31
Web Spider Antonio Gullì [email protected]

Web Spider

  • Upload
    salome

  • View
    37

  • Download
    1

Embed Size (px)

DESCRIPTION

Web Spider. Antonio Gullì [email protected]. Compito di un sistema di spidering. Raccogliere documenti dal Web a partire da un set S 0 dato in input G web =(N web ,E web ) grafo orientato che descrive l’insieme delle pagine e dei link Tipi di visita: DFS BFS Con priorità - PowerPoint PPT Presentation

Citation preview

Page 1: Web Spider

Web Spider

Antonio Gullì

[email protected]

Page 2: Web Spider

Compito di un sistema di spidering Raccogliere documenti dal Web a partire da un set

S0 dato in input Gweb=(Nweb,E web) grafo orientato che descrive

l’insieme delle pagine e dei link Tipi di visita:

DFS BFS Con priorità

Pre-assegnata staticamente -- PageRank (approssimato) Assegnata dinamicamente

Page 3: Web Spider

Architettura di un Search Engine

INTERNET

Spider

Page Repository Indicizzatore

Query Engine

Ranker

Page 4: Web Spider

Architettura Spider

SPIDERS

INDEXERS

ParallelDownloaders

DNS Revolvers

DNS Cache

Parallel Crawler Managers

AlreadySeen Pages

Robot.txtCache

Parallel Link Extractors

PriorityQue

Distributed Page Repository

Parsers

INTERNET

Page Analysis

Indexer

Strutture Dati

Moduli Software

LEGENDA

Page 5: Web Spider

Architettura Spider

Principali Strutture Dati

Pagine già visitate (problema: quando URL distinte puntano in realtà alla stessa pagina o a pagine simili?)

Prossime pagine da visitare (coda di priorità o struttura FIFO/LIFO, con update dinamico efficiente)

Robot.txt cache (I Webmaster possono raccomandare cosa visitare e cosa non visitare)

DNS cache (risoluzione degli indirizzi IP) Page Repository (dove memorizzare le pagine)

Page 6: Web Spider

Architettura Spider

Principali Moduli Software

Crawler Managers (si coordinano per decidere i prossimi task da assegnare ai Downloaders, Bilanciamento, controllo del carico…)

DNS Resolvers (risolvono gli indirizzi IP in modo async) Parallel Downloaders (effettuano il download vero e

proprio delle pagine Web usando HTTP) Parsers (convertono i formati, parserizzano le

informazioni, memorizzano le pagine nel repository) Link Extractors (estraggono i link dalle pagine presenti nel

repository e li memorizzano, senza sosta, nella struttura dati che tiene traccia delle prossime pagine da visitare)

Page 7: Web Spider

Note sul funzionamento spider Se una pagina non è stata modificata ?

Supporto direttamente fornito da HTTP http://www.w3.org/Protocols/rfc1945/rfc1945

"conditional GET" If-Modified-Since header field

Se il Webmaster non vuole far visitare una pagina?1. Supporto dato, come raccomandaz., dal Robot Standard

http://www.robotstxt.org/wc/norobots.html 2. META tag all’interno di HTML

Page 8: Web Spider

Note sul funzionamento spider Presentarsi (HTTP Header)

“The User-Agent request-header field contains information about the user agent originating the request. …statistical purposes, the tracing of protocol violations, and automated recognition of user agents… Although it is not required, user agents should include this field with requests.”

User-Agent: CERN-LineMode/2.15 libwww/2.17b3

Filtrare (Esempio di Robot.txt) User-agent: webcrawler Disallow: User-agent: lycra Disallow: / User-agent: * Disallow: /tmp Disallow: /logs

Filtrare (Esempio di META TAG)<META NAME="ROBOTS" CONTENT="NOINDEX"> <META NAME="ROBOTS" CONTENT="NOFOLLOW"> Combinazioni delle due

Page 9: Web Spider

Algoritmi usati ad alto livello dai moduli sw Downloaders:

while(<ci sono url assegnate dai crawler manager>){ <estrai le url dalla coda di assegnamento> <scarica le pagine pi associate alla url dalla rete> <invia le pi al page repository>}

