16
INPUT Tank capacity = 400 Depth of water, H = 4m Free board = 0.2 m Denity of Concrete, Wconc = 25 Denity of Concrete, Wwate = 9.8 Grade of Concrete, fck = 20 Mpa = 7 Mpa Grade of Steel, fy = 415 Mpa = 230 Mpa = 115 Mpa Modular ratio, m = 13.3 Effective cover = 30 mm Solution 1 Design constants k = m σcbc = 0.288146 j = 1 - k/3 = 0.903951 R = 1/2 . σcbc . j . k = 0.911645 2 Dimension of tank Effictive depth of the ta = 4 - 0.2 h = 3.80 m If "D" is the diameter of the tank Volume of the tan 400 = 4 D = 11.60 m 3 Design of section Maximum hoop tension = w H D 2 = 227360 N/m height from base Area of hoop steel = 227360 115 = 1977.043 Bar dia = 20 # bars Spacing = 159 mm Provide 20 # bars @ 150 C/C = 2093.333 If T is thicness of wall, we have, = w H D/2 Kltr or m 3 kN/m 3 kN/m 3 Compressive stress, σcbc Tensile stress, σst σs m σcbc + sst π D 2 h at base is, Ash mm 2 /m height from base Astact mm 2 σct 1000 T+(m-1) Ash

Water Tank Design

Embed Size (px)

Citation preview

Page 1: Water Tank Design

INPUTTank capacity = 400Depth of water, H = 4 mFree board = 0.2 mDenity of Concrete, Wconc = 25Denity of Concrete, Wwater = 9.8Grade of Concrete, fck = 20 Mpa

= 7 MpaGrade of Steel, fy = 415 Mpa

= 230 Mpa

= 115 MpaModular ratio, m = 13.3Effective cover = 30 mm

Solution1 Design constants

k = m σcbc

= 0.288146

j = 1 - k/3= 0.903951

R = 1/2 . σcbc . j . k= 0.911645

2 Dimension of tankEffictive depth of the tank, h = 4 - 0.2h = 3.80 mIf "D" is the diameter of the tank

Volume of the tank, 400 =4

D = 11.60 m

3 Design of sectionMaximum hoop tension = w H D

2= 227360 N/m height from base

Area of hoop steel

= 227360

115= 1977.043

Bar dia = 20 # barsSpacing = 159 mmProvide 20 # bars @ 150 C/C

= 2093.333

If T is thicness of wall, we have, = w H D/2

Kltr or m3

kN/m3

kN/m3

Compressive stress, σcbc

Tensile stress, σst

σs

m σcbc + sst

π D2 h

at base is, Ash

mm2/m height from base

Astact mm2

σct

1000 T+(m-1) Ash

Page 2: Water Tank Design

Permissible Direct tensile

= 2.8

T = 72.00429 mmThickness of wall from empirical formula, T = 3 H + 5

= 17 cmT = 170 mm

Spacing of hoop reinforcement near the top can be increased to minimum Ast

= 0.30%= 510

Bar dia = 20 # barsSpacing = 616 mmMaximum spacing = 3 T

= 510 mmProvide 20 # bars @ 510 C/C

If the thickness of wall is less than 225 mm reinforcement provided at the center of thickness. If, however, the thickness is more than 225 mm , half the hoops would have been placed near the inner face and other half at the outer face (i.e. the spacig of the hoops would have been doubled)

Spacing of reinforcement 2 m below the wall top

Maximum hoop tension = w h D2

= 113680 N/m

Area of hoop steel

= 113680

115= 988.5217

Bar dia = 20 # barsSpacing = 318 mmProvide 20 # bars @ 310 C/C

4 Vertical reinforcementDistribution and temprecture reinforcement is provided in vertical direction, Pt = 0.3 - 0.10 ((T-100)/(450-100))

= 0.28 %

= 476

Bar dia = 10 # barsSpacing = 165 mmProvide 10 # bars @ 160 C/C

5 Design of floor tankSince the tank floor is resting on ground throughout, provide a minimum thickness of = 150 mm

minimum Pt = 0.3 %minimum Asv = 450 in each directionHalf reinforcent on each face i.e. 225

Bar dia = 8 # barsSpacing = 223 mmProvide 8 # bars @ 220 C/C in both direction , at top and bottom of floor slab. The floor slab will rest on = 75 mm thick layer of lean concrete covered with a layer of tar felt.

