (1991, 180), (1992, 180), (1993, 179), (1994, 179), (1995, 178), (1996, 178), (1997, 177), (1998, 177), (1999, 176), (2000, 175), (2001, 173), (2002, 171), (2003, 169), (2004, 168), (2005, 166), (2006, 164), (2007, 163), (2008, 161), (2009, 159), (2010, 157), (2011, 156), (2012, 153), (2013, 152), (2014, 150), (2015, 148), (2016, 146), (2017, 145), (2018, 143), (2019, 142), (2020, 141), (2021, 139), (2022, 138), (2023, 137), (2024, 136), (2025, 134), (2026, 133), (2027, 132), (2028, 132), (2029, 131), (2030, 130), (2031, 128), (2032, 127), (2033, 126), (2034, 125), (2035, 124), (2036, 123), (2037, 122), (2038, 121), (2039, 120), (2040, 119)

Area_per_permit = 1.2average_time_of_use = 5average_time_of_use_1 = 5Change_in_households_data = GRAPH(TIME)(1990, 1000), (1991, 1335), (1992, 2033), (1993, 1611), (1994, 854), (1995, 393), (1996, 907), (1997, 854), (1998, 1002), (1999, 3387), (2000, 1661), (2001, 12118), (2002, 9419), (2003, 7644), (2004, 8052), (2005, 7628), (2006, 10097), (2007, 8733), (2008, 8972), (2009, 10773), (2010, 10649), (2011, 8755), (2012, 9450), (2013, 9430), (2014, 9365), (2015, 8875), (2016, 8430), (2017, 8270), (2018, 7810), (2019, 7460), (2020, 7145), (2021, 6950), (2022, 6620), (2023, 6220), (2024, 5860), (2025, 5230), (2026, 4555), (2027, 4290), (2028, 3800), (2029, 2990), (2030, 2750), (2031, 10653), (2032, 5378), (2033, 5378), (2034, 5378), (2035, 5378), (2036, 5378), (2037, 5378), (2038, 5378), (2039, 5378), (2040, 5378)

costs_industrial_water_use = price_for_industrial_water_use*effective_industrial_water_usecosts_water_use_per_household = effective_water_use_per_household*water_price_housholds_datadrainage_time = 200effective_industrial_water_use = indutrial_water_use_data*effect_of_saving_technology_on_water_use_1effective_water_use_per_household = Amount_of_water__per_household_data*effect_of_saving_technology_on_water_useeffect_of_saving_technology_on_water_use = GRAPH(Efiicient_technology_water_saving_households)(0.00, 1.61), (0.5, 1.33), (1.00, 0.923), (1.50, 0.711), (2.00, 0.513), (2.50, 0.388), (3.00, 0.315), (3.50, 0.249), (4.00, 0.176), (4.50, 0.125), (5.00, 0.0806)

Page 36: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

36    

 

effect_of_saving_technology_on_water_use_1 = GRAPH(Efiicient_technology_water_saving_industry)(0.00, 0.842), (0.5, 0.593), (1.00, 0.447), (1.50, 0.344), (2.00, 0.278), (2.50, 0.234), (3.00, 0.198), (3.50, 0.168), (4.00, 0.139), (4.50, 0.125), (5.00, 0.139)

efficiency_of_irrigation_system = 1evaportation_share = 0.6*efficiency_of_irrigation_systemfraction_drainage_DGW = 0.05fraction_up = 0.02gap_surface_permits = permits_surface_water-(Agriculture_Land/Area_per_permit)houshold_water_consumption = Households*effective_water_use_per_householdindutrial_water_use_data = GRAPH(TIME)(1990, 3.6e+08), (1991, 3.7e+08), (1992, 3.8e+08), (1993, 3.8e+08), (1994, 3.9e+08), (1995, 4e+08), (1996, 4e+08), (1997, 4.1e+08), (1998, 4.1e+08), (1999, 4.2e+08), (2000, 4.3e+08), (2001, 4.3e+08), (2002, 4.4e+08), (2003, 4.5e+08), (2004, 4.5e+08), (2005, 4.6e+08), (2006, 4.6e+08), (2007, 4.7e+08), (2008, 4.8e+08), (2009, 4.7e+08), (2010, 5e+08), (2011, 5.1e+08), (2012, 4.9e+08), (2013, 5.1e+08), (2014, 5.1e+08), (2015, 5.2e+08), (2016, 5.3e+08), (2017, 5.3e+08), (2018, 5.4e+08), (2019, 5.5e+08), (2020, 5.5e+08), (2021, 5.6e+08), (2022, 5.6e+08), (2023, 5.7e+08), (2024, 5.8e+08), (2025, 5.8e+08), (2026, 5.9e+08), (2027, 6e+08), (2028, 6e+08), (2029, 6.1e+08), (2030, 6.1e+08), (2031, 6.2e+08), (2032, 6.3e+08), (2033, 6.3e+08), (2034, 6.4e+08), (2035, 6.5e+08), (2036, 6.5e+08), (2037, 6.6e+08), (2038, 6.6e+08), (2039, 6.7e+08), (2040, 6.8e+08)