Crawler Manager:<estrai un bunch di url dalla “priority que” in ordine>while(<ci sono url assegnate dai crawler manager>){ <estrai le URL ed assegnale ad S> foreach u S {

if ( (u “Already Seen Page” ) || ( u “Already Seen Page” && (<sul Web server la pagina è più recente> )

&& ( <u è un url accettata dal robot.txt del sito>) ) { <risolvi u rispetto al DNS> <invia u ai downloaders, in coda>

}}

Link Extractor:while(<ci sono pagine da cui estrarre i link>){ <prendi una pagina p dal page repository> <estrai i link contenuti nel tag a href> <estrai i link contenuti in javascript> <estrai ….. <estrai i link contenuti nei frameset> <inserisci i link estratti nella priority que, ciascuna con una priorità dipendente dalla politica scelta e: 1) compatibilmente ai filtri applicati 2) applicando le operazioni di normalizzazione> <marca p come pagina da cui abbiamo estratto i link>}

Page 10: Web Spider

Architettura Distribuita Spider

Google (www.google.com ) 3,083,324,652 pagine raccolte Centinaia di milioni di Web server distinti Stimando 4Kb per pagina compressa → >10Tera ~1.000 server linux (10% totale) → sistema distribuito phython e c++ http://www.google.com/bot.html

Fast ( www.alltheweb.com ) 2,112,188,990 pagine raccolte c++

Liste di spider noti http://joseluis.pellicer.org/ua/ http://www.robotstxt.org/wc/active/html/index.html

Page 11: Web Spider

Architettura Distribuita Spider

Stima “dall’esterno” delle performance richiesta

Supponendo che il 40% delle pagine Web si modifichi in una settimana (~ 1.250.000.000) → ~2000 page/sec

Una singola macchina linux con “puro download” raggiunge picchi di 80-100 page/sec usando Posix thread

Rallentamenti dovuti a latenza di rete e gestione locale dati e strutture distribuite

Page 12: Web Spider

Architettura Distribuita Spider Requisiti

Architettura altamente ottimizzata Elevato page download rate, ridurre i colli di bottiglia

Tolleranza ai guasti Il fallimento di un server non deve bloccare il sistema, punti di

recovery…. Robustezza

server non HTTP complaint, HTML non complaint, HTTP/HTML trap… Estendibilità

Nuovi formati (PDF, PS, XML), Nuove politiche, Nuovi protocolli, … Correttezza

Non essere invasivo, Presentarsi correttamente, No hammering, … Configurabilità on the fly

Larry Page, 97: “It turns out that running a crawler which connects to more than half a million servers, and generates tens of millions of log entries generates a fair amount of email and phone calls”

Page 13: Web Spider

Architettura Distribuita Spider

Sistema distribuito (100 … >1000 spider server )

Problema: partizionamento delle pagine Web da visitare Soluzione:

Hash per sito Hash per URL Gerarchica (per domini), Geografica (per nazioni)

Problema: con che frequenza aggiornare le pagine Web Soluzioni Adattative

Per esempio, settando la freq. di aggiornamento in base alle modifiche nelle precedenti visite

Page 14: Web Spider

Architettura Distribuita Spider

Sistema distribuito (100 … >1000 spider server )

Problema: tenere sincronizzata la struttura “Already Seen Pages” tra i vari nodi di elaborazione

Soluzioni Euristiche: Caching/Replicazione delle URL più frequentemente accedute Bloom Filter, descrizione approssimata delle URL possedute localmente Batch Update, con limitata probabilità di visite ripetute Hash per sito o altri assegnamenti statici con zero-overlap

Problema: minimizzare l’impatto delle comunicazioni inter nodo Soluzioni comuni:

Comunicazioni bufferizzate Caching / Replicazione

Page 15: Web Spider

Architettura Distribuita Spider

Sistema distribuito (100 … >1000 spider server )

Problema: come individuare se due pagine sono simili Esempio pagine con counter, javascript che modifica il testo

Soluzione Euristica: Signature Estrazioni di parte “significativa” del testo MD5 (spesso usato in luogo della stessa URL), SHA, Fingerprint

Problema: come evitare di sovraccaricare i server remoti

Soluzione: Politiche di throttling Intervallare il download di URL provenienti da siti Web distinti

Page 16: Web Spider

Sistema distribuito (100 … >1000 spider server )

Problema: aumentare l’efficienza del singolo nodo spidering Soluzioni comuni:

Multithreading: cpu bound, i/o bound (Es, altavista) I/O Async (Es, Google) Pipeline software

Architettura Distribuita Spider

D P R

D P R

D P R

D

P

R

Page Downloading

Parsing

Sending to Repository

Page 17: Web Spider

Architettura Distribuita Spider

Sistema distribuito (100 … >1000 spider server )

Problema: bilanciare il carico e garantire fault-tollerance Soluzione:

Hash (soluzione comune, ma non tutte le pagine ed i siti pesano allo stesso modo. Cosa succede in caso di fallimento ?)