# @mmc/c20# @310c/c

10# @160c/c

20# @150c/c

8# @220c/c both ways-top & bot

stress in concrete σct

Ashmin

mm2

at base is, Ash

mm2/m

Asv mm2

mm2

mm2

Page 3: Water Tank Design
Page 4: Water Tank Design

INPUTTank capacity = 400Depth of water, H = 4 mFree board = 0.2 mDenity of Concrete, Wconc = 25Denity of Concrete, Wwater = 9.8Grade of Concrete, fck = 20 Mpa

M 20= 7 Mpa

Grade of Steel, fy = 415 Mpa= 230 Mpa

= 115 MpaModular ratio, m = 13.3Effective cover = 30 mm

Solution1 Design constants

k = m σcbc

= 0.447381

j = 1 - k/3= 0.850873

R = 1/2 . σcbc . j . k= 1.332326

2 Dimension of tankEffictive depth of the tank, h = 4 - 0.2h = 3.80 mIf "D" is the diameter of the tank

Volume of the tank, 400 =4

D = 11.60 m

3 Determination of bending moment and hoop tensionThickness of wall from empirical formula, T = 3 H + 5

= 17 cmT = 170 mm

The height above base, upto which cantilever action will be there is given by H/3 or 1 m which ever is heigherH/3 = h = 1.333 m

Maximum hoop tension at1.333m level = w (H-h) D

2

= 151592.3 N

Maximum prerssure at bot = wH

= 39200 N

Maximum cantilever B.M. = 1/2 x Pbot x h x h/3Mf = 11609.01 N-m/m

= 151592.3115

= 1318.194

4 Design of setion for cantilever actionIf d is the effective thickness of tank wall,

d == 93.34528 mm

T = 123.3453 mm= 130 mm

Minimum, T = 150 mmor 3 H + 5= 170

Hence provide T = 170 mmd = 140 mm

= Mf

= 847.4313

Bar dia = 12 # barsSpacing = 133 mmProvide vertical 12 # bars @ 130 C/C upto height 1.4 m at inner faceAbove this height, Curtail half bars & cotinue remaining half bars upto topDevelopment length, Ld

=

=13803.2

= 431.25 mmHence Ok

Kltr or m3

kN/m3

kN/m3

Compressive stress, σcbc

Tensile stress, σst

σs

m σcbc + sst

π D2 h

PH/3

Pbot

at base is, Ash

mm2/m height from base

Sqrt(Mf/Ru b)

Ast for cantilever bending

σst . j .d

Ast mm2

φ . σst

4 . τbd

Page 5: Water Tank Design

5 Design of section for hoops action

Maximum hoops tension = 151592.28 N at 1.333 m height from bottomArea of hoop steel

= 151592.3115

= 1318.194Provide Rings on both faceArea of rings in each face = 659.0969

Bar dia = 12 # barsSpacing = 172 mmProvide 12 # bars @ 170 C/C upto height 1.4 m from bottomand above this, the spacing may be increased

= 1329.882

=

= 0.813449 should be less than 2.8Hence Safe

4 Vertical reinforcementDistribution and temprecture reinforcement is provided in vertical direction, Pt = 0.3 - 0.10 ((T-100)/(450-100))

= 0.28 %

= 476

Bar dia = 10 # barsSpacing = 165 mmProvide 10 # bars @ 160 C/C at

5 Design of floor tankSince the tank floor is resting on ground throughout, provide a minimum thickness of = 150 mm

minimum Pt = 0.3 %minimum Asv = 450 in each directionHalf reinforcent on each face i.e. 225

Bar dia = 8 # barsSpacing = 223 mmProvide 8 # bars @ 220 C/C in both direction , at top and bottom of floor slab. The floor slab will rest on = 75 mm thick layer of lean concrete covered with a layer of tar felt.

# @mmc/c12# @170c/c

10# @160c/c

#REF!

8# @220c/c both ways-top & bot

at base is, Ash

Ash mm2

mm2

Astact mm2

σct PH/3

1000 x T + (m-1) x Astact

N/mm2 N/mm2

Asv mm2

mm2

mm2

Page 6: Water Tank Design

VALUES OF DESIGN CONSTANTSGrade of concrete M-15 M-20 M-25 M-30 M-35 M-40 Grade of concret

Modular Ratio 18.67 13.33 10.98 9.33 8.11 7.185 7 8.5 10 11.5 13

93.33 93.33 93.33 93.33 93.33 93.330.4 0.4 0.4 0.4 0.4 0.4

Development Length in tension0.867 0.867 0.867 0.867 0.867 0.8670.867 1.214 1.474 1.734 1.994 2.2540.714 1 1.214 1.429 1.643 1.857