Investment_AT = 3Investment_AT_industry = 2natural_groundwater_use_agriculture = 3permits_DGW = permits_DGW_data+additional_applications_for_DGW_permitspermits_DGW_data = GRAPH(TIME)(1990, 14052), (1991, 13781), (1992, 13510), (1993, 13239), (1994, 12969), (1995, 12698), (1996, 12427), (1997, 12156), (1998, 11885), (1999, 11614), (2000, 11752), (2001, 11186), (2002, 10796), (2003, 10288), (2004, 10059), (2005, 9870), (2006, 9642), (2007, 9287), (2008, 9078), (2009, 8830), (2010, 8773), (2011, 8501), (2012, 8274), (2013, 8105), (2014, 7598), (2015, 7330), (2016, 7062), (2017, 6794), (2018, 6526), (2019, 6258), (2020, 5990), (2021, 5722), (2022, 5454), (2023, 5186), (2024, 4918), (2025, 4650), (2026, 4382), (2027, 4114), (2028, 3846), (2029, 3578), (2030, 3310), (2031, 3042), (2032, 2774), (2033, 2505), (2034, 2237), (2035, 1969), (2036, 1701), (2037, 1433), (2038, 1165), (2039, 897), (2040, 629)

permits_surface_water = (Agriculture_Land/Area_per_permit)*short_term_policy_permit_reductionpermits_surface_water_data = GRAPH(TIME)(1990, 3513), (1991, 3445), (1992, 3378), (1993, 3310), (1994, 3242), (1995, 3174), (1996, 3107), (1997, 3039), (1998, 2971), (1999, 2904), (2000, 2938), (2001, 2797), (2002, 2699), (2003, 2572), (2004, 2515), (2005, 2467), (2006, 2411), (2007, 2322), (2008, 2270), (2009, 2207), (2010, 2193), (2011, 2125), (2012, 2068), (2013, 2026), (2014, 1900), (2015, 1833), (2016, 1766), (2017, 1699), (2018, 1632), (2019, 1565), (2020, 1498), (2021, 1430), (2022, 1363), (2023, 1296), (2024, 1229), (2025, 1162), (2026, 1095), (2027, 1028), (2028, 961), (2029, 894), (2030, 827), (2031, 760), (2032, 693), (2033, 626), (2034, 559), (2035, 492), (2036, 425), (2037, 358), (2038, 291), (2039, 224), (2040, 157)

Page 37: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

37    

 

pressure_to_invest_into_saving_technnology = GRAPH(costs_water_use_per_household)(0.00, 0.271), (35.0, 0.344), (70.0, 0.418), (105, 0.491), (140, 0.608), (175, 0.696), (210, 0.828), (245, 0.974), (280, 1.27), (315, 1.60), (350, 1.93)

pressure_to_invest_into_saving_technnology_1 = GRAPH(costs_industrial_water_use)(0.00, 0.00), (2.2e+08, 0.00), (4.4e+08, 0.00733), (6.6e+08, 0.0733), (8.8e+08, 0.22), (1.1e+09, 0.337), (1.3e+09, 0.513), (1.5e+09, 0.725), (1.8e+09, 0.996), (2e+09, 1.27), (2.2e+09, 1.80)