Consistent Hashing (usato inizialmente in Web Caching e P2P sia le URL che i server sono mappati in un unit circle. In caso di caduta non è necessario un remapping completo)

Database con transizioni

Page 18: Web Spider

Architettura Distribuita Spider

Sistema distribuito (100 … >1000 spider server )

Problema: minimizzare la distanza di rete tra le pagine Web ed il sistema di spider

Soluzione: Tipicamente si distribuisce il lavoro tra diversi data-center località geografiche distinte (Google 4 distinti) minimizzare il numero di border gateways attraversati

Problema: Individuare un dataset S0 ”buono”. La scelta della frontiera da cui partire ha un impatto diretto sulla “rapidità” con cui si converge verso le pagine “interessanti”

Soluzione: ODP, …

Page 19: Web Spider

Politiche di visita delle pagine BFS, DFS Priorità: BackLink count, Frequenza di modifica Priorità: PageRank, Google

R(i) = (1-d) / N + d * ∑j (R(j) / N(j)), j B(i) 0<d<1, N numero delle pagine nella collezione B(i) insieme delle pagine che puntano la pagina i N(j) numero dei link uscenti dalla pagina j Spesso si calcolano delle approssimazioni

Confronto: Google: Junghoo Cho and Hector Garcia-Molina and Lawrence Page, "Efficient

crawling through URL ordering", "Computer Networks and ISDN Systems, vol 30 num. 1—7 pages 161--172", "1998";

Altavista: Marc Najork and Janet L. Wiener, "Breadth-First Crawling Yields High-Quality Pages Proceedings of the 10th International World Wide Web Conference Elsevier Science Hong Kong 114—118 May 2001",

Page 20: Web Spider

Politiche di visita delle pagine

“…breadth-first search order discovers the highest quality pages during the early stages of the crawl BFS”

328 milioni di URL nel testbed

Page 21: Web Spider

Politiche di visita: brevi cenni su Focused Crawling

Idea: massimizziamo il numero di pagine “rilevanti” raccolte e minimizziamo quelle raggiunte http://dev.funnelback.com/focused-crawler-review.html

Analisi della struttura dei link Pagerank

Modelli di retrieval Vector space “query driven” (agenti)

Machine Learning Costruzione dei “grafi contestuali” (chi linka cosa ?) Approccio Bayesano, un set di classificatori vengono trainati per

assegnare documenti a differenti categorie basandosi sulla loro distanza attesa dalle pagine obbiettivo

AG
Da sviluppare ?
Page 22: Web Spider

Politiche di visita: brevi cenni su Focused Crawling

il teorema di Bayes stima la probabilità condizionale che si verifichi l’evento Hi in presenza dell’evento E:

niHjHEEP

HHEEH

jj

iii ,....,1

)Pr()|Pr()(

)Pr()|Pr()|Pr(

Pr[documento rilevante | che il termine t è presente] Pr[documento irrilevante | che il termine t è presente] Pr[termine t sia presente | il documento sia rilevante]

Pr[termine t sia presente | il documento sia irrilevante]

AG
Da sviluppare ?
Page 23: Web Spider

Indicizzare ciò che non si è raccolto 25-30% dell’indice di google è costruito in tal modo

Esempio “madonna” This is G o o g l e's cache of http://www.madonna.com/. These terms only appear in links pointing to this page: madonna

Desumere il “contenuto” di una pagina Web dal “contesto” in cui la stessa è sistemata

Nessun contenuto testuale pagina non raggiunta

Page 24: Web Spider

Indicizzare ciò che non si è raccolto

Supponiamo di non avere raggiunto la pagina P “whitehouse.org”, ma di avere già raggiunto ed indicizzato un insieme di pagine {P1….Pr} che puntano P

Supponiamo di estrarre dal link che da ciascun Pi, 1<i<r, punta P una finestra di testo.