0.329 0.329 0.329 0.329 0.329 0.329 M 15

0.89 0.89 0.89 0.89 0.89 0.89 M 200.732 1.025 1.244 1.464 1.684 1.903 M 250.433 0.606 0.736 0.866 0.997 1.127 M 300.289 0.289 0.289 0.289 0.289 0.289 M 350.904 0.904 0.904 0.904 0.904 0.904 M 400.653 0.914 1.11 1.306 1.502 1.698 M 450.314 0.44 0.534 0.628 0.722 0.816 M 500.253 0.253 0.253 0.253 0.253 0.2530.916 0.916 0.916 0.914 0.916 0.9160.579 0.811 0.985 1.159 1.332 1.5060.23 0.322 0.391 0.46 0.53 0.599

bd M-15 M-20 M-25 M-30 M-35 M-400.18 0.18 0.19 0.2 0.2 0.2

0.25 0.22 0.22 0.23 0.23 0.23 0.230.50 0.29 0.30 0.31 0.31 0.31 0.32 M 100.75 0.34 0.35 0.36 0.37 0.37 0.38 M 151.00 0.37 0.39 0.40 0.41 0.42 0.42 M 201.25 0.40 0.42 0.44 0.45 0.45 0.46 M 251.50 0.42 0.45 0.46 0.48 0.49 0.49 M 301.75 0.44 0.47 0.49 0.50 0.52 0.52 M 352.00 0.44 0.49 0.51 0.53 0.54 0.55 M 402.25 0.44 0.51 0.53 0.55 0.56 0.57 M 452.50 0.44 0.51 0.55 0.57 0.58 0.60 M 502.75 0.44 0.51 0.56 0.58 0.60 0.62

3.00 and above 0.44 0.51 0.57 0.6 0.62 0.63

Grade of concrete M-15 M-20 M-25 M-30 M-35 M-40 Grade of concrete M

1.6 1.8 1.9 2.2 2.3 2.5

Reiforcement %

Permissible Bond stress Table tbd in concrete (IS : 456-2000)

tbd (N / mm2)

scbc N/mm2

m scbc

(a) sst = 140

N/mm2 (Fe 250)

kc

jc

Rc Grade of concretePc (%)

(b) sst = 190

N/mm2

kc

jc

Rc

Pc (%)

(c ) sst = 230

N/mm2 (Fe 415)

kc

jc

Rc

Pc (%)

(d) sst = 275

N/mm2 (Fe 500)

kc

jc

Rc

Pc (%)

Permissible shear stress Table tv in concrete (IS : 456-2000)

100A s Permissible shear stress in concrete tv N/mm2 Permissible stress in concrete (IS : 456-2000)

Grade of concrete

< 0.15

Maximum shear stress tc.max in concrete (IS : 456-2000)Permissible direct tensile stress in concrete (IS : 456-2000)

tc.max sct.max

Shear stress tc

Page 7: Water Tank Design

M-20 M-20bd bd

0.15 0.18 0.18 0.15

0.16 0.18 0.19 0.18

0.17 0.18 0.2 0.21

0.18 0.19 0.21 0.24

0.19 0.19 0.22 0.270.2 0.19 0.23 0.3

0.21 0.2 0.24 0.32

0.22 0.2 0.25 0.350.23 0.2 0.26 0.38

0.24 0.21 0.27 0.410.25 0.21 0.28 0.44

0.26 0.21 0.29 0.470.27 0.22 0.30 0.5

0.28 0.22 0.31 0.550.29 0.22 0.32 0.6

0.3 0.23 0.33 0.650.31 0.23 0.34 0.7

0.32 0.24 0.35 0.750.33 0.24 0.36 0.82

0.34 0.24 0.37 0.88

0.35 0.25 0.38 0.94

0.36 0.25 0.39 1.000.37 0.25 0.4 1.080.38 0.26 0.41 1.160.39 0.26 0.42 1.250.4 0.26 0.43 1.33

0.41 0.27 0.44 1.410.42 0.27 0.45 1.500.43 0.27 0.46 1.630.44 0.28 0.46 1.640.45 0.28 0.47 1.750.46 0.28 0.48 1.880.47 0.29 0.49 2.000.48 0.29 0.50 2.130.49 0.29 0.51 2.250.5 0.30

0.51 0.300.52 0.300.53 0.300.54 0.300.55 0.310.56 0.310.57 0.310.58 0.310.59 0.310.6 0.32

100A s 100A s

Page 8: Water Tank Design

0.61 0.320.62 0.320.63 0.320.64 0.320.65 0.330.66 0.330.67 0.330.68 0.330.69 0.330.7 0.34

0.71 0.340.72 0.340.73 0.340.74 0.340.75 0.350.76 0.350.77 0.350.78 0.350.79 0.350.8 0.35

0.81 0.350.82 0.360.83 0.360.84 0.360.85 0.360.86 0.360.87 0.360.88 0.370.89 0.370.9 0.37

0.91 0.370.92 0.370.93 0.370.94 0.380.95 0.380.96 0.380.97 0.380.98 0.380.99 0.381.00 0.391.01 0.391.02 0.391.03 0.391.04 0.391.05 0.391.06 0.391.07 0.391.08 0.4