price_for_industrial_water_use = 2.5rule_of_thumb_evapotranspiration = 0.2share_of_non_returning_consumption = 0.027short_term_policy_permit_reduction = GRAPH(Water_on__surface)(0.00, 0.00), (1.6e+08, 0.00351), (3.2e+08, 0.00702), (4.8e+08, 0.0175), (6.3e+08, 0.0281), (7.9e+08, 0.0456), (9.5e+08, 0.0702), (1.1e+09, 0.103), (1.3e+09, 0.127), (1.4e+09, 0.134), (1.6e+09, 0.186), (1.7e+09, 0.211), (1.9e+09, 0.235), (2.1e+09, 0.254), (2.2e+09, 0.274), (2.4e+09, 0.312), (2.5e+09, 0.34), (2.7e+09, 0.365), (2.9e+09, 0.404), (3e+09, 0.428), (3.2e+09, 0.456), (3.3e+09, 0.488), (3.5e+09, 0.537), (3.6e+09, 0.565), (3.8e+09, 0.596), (4e+09, 0.642), (4.1e+09, 0.688), (4.3e+09, 0.761), (4.4e+09, 0.818), (4.6e+09, 1.00)

water_price_housholds_data = GRAPH(TIME)(1990, 1.43), (1991, 1.34), (1992, 1.68), (1993, 1.73), (1994, 1.54), (1995, 1.38), (1996, 1.36), (1997, 1.34), (1998, 1.36), (1999, 1.42), (2000, 1.59), (2001, 1.63), (2002, 1.59), (2003, 1.60), (2004, 1.61), (2005, 1.61), (2006, 1.63), (2007, 1.62), (2008, 1.60), (2009, 1.61), (2010, 1.63), (2011, 1.65), (2012, 1.53), (2013, 1.68), (2014, 1.69), (2015, 1.70), (2016, 1.72), (2017, 1.73), (2018, 1.75), (2019, 1.76), (2020, 1.77), (2021, 1.79), (2022, 1.80), (2023, 1.81), (2024, 1.83), (2025, 1.84), (2026, 1.85), (2027, 1.87), (2028, 1.88), (2029, 1.89), (2030, 1.91), (2031, 1.92), (2032, 1.93), (2033, 1.95), (2034, 1.96), (2035, 1.97), (2036, 1.99), (2037, 2.00), (2038, 2.01), (2039, 2.03), (2040, 2.04)

SD explanation:

Ground_water__in_upper_soil_1(t) = Ground_water__in_upper_soil_1(t - dt) + (Drainage_1) * dtINIT Ground_water__in_upper_soil_1 = 200INFLOWS:

Drainage_1 = Water_on__surface_2*drainage_fractionWater_on__surface_1(t) = Water_on__surface_1(t - dt) + (Rain_1 - Evaporation_1) * dtINIT Water_on__surface_1 = 100INFLOWS:

Rain_1 = 10OUTFLOWS:

Evaporation_1 = Water_on__surface_1*evaportation_fractionWater_on__surface_2(t) = Water_on__surface_2(t - dt) + (Rain_2 - Evaporation_2 - Drainage_1) * dtINIT Water_on__surface_2 = 100

INFLOWS:

Page 38: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

38    

 

   

Rain_2 = 10OUTFLOWS:

Evaporation_2 = Water_on__surface_2*evaportation_fraction_1Drainage_1 = Water_on__surface_2*drainage_fraction

Water_on__surface_3(t) = Water_on__surface_3(t - dt) + (Rain_3) * dtINIT Water_on__surface_3 = 100INFLOWS:

Rain_3 = 10drainage_fraction = 0.05evaportation_fraction = 0.1evaportation_fraction_1 = 0.1

Page 39: Water scarcity in Noord-Brabant scarcity in Noord-Brabant_0.pdf · ‘’Water(now(and(in(the(future’’! ModellingwateravailabilityinNoord2Brabant.)!!!!! Authors:!CarloCuijpers,!Merla!Kubli,!Lissette!Vanessa!Armendáriz!

39    

Appendix  D:  Project  Timeline    

   30/10/2013  First  meeting  with  Frank  van  Lamoen,  Gatekeeper/Client  

12/11/2013  Finished  project  proposal  for  Client  &  Radboud  University    

26/11/2013  Interview  at  ZLTO  

02/12/2013  Interview  at  Waterschap  Aa  &  Maas  

07/01/2014  Second  GMB  Session  at  the  province  of  Noord-­‐Brabant  

09/12/2013  First  GMB  Session  at  the  province  of  Noord-­‐Brabant  

07/02/2014  Communicated  project  results