…George Bush, President of U.S. lives at <a href=http://www.whitehouse.org> WhiteHouse</a>

… George Washington was at <a href=http://whitehouse.org> WhiteHouse</a>

Pagina Web e Documento Virtuale

bush

WashingtonWhite House

Page 25: Web Spider

Tecniche alternative di URL Discovery “Hidden Web”: non linkata o HTML non statico

Riferito dal browser: HTTP 1.0: “The Referer request-header field allows the client

to specify, for the server's benefit, the address (URI) of the resource from which the Request-URI was obtained.”

Presente sul DNS Testata con demoni di discovery

Presente su Usenet o altre fonti Generata “on the fly”

~ 60-80% dei contenuti Web

Page 26: Web Spider

Un esempio concreto: high-performance distributed Web crawler – Univ. Brooklyn 2002 5.000 linee C++, phython, STL, Red-Black tree, PCRE, BDB Comunicazioni bufferizzate intranodo, inter-nodo Strategia BFS (altre integrabili) Partizionamento delle URL via hash

K-way shuffling Coda di Priorità per gli host ready e quelli waiting (recentemente

acceduti); Inoltre una coda di priorità per ciascun host Page Repository realizzato via NFS su 4 Sun servers DNS Resolver asincrono Complessive 300 pagine al secondo (limite sui router), 18

giorni in totale, checkpoint ogni 4 ore 138 milioni di pagine scaricate, 120 milioni di pagine “uniche”

Page 27: Web Spider

Un esempio concreto: high-performance distributed Web crawler – Univ. Brooklyn 2002HTTP requests: 161,549,811network errors: 5,873,685read timeout exceeded errors: 2,288,084robots.txt requests: 16,933,942successful non-robots requests 138,742,184average size of page 13,354 bytestotal data size 1.85 TBtotal successfull non-robot requests 138,742,184 100.00%200 (OK) 121,292,132 87.42%404 (not found) 7,379,633 5.32%302 (moved temporarily) 6,065,464 4.37%301 (moved permanently) 2,885,665 2.08%

Page 28: Web Spider

Alcune soluzioni descritte in letteratura Google

Sergey Brin and Lawrence Page, "The anatomy of a large-scale hypertextual Web search engine", "Computer Networks and ISDN Systems vol. 30 num 1--7, pages 107--117", "1998";

Junghoo Cho and Hector Garcia-Molina and Lawrence Page, "Efficient crawling through URL ordering", "Computer Networks and ISDN Systems, vol 30 num. 1—7 pages 161--172", "1998";

Junghoo Cho and Hector Garcia-Molina, “Parallel crawlers. In Proc. of the 11th International World--Wide Web Conference", "2002";

Altavista Allan Heydon and Marc Najork, "Mercator: A Scalable, Extensible

Web Crawler journal World Wide Web vol.2 num.4 pages 219-229 1999",

M. Najork and A. Heydon, "On High-Performance Web Crawling Research Report, Compaq Systems Research Center, 2001",

Page 29: Web Spider

Alcune soluzioni descritte in letteratura Arianna, Università di Pisa

D. Dato, A. Gullì, G. Attardi, Web Host Enumeration Through DNS,

Web Net '97, Toronto, 1997. Università di Pisa

Paolo Boldi and Bruno Codenotti and Massimo Santini and Sebastiano Vigna, “UbiCrawler: A Scalable Fully Distributed Web Crawler",

Polytechnic University, Brooklyn V. Shkapenyuk and T. Suel. “Design and implementation of a high-

performance distributed Web crawler”, “In Proceedings of the 18th International Conference on Data Engineering (ICDE'02), San Jose, CA Feb. 26--March 1, pages 357—368”, “2002”

Page 30: Web Spider

‘Coffee’ time on google

Cookie di Sessione

Spider non espande

HTML non significativo

ODP, ODP Descr.

PageRank da le risposte in un ordine intuitivo

Ma lo spider dove ha trovato il caffè nella prima risposta?

Page 31: Web Spider

‘Coffee’ time on google

Estratto dal documento virtuale Documento dato dal Web Server