Page 9: Water Tank Design

1.09 0.41.10 0.41.11 0.41.12 0.41.13 0.41.14 0.41.15 0.41.16 0.411.17 0.411.18 0.411.19 0.411.20 0.411.21 0.411.22 0.411.23 0.411.24 0.411.25 0.421.26 0.421.27 0.421.28 0.421.29 0.421.30 0.421.31 0.421.32 0.421.33 0.431.34 0.431.35 0.431.36 0.431.37 0.431.38 0.431.39 0.431.40 0.431.41 0.441.42 0.441.43 0.441.44 0.441.45 0.441.46 0.441.47 0.441.48 0.441.49 0.441.50 0.451.51 0.451.52 0.451.53 0.451.54 0.451.55 0.451.56 0.45

Page 10: Water Tank Design

1.57 0.451.58 0.451.59 0.451.60 0.451.61 0.451.62 0.451.63 0.461.64 0.461.65 0.461.66 0.461.67 0.461.68 0.461.69 0.461.70 0.461.71 0.461.72 0.461.73 0.461.74 0.461.75 0.471.76 0.471.77 0.471.78 0.471.79 0.471.80 0.471.81 0.471.82 0.471.83 0.471.84 0.471.85 0.471.86 0.471.87 0.471.88 0.481.89 0.481.90 0.481.91 0.481.92 0.481.93 0.481.94 0.481.95 0.481.96 0.481.97 0.481.98 0.481.99 0.482.00 0.492.01 0.492.02 0.492.03 0.492.04 0.49

Page 11: Water Tank Design

2.05 0.492.06 0.492.07 0.492.08 0.492.09 0.492.10 0.492.11 0.492.12 0.492.13 0.502.14 0.502.15 0.502.16 0.502.17 0.502.18 0.502.19 0.502.20 0.502.21 0.502.22 0.502.23 0.502.24 0.502.25 0.512.26 0.512.27 0.512.28 0.512.29 0.512.30 0.512.31 0.512.32 0.512.33 0.512.34 0.512.35 0.512.36 0.512.37 0.512.38 0.512.39 0.512.40 0.512.41 0.512.42 0.512.43 0.512.44 0.512.45 0.512.46 0.512.47 0.512.48 0.512.49 0.512.50 0.512.51 0.512.52 0.51

Page 12: Water Tank Design

2.53 0.512.54 0.512.55 0.512.56 0.512.57 0.512.58 0.512.59 0.512.60 0.512.61 0.512.62 0.512.63 0.512.64 0.512.65 0.512.66 0.512.67 0.512.68 0.512.69 0.512.70 0.512.71 0.512.72 0.512.73 0.512.74 0.512.75 0.512.76 0.512.77 0.512.78 0.512.79 0.512.80 0.512.81 0.512.82 0.512.83 0.512.84 0.512.85 0.512.86 0.512.87 0.512.88 0.512.89 0.512.90 0.512.91 0.512.92 0.512.93 0.512.94 0.512.95 0.512.96 0.512.97 0.512.98 0.512.99 0.513.00 0.51

Page 13: Water Tank Design

3.01 0.513.02 0.513.03 0.513.04 0.513.05 0.513.06 0.513.07 0.513.08 0.513.09 0.513.10 0.513.11 0.513.12 0.513.13 0.513.14 0.513.15 0.51

Page 14: Water Tank Design

M-10 M-15 M-20 M-25 M-30 M-35 M-40 M-45 M-50-- 0.6 0.8 0.9 1 1.1 1.2 1.3 1.4

Development Length in tension

Plain M.S. Bars H.Y.S.D. Bars

0.6 58 0.96 600.8 44 1.28 450.9 39 1.44 401 35 1.6 36

1.1 32 1.76 331.2 29 1.92 301.3 27 2.08 281.4 25 2.24 26

(N/mm2) (N/mm2) (N/mm2)3.0 300 2.5 250 -- --5.0 500 4.0 400 0.6 607.0 700 5.0 500 0.8 808.5 850 6.0 600 0.9 90

10.0 1000 8.0 800 1.0 10011.5 1150 9.0 900 1.1 11013.0 1300 10.0 1000 1.2 12014.5 1450 11.0 1100 1.3 13016.0 1600 12.0 1200 1.4 140

Grade of concrete M 10 15 20 25 30 35 401.2 2.0 2.8 3.2 3.6 4.0 4.4

Permissible Bond stress Table tbd in concrete (IS : 456-2000)

tbd (N / mm2) kd = Ld F tbd (N / mm2) kd = Ld F

Permissible stress in concrete (IS : 456-2000)Permission stress in compression (N/mm2) Permissible stress in bond (Average) for

plain bars in tention (N/mm2)Bending acbc Direct (acc)Kg/m2 Kg/m2 in kg/m2

Permissible direct tensile stress in concrete (IS : 456-2000)

sct.max

Page 15: Water Tank Design

Axles Bearings Bolts4 4 95 7 106 8 11

4